sbdsp.c revision 1.35 1 /* $NetBSD: sbdsp.c,v 1.35 1997/03/20 11:03:13 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36 /*
37 * SoundBlaster Pro code provided by John Kohl, based on lots of
38 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
39 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
40 * <sachs (at) meibm15.cen.uiuc.edu>.
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/errno.h>
46 #include <sys/ioctl.h>
47 #include <sys/syslog.h>
48 #include <sys/device.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <vm/vm.h>
52
53 #include <machine/cpu.h>
54 #include <machine/intr.h>
55 #include <machine/pio.h>
56
57 #include <sys/audioio.h>
58 #include <dev/audio_if.h>
59
60 #include <dev/isa/isavar.h>
61 #include <dev/isa/isadmavar.h>
62 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
63
64 #include <dev/isa/sbreg.h>
65 #include <dev/isa/sbdspvar.h>
66
67 #ifdef AUDIO_DEBUG
68 extern void Dprintf __P((const char *, ...));
69 #define DPRINTF(x) if (sbdspdebug) Dprintf x
70 int sbdspdebug = 0;
71 #else
72 #define DPRINTF(x)
73 #endif
74
75 #ifndef SBDSP_NPOLL
76 #define SBDSP_NPOLL 3000
77 #endif
78
79 struct {
80 int wdsp;
81 int rdsp;
82 int wmidi;
83 } sberr;
84
85 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
86 int *tcp, int *modep));
87 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 #define SB_LS_MIN 0x06 /* 4000 Hz */
115 #define SB_8K 0x83 /* 8000 Hz */
116 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
117 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
118 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
119 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
120 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
121 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
122
123 int sbdsp16_wait __P((struct sbdsp_softc *));
124 void sbdsp_to __P((void *));
125 void sbdsp_pause __P((struct sbdsp_softc *));
126 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
127 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
128 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
129
130 #ifdef AUDIO_DEBUG
131 void sb_printsc __P((struct sbdsp_softc *));
132 #endif
133
134 #ifdef AUDIO_DEBUG
135 void
136 sb_printsc(sc)
137 struct sbdsp_softc *sc;
138 {
139 int i;
140
141 printf("open %d dmachan %d/%d/%d iobase %x\n",
142 sc->sc_open, sc->sc_drq, sc->sc_drq8, sc->sc_drq16, sc->sc_iobase);
143 printf("irate %d itc %d imode %d orate %d otc %d omode %d encoding %x\n",
144 sc->sc_irate, sc->sc_itc, sc->sc_imode,
145 sc->sc_orate, sc->sc_otc, sc->sc_omode, sc->sc_encoding);
146 printf("outport %d inport %d spkron %d nintr %lu\n",
147 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
148 printf("precision %d channels %d intr %p arg %p\n",
149 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
150 printf("gain: ");
151 for (i = 0; i < SB_NDEVS; i++)
152 printf("%d ", sc->gain[i]);
153 printf("\n");
154 }
155 #endif
156
157 /*
158 * Probe / attach routines.
159 */
160
161 /*
162 * Probe for the soundblaster hardware.
163 */
164 int
165 sbdsp_probe(sc)
166 struct sbdsp_softc *sc;
167 {
168
169 if (sbdsp_reset(sc) < 0) {
170 DPRINTF(("sbdsp: couldn't reset card\n"));
171 return 0;
172 }
173 /* if flags set, go and probe the jazz16 stuff */
174 if (sc->sc_dev.dv_cfdata->cf_flags != 0)
175 sc->sc_model = sbdsp_jazz16_probe(sc);
176 else
177 sc->sc_model = sbversion(sc);
178
179 return 1;
180 }
181
182 /*
183 * Try add-on stuff for Jazz16.
184 */
185 u_int
186 sbdsp_jazz16_probe(sc)
187 struct sbdsp_softc *sc;
188 {
189 static u_char jazz16_irq_conf[16] = {
190 -1, -1, 0x02, 0x03,
191 -1, 0x01, -1, 0x04,
192 -1, 0x02, 0x05, -1,
193 -1, -1, -1, 0x06};
194 static u_char jazz16_drq_conf[8] = {
195 -1, 0x01, -1, 0x02,
196 -1, 0x03, -1, 0x04};
197
198 u_int rval = sbversion(sc);
199 bus_space_tag_t iot = sc->sc_iot;
200 bus_space_handle_t ioh;
201
202 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh))
203 return rval;
204
205 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
206 jazz16_irq_conf[sc->sc_irq] == (u_char)-1)
207 goto done; /* give up, we can't do it. */
208
209 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
210 delay(10000); /* delay 10 ms */
211 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
212 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
213
214 if (sbdsp_reset(sc) < 0)
215 goto done; /* XXX? what else could we do? */
216
217 if (sbdsp_wdsp(sc, JAZZ16_READ_VER))
218 goto done;
219
220 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ)
221 goto done;
222
223 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
224 sc->sc_drq16 = sc->sc_drq8;
225 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
226 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
227 jazz16_drq_conf[sc->sc_drq8]) ||
228 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq]))
229 DPRINTF(("sbdsp: can't write jazz16 probe stuff"));
230 else
231 rval |= MODEL_JAZZ16;
232
233 done:
234 bus_space_unmap(iot, ioh, 1);
235 return rval;
236 }
237
238 /*
239 * Attach hardware to driver, attach hardware driver to audio
240 * pseudo-device driver .
241 */
242 void
243 sbdsp_attach(sc)
244 struct sbdsp_softc *sc;
245 {
246
247 /* Set defaults */
248 if (ISSB16CLASS(sc))
249 sc->sc_irate = sc->sc_orate = 8000;
250 else if (ISSBPROCLASS(sc))
251 sc->sc_itc = sc->sc_otc = SB_8K;
252 else
253 sc->sc_itc = sc->sc_otc = SB_8K;
254 sc->sc_encoding = AUDIO_ENCODING_ULAW;
255 sc->sc_precision = 8;
256 sc->sc_channels = 1;
257
258 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
259 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
260
261 if (ISSBPROCLASS(sc)) {
262 int i;
263
264 /* set mixer to default levels, by sending a mixer
265 reset command. */
266 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
267 /* then some adjustments :) */
268 sbdsp_mix_write(sc, SBP_CD_VOL,
269 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
270 sbdsp_mix_write(sc, SBP_DAC_VOL,
271 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
272 sbdsp_mix_write(sc, SBP_MASTER_VOL,
273 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
274 sbdsp_mix_write(sc, SBP_LINE_VOL,
275 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
276 for (i = 0; i < SB_NDEVS; i++)
277 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
278 sc->in_filter = 0; /* no filters turned on, please */
279 }
280
281 printf(": dsp v%d.%02d%s\n",
282 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
283 ISJAZZ16(sc) ? ": <Jazz16>" : "");
284 }
285
286 /*
287 * Various routines to interface to higher level audio driver
288 */
289
290 void
291 sbdsp_mix_write(sc, mixerport, val)
292 struct sbdsp_softc *sc;
293 int mixerport;
294 int val;
295 {
296 bus_space_tag_t iot = sc->sc_iot;
297 bus_space_handle_t ioh = sc->sc_ioh;
298
299 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
300 delay(10);
301 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
302 delay(30);
303 }
304
305 int
306 sbdsp_mix_read(sc, mixerport)
307 struct sbdsp_softc *sc;
308 int mixerport;
309 {
310 bus_space_tag_t iot = sc->sc_iot;
311 bus_space_handle_t ioh = sc->sc_ioh;
312
313 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
314 delay(10);
315 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
316 }
317
318 int
319 sbdsp_set_in_sr(addr, sr)
320 void *addr;
321 u_long sr;
322 {
323 register struct sbdsp_softc *sc = addr;
324
325 if (ISSB16CLASS(sc))
326 return (sbdsp16_setrate(sc, sr, SB_INPUT_RATE, &sc->sc_irate));
327 else
328 return (sbdsp_srtotc(sc, sr, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode));
329 }
330
331 u_long
332 sbdsp_get_in_sr(addr)
333 void *addr;
334 {
335 register struct sbdsp_softc *sc = addr;
336
337 if (ISSB16CLASS(sc))
338 return (sc->sc_irate);
339 else
340 return (sbdsp_tctosr(sc, sc->sc_itc));
341 }
342
343 int
344 sbdsp_set_out_sr(addr, sr)
345 void *addr;
346 u_long sr;
347 {
348 register struct sbdsp_softc *sc = addr;
349
350 if (ISSB16CLASS(sc))
351 return (sbdsp16_setrate(sc, sr, SB_OUTPUT_RATE, &sc->sc_orate));
352 else
353 return (sbdsp_srtotc(sc, sr, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode));
354 }
355
356 u_long
357 sbdsp_get_out_sr(addr)
358 void *addr;
359 {
360 register struct sbdsp_softc *sc = addr;
361
362 if (ISSB16CLASS(sc))
363 return (sc->sc_orate);
364 else
365 return (sbdsp_tctosr(sc, sc->sc_otc));
366 }
367
368 int
369 sbdsp_query_encoding(addr, fp)
370 void *addr;
371 struct audio_encoding *fp;
372 {
373 switch (fp->index) {
374 case 0:
375 strcpy(fp->name, AudioEmulaw);
376 fp->format_id = AUDIO_ENCODING_ULAW;
377 break;
378 case 1:
379 strcpy(fp->name, AudioEpcm16);
380 fp->format_id = AUDIO_ENCODING_PCM16;
381 break;
382 default:
383 return (EINVAL);
384 }
385 return (0);
386 }
387
388 int
389 sbdsp_set_format(addr, encoding, precision)
390 void *addr;
391 u_int encoding, precision;
392 {
393 register struct sbdsp_softc *sc = addr;
394
395 switch (encoding) {
396 case AUDIO_ENCODING_ULAW:
397 case AUDIO_ENCODING_PCM16:
398 case AUDIO_ENCODING_PCM8:
399 break;
400 default:
401 return (EINVAL);
402 }
403
404 if (precision == 16)
405 if (!ISSB16CLASS(sc) && !ISJAZZ16(sc))
406 return (EINVAL);
407
408 sc->sc_encoding = encoding;
409 sc->sc_precision = precision;
410
411 return (0);
412 }
413
414 int
415 sbdsp_get_encoding(addr)
416 void *addr;
417 {
418 register struct sbdsp_softc *sc = addr;
419
420 return (sc->sc_encoding);
421 }
422
423 int
424 sbdsp_get_precision(addr)
425 void *addr;
426 {
427 register struct sbdsp_softc *sc = addr;
428
429 return (sc->sc_precision);
430 }
431
432 int
433 sbdsp_set_channels(addr, channels)
434 void *addr;
435 int channels;
436 {
437 register struct sbdsp_softc *sc = addr;
438
439 if (ISSBPROCLASS(sc)) {
440 if (channels != 1 && channels != 2)
441 return (EINVAL);
442 sc->sc_channels = channels;
443 sc->sc_dmadir = SB_DMA_NONE;
444 /*
445 * XXXX
446 * With 2 channels, SBPro can't do more than 22kHz.
447 * No framework to check this.
448 */
449 } else {
450 if (channels != 1)
451 return (EINVAL);
452 sc->sc_channels = channels;
453 }
454
455 return (0);
456 }
457
458 int
459 sbdsp_get_channels(addr)
460 void *addr;
461 {
462 register struct sbdsp_softc *sc = addr;
463
464 return (sc->sc_channels);
465 }
466
467 int
468 sbdsp_set_ifilter(addr, which)
469 void *addr;
470 int which;
471 {
472 register struct sbdsp_softc *sc = addr;
473 int mixval;
474
475 /* XXXX SB16 */
476 if (ISSBPROCLASS(sc)) {
477 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
478 switch (which) {
479 case 0:
480 mixval |= SBP_FILTER_OFF;
481 break;
482 case SBP_TREBLE_EQ:
483 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
484 break;
485 case SBP_BASS_EQ:
486 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
487 break;
488 default:
489 return (EINVAL);
490 }
491 sc->in_filter = mixval & SBP_IFILTER_MASK;
492 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
493 return (0);
494 } else
495 return (EINVAL);
496 }
497
498 int
499 sbdsp_get_ifilter(addr)
500 void *addr;
501 {
502 register struct sbdsp_softc *sc = addr;
503
504 /* XXXX SB16 */
505 if (ISSBPROCLASS(sc)) {
506 sc->in_filter =
507 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
508 switch (sc->in_filter) {
509 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
510 return (SBP_TREBLE_EQ);
511 case SBP_FILTER_ON|SBP_IFILTER_LOW:
512 return (SBP_BASS_EQ);
513 case SBP_FILTER_OFF:
514 default:
515 return (0);
516 }
517 } else
518 return (0);
519 }
520
521 int
522 sbdsp_set_out_port(addr, port)
523 void *addr;
524 int port;
525 {
526 register struct sbdsp_softc *sc = addr;
527
528 sc->out_port = port; /* Just record it */
529
530 return (0);
531 }
532
533 int
534 sbdsp_get_out_port(addr)
535 void *addr;
536 {
537 register struct sbdsp_softc *sc = addr;
538
539 return (sc->out_port);
540 }
541
542
543 int
544 sbdsp_set_in_port(addr, port)
545 void *addr;
546 int port;
547 {
548 register struct sbdsp_softc *sc = addr;
549 int mixport, sbport;
550
551 if (ISSBPROCLASS(sc)) {
552 switch (port) {
553 case SB_MIC_PORT:
554 sbport = SBP_FROM_MIC;
555 mixport = SBP_MIC_VOL;
556 break;
557 case SB_LINE_IN_PORT:
558 sbport = SBP_FROM_LINE;
559 mixport = SBP_LINE_VOL;
560 break;
561 case SB_CD_PORT:
562 sbport = SBP_FROM_CD;
563 mixport = SBP_CD_VOL;
564 break;
565 case SB_DAC_PORT:
566 case SB_FM_PORT:
567 default:
568 return (EINVAL);
569 }
570 } else {
571 switch (port) {
572 case SB_MIC_PORT:
573 sbport = SBP_FROM_MIC;
574 mixport = SBP_MIC_VOL;
575 break;
576 default:
577 return (EINVAL);
578 }
579 }
580
581 sc->in_port = port; /* Just record it */
582
583 /* XXXX SB16 */
584 if (ISSBPROCLASS(sc)) {
585 /* record from that port */
586 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
587 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
588 /* fetch gain from that port */
589 sc->gain[port] = sbdsp_mix_read(sc, mixport);
590 }
591
592 return (0);
593 }
594
595 int
596 sbdsp_get_in_port(addr)
597 void *addr;
598 {
599 register struct sbdsp_softc *sc = addr;
600
601 return (sc->in_port);
602 }
603
604
605 int
606 sbdsp_speaker_ctl(addr, newstate)
607 void *addr;
608 int newstate;
609 {
610 register struct sbdsp_softc *sc = addr;
611
612 if ((newstate == SPKR_ON) &&
613 (sc->spkr_state == SPKR_OFF)) {
614 sbdsp_spkron(sc);
615 sc->spkr_state = SPKR_ON;
616 }
617 if ((newstate == SPKR_OFF) &&
618 (sc->spkr_state == SPKR_ON)) {
619 sbdsp_spkroff(sc);
620 sc->spkr_state = SPKR_OFF;
621 }
622 return(0);
623 }
624
625 int
626 sbdsp_round_blocksize(addr, blk)
627 void *addr;
628 int blk;
629 {
630 register struct sbdsp_softc *sc = addr;
631
632 sc->sc_last_hs_size = 0;
633
634 /* Higher speeds need bigger blocks to avoid popping and silence gaps. */
635 if (blk < NBPG/4 || blk > NBPG/2) {
636 if (ISSB16CLASS(sc)) {
637 if (sc->sc_orate > 8000 || sc->sc_irate > 8000)
638 blk = NBPG/2;
639 } else {
640 if (sc->sc_otc > SB_8K || sc->sc_itc < SB_8K)
641 blk = NBPG/2;
642 }
643 }
644 /* don't try to DMA too much at once, though. */
645 if (blk > NBPG)
646 blk = NBPG;
647 if (sc->sc_channels == 2)
648 return (blk & ~1); /* must be even to preserve stereo separation */
649 else
650 return (blk); /* Anything goes :-) */
651 }
652
653 int
654 sbdsp_commit_settings(addr)
655 void *addr;
656 {
657 register struct sbdsp_softc *sc = addr;
658
659 /* due to potentially unfortunate ordering in the above layers,
660 re-do a few sets which may be important--input gains
661 (adjust the proper channels), number of input channels (hit the
662 record rate and set mode) */
663
664 if (ISSBPRO(sc)) {
665 /*
666 * With 2 channels, SBPro can't do more than 22kHz.
667 * Whack the rates down to speed if necessary.
668 * Reset the time constant anyway
669 * because it may have been adjusted with a different number
670 * of channels, which means it might have computed the wrong
671 * mode (low/high speed).
672 */
673 if (sc->sc_channels == 2 &&
674 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
675 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
676 &sc->sc_itc, &sc->sc_imode);
677 } else
678 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
679 SB_INPUT_RATE, &sc->sc_itc,
680 &sc->sc_imode);
681
682 if (sc->sc_channels == 2 &&
683 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
684 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
685 &sc->sc_otc, &sc->sc_omode);
686 } else
687 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
688 SB_OUTPUT_RATE, &sc->sc_otc,
689 &sc->sc_omode);
690 }
691
692 /*
693 * XXX
694 * Should wait for chip to be idle.
695 */
696 sc->sc_dmadir = SB_DMA_NONE;
697
698 return 0;
699 }
700
701
702 int
703 sbdsp_open(sc, dev, flags)
704 register struct sbdsp_softc *sc;
705 dev_t dev;
706 int flags;
707 {
708 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
709
710 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
711 return ENXIO;
712
713 sc->sc_open = 1;
714 sc->sc_mintr = 0;
715 if (ISSBPROCLASS(sc) &&
716 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
717 DPRINTF(("sbdsp_open: can't set mono mode\n"));
718 /* we'll readjust when it's time for DMA. */
719 }
720
721 /*
722 * Leave most things as they were; users must change things if
723 * the previous process didn't leave it they way they wanted.
724 * Looked at another way, it's easy to set up a configuration
725 * in one program and leave it for another to inherit.
726 */
727 DPRINTF(("sbdsp_open: opened\n"));
728
729 return 0;
730 }
731
732 void
733 sbdsp_close(addr)
734 void *addr;
735 {
736 struct sbdsp_softc *sc = addr;
737
738 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
739
740 sc->sc_open = 0;
741 sbdsp_spkroff(sc);
742 sc->spkr_state = SPKR_OFF;
743 sc->sc_mintr = 0;
744 sbdsp_haltdma(sc);
745
746 DPRINTF(("sbdsp_close: closed\n"));
747 }
748
749 /*
750 * Lower-level routines
751 */
752
753 /*
754 * Reset the card.
755 * Return non-zero if the card isn't detected.
756 */
757 int
758 sbdsp_reset(sc)
759 register struct sbdsp_softc *sc;
760 {
761 bus_space_tag_t iot = sc->sc_iot;
762 bus_space_handle_t ioh = sc->sc_ioh;
763
764 sc->sc_intr = 0;
765 if (sc->sc_dmadir != SB_DMA_NONE) {
766 isa_dmaabort(sc->sc_drq);
767 sc->sc_dmadir = SB_DMA_NONE;
768 }
769 sc->sc_last_hs_size = 0;
770
771 /*
772 * See SBK, section 11.3.
773 * We pulse a reset signal into the card.
774 * Gee, what a brilliant hardware design.
775 */
776 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
777 delay(10);
778 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
779 delay(30);
780 if (sbdsp_rdsp(sc) != SB_MAGIC)
781 return -1;
782
783 return 0;
784 }
785
786 int
787 sbdsp16_wait(sc)
788 struct sbdsp_softc *sc;
789 {
790 bus_space_tag_t iot = sc->sc_iot;
791 bus_space_handle_t ioh = sc->sc_ioh;
792 register int i;
793
794 for (i = SBDSP_NPOLL; --i >= 0; ) {
795 register u_char x;
796 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
797 delay(10);
798 if ((x & SB_DSP_BUSY) == 0)
799 continue;
800 return 0;
801 }
802 ++sberr.wdsp;
803 return -1;
804 }
805
806 /*
807 * Write a byte to the dsp.
808 * XXX We are at the mercy of the card as we use a
809 * polling loop and wait until it can take the byte.
810 */
811 int
812 sbdsp_wdsp(sc, v)
813 struct sbdsp_softc *sc;
814 int v;
815 {
816 bus_space_tag_t iot = sc->sc_iot;
817 bus_space_handle_t ioh = sc->sc_ioh;
818 register int i;
819
820 for (i = SBDSP_NPOLL; --i >= 0; ) {
821 register u_char x;
822 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
823 delay(10);
824 if ((x & SB_DSP_BUSY) != 0)
825 continue;
826 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
827 delay(10);
828 return 0;
829 }
830 ++sberr.wdsp;
831 return -1;
832 }
833
834 /*
835 * Read a byte from the DSP, using polling.
836 */
837 int
838 sbdsp_rdsp(sc)
839 struct sbdsp_softc *sc;
840 {
841 bus_space_tag_t iot = sc->sc_iot;
842 bus_space_handle_t ioh = sc->sc_ioh;
843 register int i;
844
845 for (i = SBDSP_NPOLL; --i >= 0; ) {
846 register u_char x;
847 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
848 delay(10);
849 if ((x & SB_DSP_READY) == 0)
850 continue;
851 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
852 delay(10);
853 return x;
854 }
855 ++sberr.rdsp;
856 return -1;
857 }
858
859 /*
860 * Doing certain things (like toggling the speaker) make
861 * the SB hardware go away for a while, so pause a little.
862 */
863 void
864 sbdsp_to(arg)
865 void *arg;
866 {
867 wakeup(arg);
868 }
869
870 void
871 sbdsp_pause(sc)
872 struct sbdsp_softc *sc;
873 {
874 extern int hz;
875
876 timeout(sbdsp_to, sbdsp_to, hz/8);
877 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
878 }
879
880 /*
881 * Turn on the speaker. The SBK documention says this operation
882 * can take up to 1/10 of a second. Higher level layers should
883 * probably let the task sleep for this amount of time after
884 * calling here. Otherwise, things might not work (because
885 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
886 *
887 * These engineers had their heads up their ass when
888 * they designed this card.
889 */
890 void
891 sbdsp_spkron(sc)
892 struct sbdsp_softc *sc;
893 {
894 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
895 sbdsp_pause(sc);
896 }
897
898 /*
899 * Turn off the speaker; see comment above.
900 */
901 void
902 sbdsp_spkroff(sc)
903 struct sbdsp_softc *sc;
904 {
905 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
906 sbdsp_pause(sc);
907 }
908
909 /*
910 * Read the version number out of the card. Return major code
911 * in high byte, and minor code in low byte.
912 */
913 short
914 sbversion(sc)
915 struct sbdsp_softc *sc;
916 {
917 short v;
918
919 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
920 return 0;
921 v = sbdsp_rdsp(sc) << 8;
922 v |= sbdsp_rdsp(sc);
923 return ((v >= 0) ? v : 0);
924 }
925
926 /*
927 * Halt a DMA in progress. A low-speed transfer can be
928 * resumed with sbdsp_contdma().
929 */
930 int
931 sbdsp_haltdma(addr)
932 void *addr;
933 {
934 register struct sbdsp_softc *sc = addr;
935
936 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
937
938 sbdsp_reset(sc);
939 return 0;
940 }
941
942 int
943 sbdsp_contdma(addr)
944 void *addr;
945 {
946 register struct sbdsp_softc *sc = addr;
947
948 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
949
950 /* XXX how do we reinitialize the DMA controller state? do we care? */
951 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
952 return(0);
953 }
954
955 int
956 sbdsp16_setrate(sc, sr, isdac, ratep)
957 register struct sbdsp_softc *sc;
958 int sr;
959 int isdac;
960 int *ratep;
961 {
962
963 /*
964 * XXXX
965 * More checks here?
966 */
967 if (sr < 5000 || sr > 45454)
968 return (EINVAL);
969 *ratep = sr;
970 return (0);
971 }
972
973 /*
974 * Convert a linear sampling rate into the DAC time constant.
975 * Set *mode to indicate the high/low-speed DMA operation.
976 * Because of limitations of the card, not all rates are possible.
977 * We return the time constant of the closest possible rate.
978 * The sampling rate limits are different for the DAC and ADC,
979 * so isdac indicates output, and !isdac indicates input.
980 */
981 int
982 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
983 register struct sbdsp_softc *sc;
984 int sr;
985 int isdac;
986 int *tcp, *modep;
987 {
988 int tc, realtc, mode;
989
990 /*
991 * Don't forget to compute which mode we'll be in based on whether
992 * we need to double the rate for stereo on SBPRO.
993 */
994
995 if (sr == 0) {
996 tc = SB_LS_MIN;
997 mode = SB_ADAC_LS;
998 goto out;
999 }
1000
1001 tc = 256 - (1000000 / sr);
1002
1003 if (sc->sc_channels == 2 && ISSBPRO(sc))
1004 /* compute based on 2x sample rate when needed */
1005 realtc = 256 - ( 500000 / sr);
1006 else
1007 realtc = tc;
1008
1009 if (tc < SB_LS_MIN) {
1010 tc = SB_LS_MIN;
1011 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
1012 * speed mode. */
1013 goto out;
1014 } else if (isdac) {
1015 if (realtc <= SB_DAC_LS_MAX)
1016 mode = SB_ADAC_LS;
1017 else {
1018 mode = SB_ADAC_HS;
1019 if (tc > SB_DAC_HS_MAX)
1020 tc = SB_DAC_HS_MAX;
1021 }
1022 } else {
1023 int adc_ls_max, adc_hs_max;
1024
1025 /* XXX use better rounding--compare distance to nearest tc on both
1026 sides of requested speed */
1027 if (ISSBPROCLASS(sc)) {
1028 adc_ls_max = SBPRO_ADC_LS_MAX;
1029 adc_hs_max = SBPRO_ADC_HS_MAX;
1030 } else {
1031 adc_ls_max = SBCLA_ADC_LS_MAX;
1032 adc_hs_max = SBCLA_ADC_HS_MAX;
1033 }
1034
1035 if (realtc <= adc_ls_max)
1036 mode = SB_ADAC_LS;
1037 else {
1038 mode = SB_ADAC_HS;
1039 if (tc > adc_hs_max)
1040 tc = adc_hs_max;
1041 }
1042 }
1043
1044 out:
1045 *tcp = tc;
1046 *modep = mode;
1047 return (0);
1048 }
1049
1050 /*
1051 * Convert a DAC time constant to a sampling rate.
1052 * See SBK, section 12.
1053 */
1054 int
1055 sbdsp_tctosr(sc, tc)
1056 register struct sbdsp_softc *sc;
1057 int tc;
1058 {
1059 int adc;
1060
1061 if (ISSBPROCLASS(sc))
1062 adc = SBPRO_ADC_HS_MAX;
1063 else
1064 adc = SBCLA_ADC_HS_MAX;
1065
1066 if (tc > adc)
1067 tc = adc;
1068
1069 return (1000000 / (256 - tc));
1070 }
1071
1072 int
1073 sbdsp_set_timeconst(sc, tc)
1074 register struct sbdsp_softc *sc;
1075 int tc;
1076 {
1077 /*
1078 * A SBPro in stereo mode uses time constants at double the
1079 * actual rate.
1080 */
1081 if (ISSBPRO(sc) && sc->sc_channels == 2)
1082 tc = 256 - ((256 - tc) / 2);
1083
1084 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1085
1086 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1087 sbdsp_wdsp(sc, tc) < 0)
1088 return (EIO);
1089
1090 return (0);
1091 }
1092
1093 int
1094 sbdsp_dma_input(addr, p, cc, intr, arg)
1095 void *addr;
1096 void *p;
1097 int cc;
1098 void (*intr) __P((void *));
1099 void *arg;
1100 {
1101 register struct sbdsp_softc *sc = addr;
1102
1103 #ifdef AUDIO_DEBUG
1104 if (sbdspdebug > 1)
1105 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1106 #endif
1107 if (sc->sc_channels == 2 && (cc & 1)) {
1108 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1109 return EIO;
1110 }
1111
1112 if (sc->sc_dmadir != SB_DMA_IN) {
1113 if (ISSBPRO(sc)) {
1114 if (sc->sc_channels == 2) {
1115 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1116 if (sbdsp_wdsp(sc,
1117 JAZZ16_RECORD_STEREO) < 0) {
1118 goto badmode;
1119 }
1120 } else if (sbdsp_wdsp(sc,
1121 SB_DSP_RECORD_STEREO) < 0)
1122 goto badmode;
1123 sbdsp_mix_write(sc, SBP_INFILTER,
1124 (sbdsp_mix_read(sc, SBP_INFILTER) &
1125 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1126 } else {
1127 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1128 if (sbdsp_wdsp(sc,
1129 JAZZ16_RECORD_MONO) < 0)
1130 {
1131 goto badmode;
1132 }
1133 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1134 goto badmode;
1135 sbdsp_mix_write(sc, SBP_INFILTER,
1136 (sbdsp_mix_read(sc, SBP_INFILTER) &
1137 ~SBP_IFILTER_MASK) | sc->in_filter);
1138 }
1139 }
1140
1141 if (ISSB16CLASS(sc)) {
1142 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1143 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1144 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1145 goto giveup;
1146 } else
1147 sbdsp_set_timeconst(sc, sc->sc_itc);
1148 sc->sc_dmadir = SB_DMA_IN;
1149 }
1150
1151 sc->sc_drq = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1152 isa_dmastart(DMAMODE_READ, p, cc, sc->sc_drq);
1153 sc->sc_intr = intr;
1154 sc->sc_arg = arg;
1155 sc->dmaflags = DMAMODE_READ;
1156 sc->dmaaddr = p;
1157 sc->dmacnt = cc; /* DMA controller is strange...? */
1158
1159 if (sc->sc_precision == 16)
1160 cc >>= 1;
1161 --cc;
1162 if (ISSB16CLASS(sc)) {
1163 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1164 SB_DSP16_RDMA_8) < 0 ||
1165 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1166 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1167 sbdsp16_wait(sc) ||
1168 sbdsp_wdsp(sc, cc) < 0 ||
1169 sbdsp_wdsp(sc, cc >> 8) < 0) {
1170 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1171 goto giveup;
1172 }
1173 } else if (sc->sc_imode == SB_ADAC_LS) {
1174 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1175 sbdsp_wdsp(sc, cc) < 0 ||
1176 sbdsp_wdsp(sc, cc >> 8) < 0) {
1177 DPRINTF(("sbdsp_dma_input: LS DMA start failed\n"));
1178 goto giveup;
1179 }
1180 } else {
1181 if (cc != sc->sc_last_hs_size) {
1182 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1183 sbdsp_wdsp(sc, cc) < 0 ||
1184 sbdsp_wdsp(sc, cc >> 8) < 0) {
1185 DPRINTF(("sbdsp_dma_input: HS DMA start failed\n"));
1186 goto giveup;
1187 }
1188 sc->sc_last_hs_size = cc;
1189 }
1190 if (sbdsp_wdsp(sc, SB_DSP_HS_INPUT) < 0) {
1191 DPRINTF(("sbdsp_dma_input: HS DMA restart failed\n"));
1192 goto giveup;
1193 }
1194 }
1195 return 0;
1196
1197 giveup:
1198 sbdsp_reset(sc);
1199 return EIO;
1200
1201 badmode:
1202 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1203 sc->sc_channels == 2 ? "stereo" : "mono"));
1204 return EIO;
1205 }
1206
1207 int
1208 sbdsp_dma_output(addr, p, cc, intr, arg)
1209 void *addr;
1210 void *p;
1211 int cc;
1212 void (*intr) __P((void *));
1213 void *arg;
1214 {
1215 register struct sbdsp_softc *sc = addr;
1216
1217 #ifdef AUDIO_DEBUG
1218 if (sbdspdebug > 1)
1219 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1220 #endif
1221 if (sc->sc_channels == 2 && (cc & 1)) {
1222 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1223 return EIO;
1224 }
1225
1226 if (sc->sc_dmadir != SB_DMA_OUT) {
1227 if (ISSBPRO(sc)) {
1228 /* make sure we re-set stereo mixer bit when we start
1229 output. */
1230 sbdsp_mix_write(sc, SBP_STEREO,
1231 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1232 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1233 if (ISJAZZ16(sc)) {
1234 /* Yes, we write the record mode to set
1235 16-bit playback mode. weird, huh? */
1236 if (sc->sc_precision == 16) {
1237 sbdsp_wdsp(sc,
1238 sc->sc_channels == 2 ?
1239 JAZZ16_RECORD_STEREO :
1240 JAZZ16_RECORD_MONO);
1241 } else {
1242 sbdsp_wdsp(sc,
1243 sc->sc_channels == 2 ?
1244 SB_DSP_RECORD_STEREO :
1245 SB_DSP_RECORD_MONO);
1246 }
1247 }
1248 }
1249
1250 if (ISSB16CLASS(sc)) {
1251 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1252 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1253 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1254 goto giveup;
1255 } else
1256 sbdsp_set_timeconst(sc, sc->sc_otc);
1257 sc->sc_dmadir = SB_DMA_OUT;
1258 }
1259
1260 sc->sc_drq = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1261 isa_dmastart(DMAMODE_WRITE, p, cc, sc->sc_drq);
1262 sc->sc_intr = intr;
1263 sc->sc_arg = arg;
1264 sc->dmaflags = DMAMODE_WRITE;
1265 sc->dmaaddr = p;
1266 sc->dmacnt = cc; /* a vagary of how DMA works, apparently. */
1267
1268 if (sc->sc_precision == 16)
1269 cc >>= 1;
1270 --cc;
1271 if (ISSB16CLASS(sc)) {
1272 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1273 SB_DSP16_WDMA_8) < 0 ||
1274 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1275 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1276 sbdsp16_wait(sc) ||
1277 sbdsp_wdsp(sc, cc) < 0 ||
1278 sbdsp_wdsp(sc, cc >> 8) < 0) {
1279 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1280 goto giveup;
1281 }
1282 } else if (sc->sc_omode == SB_ADAC_LS) {
1283 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1284 sbdsp_wdsp(sc, cc) < 0 ||
1285 sbdsp_wdsp(sc, cc >> 8) < 0) {
1286 DPRINTF(("sbdsp_dma_output: LS DMA start failed\n"));
1287 goto giveup;
1288 }
1289 } else {
1290 if (cc != sc->sc_last_hs_size) {
1291 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1292 sbdsp_wdsp(sc, cc) < 0 ||
1293 sbdsp_wdsp(sc, cc >> 8) < 0) {
1294 DPRINTF(("sbdsp_dma_output: HS DMA start failed\n"));
1295 goto giveup;
1296 }
1297 sc->sc_last_hs_size = cc;
1298 }
1299 if (sbdsp_wdsp(sc, SB_DSP_HS_OUTPUT) < 0) {
1300 DPRINTF(("sbdsp_dma_output: HS DMA restart failed\n"));
1301 goto giveup;
1302 }
1303 }
1304 return 0;
1305
1306 giveup:
1307 sbdsp_reset(sc);
1308 return EIO;
1309 }
1310
1311 /*
1312 * Only the DSP unit on the sound blaster generates interrupts.
1313 * There are three cases of interrupt: reception of a midi byte
1314 * (when mode is enabled), completion of dma transmission, or
1315 * completion of a dma reception. The three modes are mutually
1316 * exclusive so we know a priori which event has occurred.
1317 */
1318 int
1319 sbdsp_intr(arg)
1320 void *arg;
1321 {
1322 register struct sbdsp_softc *sc = arg;
1323 u_char x;
1324
1325 #ifdef AUDIO_DEBUG
1326 if (sbdspdebug > 1)
1327 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1328 #endif
1329 if (!isa_dmafinished(sc->sc_drq)) {
1330 printf("sbdsp_intr: not finished\n");
1331 return 0;
1332 }
1333 sc->sc_interrupts++;
1334 delay(10);
1335 #if 0
1336 if (sc->sc_mintr != 0) {
1337 x = sbdsp_rdsp(sc);
1338 (*sc->sc_mintr)(sc->sc_arg, x);
1339 } else
1340 #endif
1341 if (sc->sc_intr != 0) {
1342 /* clear interrupt */
1343 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1344 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1345 SBP_DSP_IRQACK8);
1346 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->sc_drq);
1347 (*sc->sc_intr)(sc->sc_arg);
1348 } else {
1349 return 0;
1350 }
1351 return 1;
1352 }
1353
1354 #if 0
1355 /*
1356 * Enter midi uart mode and arrange for read interrupts
1357 * to vector to `intr'. This puts the card in a mode
1358 * which allows only midi I/O; the card must be reset
1359 * to leave this mode. Unfortunately, the card does not
1360 * use transmit interrupts, so bytes must be output
1361 * using polling. To keep the polling overhead to a
1362 * minimum, output should be driven off a timer.
1363 * This is a little tricky since only 320us separate
1364 * consecutive midi bytes.
1365 */
1366 void
1367 sbdsp_set_midi_mode(sc, intr, arg)
1368 struct sbdsp_softc *sc;
1369 void (*intr)();
1370 void *arg;
1371 {
1372
1373 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1374 sc->sc_mintr = intr;
1375 sc->sc_intr = 0;
1376 sc->sc_arg = arg;
1377 }
1378
1379 /*
1380 * Write a byte to the midi port, when in midi uart mode.
1381 */
1382 void
1383 sbdsp_midi_output(sc, v)
1384 struct sbdsp_softc *sc;
1385 int v;
1386 {
1387
1388 if (sbdsp_wdsp(sc, v) < 0)
1389 ++sberr.wmidi;
1390 }
1391 #endif
1392
1393 int
1394 sbdsp_setfd(addr, flag)
1395 void *addr;
1396 int flag;
1397 {
1398 /* Can't do full-duplex */
1399 return(ENOTTY);
1400 }
1401
1402 int
1403 sbdsp_mixer_set_port(addr, cp)
1404 void *addr;
1405 mixer_ctrl_t *cp;
1406 {
1407 register struct sbdsp_softc *sc = addr;
1408 int src, gain;
1409
1410 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1411 cp->un.value.num_channels));
1412
1413 if (!ISSBPROCLASS(sc))
1414 return EINVAL;
1415
1416 /*
1417 * Everything is a value except for SBPro BASS/TREBLE and
1418 * RECORD_SOURCE
1419 */
1420 switch (cp->dev) {
1421 case SB_SPEAKER:
1422 cp->dev = SB_MASTER_VOL;
1423 case SB_MIC_PORT:
1424 case SB_LINE_IN_PORT:
1425 case SB_DAC_PORT:
1426 case SB_FM_PORT:
1427 case SB_CD_PORT:
1428 case SB_MASTER_VOL:
1429 if (cp->type != AUDIO_MIXER_VALUE)
1430 return EINVAL;
1431
1432 /*
1433 * All the mixer ports are stereo except for the microphone.
1434 * If we get a single-channel gain value passed in, then we
1435 * duplicate it to both left and right channels.
1436 */
1437
1438 switch (cp->dev) {
1439 case SB_MIC_PORT:
1440 if (cp->un.value.num_channels != 1)
1441 return EINVAL;
1442
1443 /* handle funny microphone gain */
1444 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1445 break;
1446 case SB_LINE_IN_PORT:
1447 case SB_DAC_PORT:
1448 case SB_FM_PORT:
1449 case SB_CD_PORT:
1450 case SB_MASTER_VOL:
1451 switch (cp->un.value.num_channels) {
1452 case 1:
1453 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1454 break;
1455 case 2:
1456 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1457 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1458 break;
1459 default:
1460 return EINVAL;
1461 }
1462 break;
1463 default:
1464 return EINVAL;
1465 }
1466
1467 switch (cp->dev) {
1468 case SB_MIC_PORT:
1469 src = SBP_MIC_VOL;
1470 break;
1471 case SB_MASTER_VOL:
1472 src = SBP_MASTER_VOL;
1473 break;
1474 case SB_LINE_IN_PORT:
1475 src = SBP_LINE_VOL;
1476 break;
1477 case SB_DAC_PORT:
1478 src = SBP_DAC_VOL;
1479 break;
1480 case SB_FM_PORT:
1481 src = SBP_FM_VOL;
1482 break;
1483 case SB_CD_PORT:
1484 src = SBP_CD_VOL;
1485 break;
1486 default:
1487 return EINVAL;
1488 }
1489
1490 sbdsp_mix_write(sc, src, gain);
1491 sc->gain[cp->dev] = gain;
1492 break;
1493
1494 case SB_TREBLE:
1495 case SB_BASS:
1496 case SB_RECORD_SOURCE:
1497 if (cp->type != AUDIO_MIXER_ENUM)
1498 return EINVAL;
1499
1500 switch (cp->dev) {
1501 case SB_TREBLE:
1502 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1503 case SB_BASS:
1504 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1505 case SB_RECORD_SOURCE:
1506 return sbdsp_set_in_port(addr, cp->un.ord);
1507 }
1508
1509 break;
1510
1511 default:
1512 return EINVAL;
1513 }
1514
1515 return (0);
1516 }
1517
1518 int
1519 sbdsp_mixer_get_port(addr, cp)
1520 void *addr;
1521 mixer_ctrl_t *cp;
1522 {
1523 register struct sbdsp_softc *sc = addr;
1524 int gain;
1525
1526 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1527
1528 if (!ISSBPROCLASS(sc))
1529 return EINVAL;
1530
1531 switch (cp->dev) {
1532 case SB_SPEAKER:
1533 cp->dev = SB_MASTER_VOL;
1534 case SB_MIC_PORT:
1535 case SB_LINE_IN_PORT:
1536 case SB_DAC_PORT:
1537 case SB_FM_PORT:
1538 case SB_CD_PORT:
1539 case SB_MASTER_VOL:
1540 gain = sc->gain[cp->dev];
1541
1542 switch (cp->dev) {
1543 case SB_MIC_PORT:
1544 if (cp->un.value.num_channels != 1)
1545 return EINVAL;
1546
1547 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1548 break;
1549 case SB_LINE_IN_PORT:
1550 case SB_DAC_PORT:
1551 case SB_FM_PORT:
1552 case SB_CD_PORT:
1553 case SB_MASTER_VOL:
1554 switch (cp->un.value.num_channels) {
1555 case 1:
1556 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1557 break;
1558 case 2:
1559 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1560 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1561 break;
1562 default:
1563 return EINVAL;
1564 }
1565 break;
1566 }
1567
1568 break;
1569
1570 case SB_TREBLE:
1571 case SB_BASS:
1572 case SB_RECORD_SOURCE:
1573 switch (cp->dev) {
1574 case SB_TREBLE:
1575 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1576 return 0;
1577 case SB_BASS:
1578 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1579 return 0;
1580 case SB_RECORD_SOURCE:
1581 cp->un.ord = sbdsp_get_in_port(addr);
1582 return 0;
1583 }
1584
1585 break;
1586
1587 default:
1588 return EINVAL;
1589 }
1590
1591 return (0);
1592 }
1593
1594 int
1595 sbdsp_mixer_query_devinfo(addr, dip)
1596 void *addr;
1597 register mixer_devinfo_t *dip;
1598 {
1599 register struct sbdsp_softc *sc = addr;
1600
1601 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1602
1603 switch (dip->index) {
1604 case SB_MIC_PORT:
1605 dip->type = AUDIO_MIXER_VALUE;
1606 dip->mixer_class = SB_INPUT_CLASS;
1607 dip->prev = AUDIO_MIXER_LAST;
1608 dip->next = AUDIO_MIXER_LAST;
1609 strcpy(dip->label.name, AudioNmicrophone);
1610 dip->un.v.num_channels = 1;
1611 strcpy(dip->un.v.units.name, AudioNvolume);
1612 return 0;
1613
1614 case SB_SPEAKER:
1615 dip->type = AUDIO_MIXER_VALUE;
1616 dip->mixer_class = SB_OUTPUT_CLASS;
1617 dip->prev = AUDIO_MIXER_LAST;
1618 dip->next = AUDIO_MIXER_LAST;
1619 strcpy(dip->label.name, AudioNspeaker);
1620 dip->un.v.num_channels = 1;
1621 strcpy(dip->un.v.units.name, AudioNvolume);
1622 return 0;
1623
1624 case SB_INPUT_CLASS:
1625 dip->type = AUDIO_MIXER_CLASS;
1626 dip->mixer_class = SB_INPUT_CLASS;
1627 dip->next = dip->prev = AUDIO_MIXER_LAST;
1628 strcpy(dip->label.name, AudioCInputs);
1629 return 0;
1630
1631 case SB_OUTPUT_CLASS:
1632 dip->type = AUDIO_MIXER_CLASS;
1633 dip->mixer_class = SB_OUTPUT_CLASS;
1634 dip->next = dip->prev = AUDIO_MIXER_LAST;
1635 strcpy(dip->label.name, AudioCOutputs);
1636 return 0;
1637 }
1638
1639 if (ISSBPROCLASS(sc)) {
1640 switch (dip->index) {
1641 case SB_LINE_IN_PORT:
1642 dip->type = AUDIO_MIXER_VALUE;
1643 dip->mixer_class = SB_INPUT_CLASS;
1644 dip->prev = AUDIO_MIXER_LAST;
1645 dip->next = AUDIO_MIXER_LAST;
1646 strcpy(dip->label.name, AudioNline);
1647 dip->un.v.num_channels = 2;
1648 strcpy(dip->un.v.units.name, AudioNvolume);
1649 return 0;
1650
1651 case SB_DAC_PORT:
1652 dip->type = AUDIO_MIXER_VALUE;
1653 dip->mixer_class = SB_INPUT_CLASS;
1654 dip->prev = AUDIO_MIXER_LAST;
1655 dip->next = AUDIO_MIXER_LAST;
1656 strcpy(dip->label.name, AudioNdac);
1657 dip->un.v.num_channels = 2;
1658 strcpy(dip->un.v.units.name, AudioNvolume);
1659 return 0;
1660
1661 case SB_CD_PORT:
1662 dip->type = AUDIO_MIXER_VALUE;
1663 dip->mixer_class = SB_INPUT_CLASS;
1664 dip->prev = AUDIO_MIXER_LAST;
1665 dip->next = AUDIO_MIXER_LAST;
1666 strcpy(dip->label.name, AudioNcd);
1667 dip->un.v.num_channels = 2;
1668 strcpy(dip->un.v.units.name, AudioNvolume);
1669 return 0;
1670
1671 case SB_FM_PORT:
1672 dip->type = AUDIO_MIXER_VALUE;
1673 dip->mixer_class = SB_INPUT_CLASS;
1674 dip->prev = AUDIO_MIXER_LAST;
1675 dip->next = AUDIO_MIXER_LAST;
1676 strcpy(dip->label.name, AudioNfmsynth);
1677 dip->un.v.num_channels = 2;
1678 strcpy(dip->un.v.units.name, AudioNvolume);
1679 return 0;
1680
1681 case SB_MASTER_VOL:
1682 dip->type = AUDIO_MIXER_VALUE;
1683 dip->mixer_class = SB_OUTPUT_CLASS;
1684 dip->prev = AUDIO_MIXER_LAST;
1685 dip->next = AUDIO_MIXER_LAST;
1686 strcpy(dip->label.name, AudioNvolume);
1687 dip->un.v.num_channels = 2;
1688 strcpy(dip->un.v.units.name, AudioNvolume);
1689 return 0;
1690
1691 case SB_RECORD_SOURCE:
1692 dip->mixer_class = SB_RECORD_CLASS;
1693 dip->type = AUDIO_MIXER_ENUM;
1694 dip->prev = AUDIO_MIXER_LAST;
1695 dip->next = AUDIO_MIXER_LAST;
1696 strcpy(dip->label.name, AudioNsource);
1697 dip->un.e.num_mem = 3;
1698 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1699 dip->un.e.member[0].ord = SB_MIC_PORT;
1700 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1701 dip->un.e.member[1].ord = SB_CD_PORT;
1702 strcpy(dip->un.e.member[2].label.name, AudioNline);
1703 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1704 return 0;
1705
1706 case SB_BASS:
1707 dip->type = AUDIO_MIXER_ENUM;
1708 dip->mixer_class = SB_INPUT_CLASS;
1709 dip->prev = AUDIO_MIXER_LAST;
1710 dip->next = AUDIO_MIXER_LAST;
1711 strcpy(dip->label.name, AudioNbass);
1712 dip->un.e.num_mem = 2;
1713 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1714 dip->un.e.member[0].ord = 0;
1715 strcpy(dip->un.e.member[1].label.name, AudioNon);
1716 dip->un.e.member[1].ord = 1;
1717 return 0;
1718
1719 case SB_TREBLE:
1720 dip->type = AUDIO_MIXER_ENUM;
1721 dip->mixer_class = SB_INPUT_CLASS;
1722 dip->prev = AUDIO_MIXER_LAST;
1723 dip->next = AUDIO_MIXER_LAST;
1724 strcpy(dip->label.name, AudioNtreble);
1725 dip->un.e.num_mem = 2;
1726 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1727 dip->un.e.member[0].ord = 0;
1728 strcpy(dip->un.e.member[1].label.name, AudioNon);
1729 dip->un.e.member[1].ord = 1;
1730 return 0;
1731
1732 case SB_RECORD_CLASS: /* record source class */
1733 dip->type = AUDIO_MIXER_CLASS;
1734 dip->mixer_class = SB_RECORD_CLASS;
1735 dip->next = dip->prev = AUDIO_MIXER_LAST;
1736 strcpy(dip->label.name, AudioCRecord);
1737 return 0;
1738 }
1739 }
1740
1741 return ENXIO;
1742 }
1743