sbdsp.c revision 1.38 1 /* $NetBSD: sbdsp.c,v 1.38 1997/03/20 20:15:25 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36 /*
37 * SoundBlaster Pro code provided by John Kohl, based on lots of
38 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
39 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
40 * <sachs (at) meibm15.cen.uiuc.edu>.
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/errno.h>
46 #include <sys/ioctl.h>
47 #include <sys/syslog.h>
48 #include <sys/device.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <vm/vm.h>
52
53 #include <machine/cpu.h>
54 #include <machine/intr.h>
55 #include <machine/pio.h>
56
57 #include <sys/audioio.h>
58 #include <dev/audio_if.h>
59
60 #include <dev/isa/isavar.h>
61 #include <dev/isa/isadmavar.h>
62 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
63
64 #include <dev/isa/sbreg.h>
65 #include <dev/isa/sbdspvar.h>
66
67 #ifdef AUDIO_DEBUG
68 extern void Dprintf __P((const char *, ...));
69 #define DPRINTF(x) if (sbdspdebug) Dprintf x
70 int sbdspdebug = 0;
71 #else
72 #define DPRINTF(x)
73 #endif
74
75 #ifndef SBDSP_NPOLL
76 #define SBDSP_NPOLL 3000
77 #endif
78
79 struct {
80 int wdsp;
81 int rdsp;
82 int wmidi;
83 } sberr;
84
85 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
86 int *tcp, int *modep));
87 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 #define SB_LS_MIN 0x06 /* 4000 Hz */
115 #define SB_8K 0x83 /* 8000 Hz */
116 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
117 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
118 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
119 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
120 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
121 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
122
123 int sbdsp16_wait __P((struct sbdsp_softc *));
124 void sbdsp_to __P((void *));
125 void sbdsp_pause __P((struct sbdsp_softc *));
126 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
127 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
128 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
129
130 #ifdef AUDIO_DEBUG
131 void sb_printsc __P((struct sbdsp_softc *));
132 #endif
133
134 #ifdef AUDIO_DEBUG
135 void
136 sb_printsc(sc)
137 struct sbdsp_softc *sc;
138 {
139 int i;
140
141 printf("open %d dmachan %d/%d/%d iobase %x\n",
142 sc->sc_open, sc->sc_drq, sc->sc_drq8, sc->sc_drq16, sc->sc_iobase);
143 printf("irate %d itc %d imode %d orate %d otc %d omode %d encoding %x\n",
144 sc->sc_irate, sc->sc_itc, sc->sc_imode,
145 sc->sc_orate, sc->sc_otc, sc->sc_omode, sc->sc_encoding);
146 printf("outport %d inport %d spkron %d nintr %lu\n",
147 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
148 printf("precision %d channels %d intr %p arg %p\n",
149 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
150 printf("gain: ");
151 for (i = 0; i < SB_NDEVS; i++)
152 printf("%d ", sc->gain[i]);
153 printf("\n");
154 }
155 #endif
156
157 /*
158 * Probe / attach routines.
159 */
160
161 /*
162 * Probe for the soundblaster hardware.
163 */
164 int
165 sbdsp_probe(sc)
166 struct sbdsp_softc *sc;
167 {
168
169 if (sbdsp_reset(sc) < 0) {
170 DPRINTF(("sbdsp: couldn't reset card\n"));
171 return 0;
172 }
173 /* if flags set, go and probe the jazz16 stuff */
174 if (sc->sc_dev.dv_cfdata->cf_flags != 0)
175 sc->sc_model = sbdsp_jazz16_probe(sc);
176 else
177 sc->sc_model = sbversion(sc);
178
179 return 1;
180 }
181
182 /*
183 * Try add-on stuff for Jazz16.
184 */
185 u_int
186 sbdsp_jazz16_probe(sc)
187 struct sbdsp_softc *sc;
188 {
189 static u_char jazz16_irq_conf[16] = {
190 -1, -1, 0x02, 0x03,
191 -1, 0x01, -1, 0x04,
192 -1, 0x02, 0x05, -1,
193 -1, -1, -1, 0x06};
194 static u_char jazz16_drq_conf[8] = {
195 -1, 0x01, -1, 0x02,
196 -1, 0x03, -1, 0x04};
197
198 u_int rval = sbversion(sc);
199 bus_space_tag_t iot = sc->sc_iot;
200 bus_space_handle_t ioh;
201
202 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh))
203 return rval;
204
205 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
206 jazz16_irq_conf[sc->sc_irq] == (u_char)-1)
207 goto done; /* give up, we can't do it. */
208
209 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
210 delay(10000); /* delay 10 ms */
211 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
212 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
213
214 if (sbdsp_reset(sc) < 0)
215 goto done; /* XXX? what else could we do? */
216
217 if (sbdsp_wdsp(sc, JAZZ16_READ_VER))
218 goto done;
219
220 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ)
221 goto done;
222
223 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
224 sc->sc_drq16 = sc->sc_drq8;
225 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
226 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
227 jazz16_drq_conf[sc->sc_drq8]) ||
228 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq]))
229 DPRINTF(("sbdsp: can't write jazz16 probe stuff"));
230 else
231 rval |= MODEL_JAZZ16;
232
233 done:
234 bus_space_unmap(iot, ioh, 1);
235 return rval;
236 }
237
238 /*
239 * Attach hardware to driver, attach hardware driver to audio
240 * pseudo-device driver .
241 */
242 void
243 sbdsp_attach(sc)
244 struct sbdsp_softc *sc;
245 {
246
247 /* Set defaults */
248 if (ISSB16CLASS(sc))
249 sc->sc_irate = sc->sc_orate = 8000;
250 else if (ISSBPROCLASS(sc))
251 sc->sc_itc = sc->sc_otc = SB_8K;
252 else
253 sc->sc_itc = sc->sc_otc = SB_8K;
254 sc->sc_encoding = AUDIO_ENCODING_ULAW;
255 sc->sc_precision = 8;
256 sc->sc_channels = 1;
257
258 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
259 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
260
261 if (ISSBPROCLASS(sc)) {
262 int i;
263
264 /* set mixer to default levels, by sending a mixer
265 reset command. */
266 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
267 /* then some adjustments :) */
268 sbdsp_mix_write(sc, SBP_CD_VOL,
269 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
270 sbdsp_mix_write(sc, SBP_DAC_VOL,
271 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
272 sbdsp_mix_write(sc, SBP_MASTER_VOL,
273 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
274 sbdsp_mix_write(sc, SBP_LINE_VOL,
275 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
276 for (i = 0; i < SB_NDEVS; i++)
277 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
278 sc->in_filter = 0; /* no filters turned on, please */
279 }
280
281 printf(": dsp v%d.%02d%s\n",
282 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
283 ISJAZZ16(sc) ? ": <Jazz16>" : "");
284 }
285
286 /*
287 * Various routines to interface to higher level audio driver
288 */
289
290 void
291 sbdsp_mix_write(sc, mixerport, val)
292 struct sbdsp_softc *sc;
293 int mixerport;
294 int val;
295 {
296 bus_space_tag_t iot = sc->sc_iot;
297 bus_space_handle_t ioh = sc->sc_ioh;
298
299 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
300 delay(10);
301 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
302 delay(30);
303 }
304
305 int
306 sbdsp_mix_read(sc, mixerport)
307 struct sbdsp_softc *sc;
308 int mixerport;
309 {
310 bus_space_tag_t iot = sc->sc_iot;
311 bus_space_handle_t ioh = sc->sc_ioh;
312
313 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
314 delay(10);
315 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
316 }
317
318 int
319 sbdsp_set_in_sr(addr, sr)
320 void *addr;
321 u_long sr;
322 {
323 register struct sbdsp_softc *sc = addr;
324
325 if (ISSB16CLASS(sc))
326 return (sbdsp16_setrate(sc, sr, SB_INPUT_RATE, &sc->sc_irate));
327 else
328 return (sbdsp_srtotc(sc, sr, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode));
329 }
330
331 u_long
332 sbdsp_get_in_sr(addr)
333 void *addr;
334 {
335 register struct sbdsp_softc *sc = addr;
336
337 if (ISSB16CLASS(sc))
338 return (sc->sc_irate);
339 else
340 return (sbdsp_tctosr(sc, sc->sc_itc));
341 }
342
343 int
344 sbdsp_set_out_sr(addr, sr)
345 void *addr;
346 u_long sr;
347 {
348 register struct sbdsp_softc *sc = addr;
349
350 if (ISSB16CLASS(sc))
351 return (sbdsp16_setrate(sc, sr, SB_OUTPUT_RATE, &sc->sc_orate));
352 else
353 return (sbdsp_srtotc(sc, sr, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode));
354 }
355
356 u_long
357 sbdsp_get_out_sr(addr)
358 void *addr;
359 {
360 register struct sbdsp_softc *sc = addr;
361
362 if (ISSB16CLASS(sc))
363 return (sc->sc_orate);
364 else
365 return (sbdsp_tctosr(sc, sc->sc_otc));
366 }
367
368 int
369 sbdsp_query_encoding(addr, fp)
370 void *addr;
371 struct audio_encoding *fp;
372 {
373 switch (fp->index) {
374 case 0:
375 strcpy(fp->name, AudioEmulaw);
376 fp->format_id = AUDIO_ENCODING_ULAW;
377 break;
378 case 1:
379 strcpy(fp->name, AudioEpcm16);
380 fp->format_id = AUDIO_ENCODING_PCM16;
381 break;
382 default:
383 return (EINVAL);
384 }
385 return (0);
386 }
387
388 int
389 sbdsp_set_format(addr, encoding, precision)
390 void *addr;
391 u_int encoding, precision;
392 {
393 register struct sbdsp_softc *sc = addr;
394
395 switch (encoding) {
396 case AUDIO_ENCODING_ULAW:
397 case AUDIO_ENCODING_PCM16:
398 case AUDIO_ENCODING_PCM8:
399 break;
400 default:
401 return (EINVAL);
402 }
403
404 if (precision == 16)
405 if (!ISSB16CLASS(sc) && !ISJAZZ16(sc))
406 return (EINVAL);
407
408 sc->sc_encoding = encoding;
409 sc->sc_precision = precision;
410
411 return (0);
412 }
413
414 int
415 sbdsp_get_encoding(addr)
416 void *addr;
417 {
418 register struct sbdsp_softc *sc = addr;
419
420 return (sc->sc_encoding);
421 }
422
423 int
424 sbdsp_get_precision(addr)
425 void *addr;
426 {
427 register struct sbdsp_softc *sc = addr;
428
429 return (sc->sc_precision);
430 }
431
432 int
433 sbdsp_set_channels(addr, channels)
434 void *addr;
435 int channels;
436 {
437 register struct sbdsp_softc *sc = addr;
438
439 if (ISSBPROCLASS(sc)) {
440 if (channels != 1 && channels != 2)
441 return (EINVAL);
442 sc->sc_channels = channels;
443 sc->sc_dmadir = SB_DMA_NONE;
444 /*
445 * XXXX
446 * With 2 channels, SBPro can't do more than 22kHz.
447 * No framework to check this.
448 */
449 } else {
450 if (channels != 1)
451 return (EINVAL);
452 sc->sc_channels = channels;
453 }
454
455 return (0);
456 }
457
458 int
459 sbdsp_get_channels(addr)
460 void *addr;
461 {
462 register struct sbdsp_softc *sc = addr;
463
464 return (sc->sc_channels);
465 }
466
467 int
468 sbdsp_set_ifilter(addr, which)
469 void *addr;
470 int which;
471 {
472 register struct sbdsp_softc *sc = addr;
473 int mixval;
474
475 /* XXXX SB16 */
476 if (ISSBPROCLASS(sc)) {
477 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
478 switch (which) {
479 case 0:
480 mixval |= SBP_FILTER_OFF;
481 break;
482 case SBP_TREBLE_EQ:
483 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
484 break;
485 case SBP_BASS_EQ:
486 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
487 break;
488 default:
489 return (EINVAL);
490 }
491 sc->in_filter = mixval & SBP_IFILTER_MASK;
492 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
493 return (0);
494 } else
495 return (EINVAL);
496 }
497
498 int
499 sbdsp_get_ifilter(addr)
500 void *addr;
501 {
502 register struct sbdsp_softc *sc = addr;
503
504 /* XXXX SB16 */
505 if (ISSBPROCLASS(sc)) {
506 sc->in_filter =
507 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
508 switch (sc->in_filter) {
509 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
510 return (SBP_TREBLE_EQ);
511 case SBP_FILTER_ON|SBP_IFILTER_LOW:
512 return (SBP_BASS_EQ);
513 case SBP_FILTER_OFF:
514 default:
515 return (0);
516 }
517 } else
518 return (0);
519 }
520
521 int
522 sbdsp_set_out_port(addr, port)
523 void *addr;
524 int port;
525 {
526 register struct sbdsp_softc *sc = addr;
527
528 sc->out_port = port; /* Just record it */
529
530 return (0);
531 }
532
533 int
534 sbdsp_get_out_port(addr)
535 void *addr;
536 {
537 register struct sbdsp_softc *sc = addr;
538
539 return (sc->out_port);
540 }
541
542
543 int
544 sbdsp_set_in_port(addr, port)
545 void *addr;
546 int port;
547 {
548 register struct sbdsp_softc *sc = addr;
549 int mixport, sbport;
550
551 if (ISSBPROCLASS(sc)) {
552 switch (port) {
553 case SB_MIC_PORT:
554 sbport = SBP_FROM_MIC;
555 mixport = SBP_MIC_VOL;
556 break;
557 case SB_LINE_IN_PORT:
558 sbport = SBP_FROM_LINE;
559 mixport = SBP_LINE_VOL;
560 break;
561 case SB_CD_PORT:
562 sbport = SBP_FROM_CD;
563 mixport = SBP_CD_VOL;
564 break;
565 case SB_DAC_PORT:
566 case SB_FM_PORT:
567 default:
568 return (EINVAL);
569 }
570 } else {
571 switch (port) {
572 case SB_MIC_PORT:
573 sbport = SBP_FROM_MIC;
574 mixport = SBP_MIC_VOL;
575 break;
576 default:
577 return (EINVAL);
578 }
579 }
580
581 sc->in_port = port; /* Just record it */
582
583 /* XXXX SB16 */
584 if (ISSBPROCLASS(sc)) {
585 /* record from that port */
586 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
587 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
588 /* fetch gain from that port */
589 sc->gain[port] = sbdsp_mix_read(sc, mixport);
590 }
591
592 return (0);
593 }
594
595 int
596 sbdsp_get_in_port(addr)
597 void *addr;
598 {
599 register struct sbdsp_softc *sc = addr;
600
601 return (sc->in_port);
602 }
603
604
605 int
606 sbdsp_speaker_ctl(addr, newstate)
607 void *addr;
608 int newstate;
609 {
610 register struct sbdsp_softc *sc = addr;
611
612 if ((newstate == SPKR_ON) &&
613 (sc->spkr_state == SPKR_OFF)) {
614 sbdsp_spkron(sc);
615 sc->spkr_state = SPKR_ON;
616 }
617 if ((newstate == SPKR_OFF) &&
618 (sc->spkr_state == SPKR_ON)) {
619 sbdsp_spkroff(sc);
620 sc->spkr_state = SPKR_OFF;
621 }
622 return(0);
623 }
624
625 int
626 sbdsp_round_blocksize(addr, blk)
627 void *addr;
628 int blk;
629 {
630 register struct sbdsp_softc *sc = addr;
631
632 sc->sc_last_hs_size = 0;
633
634 /* Don't try to DMA too much at once. */
635 if (blk > NBPG)
636 blk = NBPG;
637
638 /* Round to a multiple of the sample size. */
639 blk &= -(sc->sc_channels * sc->sc_precision / 8);
640
641 return (blk);
642 }
643
644 int
645 sbdsp_commit_settings(addr)
646 void *addr;
647 {
648 register struct sbdsp_softc *sc = addr;
649
650 /* due to potentially unfortunate ordering in the above layers,
651 re-do a few sets which may be important--input gains
652 (adjust the proper channels), number of input channels (hit the
653 record rate and set mode) */
654
655 if (ISSBPRO(sc)) {
656 /*
657 * With 2 channels, SBPro can't do more than 22kHz.
658 * Whack the rates down to speed if necessary.
659 * Reset the time constant anyway
660 * because it may have been adjusted with a different number
661 * of channels, which means it might have computed the wrong
662 * mode (low/high speed).
663 */
664 if (sc->sc_channels == 2 &&
665 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
666 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
667 &sc->sc_itc, &sc->sc_imode);
668 } else
669 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
670 SB_INPUT_RATE, &sc->sc_itc,
671 &sc->sc_imode);
672
673 if (sc->sc_channels == 2 &&
674 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
675 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
676 &sc->sc_otc, &sc->sc_omode);
677 } else
678 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
679 SB_OUTPUT_RATE, &sc->sc_otc,
680 &sc->sc_omode);
681 }
682
683 /*
684 * XXX
685 * Should wait for chip to be idle.
686 */
687 sc->sc_dmadir = SB_DMA_NONE;
688
689 return 0;
690 }
691
692
693 int
694 sbdsp_open(sc, dev, flags)
695 register struct sbdsp_softc *sc;
696 dev_t dev;
697 int flags;
698 {
699 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
700
701 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
702 return ENXIO;
703
704 sc->sc_open = 1;
705 sc->sc_mintr = 0;
706 if (ISSBPROCLASS(sc) &&
707 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
708 DPRINTF(("sbdsp_open: can't set mono mode\n"));
709 /* we'll readjust when it's time for DMA. */
710 }
711
712 /*
713 * Leave most things as they were; users must change things if
714 * the previous process didn't leave it they way they wanted.
715 * Looked at another way, it's easy to set up a configuration
716 * in one program and leave it for another to inherit.
717 */
718 DPRINTF(("sbdsp_open: opened\n"));
719
720 return 0;
721 }
722
723 void
724 sbdsp_close(addr)
725 void *addr;
726 {
727 struct sbdsp_softc *sc = addr;
728
729 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
730
731 sc->sc_open = 0;
732 sbdsp_spkroff(sc);
733 sc->spkr_state = SPKR_OFF;
734 sc->sc_mintr = 0;
735 sbdsp_haltdma(sc);
736
737 DPRINTF(("sbdsp_close: closed\n"));
738 }
739
740 /*
741 * Lower-level routines
742 */
743
744 /*
745 * Reset the card.
746 * Return non-zero if the card isn't detected.
747 */
748 int
749 sbdsp_reset(sc)
750 register struct sbdsp_softc *sc;
751 {
752 bus_space_tag_t iot = sc->sc_iot;
753 bus_space_handle_t ioh = sc->sc_ioh;
754
755 sc->sc_intr = 0;
756 if (sc->sc_dmadir != SB_DMA_NONE) {
757 isa_dmaabort(sc->sc_drq);
758 sc->sc_dmadir = SB_DMA_NONE;
759 }
760 sc->sc_last_hs_size = 0;
761
762 /*
763 * See SBK, section 11.3.
764 * We pulse a reset signal into the card.
765 * Gee, what a brilliant hardware design.
766 */
767 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
768 delay(10);
769 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
770 delay(30);
771 if (sbdsp_rdsp(sc) != SB_MAGIC)
772 return -1;
773
774 return 0;
775 }
776
777 int
778 sbdsp16_wait(sc)
779 struct sbdsp_softc *sc;
780 {
781 bus_space_tag_t iot = sc->sc_iot;
782 bus_space_handle_t ioh = sc->sc_ioh;
783 register int i;
784
785 for (i = SBDSP_NPOLL; --i >= 0; ) {
786 register u_char x;
787 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
788 delay(10);
789 if ((x & SB_DSP_BUSY) == 0)
790 continue;
791 return 0;
792 }
793 ++sberr.wdsp;
794 return -1;
795 }
796
797 /*
798 * Write a byte to the dsp.
799 * XXX We are at the mercy of the card as we use a
800 * polling loop and wait until it can take the byte.
801 */
802 int
803 sbdsp_wdsp(sc, v)
804 struct sbdsp_softc *sc;
805 int v;
806 {
807 bus_space_tag_t iot = sc->sc_iot;
808 bus_space_handle_t ioh = sc->sc_ioh;
809 register int i;
810
811 for (i = SBDSP_NPOLL; --i >= 0; ) {
812 register u_char x;
813 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
814 delay(10);
815 if ((x & SB_DSP_BUSY) != 0)
816 continue;
817 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
818 delay(10);
819 return 0;
820 }
821 ++sberr.wdsp;
822 return -1;
823 }
824
825 /*
826 * Read a byte from the DSP, using polling.
827 */
828 int
829 sbdsp_rdsp(sc)
830 struct sbdsp_softc *sc;
831 {
832 bus_space_tag_t iot = sc->sc_iot;
833 bus_space_handle_t ioh = sc->sc_ioh;
834 register int i;
835
836 for (i = SBDSP_NPOLL; --i >= 0; ) {
837 register u_char x;
838 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
839 delay(10);
840 if ((x & SB_DSP_READY) == 0)
841 continue;
842 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
843 delay(10);
844 return x;
845 }
846 ++sberr.rdsp;
847 return -1;
848 }
849
850 /*
851 * Doing certain things (like toggling the speaker) make
852 * the SB hardware go away for a while, so pause a little.
853 */
854 void
855 sbdsp_to(arg)
856 void *arg;
857 {
858 wakeup(arg);
859 }
860
861 void
862 sbdsp_pause(sc)
863 struct sbdsp_softc *sc;
864 {
865 extern int hz;
866
867 timeout(sbdsp_to, sbdsp_to, hz/8);
868 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
869 }
870
871 /*
872 * Turn on the speaker. The SBK documention says this operation
873 * can take up to 1/10 of a second. Higher level layers should
874 * probably let the task sleep for this amount of time after
875 * calling here. Otherwise, things might not work (because
876 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
877 *
878 * These engineers had their heads up their ass when
879 * they designed this card.
880 */
881 void
882 sbdsp_spkron(sc)
883 struct sbdsp_softc *sc;
884 {
885 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
886 sbdsp_pause(sc);
887 }
888
889 /*
890 * Turn off the speaker; see comment above.
891 */
892 void
893 sbdsp_spkroff(sc)
894 struct sbdsp_softc *sc;
895 {
896 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
897 sbdsp_pause(sc);
898 }
899
900 /*
901 * Read the version number out of the card. Return major code
902 * in high byte, and minor code in low byte.
903 */
904 short
905 sbversion(sc)
906 struct sbdsp_softc *sc;
907 {
908 short v;
909
910 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
911 return 0;
912 v = sbdsp_rdsp(sc) << 8;
913 v |= sbdsp_rdsp(sc);
914 return ((v >= 0) ? v : 0);
915 }
916
917 /*
918 * Halt a DMA in progress. A low-speed transfer can be
919 * resumed with sbdsp_contdma().
920 */
921 int
922 sbdsp_haltdma(addr)
923 void *addr;
924 {
925 register struct sbdsp_softc *sc = addr;
926
927 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
928
929 sbdsp_reset(sc);
930 return 0;
931 }
932
933 int
934 sbdsp_contdma(addr)
935 void *addr;
936 {
937 register struct sbdsp_softc *sc = addr;
938
939 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
940
941 /* XXX how do we reinitialize the DMA controller state? do we care? */
942 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
943 return(0);
944 }
945
946 int
947 sbdsp16_setrate(sc, sr, isdac, ratep)
948 register struct sbdsp_softc *sc;
949 int sr;
950 int isdac;
951 int *ratep;
952 {
953
954 /*
955 * XXXX
956 * More checks here?
957 */
958 if (sr < 5000 || sr > 45454)
959 return (EINVAL);
960 *ratep = sr;
961 return (0);
962 }
963
964 /*
965 * Convert a linear sampling rate into the DAC time constant.
966 * Set *mode to indicate the high/low-speed DMA operation.
967 * Because of limitations of the card, not all rates are possible.
968 * We return the time constant of the closest possible rate.
969 * The sampling rate limits are different for the DAC and ADC,
970 * so isdac indicates output, and !isdac indicates input.
971 */
972 int
973 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
974 register struct sbdsp_softc *sc;
975 int sr;
976 int isdac;
977 int *tcp, *modep;
978 {
979 int tc, realtc, mode;
980
981 /*
982 * Don't forget to compute which mode we'll be in based on whether
983 * we need to double the rate for stereo on SBPRO.
984 */
985
986 if (sr == 0) {
987 tc = SB_LS_MIN;
988 mode = SB_ADAC_LS;
989 goto out;
990 }
991
992 tc = 256 - (1000000 / sr);
993
994 if (sc->sc_channels == 2 && ISSBPRO(sc))
995 /* compute based on 2x sample rate when needed */
996 realtc = 256 - ( 500000 / sr);
997 else
998 realtc = tc;
999
1000 if (tc < SB_LS_MIN) {
1001 tc = SB_LS_MIN;
1002 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
1003 * speed mode. */
1004 goto out;
1005 } else if (isdac) {
1006 if (realtc <= SB_DAC_LS_MAX)
1007 mode = SB_ADAC_LS;
1008 else {
1009 mode = SB_ADAC_HS;
1010 if (tc > SB_DAC_HS_MAX)
1011 tc = SB_DAC_HS_MAX;
1012 }
1013 } else {
1014 int adc_ls_max, adc_hs_max;
1015
1016 /* XXX use better rounding--compare distance to nearest tc on both
1017 sides of requested speed */
1018 if (ISSBPROCLASS(sc)) {
1019 adc_ls_max = SBPRO_ADC_LS_MAX;
1020 adc_hs_max = SBPRO_ADC_HS_MAX;
1021 } else {
1022 adc_ls_max = SBCLA_ADC_LS_MAX;
1023 adc_hs_max = SBCLA_ADC_HS_MAX;
1024 }
1025
1026 if (realtc <= adc_ls_max)
1027 mode = SB_ADAC_LS;
1028 else {
1029 mode = SB_ADAC_HS;
1030 if (tc > adc_hs_max)
1031 tc = adc_hs_max;
1032 }
1033 }
1034
1035 out:
1036 *tcp = tc;
1037 *modep = mode;
1038 return (0);
1039 }
1040
1041 /*
1042 * Convert a DAC time constant to a sampling rate.
1043 * See SBK, section 12.
1044 */
1045 int
1046 sbdsp_tctosr(sc, tc)
1047 register struct sbdsp_softc *sc;
1048 int tc;
1049 {
1050 int adc;
1051
1052 if (ISSBPROCLASS(sc))
1053 adc = SBPRO_ADC_HS_MAX;
1054 else
1055 adc = SBCLA_ADC_HS_MAX;
1056
1057 if (tc > adc)
1058 tc = adc;
1059
1060 return (1000000 / (256 - tc));
1061 }
1062
1063 int
1064 sbdsp_set_timeconst(sc, tc)
1065 register struct sbdsp_softc *sc;
1066 int tc;
1067 {
1068 /*
1069 * A SBPro in stereo mode uses time constants at double the
1070 * actual rate.
1071 */
1072 if (ISSBPRO(sc) && sc->sc_channels == 2)
1073 tc = 256 - ((256 - tc) / 2);
1074
1075 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1076
1077 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1078 sbdsp_wdsp(sc, tc) < 0)
1079 return (EIO);
1080
1081 return (0);
1082 }
1083
1084 int
1085 sbdsp_dma_input(addr, p, cc, intr, arg)
1086 void *addr;
1087 void *p;
1088 int cc;
1089 void (*intr) __P((void *));
1090 void *arg;
1091 {
1092 register struct sbdsp_softc *sc = addr;
1093
1094 #ifdef AUDIO_DEBUG
1095 if (sbdspdebug > 1)
1096 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1097 #endif
1098 if (sc->sc_channels == 2 && (cc & 1)) {
1099 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1100 return EIO;
1101 }
1102
1103 if (sc->sc_dmadir != SB_DMA_IN) {
1104 if (ISSBPRO(sc)) {
1105 if (sc->sc_channels == 2) {
1106 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1107 if (sbdsp_wdsp(sc,
1108 JAZZ16_RECORD_STEREO) < 0) {
1109 goto badmode;
1110 }
1111 } else if (sbdsp_wdsp(sc,
1112 SB_DSP_RECORD_STEREO) < 0)
1113 goto badmode;
1114 sbdsp_mix_write(sc, SBP_INFILTER,
1115 (sbdsp_mix_read(sc, SBP_INFILTER) &
1116 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1117 } else {
1118 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1119 if (sbdsp_wdsp(sc,
1120 JAZZ16_RECORD_MONO) < 0)
1121 {
1122 goto badmode;
1123 }
1124 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1125 goto badmode;
1126 sbdsp_mix_write(sc, SBP_INFILTER,
1127 (sbdsp_mix_read(sc, SBP_INFILTER) &
1128 ~SBP_IFILTER_MASK) | sc->in_filter);
1129 }
1130 }
1131
1132 if (ISSB16CLASS(sc)) {
1133 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1134 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1135 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1136 goto giveup;
1137 } else
1138 sbdsp_set_timeconst(sc, sc->sc_itc);
1139 sc->sc_dmadir = SB_DMA_IN;
1140 }
1141
1142 sc->sc_drq = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1143 isa_dmastart(DMAMODE_READ, p, cc, sc->sc_drq);
1144 sc->sc_intr = intr;
1145 sc->sc_arg = arg;
1146 sc->dmaflags = DMAMODE_READ;
1147 sc->dmaaddr = p;
1148 sc->dmacnt = cc; /* DMA controller is strange...? */
1149
1150 if (sc->sc_precision == 16)
1151 cc >>= 1;
1152 --cc;
1153 if (ISSB16CLASS(sc)) {
1154 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1155 SB_DSP16_RDMA_8) < 0 ||
1156 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1157 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1158 sbdsp16_wait(sc) ||
1159 sbdsp_wdsp(sc, cc) < 0 ||
1160 sbdsp_wdsp(sc, cc >> 8) < 0) {
1161 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1162 goto giveup;
1163 }
1164 } else if (sc->sc_imode == SB_ADAC_LS) {
1165 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1166 sbdsp_wdsp(sc, cc) < 0 ||
1167 sbdsp_wdsp(sc, cc >> 8) < 0) {
1168 DPRINTF(("sbdsp_dma_input: LS DMA start failed\n"));
1169 goto giveup;
1170 }
1171 } else {
1172 if (cc != sc->sc_last_hs_size) {
1173 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1174 sbdsp_wdsp(sc, cc) < 0 ||
1175 sbdsp_wdsp(sc, cc >> 8) < 0) {
1176 DPRINTF(("sbdsp_dma_input: HS DMA start failed\n"));
1177 goto giveup;
1178 }
1179 sc->sc_last_hs_size = cc;
1180 }
1181 if (sbdsp_wdsp(sc, SB_DSP_HS_INPUT) < 0) {
1182 DPRINTF(("sbdsp_dma_input: HS DMA restart failed\n"));
1183 goto giveup;
1184 }
1185 }
1186 return 0;
1187
1188 giveup:
1189 sbdsp_reset(sc);
1190 return EIO;
1191
1192 badmode:
1193 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1194 sc->sc_channels == 2 ? "stereo" : "mono"));
1195 return EIO;
1196 }
1197
1198 int
1199 sbdsp_dma_output(addr, p, cc, intr, arg)
1200 void *addr;
1201 void *p;
1202 int cc;
1203 void (*intr) __P((void *));
1204 void *arg;
1205 {
1206 register struct sbdsp_softc *sc = addr;
1207
1208 #ifdef AUDIO_DEBUG
1209 if (sbdspdebug > 1)
1210 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1211 #endif
1212 if (sc->sc_channels == 2 && (cc & 1)) {
1213 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1214 return EIO;
1215 }
1216
1217 if (sc->sc_dmadir != SB_DMA_OUT) {
1218 if (ISSBPRO(sc)) {
1219 /* make sure we re-set stereo mixer bit when we start
1220 output. */
1221 sbdsp_mix_write(sc, SBP_STEREO,
1222 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1223 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1224 if (ISJAZZ16(sc)) {
1225 /* Yes, we write the record mode to set
1226 16-bit playback mode. weird, huh? */
1227 if (sc->sc_precision == 16) {
1228 sbdsp_wdsp(sc,
1229 sc->sc_channels == 2 ?
1230 JAZZ16_RECORD_STEREO :
1231 JAZZ16_RECORD_MONO);
1232 } else {
1233 sbdsp_wdsp(sc,
1234 sc->sc_channels == 2 ?
1235 SB_DSP_RECORD_STEREO :
1236 SB_DSP_RECORD_MONO);
1237 }
1238 }
1239 }
1240
1241 if (ISSB16CLASS(sc)) {
1242 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1243 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1244 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1245 goto giveup;
1246 } else
1247 sbdsp_set_timeconst(sc, sc->sc_otc);
1248 sc->sc_dmadir = SB_DMA_OUT;
1249 }
1250
1251 sc->sc_drq = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1252 isa_dmastart(DMAMODE_WRITE, p, cc, sc->sc_drq);
1253 sc->sc_intr = intr;
1254 sc->sc_arg = arg;
1255 sc->dmaflags = DMAMODE_WRITE;
1256 sc->dmaaddr = p;
1257 sc->dmacnt = cc; /* a vagary of how DMA works, apparently. */
1258
1259 if (sc->sc_precision == 16)
1260 cc >>= 1;
1261 --cc;
1262 if (ISSB16CLASS(sc)) {
1263 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1264 SB_DSP16_WDMA_8) < 0 ||
1265 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1266 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1267 sbdsp16_wait(sc) ||
1268 sbdsp_wdsp(sc, cc) < 0 ||
1269 sbdsp_wdsp(sc, cc >> 8) < 0) {
1270 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1271 goto giveup;
1272 }
1273 } else if (sc->sc_omode == SB_ADAC_LS) {
1274 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1275 sbdsp_wdsp(sc, cc) < 0 ||
1276 sbdsp_wdsp(sc, cc >> 8) < 0) {
1277 DPRINTF(("sbdsp_dma_output: LS DMA start failed\n"));
1278 goto giveup;
1279 }
1280 } else {
1281 if (cc != sc->sc_last_hs_size) {
1282 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1283 sbdsp_wdsp(sc, cc) < 0 ||
1284 sbdsp_wdsp(sc, cc >> 8) < 0) {
1285 DPRINTF(("sbdsp_dma_output: HS DMA start failed\n"));
1286 goto giveup;
1287 }
1288 sc->sc_last_hs_size = cc;
1289 }
1290 if (sbdsp_wdsp(sc, SB_DSP_HS_OUTPUT) < 0) {
1291 DPRINTF(("sbdsp_dma_output: HS DMA restart failed\n"));
1292 goto giveup;
1293 }
1294 }
1295 return 0;
1296
1297 giveup:
1298 sbdsp_reset(sc);
1299 return EIO;
1300 }
1301
1302 /*
1303 * Only the DSP unit on the sound blaster generates interrupts.
1304 * There are three cases of interrupt: reception of a midi byte
1305 * (when mode is enabled), completion of dma transmission, or
1306 * completion of a dma reception. The three modes are mutually
1307 * exclusive so we know a priori which event has occurred.
1308 */
1309 int
1310 sbdsp_intr(arg)
1311 void *arg;
1312 {
1313 register struct sbdsp_softc *sc = arg;
1314 u_char x;
1315
1316 #ifdef AUDIO_DEBUG
1317 if (sbdspdebug > 1)
1318 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1319 #endif
1320 if (!isa_dmafinished(sc->sc_drq)) {
1321 #ifdef AUDIO_DEBUG
1322 printf("sbdsp_intr: not finished\n");
1323 #endif
1324 return 0;
1325 }
1326 sc->sc_interrupts++;
1327 delay(10);
1328 #if 0
1329 if (sc->sc_mintr != 0) {
1330 x = sbdsp_rdsp(sc);
1331 (*sc->sc_mintr)(sc->sc_arg, x);
1332 } else
1333 #endif
1334 if (sc->sc_intr != 0) {
1335 /* clear interrupt */
1336 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1337 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1338 SBP_DSP_IRQACK8);
1339 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->sc_drq);
1340 (*sc->sc_intr)(sc->sc_arg);
1341 } else {
1342 return 0;
1343 }
1344 return 1;
1345 }
1346
1347 #if 0
1348 /*
1349 * Enter midi uart mode and arrange for read interrupts
1350 * to vector to `intr'. This puts the card in a mode
1351 * which allows only midi I/O; the card must be reset
1352 * to leave this mode. Unfortunately, the card does not
1353 * use transmit interrupts, so bytes must be output
1354 * using polling. To keep the polling overhead to a
1355 * minimum, output should be driven off a timer.
1356 * This is a little tricky since only 320us separate
1357 * consecutive midi bytes.
1358 */
1359 void
1360 sbdsp_set_midi_mode(sc, intr, arg)
1361 struct sbdsp_softc *sc;
1362 void (*intr)();
1363 void *arg;
1364 {
1365
1366 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1367 sc->sc_mintr = intr;
1368 sc->sc_intr = 0;
1369 sc->sc_arg = arg;
1370 }
1371
1372 /*
1373 * Write a byte to the midi port, when in midi uart mode.
1374 */
1375 void
1376 sbdsp_midi_output(sc, v)
1377 struct sbdsp_softc *sc;
1378 int v;
1379 {
1380
1381 if (sbdsp_wdsp(sc, v) < 0)
1382 ++sberr.wmidi;
1383 }
1384 #endif
1385
1386 int
1387 sbdsp_setfd(addr, flag)
1388 void *addr;
1389 int flag;
1390 {
1391 /* Can't do full-duplex */
1392 return(ENOTTY);
1393 }
1394
1395 int
1396 sbdsp_mixer_set_port(addr, cp)
1397 void *addr;
1398 mixer_ctrl_t *cp;
1399 {
1400 register struct sbdsp_softc *sc = addr;
1401 int src, gain;
1402
1403 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1404 cp->un.value.num_channels));
1405
1406 if (!ISSBPROCLASS(sc))
1407 return EINVAL;
1408
1409 /*
1410 * Everything is a value except for SBPro BASS/TREBLE and
1411 * RECORD_SOURCE
1412 */
1413 switch (cp->dev) {
1414 case SB_SPEAKER:
1415 cp->dev = SB_MASTER_VOL;
1416 case SB_MIC_PORT:
1417 case SB_LINE_IN_PORT:
1418 case SB_DAC_PORT:
1419 case SB_FM_PORT:
1420 case SB_CD_PORT:
1421 case SB_MASTER_VOL:
1422 if (cp->type != AUDIO_MIXER_VALUE)
1423 return EINVAL;
1424
1425 /*
1426 * All the mixer ports are stereo except for the microphone.
1427 * If we get a single-channel gain value passed in, then we
1428 * duplicate it to both left and right channels.
1429 */
1430
1431 switch (cp->dev) {
1432 case SB_MIC_PORT:
1433 if (cp->un.value.num_channels != 1)
1434 return EINVAL;
1435
1436 /* handle funny microphone gain */
1437 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1438 break;
1439 case SB_LINE_IN_PORT:
1440 case SB_DAC_PORT:
1441 case SB_FM_PORT:
1442 case SB_CD_PORT:
1443 case SB_MASTER_VOL:
1444 switch (cp->un.value.num_channels) {
1445 case 1:
1446 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1447 break;
1448 case 2:
1449 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1450 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1451 break;
1452 default:
1453 return EINVAL;
1454 }
1455 break;
1456 default:
1457 return EINVAL;
1458 }
1459
1460 switch (cp->dev) {
1461 case SB_MIC_PORT:
1462 src = SBP_MIC_VOL;
1463 break;
1464 case SB_MASTER_VOL:
1465 src = SBP_MASTER_VOL;
1466 break;
1467 case SB_LINE_IN_PORT:
1468 src = SBP_LINE_VOL;
1469 break;
1470 case SB_DAC_PORT:
1471 src = SBP_DAC_VOL;
1472 break;
1473 case SB_FM_PORT:
1474 src = SBP_FM_VOL;
1475 break;
1476 case SB_CD_PORT:
1477 src = SBP_CD_VOL;
1478 break;
1479 default:
1480 return EINVAL;
1481 }
1482
1483 sbdsp_mix_write(sc, src, gain);
1484 sc->gain[cp->dev] = gain;
1485 break;
1486
1487 case SB_TREBLE:
1488 case SB_BASS:
1489 case SB_RECORD_SOURCE:
1490 if (cp->type != AUDIO_MIXER_ENUM)
1491 return EINVAL;
1492
1493 switch (cp->dev) {
1494 case SB_TREBLE:
1495 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1496 case SB_BASS:
1497 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1498 case SB_RECORD_SOURCE:
1499 return sbdsp_set_in_port(addr, cp->un.ord);
1500 }
1501
1502 break;
1503
1504 default:
1505 return EINVAL;
1506 }
1507
1508 return (0);
1509 }
1510
1511 int
1512 sbdsp_mixer_get_port(addr, cp)
1513 void *addr;
1514 mixer_ctrl_t *cp;
1515 {
1516 register struct sbdsp_softc *sc = addr;
1517 int gain;
1518
1519 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1520
1521 if (!ISSBPROCLASS(sc))
1522 return EINVAL;
1523
1524 switch (cp->dev) {
1525 case SB_SPEAKER:
1526 cp->dev = SB_MASTER_VOL;
1527 case SB_MIC_PORT:
1528 case SB_LINE_IN_PORT:
1529 case SB_DAC_PORT:
1530 case SB_FM_PORT:
1531 case SB_CD_PORT:
1532 case SB_MASTER_VOL:
1533 gain = sc->gain[cp->dev];
1534
1535 switch (cp->dev) {
1536 case SB_MIC_PORT:
1537 if (cp->un.value.num_channels != 1)
1538 return EINVAL;
1539
1540 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1541 break;
1542 case SB_LINE_IN_PORT:
1543 case SB_DAC_PORT:
1544 case SB_FM_PORT:
1545 case SB_CD_PORT:
1546 case SB_MASTER_VOL:
1547 switch (cp->un.value.num_channels) {
1548 case 1:
1549 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1550 break;
1551 case 2:
1552 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1553 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1554 break;
1555 default:
1556 return EINVAL;
1557 }
1558 break;
1559 }
1560
1561 break;
1562
1563 case SB_TREBLE:
1564 case SB_BASS:
1565 case SB_RECORD_SOURCE:
1566 switch (cp->dev) {
1567 case SB_TREBLE:
1568 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1569 return 0;
1570 case SB_BASS:
1571 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1572 return 0;
1573 case SB_RECORD_SOURCE:
1574 cp->un.ord = sbdsp_get_in_port(addr);
1575 return 0;
1576 }
1577
1578 break;
1579
1580 default:
1581 return EINVAL;
1582 }
1583
1584 return (0);
1585 }
1586
1587 int
1588 sbdsp_mixer_query_devinfo(addr, dip)
1589 void *addr;
1590 register mixer_devinfo_t *dip;
1591 {
1592 register struct sbdsp_softc *sc = addr;
1593
1594 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1595
1596 switch (dip->index) {
1597 case SB_MIC_PORT:
1598 dip->type = AUDIO_MIXER_VALUE;
1599 dip->mixer_class = SB_INPUT_CLASS;
1600 dip->prev = AUDIO_MIXER_LAST;
1601 dip->next = AUDIO_MIXER_LAST;
1602 strcpy(dip->label.name, AudioNmicrophone);
1603 dip->un.v.num_channels = 1;
1604 strcpy(dip->un.v.units.name, AudioNvolume);
1605 return 0;
1606
1607 case SB_SPEAKER:
1608 dip->type = AUDIO_MIXER_VALUE;
1609 dip->mixer_class = SB_OUTPUT_CLASS;
1610 dip->prev = AUDIO_MIXER_LAST;
1611 dip->next = AUDIO_MIXER_LAST;
1612 strcpy(dip->label.name, AudioNspeaker);
1613 dip->un.v.num_channels = 1;
1614 strcpy(dip->un.v.units.name, AudioNvolume);
1615 return 0;
1616
1617 case SB_INPUT_CLASS:
1618 dip->type = AUDIO_MIXER_CLASS;
1619 dip->mixer_class = SB_INPUT_CLASS;
1620 dip->next = dip->prev = AUDIO_MIXER_LAST;
1621 strcpy(dip->label.name, AudioCInputs);
1622 return 0;
1623
1624 case SB_OUTPUT_CLASS:
1625 dip->type = AUDIO_MIXER_CLASS;
1626 dip->mixer_class = SB_OUTPUT_CLASS;
1627 dip->next = dip->prev = AUDIO_MIXER_LAST;
1628 strcpy(dip->label.name, AudioCOutputs);
1629 return 0;
1630 }
1631
1632 if (ISSBPROCLASS(sc)) {
1633 switch (dip->index) {
1634 case SB_LINE_IN_PORT:
1635 dip->type = AUDIO_MIXER_VALUE;
1636 dip->mixer_class = SB_INPUT_CLASS;
1637 dip->prev = AUDIO_MIXER_LAST;
1638 dip->next = AUDIO_MIXER_LAST;
1639 strcpy(dip->label.name, AudioNline);
1640 dip->un.v.num_channels = 2;
1641 strcpy(dip->un.v.units.name, AudioNvolume);
1642 return 0;
1643
1644 case SB_DAC_PORT:
1645 dip->type = AUDIO_MIXER_VALUE;
1646 dip->mixer_class = SB_INPUT_CLASS;
1647 dip->prev = AUDIO_MIXER_LAST;
1648 dip->next = AUDIO_MIXER_LAST;
1649 strcpy(dip->label.name, AudioNdac);
1650 dip->un.v.num_channels = 2;
1651 strcpy(dip->un.v.units.name, AudioNvolume);
1652 return 0;
1653
1654 case SB_CD_PORT:
1655 dip->type = AUDIO_MIXER_VALUE;
1656 dip->mixer_class = SB_INPUT_CLASS;
1657 dip->prev = AUDIO_MIXER_LAST;
1658 dip->next = AUDIO_MIXER_LAST;
1659 strcpy(dip->label.name, AudioNcd);
1660 dip->un.v.num_channels = 2;
1661 strcpy(dip->un.v.units.name, AudioNvolume);
1662 return 0;
1663
1664 case SB_FM_PORT:
1665 dip->type = AUDIO_MIXER_VALUE;
1666 dip->mixer_class = SB_INPUT_CLASS;
1667 dip->prev = AUDIO_MIXER_LAST;
1668 dip->next = AUDIO_MIXER_LAST;
1669 strcpy(dip->label.name, AudioNfmsynth);
1670 dip->un.v.num_channels = 2;
1671 strcpy(dip->un.v.units.name, AudioNvolume);
1672 return 0;
1673
1674 case SB_MASTER_VOL:
1675 dip->type = AUDIO_MIXER_VALUE;
1676 dip->mixer_class = SB_OUTPUT_CLASS;
1677 dip->prev = AUDIO_MIXER_LAST;
1678 dip->next = AUDIO_MIXER_LAST;
1679 strcpy(dip->label.name, AudioNvolume);
1680 dip->un.v.num_channels = 2;
1681 strcpy(dip->un.v.units.name, AudioNvolume);
1682 return 0;
1683
1684 case SB_RECORD_SOURCE:
1685 dip->mixer_class = SB_RECORD_CLASS;
1686 dip->type = AUDIO_MIXER_ENUM;
1687 dip->prev = AUDIO_MIXER_LAST;
1688 dip->next = AUDIO_MIXER_LAST;
1689 strcpy(dip->label.name, AudioNsource);
1690 dip->un.e.num_mem = 3;
1691 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1692 dip->un.e.member[0].ord = SB_MIC_PORT;
1693 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1694 dip->un.e.member[1].ord = SB_CD_PORT;
1695 strcpy(dip->un.e.member[2].label.name, AudioNline);
1696 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1697 return 0;
1698
1699 case SB_BASS:
1700 dip->type = AUDIO_MIXER_ENUM;
1701 dip->mixer_class = SB_INPUT_CLASS;
1702 dip->prev = AUDIO_MIXER_LAST;
1703 dip->next = AUDIO_MIXER_LAST;
1704 strcpy(dip->label.name, AudioNbass);
1705 dip->un.e.num_mem = 2;
1706 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1707 dip->un.e.member[0].ord = 0;
1708 strcpy(dip->un.e.member[1].label.name, AudioNon);
1709 dip->un.e.member[1].ord = 1;
1710 return 0;
1711
1712 case SB_TREBLE:
1713 dip->type = AUDIO_MIXER_ENUM;
1714 dip->mixer_class = SB_INPUT_CLASS;
1715 dip->prev = AUDIO_MIXER_LAST;
1716 dip->next = AUDIO_MIXER_LAST;
1717 strcpy(dip->label.name, AudioNtreble);
1718 dip->un.e.num_mem = 2;
1719 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1720 dip->un.e.member[0].ord = 0;
1721 strcpy(dip->un.e.member[1].label.name, AudioNon);
1722 dip->un.e.member[1].ord = 1;
1723 return 0;
1724
1725 case SB_RECORD_CLASS: /* record source class */
1726 dip->type = AUDIO_MIXER_CLASS;
1727 dip->mixer_class = SB_RECORD_CLASS;
1728 dip->next = dip->prev = AUDIO_MIXER_LAST;
1729 strcpy(dip->label.name, AudioCRecord);
1730 return 0;
1731 }
1732 }
1733
1734 return ENXIO;
1735 }
1736