sbdsp.c revision 1.37 1 /* $NetBSD: sbdsp.c,v 1.37 1997/03/20 16:04:22 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36 /*
37 * SoundBlaster Pro code provided by John Kohl, based on lots of
38 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
39 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
40 * <sachs (at) meibm15.cen.uiuc.edu>.
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/errno.h>
46 #include <sys/ioctl.h>
47 #include <sys/syslog.h>
48 #include <sys/device.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <vm/vm.h>
52
53 #include <machine/cpu.h>
54 #include <machine/intr.h>
55 #include <machine/pio.h>
56
57 #include <sys/audioio.h>
58 #include <dev/audio_if.h>
59
60 #include <dev/isa/isavar.h>
61 #include <dev/isa/isadmavar.h>
62 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
63
64 #include <dev/isa/sbreg.h>
65 #include <dev/isa/sbdspvar.h>
66
67 #ifdef AUDIO_DEBUG
68 extern void Dprintf __P((const char *, ...));
69 #define DPRINTF(x) if (sbdspdebug) Dprintf x
70 int sbdspdebug = 0;
71 #else
72 #define DPRINTF(x)
73 #endif
74
75 #ifndef SBDSP_NPOLL
76 #define SBDSP_NPOLL 3000
77 #endif
78
79 struct {
80 int wdsp;
81 int rdsp;
82 int wmidi;
83 } sberr;
84
85 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
86 int *tcp, int *modep));
87 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 #define SB_LS_MIN 0x06 /* 4000 Hz */
115 #define SB_8K 0x83 /* 8000 Hz */
116 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
117 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
118 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
119 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
120 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
121 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
122
123 int sbdsp16_wait __P((struct sbdsp_softc *));
124 void sbdsp_to __P((void *));
125 void sbdsp_pause __P((struct sbdsp_softc *));
126 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
127 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
128 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
129
130 #ifdef AUDIO_DEBUG
131 void sb_printsc __P((struct sbdsp_softc *));
132 #endif
133
134 #ifdef AUDIO_DEBUG
135 void
136 sb_printsc(sc)
137 struct sbdsp_softc *sc;
138 {
139 int i;
140
141 printf("open %d dmachan %d/%d/%d iobase %x\n",
142 sc->sc_open, sc->sc_drq, sc->sc_drq8, sc->sc_drq16, sc->sc_iobase);
143 printf("irate %d itc %d imode %d orate %d otc %d omode %d encoding %x\n",
144 sc->sc_irate, sc->sc_itc, sc->sc_imode,
145 sc->sc_orate, sc->sc_otc, sc->sc_omode, sc->sc_encoding);
146 printf("outport %d inport %d spkron %d nintr %lu\n",
147 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
148 printf("precision %d channels %d intr %p arg %p\n",
149 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
150 printf("gain: ");
151 for (i = 0; i < SB_NDEVS; i++)
152 printf("%d ", sc->gain[i]);
153 printf("\n");
154 }
155 #endif
156
157 /*
158 * Probe / attach routines.
159 */
160
161 /*
162 * Probe for the soundblaster hardware.
163 */
164 int
165 sbdsp_probe(sc)
166 struct sbdsp_softc *sc;
167 {
168
169 if (sbdsp_reset(sc) < 0) {
170 DPRINTF(("sbdsp: couldn't reset card\n"));
171 return 0;
172 }
173 /* if flags set, go and probe the jazz16 stuff */
174 if (sc->sc_dev.dv_cfdata->cf_flags != 0)
175 sc->sc_model = sbdsp_jazz16_probe(sc);
176 else
177 sc->sc_model = sbversion(sc);
178
179 return 1;
180 }
181
182 /*
183 * Try add-on stuff for Jazz16.
184 */
185 u_int
186 sbdsp_jazz16_probe(sc)
187 struct sbdsp_softc *sc;
188 {
189 static u_char jazz16_irq_conf[16] = {
190 -1, -1, 0x02, 0x03,
191 -1, 0x01, -1, 0x04,
192 -1, 0x02, 0x05, -1,
193 -1, -1, -1, 0x06};
194 static u_char jazz16_drq_conf[8] = {
195 -1, 0x01, -1, 0x02,
196 -1, 0x03, -1, 0x04};
197
198 u_int rval = sbversion(sc);
199 bus_space_tag_t iot = sc->sc_iot;
200 bus_space_handle_t ioh;
201
202 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh))
203 return rval;
204
205 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
206 jazz16_irq_conf[sc->sc_irq] == (u_char)-1)
207 goto done; /* give up, we can't do it. */
208
209 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
210 delay(10000); /* delay 10 ms */
211 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
212 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
213
214 if (sbdsp_reset(sc) < 0)
215 goto done; /* XXX? what else could we do? */
216
217 if (sbdsp_wdsp(sc, JAZZ16_READ_VER))
218 goto done;
219
220 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ)
221 goto done;
222
223 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
224 sc->sc_drq16 = sc->sc_drq8;
225 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
226 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
227 jazz16_drq_conf[sc->sc_drq8]) ||
228 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq]))
229 DPRINTF(("sbdsp: can't write jazz16 probe stuff"));
230 else
231 rval |= MODEL_JAZZ16;
232
233 done:
234 bus_space_unmap(iot, ioh, 1);
235 return rval;
236 }
237
238 /*
239 * Attach hardware to driver, attach hardware driver to audio
240 * pseudo-device driver .
241 */
242 void
243 sbdsp_attach(sc)
244 struct sbdsp_softc *sc;
245 {
246
247 /* Set defaults */
248 if (ISSB16CLASS(sc))
249 sc->sc_irate = sc->sc_orate = 8000;
250 else if (ISSBPROCLASS(sc))
251 sc->sc_itc = sc->sc_otc = SB_8K;
252 else
253 sc->sc_itc = sc->sc_otc = SB_8K;
254 sc->sc_encoding = AUDIO_ENCODING_ULAW;
255 sc->sc_precision = 8;
256 sc->sc_channels = 1;
257
258 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
259 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
260
261 if (ISSBPROCLASS(sc)) {
262 int i;
263
264 /* set mixer to default levels, by sending a mixer
265 reset command. */
266 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
267 /* then some adjustments :) */
268 sbdsp_mix_write(sc, SBP_CD_VOL,
269 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
270 sbdsp_mix_write(sc, SBP_DAC_VOL,
271 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
272 sbdsp_mix_write(sc, SBP_MASTER_VOL,
273 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
274 sbdsp_mix_write(sc, SBP_LINE_VOL,
275 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
276 for (i = 0; i < SB_NDEVS; i++)
277 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
278 sc->in_filter = 0; /* no filters turned on, please */
279 }
280
281 printf(": dsp v%d.%02d%s\n",
282 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
283 ISJAZZ16(sc) ? ": <Jazz16>" : "");
284 }
285
286 /*
287 * Various routines to interface to higher level audio driver
288 */
289
290 void
291 sbdsp_mix_write(sc, mixerport, val)
292 struct sbdsp_softc *sc;
293 int mixerport;
294 int val;
295 {
296 bus_space_tag_t iot = sc->sc_iot;
297 bus_space_handle_t ioh = sc->sc_ioh;
298
299 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
300 delay(10);
301 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
302 delay(30);
303 }
304
305 int
306 sbdsp_mix_read(sc, mixerport)
307 struct sbdsp_softc *sc;
308 int mixerport;
309 {
310 bus_space_tag_t iot = sc->sc_iot;
311 bus_space_handle_t ioh = sc->sc_ioh;
312
313 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
314 delay(10);
315 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
316 }
317
318 int
319 sbdsp_set_in_sr(addr, sr)
320 void *addr;
321 u_long sr;
322 {
323 register struct sbdsp_softc *sc = addr;
324
325 if (ISSB16CLASS(sc))
326 return (sbdsp16_setrate(sc, sr, SB_INPUT_RATE, &sc->sc_irate));
327 else
328 return (sbdsp_srtotc(sc, sr, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode));
329 }
330
331 u_long
332 sbdsp_get_in_sr(addr)
333 void *addr;
334 {
335 register struct sbdsp_softc *sc = addr;
336
337 if (ISSB16CLASS(sc))
338 return (sc->sc_irate);
339 else
340 return (sbdsp_tctosr(sc, sc->sc_itc));
341 }
342
343 int
344 sbdsp_set_out_sr(addr, sr)
345 void *addr;
346 u_long sr;
347 {
348 register struct sbdsp_softc *sc = addr;
349
350 if (ISSB16CLASS(sc))
351 return (sbdsp16_setrate(sc, sr, SB_OUTPUT_RATE, &sc->sc_orate));
352 else
353 return (sbdsp_srtotc(sc, sr, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode));
354 }
355
356 u_long
357 sbdsp_get_out_sr(addr)
358 void *addr;
359 {
360 register struct sbdsp_softc *sc = addr;
361
362 if (ISSB16CLASS(sc))
363 return (sc->sc_orate);
364 else
365 return (sbdsp_tctosr(sc, sc->sc_otc));
366 }
367
368 int
369 sbdsp_query_encoding(addr, fp)
370 void *addr;
371 struct audio_encoding *fp;
372 {
373 switch (fp->index) {
374 case 0:
375 strcpy(fp->name, AudioEmulaw);
376 fp->format_id = AUDIO_ENCODING_ULAW;
377 break;
378 case 1:
379 strcpy(fp->name, AudioEpcm16);
380 fp->format_id = AUDIO_ENCODING_PCM16;
381 break;
382 default:
383 return (EINVAL);
384 }
385 return (0);
386 }
387
388 int
389 sbdsp_set_format(addr, encoding, precision)
390 void *addr;
391 u_int encoding, precision;
392 {
393 register struct sbdsp_softc *sc = addr;
394
395 switch (encoding) {
396 case AUDIO_ENCODING_ULAW:
397 case AUDIO_ENCODING_PCM16:
398 case AUDIO_ENCODING_PCM8:
399 break;
400 default:
401 return (EINVAL);
402 }
403
404 if (precision == 16)
405 if (!ISSB16CLASS(sc) && !ISJAZZ16(sc))
406 return (EINVAL);
407
408 sc->sc_encoding = encoding;
409 sc->sc_precision = precision;
410
411 return (0);
412 }
413
414 int
415 sbdsp_get_encoding(addr)
416 void *addr;
417 {
418 register struct sbdsp_softc *sc = addr;
419
420 return (sc->sc_encoding);
421 }
422
423 int
424 sbdsp_get_precision(addr)
425 void *addr;
426 {
427 register struct sbdsp_softc *sc = addr;
428
429 return (sc->sc_precision);
430 }
431
432 int
433 sbdsp_set_channels(addr, channels)
434 void *addr;
435 int channels;
436 {
437 register struct sbdsp_softc *sc = addr;
438
439 if (ISSBPROCLASS(sc)) {
440 if (channels != 1 && channels != 2)
441 return (EINVAL);
442 sc->sc_channels = channels;
443 sc->sc_dmadir = SB_DMA_NONE;
444 /*
445 * XXXX
446 * With 2 channels, SBPro can't do more than 22kHz.
447 * No framework to check this.
448 */
449 } else {
450 if (channels != 1)
451 return (EINVAL);
452 sc->sc_channels = channels;
453 }
454
455 return (0);
456 }
457
458 int
459 sbdsp_get_channels(addr)
460 void *addr;
461 {
462 register struct sbdsp_softc *sc = addr;
463
464 return (sc->sc_channels);
465 }
466
467 int
468 sbdsp_set_ifilter(addr, which)
469 void *addr;
470 int which;
471 {
472 register struct sbdsp_softc *sc = addr;
473 int mixval;
474
475 /* XXXX SB16 */
476 if (ISSBPROCLASS(sc)) {
477 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
478 switch (which) {
479 case 0:
480 mixval |= SBP_FILTER_OFF;
481 break;
482 case SBP_TREBLE_EQ:
483 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
484 break;
485 case SBP_BASS_EQ:
486 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
487 break;
488 default:
489 return (EINVAL);
490 }
491 sc->in_filter = mixval & SBP_IFILTER_MASK;
492 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
493 return (0);
494 } else
495 return (EINVAL);
496 }
497
498 int
499 sbdsp_get_ifilter(addr)
500 void *addr;
501 {
502 register struct sbdsp_softc *sc = addr;
503
504 /* XXXX SB16 */
505 if (ISSBPROCLASS(sc)) {
506 sc->in_filter =
507 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
508 switch (sc->in_filter) {
509 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
510 return (SBP_TREBLE_EQ);
511 case SBP_FILTER_ON|SBP_IFILTER_LOW:
512 return (SBP_BASS_EQ);
513 case SBP_FILTER_OFF:
514 default:
515 return (0);
516 }
517 } else
518 return (0);
519 }
520
521 int
522 sbdsp_set_out_port(addr, port)
523 void *addr;
524 int port;
525 {
526 register struct sbdsp_softc *sc = addr;
527
528 sc->out_port = port; /* Just record it */
529
530 return (0);
531 }
532
533 int
534 sbdsp_get_out_port(addr)
535 void *addr;
536 {
537 register struct sbdsp_softc *sc = addr;
538
539 return (sc->out_port);
540 }
541
542
543 int
544 sbdsp_set_in_port(addr, port)
545 void *addr;
546 int port;
547 {
548 register struct sbdsp_softc *sc = addr;
549 int mixport, sbport;
550
551 if (ISSBPROCLASS(sc)) {
552 switch (port) {
553 case SB_MIC_PORT:
554 sbport = SBP_FROM_MIC;
555 mixport = SBP_MIC_VOL;
556 break;
557 case SB_LINE_IN_PORT:
558 sbport = SBP_FROM_LINE;
559 mixport = SBP_LINE_VOL;
560 break;
561 case SB_CD_PORT:
562 sbport = SBP_FROM_CD;
563 mixport = SBP_CD_VOL;
564 break;
565 case SB_DAC_PORT:
566 case SB_FM_PORT:
567 default:
568 return (EINVAL);
569 }
570 } else {
571 switch (port) {
572 case SB_MIC_PORT:
573 sbport = SBP_FROM_MIC;
574 mixport = SBP_MIC_VOL;
575 break;
576 default:
577 return (EINVAL);
578 }
579 }
580
581 sc->in_port = port; /* Just record it */
582
583 /* XXXX SB16 */
584 if (ISSBPROCLASS(sc)) {
585 /* record from that port */
586 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
587 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
588 /* fetch gain from that port */
589 sc->gain[port] = sbdsp_mix_read(sc, mixport);
590 }
591
592 return (0);
593 }
594
595 int
596 sbdsp_get_in_port(addr)
597 void *addr;
598 {
599 register struct sbdsp_softc *sc = addr;
600
601 return (sc->in_port);
602 }
603
604
605 int
606 sbdsp_speaker_ctl(addr, newstate)
607 void *addr;
608 int newstate;
609 {
610 register struct sbdsp_softc *sc = addr;
611
612 if ((newstate == SPKR_ON) &&
613 (sc->spkr_state == SPKR_OFF)) {
614 sbdsp_spkron(sc);
615 sc->spkr_state = SPKR_ON;
616 }
617 if ((newstate == SPKR_OFF) &&
618 (sc->spkr_state == SPKR_ON)) {
619 sbdsp_spkroff(sc);
620 sc->spkr_state = SPKR_OFF;
621 }
622 return(0);
623 }
624
625 int
626 sbdsp_round_blocksize(addr, blk)
627 void *addr;
628 int blk;
629 {
630 register struct sbdsp_softc *sc = addr;
631
632 sc->sc_last_hs_size = 0;
633
634 /* don't try to DMA too much at once, though. */
635 if (blk > NBPG)
636 blk = NBPG;
637 if (sc->sc_channels == 2)
638 return (blk & ~1); /* must be even to preserve stereo separation */
639 else
640 return (blk); /* Anything goes :-) */
641 }
642
643 int
644 sbdsp_commit_settings(addr)
645 void *addr;
646 {
647 register struct sbdsp_softc *sc = addr;
648
649 /* due to potentially unfortunate ordering in the above layers,
650 re-do a few sets which may be important--input gains
651 (adjust the proper channels), number of input channels (hit the
652 record rate and set mode) */
653
654 if (ISSBPRO(sc)) {
655 /*
656 * With 2 channels, SBPro can't do more than 22kHz.
657 * Whack the rates down to speed if necessary.
658 * Reset the time constant anyway
659 * because it may have been adjusted with a different number
660 * of channels, which means it might have computed the wrong
661 * mode (low/high speed).
662 */
663 if (sc->sc_channels == 2 &&
664 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
665 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
666 &sc->sc_itc, &sc->sc_imode);
667 } else
668 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
669 SB_INPUT_RATE, &sc->sc_itc,
670 &sc->sc_imode);
671
672 if (sc->sc_channels == 2 &&
673 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
674 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
675 &sc->sc_otc, &sc->sc_omode);
676 } else
677 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
678 SB_OUTPUT_RATE, &sc->sc_otc,
679 &sc->sc_omode);
680 }
681
682 /*
683 * XXX
684 * Should wait for chip to be idle.
685 */
686 sc->sc_dmadir = SB_DMA_NONE;
687
688 return 0;
689 }
690
691
692 int
693 sbdsp_open(sc, dev, flags)
694 register struct sbdsp_softc *sc;
695 dev_t dev;
696 int flags;
697 {
698 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
699
700 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
701 return ENXIO;
702
703 sc->sc_open = 1;
704 sc->sc_mintr = 0;
705 if (ISSBPROCLASS(sc) &&
706 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
707 DPRINTF(("sbdsp_open: can't set mono mode\n"));
708 /* we'll readjust when it's time for DMA. */
709 }
710
711 /*
712 * Leave most things as they were; users must change things if
713 * the previous process didn't leave it they way they wanted.
714 * Looked at another way, it's easy to set up a configuration
715 * in one program and leave it for another to inherit.
716 */
717 DPRINTF(("sbdsp_open: opened\n"));
718
719 return 0;
720 }
721
722 void
723 sbdsp_close(addr)
724 void *addr;
725 {
726 struct sbdsp_softc *sc = addr;
727
728 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
729
730 sc->sc_open = 0;
731 sbdsp_spkroff(sc);
732 sc->spkr_state = SPKR_OFF;
733 sc->sc_mintr = 0;
734 sbdsp_haltdma(sc);
735
736 DPRINTF(("sbdsp_close: closed\n"));
737 }
738
739 /*
740 * Lower-level routines
741 */
742
743 /*
744 * Reset the card.
745 * Return non-zero if the card isn't detected.
746 */
747 int
748 sbdsp_reset(sc)
749 register struct sbdsp_softc *sc;
750 {
751 bus_space_tag_t iot = sc->sc_iot;
752 bus_space_handle_t ioh = sc->sc_ioh;
753
754 sc->sc_intr = 0;
755 if (sc->sc_dmadir != SB_DMA_NONE) {
756 isa_dmaabort(sc->sc_drq);
757 sc->sc_dmadir = SB_DMA_NONE;
758 }
759 sc->sc_last_hs_size = 0;
760
761 /*
762 * See SBK, section 11.3.
763 * We pulse a reset signal into the card.
764 * Gee, what a brilliant hardware design.
765 */
766 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
767 delay(10);
768 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
769 delay(30);
770 if (sbdsp_rdsp(sc) != SB_MAGIC)
771 return -1;
772
773 return 0;
774 }
775
776 int
777 sbdsp16_wait(sc)
778 struct sbdsp_softc *sc;
779 {
780 bus_space_tag_t iot = sc->sc_iot;
781 bus_space_handle_t ioh = sc->sc_ioh;
782 register int i;
783
784 for (i = SBDSP_NPOLL; --i >= 0; ) {
785 register u_char x;
786 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
787 delay(10);
788 if ((x & SB_DSP_BUSY) == 0)
789 continue;
790 return 0;
791 }
792 ++sberr.wdsp;
793 return -1;
794 }
795
796 /*
797 * Write a byte to the dsp.
798 * XXX We are at the mercy of the card as we use a
799 * polling loop and wait until it can take the byte.
800 */
801 int
802 sbdsp_wdsp(sc, v)
803 struct sbdsp_softc *sc;
804 int v;
805 {
806 bus_space_tag_t iot = sc->sc_iot;
807 bus_space_handle_t ioh = sc->sc_ioh;
808 register int i;
809
810 for (i = SBDSP_NPOLL; --i >= 0; ) {
811 register u_char x;
812 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
813 delay(10);
814 if ((x & SB_DSP_BUSY) != 0)
815 continue;
816 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
817 delay(10);
818 return 0;
819 }
820 ++sberr.wdsp;
821 return -1;
822 }
823
824 /*
825 * Read a byte from the DSP, using polling.
826 */
827 int
828 sbdsp_rdsp(sc)
829 struct sbdsp_softc *sc;
830 {
831 bus_space_tag_t iot = sc->sc_iot;
832 bus_space_handle_t ioh = sc->sc_ioh;
833 register int i;
834
835 for (i = SBDSP_NPOLL; --i >= 0; ) {
836 register u_char x;
837 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
838 delay(10);
839 if ((x & SB_DSP_READY) == 0)
840 continue;
841 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
842 delay(10);
843 return x;
844 }
845 ++sberr.rdsp;
846 return -1;
847 }
848
849 /*
850 * Doing certain things (like toggling the speaker) make
851 * the SB hardware go away for a while, so pause a little.
852 */
853 void
854 sbdsp_to(arg)
855 void *arg;
856 {
857 wakeup(arg);
858 }
859
860 void
861 sbdsp_pause(sc)
862 struct sbdsp_softc *sc;
863 {
864 extern int hz;
865
866 timeout(sbdsp_to, sbdsp_to, hz/8);
867 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
868 }
869
870 /*
871 * Turn on the speaker. The SBK documention says this operation
872 * can take up to 1/10 of a second. Higher level layers should
873 * probably let the task sleep for this amount of time after
874 * calling here. Otherwise, things might not work (because
875 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
876 *
877 * These engineers had their heads up their ass when
878 * they designed this card.
879 */
880 void
881 sbdsp_spkron(sc)
882 struct sbdsp_softc *sc;
883 {
884 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
885 sbdsp_pause(sc);
886 }
887
888 /*
889 * Turn off the speaker; see comment above.
890 */
891 void
892 sbdsp_spkroff(sc)
893 struct sbdsp_softc *sc;
894 {
895 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
896 sbdsp_pause(sc);
897 }
898
899 /*
900 * Read the version number out of the card. Return major code
901 * in high byte, and minor code in low byte.
902 */
903 short
904 sbversion(sc)
905 struct sbdsp_softc *sc;
906 {
907 short v;
908
909 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
910 return 0;
911 v = sbdsp_rdsp(sc) << 8;
912 v |= sbdsp_rdsp(sc);
913 return ((v >= 0) ? v : 0);
914 }
915
916 /*
917 * Halt a DMA in progress. A low-speed transfer can be
918 * resumed with sbdsp_contdma().
919 */
920 int
921 sbdsp_haltdma(addr)
922 void *addr;
923 {
924 register struct sbdsp_softc *sc = addr;
925
926 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
927
928 sbdsp_reset(sc);
929 return 0;
930 }
931
932 int
933 sbdsp_contdma(addr)
934 void *addr;
935 {
936 register struct sbdsp_softc *sc = addr;
937
938 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
939
940 /* XXX how do we reinitialize the DMA controller state? do we care? */
941 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
942 return(0);
943 }
944
945 int
946 sbdsp16_setrate(sc, sr, isdac, ratep)
947 register struct sbdsp_softc *sc;
948 int sr;
949 int isdac;
950 int *ratep;
951 {
952
953 /*
954 * XXXX
955 * More checks here?
956 */
957 if (sr < 5000 || sr > 45454)
958 return (EINVAL);
959 *ratep = sr;
960 return (0);
961 }
962
963 /*
964 * Convert a linear sampling rate into the DAC time constant.
965 * Set *mode to indicate the high/low-speed DMA operation.
966 * Because of limitations of the card, not all rates are possible.
967 * We return the time constant of the closest possible rate.
968 * The sampling rate limits are different for the DAC and ADC,
969 * so isdac indicates output, and !isdac indicates input.
970 */
971 int
972 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
973 register struct sbdsp_softc *sc;
974 int sr;
975 int isdac;
976 int *tcp, *modep;
977 {
978 int tc, realtc, mode;
979
980 /*
981 * Don't forget to compute which mode we'll be in based on whether
982 * we need to double the rate for stereo on SBPRO.
983 */
984
985 if (sr == 0) {
986 tc = SB_LS_MIN;
987 mode = SB_ADAC_LS;
988 goto out;
989 }
990
991 tc = 256 - (1000000 / sr);
992
993 if (sc->sc_channels == 2 && ISSBPRO(sc))
994 /* compute based on 2x sample rate when needed */
995 realtc = 256 - ( 500000 / sr);
996 else
997 realtc = tc;
998
999 if (tc < SB_LS_MIN) {
1000 tc = SB_LS_MIN;
1001 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
1002 * speed mode. */
1003 goto out;
1004 } else if (isdac) {
1005 if (realtc <= SB_DAC_LS_MAX)
1006 mode = SB_ADAC_LS;
1007 else {
1008 mode = SB_ADAC_HS;
1009 if (tc > SB_DAC_HS_MAX)
1010 tc = SB_DAC_HS_MAX;
1011 }
1012 } else {
1013 int adc_ls_max, adc_hs_max;
1014
1015 /* XXX use better rounding--compare distance to nearest tc on both
1016 sides of requested speed */
1017 if (ISSBPROCLASS(sc)) {
1018 adc_ls_max = SBPRO_ADC_LS_MAX;
1019 adc_hs_max = SBPRO_ADC_HS_MAX;
1020 } else {
1021 adc_ls_max = SBCLA_ADC_LS_MAX;
1022 adc_hs_max = SBCLA_ADC_HS_MAX;
1023 }
1024
1025 if (realtc <= adc_ls_max)
1026 mode = SB_ADAC_LS;
1027 else {
1028 mode = SB_ADAC_HS;
1029 if (tc > adc_hs_max)
1030 tc = adc_hs_max;
1031 }
1032 }
1033
1034 out:
1035 *tcp = tc;
1036 *modep = mode;
1037 return (0);
1038 }
1039
1040 /*
1041 * Convert a DAC time constant to a sampling rate.
1042 * See SBK, section 12.
1043 */
1044 int
1045 sbdsp_tctosr(sc, tc)
1046 register struct sbdsp_softc *sc;
1047 int tc;
1048 {
1049 int adc;
1050
1051 if (ISSBPROCLASS(sc))
1052 adc = SBPRO_ADC_HS_MAX;
1053 else
1054 adc = SBCLA_ADC_HS_MAX;
1055
1056 if (tc > adc)
1057 tc = adc;
1058
1059 return (1000000 / (256 - tc));
1060 }
1061
1062 int
1063 sbdsp_set_timeconst(sc, tc)
1064 register struct sbdsp_softc *sc;
1065 int tc;
1066 {
1067 /*
1068 * A SBPro in stereo mode uses time constants at double the
1069 * actual rate.
1070 */
1071 if (ISSBPRO(sc) && sc->sc_channels == 2)
1072 tc = 256 - ((256 - tc) / 2);
1073
1074 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1075
1076 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1077 sbdsp_wdsp(sc, tc) < 0)
1078 return (EIO);
1079
1080 return (0);
1081 }
1082
1083 int
1084 sbdsp_dma_input(addr, p, cc, intr, arg)
1085 void *addr;
1086 void *p;
1087 int cc;
1088 void (*intr) __P((void *));
1089 void *arg;
1090 {
1091 register struct sbdsp_softc *sc = addr;
1092
1093 #ifdef AUDIO_DEBUG
1094 if (sbdspdebug > 1)
1095 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1096 #endif
1097 if (sc->sc_channels == 2 && (cc & 1)) {
1098 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1099 return EIO;
1100 }
1101
1102 if (sc->sc_dmadir != SB_DMA_IN) {
1103 if (ISSBPRO(sc)) {
1104 if (sc->sc_channels == 2) {
1105 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1106 if (sbdsp_wdsp(sc,
1107 JAZZ16_RECORD_STEREO) < 0) {
1108 goto badmode;
1109 }
1110 } else if (sbdsp_wdsp(sc,
1111 SB_DSP_RECORD_STEREO) < 0)
1112 goto badmode;
1113 sbdsp_mix_write(sc, SBP_INFILTER,
1114 (sbdsp_mix_read(sc, SBP_INFILTER) &
1115 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1116 } else {
1117 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1118 if (sbdsp_wdsp(sc,
1119 JAZZ16_RECORD_MONO) < 0)
1120 {
1121 goto badmode;
1122 }
1123 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1124 goto badmode;
1125 sbdsp_mix_write(sc, SBP_INFILTER,
1126 (sbdsp_mix_read(sc, SBP_INFILTER) &
1127 ~SBP_IFILTER_MASK) | sc->in_filter);
1128 }
1129 }
1130
1131 if (ISSB16CLASS(sc)) {
1132 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1133 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1134 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1135 goto giveup;
1136 } else
1137 sbdsp_set_timeconst(sc, sc->sc_itc);
1138 sc->sc_dmadir = SB_DMA_IN;
1139 }
1140
1141 sc->sc_drq = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1142 isa_dmastart(DMAMODE_READ, p, cc, sc->sc_drq);
1143 sc->sc_intr = intr;
1144 sc->sc_arg = arg;
1145 sc->dmaflags = DMAMODE_READ;
1146 sc->dmaaddr = p;
1147 sc->dmacnt = cc; /* DMA controller is strange...? */
1148
1149 if (sc->sc_precision == 16)
1150 cc >>= 1;
1151 --cc;
1152 if (ISSB16CLASS(sc)) {
1153 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1154 SB_DSP16_RDMA_8) < 0 ||
1155 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1156 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1157 sbdsp16_wait(sc) ||
1158 sbdsp_wdsp(sc, cc) < 0 ||
1159 sbdsp_wdsp(sc, cc >> 8) < 0) {
1160 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1161 goto giveup;
1162 }
1163 } else if (sc->sc_imode == SB_ADAC_LS) {
1164 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1165 sbdsp_wdsp(sc, cc) < 0 ||
1166 sbdsp_wdsp(sc, cc >> 8) < 0) {
1167 DPRINTF(("sbdsp_dma_input: LS DMA start failed\n"));
1168 goto giveup;
1169 }
1170 } else {
1171 if (cc != sc->sc_last_hs_size) {
1172 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1173 sbdsp_wdsp(sc, cc) < 0 ||
1174 sbdsp_wdsp(sc, cc >> 8) < 0) {
1175 DPRINTF(("sbdsp_dma_input: HS DMA start failed\n"));
1176 goto giveup;
1177 }
1178 sc->sc_last_hs_size = cc;
1179 }
1180 if (sbdsp_wdsp(sc, SB_DSP_HS_INPUT) < 0) {
1181 DPRINTF(("sbdsp_dma_input: HS DMA restart failed\n"));
1182 goto giveup;
1183 }
1184 }
1185 return 0;
1186
1187 giveup:
1188 sbdsp_reset(sc);
1189 return EIO;
1190
1191 badmode:
1192 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1193 sc->sc_channels == 2 ? "stereo" : "mono"));
1194 return EIO;
1195 }
1196
1197 int
1198 sbdsp_dma_output(addr, p, cc, intr, arg)
1199 void *addr;
1200 void *p;
1201 int cc;
1202 void (*intr) __P((void *));
1203 void *arg;
1204 {
1205 register struct sbdsp_softc *sc = addr;
1206
1207 #ifdef AUDIO_DEBUG
1208 if (sbdspdebug > 1)
1209 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1210 #endif
1211 if (sc->sc_channels == 2 && (cc & 1)) {
1212 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1213 return EIO;
1214 }
1215
1216 if (sc->sc_dmadir != SB_DMA_OUT) {
1217 if (ISSBPRO(sc)) {
1218 /* make sure we re-set stereo mixer bit when we start
1219 output. */
1220 sbdsp_mix_write(sc, SBP_STEREO,
1221 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1222 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1223 if (ISJAZZ16(sc)) {
1224 /* Yes, we write the record mode to set
1225 16-bit playback mode. weird, huh? */
1226 if (sc->sc_precision == 16) {
1227 sbdsp_wdsp(sc,
1228 sc->sc_channels == 2 ?
1229 JAZZ16_RECORD_STEREO :
1230 JAZZ16_RECORD_MONO);
1231 } else {
1232 sbdsp_wdsp(sc,
1233 sc->sc_channels == 2 ?
1234 SB_DSP_RECORD_STEREO :
1235 SB_DSP_RECORD_MONO);
1236 }
1237 }
1238 }
1239
1240 if (ISSB16CLASS(sc)) {
1241 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1242 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1243 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1244 goto giveup;
1245 } else
1246 sbdsp_set_timeconst(sc, sc->sc_otc);
1247 sc->sc_dmadir = SB_DMA_OUT;
1248 }
1249
1250 sc->sc_drq = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1251 isa_dmastart(DMAMODE_WRITE, p, cc, sc->sc_drq);
1252 sc->sc_intr = intr;
1253 sc->sc_arg = arg;
1254 sc->dmaflags = DMAMODE_WRITE;
1255 sc->dmaaddr = p;
1256 sc->dmacnt = cc; /* a vagary of how DMA works, apparently. */
1257
1258 if (sc->sc_precision == 16)
1259 cc >>= 1;
1260 --cc;
1261 if (ISSB16CLASS(sc)) {
1262 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1263 SB_DSP16_WDMA_8) < 0 ||
1264 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1265 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1266 sbdsp16_wait(sc) ||
1267 sbdsp_wdsp(sc, cc) < 0 ||
1268 sbdsp_wdsp(sc, cc >> 8) < 0) {
1269 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1270 goto giveup;
1271 }
1272 } else if (sc->sc_omode == SB_ADAC_LS) {
1273 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1274 sbdsp_wdsp(sc, cc) < 0 ||
1275 sbdsp_wdsp(sc, cc >> 8) < 0) {
1276 DPRINTF(("sbdsp_dma_output: LS DMA start failed\n"));
1277 goto giveup;
1278 }
1279 } else {
1280 if (cc != sc->sc_last_hs_size) {
1281 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1282 sbdsp_wdsp(sc, cc) < 0 ||
1283 sbdsp_wdsp(sc, cc >> 8) < 0) {
1284 DPRINTF(("sbdsp_dma_output: HS DMA start failed\n"));
1285 goto giveup;
1286 }
1287 sc->sc_last_hs_size = cc;
1288 }
1289 if (sbdsp_wdsp(sc, SB_DSP_HS_OUTPUT) < 0) {
1290 DPRINTF(("sbdsp_dma_output: HS DMA restart failed\n"));
1291 goto giveup;
1292 }
1293 }
1294 return 0;
1295
1296 giveup:
1297 sbdsp_reset(sc);
1298 return EIO;
1299 }
1300
1301 /*
1302 * Only the DSP unit on the sound blaster generates interrupts.
1303 * There are three cases of interrupt: reception of a midi byte
1304 * (when mode is enabled), completion of dma transmission, or
1305 * completion of a dma reception. The three modes are mutually
1306 * exclusive so we know a priori which event has occurred.
1307 */
1308 int
1309 sbdsp_intr(arg)
1310 void *arg;
1311 {
1312 register struct sbdsp_softc *sc = arg;
1313 u_char x;
1314
1315 #ifdef AUDIO_DEBUG
1316 if (sbdspdebug > 1)
1317 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1318 #endif
1319 if (!isa_dmafinished(sc->sc_drq)) {
1320 #ifdef AUDIO_DEBUG
1321 printf("sbdsp_intr: not finished\n");
1322 #endif
1323 return 0;
1324 }
1325 sc->sc_interrupts++;
1326 delay(10);
1327 #if 0
1328 if (sc->sc_mintr != 0) {
1329 x = sbdsp_rdsp(sc);
1330 (*sc->sc_mintr)(sc->sc_arg, x);
1331 } else
1332 #endif
1333 if (sc->sc_intr != 0) {
1334 /* clear interrupt */
1335 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1336 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1337 SBP_DSP_IRQACK8);
1338 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->sc_drq);
1339 (*sc->sc_intr)(sc->sc_arg);
1340 } else {
1341 return 0;
1342 }
1343 return 1;
1344 }
1345
1346 #if 0
1347 /*
1348 * Enter midi uart mode and arrange for read interrupts
1349 * to vector to `intr'. This puts the card in a mode
1350 * which allows only midi I/O; the card must be reset
1351 * to leave this mode. Unfortunately, the card does not
1352 * use transmit interrupts, so bytes must be output
1353 * using polling. To keep the polling overhead to a
1354 * minimum, output should be driven off a timer.
1355 * This is a little tricky since only 320us separate
1356 * consecutive midi bytes.
1357 */
1358 void
1359 sbdsp_set_midi_mode(sc, intr, arg)
1360 struct sbdsp_softc *sc;
1361 void (*intr)();
1362 void *arg;
1363 {
1364
1365 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1366 sc->sc_mintr = intr;
1367 sc->sc_intr = 0;
1368 sc->sc_arg = arg;
1369 }
1370
1371 /*
1372 * Write a byte to the midi port, when in midi uart mode.
1373 */
1374 void
1375 sbdsp_midi_output(sc, v)
1376 struct sbdsp_softc *sc;
1377 int v;
1378 {
1379
1380 if (sbdsp_wdsp(sc, v) < 0)
1381 ++sberr.wmidi;
1382 }
1383 #endif
1384
1385 int
1386 sbdsp_setfd(addr, flag)
1387 void *addr;
1388 int flag;
1389 {
1390 /* Can't do full-duplex */
1391 return(ENOTTY);
1392 }
1393
1394 int
1395 sbdsp_mixer_set_port(addr, cp)
1396 void *addr;
1397 mixer_ctrl_t *cp;
1398 {
1399 register struct sbdsp_softc *sc = addr;
1400 int src, gain;
1401
1402 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1403 cp->un.value.num_channels));
1404
1405 if (!ISSBPROCLASS(sc))
1406 return EINVAL;
1407
1408 /*
1409 * Everything is a value except for SBPro BASS/TREBLE and
1410 * RECORD_SOURCE
1411 */
1412 switch (cp->dev) {
1413 case SB_SPEAKER:
1414 cp->dev = SB_MASTER_VOL;
1415 case SB_MIC_PORT:
1416 case SB_LINE_IN_PORT:
1417 case SB_DAC_PORT:
1418 case SB_FM_PORT:
1419 case SB_CD_PORT:
1420 case SB_MASTER_VOL:
1421 if (cp->type != AUDIO_MIXER_VALUE)
1422 return EINVAL;
1423
1424 /*
1425 * All the mixer ports are stereo except for the microphone.
1426 * If we get a single-channel gain value passed in, then we
1427 * duplicate it to both left and right channels.
1428 */
1429
1430 switch (cp->dev) {
1431 case SB_MIC_PORT:
1432 if (cp->un.value.num_channels != 1)
1433 return EINVAL;
1434
1435 /* handle funny microphone gain */
1436 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1437 break;
1438 case SB_LINE_IN_PORT:
1439 case SB_DAC_PORT:
1440 case SB_FM_PORT:
1441 case SB_CD_PORT:
1442 case SB_MASTER_VOL:
1443 switch (cp->un.value.num_channels) {
1444 case 1:
1445 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1446 break;
1447 case 2:
1448 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1449 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1450 break;
1451 default:
1452 return EINVAL;
1453 }
1454 break;
1455 default:
1456 return EINVAL;
1457 }
1458
1459 switch (cp->dev) {
1460 case SB_MIC_PORT:
1461 src = SBP_MIC_VOL;
1462 break;
1463 case SB_MASTER_VOL:
1464 src = SBP_MASTER_VOL;
1465 break;
1466 case SB_LINE_IN_PORT:
1467 src = SBP_LINE_VOL;
1468 break;
1469 case SB_DAC_PORT:
1470 src = SBP_DAC_VOL;
1471 break;
1472 case SB_FM_PORT:
1473 src = SBP_FM_VOL;
1474 break;
1475 case SB_CD_PORT:
1476 src = SBP_CD_VOL;
1477 break;
1478 default:
1479 return EINVAL;
1480 }
1481
1482 sbdsp_mix_write(sc, src, gain);
1483 sc->gain[cp->dev] = gain;
1484 break;
1485
1486 case SB_TREBLE:
1487 case SB_BASS:
1488 case SB_RECORD_SOURCE:
1489 if (cp->type != AUDIO_MIXER_ENUM)
1490 return EINVAL;
1491
1492 switch (cp->dev) {
1493 case SB_TREBLE:
1494 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1495 case SB_BASS:
1496 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1497 case SB_RECORD_SOURCE:
1498 return sbdsp_set_in_port(addr, cp->un.ord);
1499 }
1500
1501 break;
1502
1503 default:
1504 return EINVAL;
1505 }
1506
1507 return (0);
1508 }
1509
1510 int
1511 sbdsp_mixer_get_port(addr, cp)
1512 void *addr;
1513 mixer_ctrl_t *cp;
1514 {
1515 register struct sbdsp_softc *sc = addr;
1516 int gain;
1517
1518 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1519
1520 if (!ISSBPROCLASS(sc))
1521 return EINVAL;
1522
1523 switch (cp->dev) {
1524 case SB_SPEAKER:
1525 cp->dev = SB_MASTER_VOL;
1526 case SB_MIC_PORT:
1527 case SB_LINE_IN_PORT:
1528 case SB_DAC_PORT:
1529 case SB_FM_PORT:
1530 case SB_CD_PORT:
1531 case SB_MASTER_VOL:
1532 gain = sc->gain[cp->dev];
1533
1534 switch (cp->dev) {
1535 case SB_MIC_PORT:
1536 if (cp->un.value.num_channels != 1)
1537 return EINVAL;
1538
1539 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1540 break;
1541 case SB_LINE_IN_PORT:
1542 case SB_DAC_PORT:
1543 case SB_FM_PORT:
1544 case SB_CD_PORT:
1545 case SB_MASTER_VOL:
1546 switch (cp->un.value.num_channels) {
1547 case 1:
1548 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1549 break;
1550 case 2:
1551 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1552 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1553 break;
1554 default:
1555 return EINVAL;
1556 }
1557 break;
1558 }
1559
1560 break;
1561
1562 case SB_TREBLE:
1563 case SB_BASS:
1564 case SB_RECORD_SOURCE:
1565 switch (cp->dev) {
1566 case SB_TREBLE:
1567 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1568 return 0;
1569 case SB_BASS:
1570 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1571 return 0;
1572 case SB_RECORD_SOURCE:
1573 cp->un.ord = sbdsp_get_in_port(addr);
1574 return 0;
1575 }
1576
1577 break;
1578
1579 default:
1580 return EINVAL;
1581 }
1582
1583 return (0);
1584 }
1585
1586 int
1587 sbdsp_mixer_query_devinfo(addr, dip)
1588 void *addr;
1589 register mixer_devinfo_t *dip;
1590 {
1591 register struct sbdsp_softc *sc = addr;
1592
1593 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1594
1595 switch (dip->index) {
1596 case SB_MIC_PORT:
1597 dip->type = AUDIO_MIXER_VALUE;
1598 dip->mixer_class = SB_INPUT_CLASS;
1599 dip->prev = AUDIO_MIXER_LAST;
1600 dip->next = AUDIO_MIXER_LAST;
1601 strcpy(dip->label.name, AudioNmicrophone);
1602 dip->un.v.num_channels = 1;
1603 strcpy(dip->un.v.units.name, AudioNvolume);
1604 return 0;
1605
1606 case SB_SPEAKER:
1607 dip->type = AUDIO_MIXER_VALUE;
1608 dip->mixer_class = SB_OUTPUT_CLASS;
1609 dip->prev = AUDIO_MIXER_LAST;
1610 dip->next = AUDIO_MIXER_LAST;
1611 strcpy(dip->label.name, AudioNspeaker);
1612 dip->un.v.num_channels = 1;
1613 strcpy(dip->un.v.units.name, AudioNvolume);
1614 return 0;
1615
1616 case SB_INPUT_CLASS:
1617 dip->type = AUDIO_MIXER_CLASS;
1618 dip->mixer_class = SB_INPUT_CLASS;
1619 dip->next = dip->prev = AUDIO_MIXER_LAST;
1620 strcpy(dip->label.name, AudioCInputs);
1621 return 0;
1622
1623 case SB_OUTPUT_CLASS:
1624 dip->type = AUDIO_MIXER_CLASS;
1625 dip->mixer_class = SB_OUTPUT_CLASS;
1626 dip->next = dip->prev = AUDIO_MIXER_LAST;
1627 strcpy(dip->label.name, AudioCOutputs);
1628 return 0;
1629 }
1630
1631 if (ISSBPROCLASS(sc)) {
1632 switch (dip->index) {
1633 case SB_LINE_IN_PORT:
1634 dip->type = AUDIO_MIXER_VALUE;
1635 dip->mixer_class = SB_INPUT_CLASS;
1636 dip->prev = AUDIO_MIXER_LAST;
1637 dip->next = AUDIO_MIXER_LAST;
1638 strcpy(dip->label.name, AudioNline);
1639 dip->un.v.num_channels = 2;
1640 strcpy(dip->un.v.units.name, AudioNvolume);
1641 return 0;
1642
1643 case SB_DAC_PORT:
1644 dip->type = AUDIO_MIXER_VALUE;
1645 dip->mixer_class = SB_INPUT_CLASS;
1646 dip->prev = AUDIO_MIXER_LAST;
1647 dip->next = AUDIO_MIXER_LAST;
1648 strcpy(dip->label.name, AudioNdac);
1649 dip->un.v.num_channels = 2;
1650 strcpy(dip->un.v.units.name, AudioNvolume);
1651 return 0;
1652
1653 case SB_CD_PORT:
1654 dip->type = AUDIO_MIXER_VALUE;
1655 dip->mixer_class = SB_INPUT_CLASS;
1656 dip->prev = AUDIO_MIXER_LAST;
1657 dip->next = AUDIO_MIXER_LAST;
1658 strcpy(dip->label.name, AudioNcd);
1659 dip->un.v.num_channels = 2;
1660 strcpy(dip->un.v.units.name, AudioNvolume);
1661 return 0;
1662
1663 case SB_FM_PORT:
1664 dip->type = AUDIO_MIXER_VALUE;
1665 dip->mixer_class = SB_INPUT_CLASS;
1666 dip->prev = AUDIO_MIXER_LAST;
1667 dip->next = AUDIO_MIXER_LAST;
1668 strcpy(dip->label.name, AudioNfmsynth);
1669 dip->un.v.num_channels = 2;
1670 strcpy(dip->un.v.units.name, AudioNvolume);
1671 return 0;
1672
1673 case SB_MASTER_VOL:
1674 dip->type = AUDIO_MIXER_VALUE;
1675 dip->mixer_class = SB_OUTPUT_CLASS;
1676 dip->prev = AUDIO_MIXER_LAST;
1677 dip->next = AUDIO_MIXER_LAST;
1678 strcpy(dip->label.name, AudioNvolume);
1679 dip->un.v.num_channels = 2;
1680 strcpy(dip->un.v.units.name, AudioNvolume);
1681 return 0;
1682
1683 case SB_RECORD_SOURCE:
1684 dip->mixer_class = SB_RECORD_CLASS;
1685 dip->type = AUDIO_MIXER_ENUM;
1686 dip->prev = AUDIO_MIXER_LAST;
1687 dip->next = AUDIO_MIXER_LAST;
1688 strcpy(dip->label.name, AudioNsource);
1689 dip->un.e.num_mem = 3;
1690 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1691 dip->un.e.member[0].ord = SB_MIC_PORT;
1692 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1693 dip->un.e.member[1].ord = SB_CD_PORT;
1694 strcpy(dip->un.e.member[2].label.name, AudioNline);
1695 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1696 return 0;
1697
1698 case SB_BASS:
1699 dip->type = AUDIO_MIXER_ENUM;
1700 dip->mixer_class = SB_INPUT_CLASS;
1701 dip->prev = AUDIO_MIXER_LAST;
1702 dip->next = AUDIO_MIXER_LAST;
1703 strcpy(dip->label.name, AudioNbass);
1704 dip->un.e.num_mem = 2;
1705 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1706 dip->un.e.member[0].ord = 0;
1707 strcpy(dip->un.e.member[1].label.name, AudioNon);
1708 dip->un.e.member[1].ord = 1;
1709 return 0;
1710
1711 case SB_TREBLE:
1712 dip->type = AUDIO_MIXER_ENUM;
1713 dip->mixer_class = SB_INPUT_CLASS;
1714 dip->prev = AUDIO_MIXER_LAST;
1715 dip->next = AUDIO_MIXER_LAST;
1716 strcpy(dip->label.name, AudioNtreble);
1717 dip->un.e.num_mem = 2;
1718 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1719 dip->un.e.member[0].ord = 0;
1720 strcpy(dip->un.e.member[1].label.name, AudioNon);
1721 dip->un.e.member[1].ord = 1;
1722 return 0;
1723
1724 case SB_RECORD_CLASS: /* record source class */
1725 dip->type = AUDIO_MIXER_CLASS;
1726 dip->mixer_class = SB_RECORD_CLASS;
1727 dip->next = dip->prev = AUDIO_MIXER_LAST;
1728 strcpy(dip->label.name, AudioCRecord);
1729 return 0;
1730 }
1731 }
1732
1733 return ENXIO;
1734 }
1735