sbdsp.c revision 1.39 1 /* $NetBSD: sbdsp.c,v 1.39 1997/03/20 21:42:11 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 */
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/device.h>
50 #include <sys/proc.h>
51 #include <sys/buf.h>
52 #include <vm/vm.h>
53
54 #include <machine/cpu.h>
55 #include <machine/intr.h>
56 #include <machine/pio.h>
57
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60
61 #include <dev/isa/isavar.h>
62 #include <dev/isa/isadmavar.h>
63 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
64
65 #include <dev/isa/sbreg.h>
66 #include <dev/isa/sbdspvar.h>
67
68 #ifdef AUDIO_DEBUG
69 extern void Dprintf __P((const char *, ...));
70 #define DPRINTF(x) if (sbdspdebug) Dprintf x
71 int sbdspdebug = 0;
72 #else
73 #define DPRINTF(x)
74 #endif
75
76 #ifndef SBDSP_NPOLL
77 #define SBDSP_NPOLL 3000
78 #endif
79
80 struct {
81 int wdsp;
82 int rdsp;
83 int wmidi;
84 } sberr;
85
86 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
87 int *tcp, int *modep));
88 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
89
90 /*
91 * Time constant routines follow. See SBK, section 12.
92 * Although they don't come out and say it (in the docs),
93 * the card clearly uses a 1MHz countdown timer, as the
94 * low-speed formula (p. 12-4) is:
95 * tc = 256 - 10^6 / sr
96 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
97 * and a 256MHz clock is used:
98 * tc = 65536 - 256 * 10^ 6 / sr
99 * Since we can only use the upper byte of the HS TC, the two formulae
100 * are equivalent. (Why didn't they say so?) E.g.,
101 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
102 *
103 * The crossover point (from low- to high-speed modes) is different
104 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
105 *
106 * SBPRO SB20
107 * ----- --------
108 * input ls min 4 KHz 4 KHz
109 * input ls max 23 KHz 13 KHz
110 * input hs max 44.1 KHz 15 KHz
111 * output ls min 4 KHz 4 KHz
112 * output ls max 23 KHz 23 KHz
113 * output hs max 44.1 KHz 44.1 KHz
114 */
115 #define SB_LS_MIN 0x06 /* 4000 Hz */
116 #define SB_8K 0x83 /* 8000 Hz */
117 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
118 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
119 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
120 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
121 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
122 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
123
124 int sbdsp16_wait __P((struct sbdsp_softc *));
125 void sbdsp_to __P((void *));
126 void sbdsp_pause __P((struct sbdsp_softc *));
127 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
128 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
129 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
130
131 #ifdef AUDIO_DEBUG
132 void sb_printsc __P((struct sbdsp_softc *));
133 #endif
134
135 #ifdef AUDIO_DEBUG
136 void
137 sb_printsc(sc)
138 struct sbdsp_softc *sc;
139 {
140 int i;
141
142 printf("open %d dmachan %d/%d/%d iobase %x\n",
143 sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16, sc->sc_iobase);
144 printf("irate %d itc %d imode %d orate %d otc %d omode %d encoding %x\n",
145 sc->sc_irate, sc->sc_itc, sc->sc_imode,
146 sc->sc_orate, sc->sc_otc, sc->sc_omode, sc->sc_encoding);
147 printf("outport %d inport %d spkron %d nintr %lu\n",
148 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
149 printf("precision %d channels %d intr %p arg %p\n",
150 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
151 printf("gain: ");
152 for (i = 0; i < SB_NDEVS; i++)
153 printf("%d ", sc->gain[i]);
154 printf("\n");
155 }
156 #endif
157
158 /*
159 * Probe / attach routines.
160 */
161
162 /*
163 * Probe for the soundblaster hardware.
164 */
165 int
166 sbdsp_probe(sc)
167 struct sbdsp_softc *sc;
168 {
169
170 if (sbdsp_reset(sc) < 0) {
171 DPRINTF(("sbdsp: couldn't reset card\n"));
172 return 0;
173 }
174 /* if flags set, go and probe the jazz16 stuff */
175 if (sc->sc_dev.dv_cfdata->cf_flags != 0)
176 sc->sc_model = sbdsp_jazz16_probe(sc);
177 else
178 sc->sc_model = sbversion(sc);
179
180 return 1;
181 }
182
183 /*
184 * Try add-on stuff for Jazz16.
185 */
186 u_int
187 sbdsp_jazz16_probe(sc)
188 struct sbdsp_softc *sc;
189 {
190 static u_char jazz16_irq_conf[16] = {
191 -1, -1, 0x02, 0x03,
192 -1, 0x01, -1, 0x04,
193 -1, 0x02, 0x05, -1,
194 -1, -1, -1, 0x06};
195 static u_char jazz16_drq_conf[8] = {
196 -1, 0x01, -1, 0x02,
197 -1, 0x03, -1, 0x04};
198
199 u_int rval = sbversion(sc);
200 bus_space_tag_t iot = sc->sc_iot;
201 bus_space_handle_t ioh;
202
203 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh))
204 return rval;
205
206 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
207 jazz16_irq_conf[sc->sc_irq] == (u_char)-1)
208 goto done; /* give up, we can't do it. */
209
210 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
211 delay(10000); /* delay 10 ms */
212 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
213 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
214
215 if (sbdsp_reset(sc) < 0)
216 goto done; /* XXX? what else could we do? */
217
218 if (sbdsp_wdsp(sc, JAZZ16_READ_VER))
219 goto done;
220
221 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ)
222 goto done;
223
224 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
225 sc->sc_drq16 = sc->sc_drq8;
226 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
227 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
228 jazz16_drq_conf[sc->sc_drq8]) ||
229 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq]))
230 DPRINTF(("sbdsp: can't write jazz16 probe stuff"));
231 else
232 rval |= MODEL_JAZZ16;
233
234 done:
235 bus_space_unmap(iot, ioh, 1);
236 return rval;
237 }
238
239 /*
240 * Attach hardware to driver, attach hardware driver to audio
241 * pseudo-device driver .
242 */
243 void
244 sbdsp_attach(sc)
245 struct sbdsp_softc *sc;
246 {
247
248 /* Set defaults */
249 if (ISSB16CLASS(sc))
250 sc->sc_irate = sc->sc_orate = 8000;
251 else if (ISSBPROCLASS(sc))
252 sc->sc_itc = sc->sc_otc = SB_8K;
253 else
254 sc->sc_itc = sc->sc_otc = SB_8K;
255 sc->sc_encoding = AUDIO_ENCODING_ULAW;
256 sc->sc_precision = 8;
257 sc->sc_channels = 1;
258
259 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
260 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
261
262 if (ISSBPROCLASS(sc)) {
263 int i;
264
265 /* set mixer to default levels, by sending a mixer
266 reset command. */
267 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
268 /* then some adjustments :) */
269 sbdsp_mix_write(sc, SBP_CD_VOL,
270 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
271 sbdsp_mix_write(sc, SBP_DAC_VOL,
272 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
273 sbdsp_mix_write(sc, SBP_MASTER_VOL,
274 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
275 sbdsp_mix_write(sc, SBP_LINE_VOL,
276 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
277 for (i = 0; i < SB_NDEVS; i++)
278 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
279 sc->in_filter = 0; /* no filters turned on, please */
280 }
281
282 printf(": dsp v%d.%02d%s\n",
283 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
284 ISJAZZ16(sc) ? ": <Jazz16>" : "");
285 }
286
287 /*
288 * Various routines to interface to higher level audio driver
289 */
290
291 void
292 sbdsp_mix_write(sc, mixerport, val)
293 struct sbdsp_softc *sc;
294 int mixerport;
295 int val;
296 {
297 bus_space_tag_t iot = sc->sc_iot;
298 bus_space_handle_t ioh = sc->sc_ioh;
299
300 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
301 delay(10);
302 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
303 delay(30);
304 }
305
306 int
307 sbdsp_mix_read(sc, mixerport)
308 struct sbdsp_softc *sc;
309 int mixerport;
310 {
311 bus_space_tag_t iot = sc->sc_iot;
312 bus_space_handle_t ioh = sc->sc_ioh;
313
314 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
315 delay(10);
316 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
317 }
318
319 int
320 sbdsp_set_in_sr(addr, sr)
321 void *addr;
322 u_long sr;
323 {
324 register struct sbdsp_softc *sc = addr;
325
326 if (ISSB16CLASS(sc))
327 return (sbdsp16_setrate(sc, sr, SB_INPUT_RATE, &sc->sc_irate));
328 else
329 return (sbdsp_srtotc(sc, sr, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode));
330 }
331
332 u_long
333 sbdsp_get_in_sr(addr)
334 void *addr;
335 {
336 register struct sbdsp_softc *sc = addr;
337
338 if (ISSB16CLASS(sc))
339 return (sc->sc_irate);
340 else
341 return (sbdsp_tctosr(sc, sc->sc_itc));
342 }
343
344 int
345 sbdsp_set_out_sr(addr, sr)
346 void *addr;
347 u_long sr;
348 {
349 register struct sbdsp_softc *sc = addr;
350
351 if (ISSB16CLASS(sc))
352 return (sbdsp16_setrate(sc, sr, SB_OUTPUT_RATE, &sc->sc_orate));
353 else
354 return (sbdsp_srtotc(sc, sr, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode));
355 }
356
357 u_long
358 sbdsp_get_out_sr(addr)
359 void *addr;
360 {
361 register struct sbdsp_softc *sc = addr;
362
363 if (ISSB16CLASS(sc))
364 return (sc->sc_orate);
365 else
366 return (sbdsp_tctosr(sc, sc->sc_otc));
367 }
368
369 int
370 sbdsp_query_encoding(addr, fp)
371 void *addr;
372 struct audio_encoding *fp;
373 {
374 switch (fp->index) {
375 case 0:
376 strcpy(fp->name, AudioEmulaw);
377 fp->format_id = AUDIO_ENCODING_ULAW;
378 break;
379 case 1:
380 strcpy(fp->name, AudioEpcm16);
381 fp->format_id = AUDIO_ENCODING_PCM16;
382 break;
383 default:
384 return (EINVAL);
385 }
386 return (0);
387 }
388
389 int
390 sbdsp_set_format(addr, encoding, precision)
391 void *addr;
392 u_int encoding, precision;
393 {
394 register struct sbdsp_softc *sc = addr;
395
396 switch (encoding) {
397 case AUDIO_ENCODING_ULAW:
398 case AUDIO_ENCODING_PCM16:
399 case AUDIO_ENCODING_PCM8:
400 break;
401 default:
402 return (EINVAL);
403 }
404
405 if (precision == 16)
406 if (!ISSB16CLASS(sc) && !ISJAZZ16(sc))
407 return (EINVAL);
408
409 sc->sc_encoding = encoding;
410 sc->sc_precision = precision;
411
412 return (0);
413 }
414
415 int
416 sbdsp_get_encoding(addr)
417 void *addr;
418 {
419 register struct sbdsp_softc *sc = addr;
420
421 return (sc->sc_encoding);
422 }
423
424 int
425 sbdsp_get_precision(addr)
426 void *addr;
427 {
428 register struct sbdsp_softc *sc = addr;
429
430 return (sc->sc_precision);
431 }
432
433 int
434 sbdsp_set_channels(addr, channels)
435 void *addr;
436 int channels;
437 {
438 register struct sbdsp_softc *sc = addr;
439
440 if (ISSBPROCLASS(sc)) {
441 if (channels != 1 && channels != 2)
442 return (EINVAL);
443 sc->sc_channels = channels;
444 sc->sc_dmadir = SB_DMA_NONE;
445 /*
446 * XXXX
447 * With 2 channels, SBPro can't do more than 22kHz.
448 * No framework to check this.
449 */
450 } else {
451 if (channels != 1)
452 return (EINVAL);
453 sc->sc_channels = channels;
454 }
455
456 return (0);
457 }
458
459 int
460 sbdsp_get_channels(addr)
461 void *addr;
462 {
463 register struct sbdsp_softc *sc = addr;
464
465 return (sc->sc_channels);
466 }
467
468 int
469 sbdsp_set_ifilter(addr, which)
470 void *addr;
471 int which;
472 {
473 register struct sbdsp_softc *sc = addr;
474 int mixval;
475
476 /* XXXX SB16 */
477 if (ISSBPROCLASS(sc)) {
478 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
479 switch (which) {
480 case 0:
481 mixval |= SBP_FILTER_OFF;
482 break;
483 case SBP_TREBLE_EQ:
484 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
485 break;
486 case SBP_BASS_EQ:
487 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
488 break;
489 default:
490 return (EINVAL);
491 }
492 sc->in_filter = mixval & SBP_IFILTER_MASK;
493 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
494 return (0);
495 } else
496 return (EINVAL);
497 }
498
499 int
500 sbdsp_get_ifilter(addr)
501 void *addr;
502 {
503 register struct sbdsp_softc *sc = addr;
504
505 /* XXXX SB16 */
506 if (ISSBPROCLASS(sc)) {
507 sc->in_filter =
508 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
509 switch (sc->in_filter) {
510 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
511 return (SBP_TREBLE_EQ);
512 case SBP_FILTER_ON|SBP_IFILTER_LOW:
513 return (SBP_BASS_EQ);
514 case SBP_FILTER_OFF:
515 default:
516 return (0);
517 }
518 } else
519 return (0);
520 }
521
522 int
523 sbdsp_set_out_port(addr, port)
524 void *addr;
525 int port;
526 {
527 register struct sbdsp_softc *sc = addr;
528
529 sc->out_port = port; /* Just record it */
530
531 return (0);
532 }
533
534 int
535 sbdsp_get_out_port(addr)
536 void *addr;
537 {
538 register struct sbdsp_softc *sc = addr;
539
540 return (sc->out_port);
541 }
542
543
544 int
545 sbdsp_set_in_port(addr, port)
546 void *addr;
547 int port;
548 {
549 register struct sbdsp_softc *sc = addr;
550 int mixport, sbport;
551
552 if (ISSBPROCLASS(sc)) {
553 switch (port) {
554 case SB_MIC_PORT:
555 sbport = SBP_FROM_MIC;
556 mixport = SBP_MIC_VOL;
557 break;
558 case SB_LINE_IN_PORT:
559 sbport = SBP_FROM_LINE;
560 mixport = SBP_LINE_VOL;
561 break;
562 case SB_CD_PORT:
563 sbport = SBP_FROM_CD;
564 mixport = SBP_CD_VOL;
565 break;
566 case SB_DAC_PORT:
567 case SB_FM_PORT:
568 default:
569 return (EINVAL);
570 }
571 } else {
572 switch (port) {
573 case SB_MIC_PORT:
574 sbport = SBP_FROM_MIC;
575 mixport = SBP_MIC_VOL;
576 break;
577 default:
578 return (EINVAL);
579 }
580 }
581
582 sc->in_port = port; /* Just record it */
583
584 /* XXXX SB16 */
585 if (ISSBPROCLASS(sc)) {
586 /* record from that port */
587 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
588 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
589 /* fetch gain from that port */
590 sc->gain[port] = sbdsp_mix_read(sc, mixport);
591 }
592
593 return (0);
594 }
595
596 int
597 sbdsp_get_in_port(addr)
598 void *addr;
599 {
600 register struct sbdsp_softc *sc = addr;
601
602 return (sc->in_port);
603 }
604
605
606 int
607 sbdsp_speaker_ctl(addr, newstate)
608 void *addr;
609 int newstate;
610 {
611 register struct sbdsp_softc *sc = addr;
612
613 if ((newstate == SPKR_ON) &&
614 (sc->spkr_state == SPKR_OFF)) {
615 sbdsp_spkron(sc);
616 sc->spkr_state = SPKR_ON;
617 }
618 if ((newstate == SPKR_OFF) &&
619 (sc->spkr_state == SPKR_ON)) {
620 sbdsp_spkroff(sc);
621 sc->spkr_state = SPKR_OFF;
622 }
623 return(0);
624 }
625
626 int
627 sbdsp_round_blocksize(addr, blk)
628 void *addr;
629 int blk;
630 {
631 register struct sbdsp_softc *sc = addr;
632
633 sc->sc_last_hs_size = 0;
634
635 /* Don't try to DMA too much at once. */
636 if (blk > NBPG)
637 blk = NBPG;
638
639 /* Round to a multiple of the sample size. */
640 blk &= -(sc->sc_channels * sc->sc_precision / 8);
641
642 return (blk);
643 }
644
645 int
646 sbdsp_commit_settings(addr)
647 void *addr;
648 {
649 register struct sbdsp_softc *sc = addr;
650
651 /* due to potentially unfortunate ordering in the above layers,
652 re-do a few sets which may be important--input gains
653 (adjust the proper channels), number of input channels (hit the
654 record rate and set mode) */
655
656 if (ISSBPRO(sc)) {
657 /*
658 * With 2 channels, SBPro can't do more than 22kHz.
659 * Whack the rates down to speed if necessary.
660 * Reset the time constant anyway
661 * because it may have been adjusted with a different number
662 * of channels, which means it might have computed the wrong
663 * mode (low/high speed).
664 */
665 if (sc->sc_channels == 2 &&
666 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
667 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
668 &sc->sc_itc, &sc->sc_imode);
669 } else
670 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
671 SB_INPUT_RATE, &sc->sc_itc,
672 &sc->sc_imode);
673
674 if (sc->sc_channels == 2 &&
675 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
676 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
677 &sc->sc_otc, &sc->sc_omode);
678 } else
679 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
680 SB_OUTPUT_RATE, &sc->sc_otc,
681 &sc->sc_omode);
682 }
683
684 /*
685 * XXX
686 * Should wait for chip to be idle.
687 */
688 sc->sc_dmadir = SB_DMA_NONE;
689
690 return 0;
691 }
692
693
694 int
695 sbdsp_open(sc, dev, flags)
696 register struct sbdsp_softc *sc;
697 dev_t dev;
698 int flags;
699 {
700 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
701
702 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
703 return ENXIO;
704
705 sc->sc_open = 1;
706 sc->sc_mintr = 0;
707 if (ISSBPROCLASS(sc) &&
708 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
709 DPRINTF(("sbdsp_open: can't set mono mode\n"));
710 /* we'll readjust when it's time for DMA. */
711 }
712
713 /*
714 * Leave most things as they were; users must change things if
715 * the previous process didn't leave it they way they wanted.
716 * Looked at another way, it's easy to set up a configuration
717 * in one program and leave it for another to inherit.
718 */
719 DPRINTF(("sbdsp_open: opened\n"));
720
721 return 0;
722 }
723
724 void
725 sbdsp_close(addr)
726 void *addr;
727 {
728 struct sbdsp_softc *sc = addr;
729
730 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
731
732 sc->sc_open = 0;
733 sbdsp_spkroff(sc);
734 sc->spkr_state = SPKR_OFF;
735 sc->sc_mintr = 0;
736 sbdsp_haltdma(sc);
737
738 DPRINTF(("sbdsp_close: closed\n"));
739 }
740
741 /*
742 * Lower-level routines
743 */
744
745 /*
746 * Reset the card.
747 * Return non-zero if the card isn't detected.
748 */
749 int
750 sbdsp_reset(sc)
751 register struct sbdsp_softc *sc;
752 {
753 bus_space_tag_t iot = sc->sc_iot;
754 bus_space_handle_t ioh = sc->sc_ioh;
755
756 sc->sc_intr = 0;
757 if (sc->sc_dmadir != SB_DMA_NONE) {
758 isa_dmaabort(sc->dmachan);
759 sc->sc_dmadir = SB_DMA_NONE;
760 }
761 sc->sc_last_hs_size = 0;
762
763 /*
764 * See SBK, section 11.3.
765 * We pulse a reset signal into the card.
766 * Gee, what a brilliant hardware design.
767 */
768 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
769 delay(10);
770 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
771 delay(30);
772 if (sbdsp_rdsp(sc) != SB_MAGIC)
773 return -1;
774
775 return 0;
776 }
777
778 int
779 sbdsp16_wait(sc)
780 struct sbdsp_softc *sc;
781 {
782 bus_space_tag_t iot = sc->sc_iot;
783 bus_space_handle_t ioh = sc->sc_ioh;
784 register int i;
785
786 for (i = SBDSP_NPOLL; --i >= 0; ) {
787 register u_char x;
788 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
789 delay(10);
790 if ((x & SB_DSP_BUSY) == 0)
791 continue;
792 return 0;
793 }
794 ++sberr.wdsp;
795 return -1;
796 }
797
798 /*
799 * Write a byte to the dsp.
800 * XXX We are at the mercy of the card as we use a
801 * polling loop and wait until it can take the byte.
802 */
803 int
804 sbdsp_wdsp(sc, v)
805 struct sbdsp_softc *sc;
806 int v;
807 {
808 bus_space_tag_t iot = sc->sc_iot;
809 bus_space_handle_t ioh = sc->sc_ioh;
810 register int i;
811
812 for (i = SBDSP_NPOLL; --i >= 0; ) {
813 register u_char x;
814 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
815 delay(10);
816 if ((x & SB_DSP_BUSY) != 0)
817 continue;
818 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
819 delay(10);
820 return 0;
821 }
822 ++sberr.wdsp;
823 return -1;
824 }
825
826 /*
827 * Read a byte from the DSP, using polling.
828 */
829 int
830 sbdsp_rdsp(sc)
831 struct sbdsp_softc *sc;
832 {
833 bus_space_tag_t iot = sc->sc_iot;
834 bus_space_handle_t ioh = sc->sc_ioh;
835 register int i;
836
837 for (i = SBDSP_NPOLL; --i >= 0; ) {
838 register u_char x;
839 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
840 delay(10);
841 if ((x & SB_DSP_READY) == 0)
842 continue;
843 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
844 delay(10);
845 return x;
846 }
847 ++sberr.rdsp;
848 return -1;
849 }
850
851 /*
852 * Doing certain things (like toggling the speaker) make
853 * the SB hardware go away for a while, so pause a little.
854 */
855 void
856 sbdsp_to(arg)
857 void *arg;
858 {
859 wakeup(arg);
860 }
861
862 void
863 sbdsp_pause(sc)
864 struct sbdsp_softc *sc;
865 {
866 extern int hz;
867
868 timeout(sbdsp_to, sbdsp_to, hz/8);
869 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
870 }
871
872 /*
873 * Turn on the speaker. The SBK documention says this operation
874 * can take up to 1/10 of a second. Higher level layers should
875 * probably let the task sleep for this amount of time after
876 * calling here. Otherwise, things might not work (because
877 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
878 *
879 * These engineers had their heads up their ass when
880 * they designed this card.
881 */
882 void
883 sbdsp_spkron(sc)
884 struct sbdsp_softc *sc;
885 {
886 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
887 sbdsp_pause(sc);
888 }
889
890 /*
891 * Turn off the speaker; see comment above.
892 */
893 void
894 sbdsp_spkroff(sc)
895 struct sbdsp_softc *sc;
896 {
897 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
898 sbdsp_pause(sc);
899 }
900
901 /*
902 * Read the version number out of the card. Return major code
903 * in high byte, and minor code in low byte.
904 */
905 short
906 sbversion(sc)
907 struct sbdsp_softc *sc;
908 {
909 short v;
910
911 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
912 return 0;
913 v = sbdsp_rdsp(sc) << 8;
914 v |= sbdsp_rdsp(sc);
915 return ((v >= 0) ? v : 0);
916 }
917
918 /*
919 * Halt a DMA in progress. A low-speed transfer can be
920 * resumed with sbdsp_contdma().
921 */
922 int
923 sbdsp_haltdma(addr)
924 void *addr;
925 {
926 register struct sbdsp_softc *sc = addr;
927
928 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
929
930 sbdsp_reset(sc);
931 return 0;
932 }
933
934 int
935 sbdsp_contdma(addr)
936 void *addr;
937 {
938 register struct sbdsp_softc *sc = addr;
939
940 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
941
942 /* XXX how do we reinitialize the DMA controller state? do we care? */
943 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
944 return(0);
945 }
946
947 int
948 sbdsp16_setrate(sc, sr, isdac, ratep)
949 register struct sbdsp_softc *sc;
950 int sr;
951 int isdac;
952 int *ratep;
953 {
954
955 /*
956 * XXXX
957 * More checks here?
958 */
959 if (sr < 5000 || sr > 45454)
960 return (EINVAL);
961 *ratep = sr;
962 return (0);
963 }
964
965 /*
966 * Convert a linear sampling rate into the DAC time constant.
967 * Set *mode to indicate the high/low-speed DMA operation.
968 * Because of limitations of the card, not all rates are possible.
969 * We return the time constant of the closest possible rate.
970 * The sampling rate limits are different for the DAC and ADC,
971 * so isdac indicates output, and !isdac indicates input.
972 */
973 int
974 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
975 register struct sbdsp_softc *sc;
976 int sr;
977 int isdac;
978 int *tcp, *modep;
979 {
980 int tc, realtc, mode;
981
982 /*
983 * Don't forget to compute which mode we'll be in based on whether
984 * we need to double the rate for stereo on SBPRO.
985 */
986
987 if (sr == 0) {
988 tc = SB_LS_MIN;
989 mode = SB_ADAC_LS;
990 goto out;
991 }
992
993 tc = 256 - (1000000 / sr);
994
995 if (sc->sc_channels == 2 && ISSBPRO(sc))
996 /* compute based on 2x sample rate when needed */
997 realtc = 256 - ( 500000 / sr);
998 else
999 realtc = tc;
1000
1001 if (tc < SB_LS_MIN) {
1002 tc = SB_LS_MIN;
1003 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
1004 * speed mode. */
1005 goto out;
1006 } else if (isdac) {
1007 if (realtc <= SB_DAC_LS_MAX)
1008 mode = SB_ADAC_LS;
1009 else {
1010 mode = SB_ADAC_HS;
1011 if (tc > SB_DAC_HS_MAX)
1012 tc = SB_DAC_HS_MAX;
1013 }
1014 } else {
1015 int adc_ls_max, adc_hs_max;
1016
1017 /* XXX use better rounding--compare distance to nearest tc on both
1018 sides of requested speed */
1019 if (ISSBPROCLASS(sc)) {
1020 adc_ls_max = SBPRO_ADC_LS_MAX;
1021 adc_hs_max = SBPRO_ADC_HS_MAX;
1022 } else {
1023 adc_ls_max = SBCLA_ADC_LS_MAX;
1024 adc_hs_max = SBCLA_ADC_HS_MAX;
1025 }
1026
1027 if (realtc <= adc_ls_max)
1028 mode = SB_ADAC_LS;
1029 else {
1030 mode = SB_ADAC_HS;
1031 if (tc > adc_hs_max)
1032 tc = adc_hs_max;
1033 }
1034 }
1035
1036 out:
1037 *tcp = tc;
1038 *modep = mode;
1039 return (0);
1040 }
1041
1042 /*
1043 * Convert a DAC time constant to a sampling rate.
1044 * See SBK, section 12.
1045 */
1046 int
1047 sbdsp_tctosr(sc, tc)
1048 register struct sbdsp_softc *sc;
1049 int tc;
1050 {
1051 int adc;
1052
1053 if (ISSBPROCLASS(sc))
1054 adc = SBPRO_ADC_HS_MAX;
1055 else
1056 adc = SBCLA_ADC_HS_MAX;
1057
1058 if (tc > adc)
1059 tc = adc;
1060
1061 return (1000000 / (256 - tc));
1062 }
1063
1064 int
1065 sbdsp_set_timeconst(sc, tc)
1066 register struct sbdsp_softc *sc;
1067 int tc;
1068 {
1069 /*
1070 * A SBPro in stereo mode uses time constants at double the
1071 * actual rate.
1072 */
1073 if (ISSBPRO(sc) && sc->sc_channels == 2)
1074 tc = 256 - ((256 - tc) / 2);
1075
1076 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1077
1078 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1079 sbdsp_wdsp(sc, tc) < 0)
1080 return (EIO);
1081
1082 return (0);
1083 }
1084
1085 int
1086 sbdsp_dma_input(addr, p, cc, intr, arg)
1087 void *addr;
1088 void *p;
1089 int cc;
1090 void (*intr) __P((void *));
1091 void *arg;
1092 {
1093 register struct sbdsp_softc *sc = addr;
1094
1095 #ifdef AUDIO_DEBUG
1096 if (sbdspdebug > 1)
1097 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1098 #endif
1099 if (sc->sc_channels == 2 && (cc & 1)) {
1100 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1101 return EIO;
1102 }
1103
1104 if (sc->sc_dmadir != SB_DMA_IN) {
1105 if (ISSBPRO(sc)) {
1106 if (sc->sc_channels == 2) {
1107 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1108 if (sbdsp_wdsp(sc,
1109 JAZZ16_RECORD_STEREO) < 0) {
1110 goto badmode;
1111 }
1112 } else if (sbdsp_wdsp(sc,
1113 SB_DSP_RECORD_STEREO) < 0)
1114 goto badmode;
1115 sbdsp_mix_write(sc, SBP_INFILTER,
1116 (sbdsp_mix_read(sc, SBP_INFILTER) &
1117 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1118 } else {
1119 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1120 if (sbdsp_wdsp(sc,
1121 JAZZ16_RECORD_MONO) < 0)
1122 {
1123 goto badmode;
1124 }
1125 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1126 goto badmode;
1127 sbdsp_mix_write(sc, SBP_INFILTER,
1128 (sbdsp_mix_read(sc, SBP_INFILTER) &
1129 ~SBP_IFILTER_MASK) | sc->in_filter);
1130 }
1131 }
1132
1133 if (ISSB16CLASS(sc)) {
1134 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1135 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1136 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1137 goto giveup;
1138 } else
1139 sbdsp_set_timeconst(sc, sc->sc_itc);
1140
1141 sc->sc_dmadir = SB_DMA_IN;
1142 sc->dmaflags = DMAMODE_READ;
1143 if (ISSB2CLASS(sc))
1144 sc->dmaflags |= DMAMODE_LOOP;
1145 } else {
1146 /* Already started; just return. */
1147 if (ISSB2CLASS(sc))
1148 return 0;
1149 }
1150
1151 sc->dmaaddr = p;
1152 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1153 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1154 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1155 sc->sc_intr = intr;
1156 sc->sc_arg = arg;
1157
1158 if (sc->sc_precision == 16)
1159 cc >>= 1;
1160 --cc;
1161 if (ISSB16CLASS(sc)) {
1162 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1163 SB_DSP16_RDMA_8) < 0 ||
1164 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1165 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1166 sbdsp16_wait(sc) ||
1167 sbdsp_wdsp(sc, cc) < 0 ||
1168 sbdsp_wdsp(sc, cc >> 8) < 0) {
1169 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1170 goto giveup;
1171 }
1172 } else if (ISSB2CLASS(sc)) {
1173 if (cc != sc->sc_last_hs_size) {
1174 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1175 sbdsp_wdsp(sc, cc) < 0 ||
1176 sbdsp_wdsp(sc, cc >> 8) < 0) {
1177 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1178 goto giveup;
1179 }
1180 sc->sc_last_hs_size = cc;
1181 }
1182 if (sbdsp_wdsp(sc,
1183 sc->sc_imode == SB_ADAC_LS ? SB_DSP_RDMA_LOOP :
1184 SB_DSP_HS_INPUT) < 0) {
1185 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1186 goto giveup;
1187 }
1188 } else {
1189 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1190 sbdsp_wdsp(sc, cc) < 0 ||
1191 sbdsp_wdsp(sc, cc >> 8) < 0) {
1192 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1193 goto giveup;
1194 }
1195 }
1196 return 0;
1197
1198 giveup:
1199 sbdsp_reset(sc);
1200 return EIO;
1201
1202 badmode:
1203 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1204 sc->sc_channels == 2 ? "stereo" : "mono"));
1205 return EIO;
1206 }
1207
1208 int
1209 sbdsp_dma_output(addr, p, cc, intr, arg)
1210 void *addr;
1211 void *p;
1212 int cc;
1213 void (*intr) __P((void *));
1214 void *arg;
1215 {
1216 register struct sbdsp_softc *sc = addr;
1217
1218 #ifdef AUDIO_DEBUG
1219 if (sbdspdebug > 1)
1220 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1221 #endif
1222 if (sc->sc_channels == 2 && (cc & 1)) {
1223 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1224 return EIO;
1225 }
1226
1227 if (sc->sc_dmadir != SB_DMA_OUT) {
1228 if (ISSBPRO(sc)) {
1229 /* make sure we re-set stereo mixer bit when we start
1230 output. */
1231 sbdsp_mix_write(sc, SBP_STEREO,
1232 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1233 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1234 if (ISJAZZ16(sc)) {
1235 /* Yes, we write the record mode to set
1236 16-bit playback mode. weird, huh? */
1237 if (sc->sc_precision == 16) {
1238 sbdsp_wdsp(sc,
1239 sc->sc_channels == 2 ?
1240 JAZZ16_RECORD_STEREO :
1241 JAZZ16_RECORD_MONO);
1242 } else {
1243 sbdsp_wdsp(sc,
1244 sc->sc_channels == 2 ?
1245 SB_DSP_RECORD_STEREO :
1246 SB_DSP_RECORD_MONO);
1247 }
1248 }
1249 }
1250
1251 if (ISSB16CLASS(sc)) {
1252 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1253 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1254 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1255 goto giveup;
1256 } else
1257 sbdsp_set_timeconst(sc, sc->sc_otc);
1258
1259 sc->sc_dmadir = SB_DMA_OUT;
1260 sc->dmaflags = DMAMODE_WRITE;
1261 if (ISSB2CLASS(sc))
1262 sc->dmaflags |= DMAMODE_LOOP;
1263 } else {
1264 /* Already started; just return. */
1265 if (ISSB2CLASS(sc))
1266 return 0;
1267 }
1268
1269 sc->dmaaddr = p;
1270 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1271 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1272 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1273 sc->sc_intr = intr;
1274 sc->sc_arg = arg;
1275
1276 if (sc->sc_precision == 16)
1277 cc >>= 1;
1278 --cc;
1279 if (ISSB16CLASS(sc)) {
1280 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1281 SB_DSP16_WDMA_8) < 0 ||
1282 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1283 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1284 sbdsp16_wait(sc) ||
1285 sbdsp_wdsp(sc, cc) < 0 ||
1286 sbdsp_wdsp(sc, cc >> 8) < 0) {
1287 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1288 goto giveup;
1289 }
1290 } else if (ISSB2CLASS(sc)) {
1291 if (cc != sc->sc_last_hs_size) {
1292 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1293 sbdsp_wdsp(sc, cc) < 0 ||
1294 sbdsp_wdsp(sc, cc >> 8) < 0) {
1295 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1296 goto giveup;
1297 }
1298 sc->sc_last_hs_size = cc;
1299 }
1300 if (sbdsp_wdsp(sc,
1301 sc->sc_omode == SB_ADAC_LS ? SB_DSP_WDMA_LOOP :
1302 SB_DSP_HS_OUTPUT) < 0) {
1303 DPRINTF(("sbdsp_dma_output: SB2 DMA restart failed\n"));
1304 goto giveup;
1305 }
1306 } else {
1307 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1308 sbdsp_wdsp(sc, cc) < 0 ||
1309 sbdsp_wdsp(sc, cc >> 8) < 0) {
1310 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1311 goto giveup;
1312 }
1313 }
1314 return 0;
1315
1316 giveup:
1317 sbdsp_reset(sc);
1318 return EIO;
1319 }
1320
1321 /*
1322 * Only the DSP unit on the sound blaster generates interrupts.
1323 * There are three cases of interrupt: reception of a midi byte
1324 * (when mode is enabled), completion of dma transmission, or
1325 * completion of a dma reception. The three modes are mutually
1326 * exclusive so we know a priori which event has occurred.
1327 */
1328 int
1329 sbdsp_intr(arg)
1330 void *arg;
1331 {
1332 register struct sbdsp_softc *sc = arg;
1333 u_char x;
1334
1335 #ifdef AUDIO_DEBUG
1336 if (sbdspdebug > 1)
1337 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1338 #endif
1339 if (ISSB16CLASS(sc)) {
1340 x = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1341 if ((x & 3) == 0)
1342 return 0;
1343 } else {
1344 if (!isa_dmafinished(sc->dmachan))
1345 return 0;
1346 }
1347 sc->sc_interrupts++;
1348 delay(10);
1349 #if 0
1350 if (sc->sc_mintr != 0) {
1351 x = sbdsp_rdsp(sc);
1352 (*sc->sc_mintr)(sc->sc_arg, x);
1353 } else
1354 #endif
1355 if (sc->sc_intr != 0) {
1356 /* clear interrupt */
1357 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1358 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1359 SBP_DSP_IRQACK8);
1360 if (!ISSB2CLASS(sc))
1361 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1362 sc->dmachan);
1363 (*sc->sc_intr)(sc->sc_arg);
1364 } else {
1365 return 0;
1366 }
1367 return 1;
1368 }
1369
1370 #if 0
1371 /*
1372 * Enter midi uart mode and arrange for read interrupts
1373 * to vector to `intr'. This puts the card in a mode
1374 * which allows only midi I/O; the card must be reset
1375 * to leave this mode. Unfortunately, the card does not
1376 * use transmit interrupts, so bytes must be output
1377 * using polling. To keep the polling overhead to a
1378 * minimum, output should be driven off a timer.
1379 * This is a little tricky since only 320us separate
1380 * consecutive midi bytes.
1381 */
1382 void
1383 sbdsp_set_midi_mode(sc, intr, arg)
1384 struct sbdsp_softc *sc;
1385 void (*intr)();
1386 void *arg;
1387 {
1388
1389 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1390 sc->sc_mintr = intr;
1391 sc->sc_intr = 0;
1392 sc->sc_arg = arg;
1393 }
1394
1395 /*
1396 * Write a byte to the midi port, when in midi uart mode.
1397 */
1398 void
1399 sbdsp_midi_output(sc, v)
1400 struct sbdsp_softc *sc;
1401 int v;
1402 {
1403
1404 if (sbdsp_wdsp(sc, v) < 0)
1405 ++sberr.wmidi;
1406 }
1407 #endif
1408
1409 int
1410 sbdsp_setfd(addr, flag)
1411 void *addr;
1412 int flag;
1413 {
1414 /* Can't do full-duplex */
1415 return(ENOTTY);
1416 }
1417
1418 int
1419 sbdsp_mixer_set_port(addr, cp)
1420 void *addr;
1421 mixer_ctrl_t *cp;
1422 {
1423 register struct sbdsp_softc *sc = addr;
1424 int src, gain;
1425
1426 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1427 cp->un.value.num_channels));
1428
1429 if (!ISSBPROCLASS(sc))
1430 return EINVAL;
1431
1432 /*
1433 * Everything is a value except for SBPro BASS/TREBLE and
1434 * RECORD_SOURCE
1435 */
1436 switch (cp->dev) {
1437 case SB_SPEAKER:
1438 cp->dev = SB_MASTER_VOL;
1439 case SB_MIC_PORT:
1440 case SB_LINE_IN_PORT:
1441 case SB_DAC_PORT:
1442 case SB_FM_PORT:
1443 case SB_CD_PORT:
1444 case SB_MASTER_VOL:
1445 if (cp->type != AUDIO_MIXER_VALUE)
1446 return EINVAL;
1447
1448 /*
1449 * All the mixer ports are stereo except for the microphone.
1450 * If we get a single-channel gain value passed in, then we
1451 * duplicate it to both left and right channels.
1452 */
1453
1454 switch (cp->dev) {
1455 case SB_MIC_PORT:
1456 if (cp->un.value.num_channels != 1)
1457 return EINVAL;
1458
1459 /* handle funny microphone gain */
1460 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1461 break;
1462 case SB_LINE_IN_PORT:
1463 case SB_DAC_PORT:
1464 case SB_FM_PORT:
1465 case SB_CD_PORT:
1466 case SB_MASTER_VOL:
1467 switch (cp->un.value.num_channels) {
1468 case 1:
1469 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1470 break;
1471 case 2:
1472 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1473 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1474 break;
1475 default:
1476 return EINVAL;
1477 }
1478 break;
1479 default:
1480 return EINVAL;
1481 }
1482
1483 switch (cp->dev) {
1484 case SB_MIC_PORT:
1485 src = SBP_MIC_VOL;
1486 break;
1487 case SB_MASTER_VOL:
1488 src = SBP_MASTER_VOL;
1489 break;
1490 case SB_LINE_IN_PORT:
1491 src = SBP_LINE_VOL;
1492 break;
1493 case SB_DAC_PORT:
1494 src = SBP_DAC_VOL;
1495 break;
1496 case SB_FM_PORT:
1497 src = SBP_FM_VOL;
1498 break;
1499 case SB_CD_PORT:
1500 src = SBP_CD_VOL;
1501 break;
1502 default:
1503 return EINVAL;
1504 }
1505
1506 sbdsp_mix_write(sc, src, gain);
1507 sc->gain[cp->dev] = gain;
1508 break;
1509
1510 case SB_TREBLE:
1511 case SB_BASS:
1512 case SB_RECORD_SOURCE:
1513 if (cp->type != AUDIO_MIXER_ENUM)
1514 return EINVAL;
1515
1516 switch (cp->dev) {
1517 case SB_TREBLE:
1518 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1519 case SB_BASS:
1520 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1521 case SB_RECORD_SOURCE:
1522 return sbdsp_set_in_port(addr, cp->un.ord);
1523 }
1524
1525 break;
1526
1527 default:
1528 return EINVAL;
1529 }
1530
1531 return (0);
1532 }
1533
1534 int
1535 sbdsp_mixer_get_port(addr, cp)
1536 void *addr;
1537 mixer_ctrl_t *cp;
1538 {
1539 register struct sbdsp_softc *sc = addr;
1540 int gain;
1541
1542 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1543
1544 if (!ISSBPROCLASS(sc))
1545 return EINVAL;
1546
1547 switch (cp->dev) {
1548 case SB_SPEAKER:
1549 cp->dev = SB_MASTER_VOL;
1550 case SB_MIC_PORT:
1551 case SB_LINE_IN_PORT:
1552 case SB_DAC_PORT:
1553 case SB_FM_PORT:
1554 case SB_CD_PORT:
1555 case SB_MASTER_VOL:
1556 gain = sc->gain[cp->dev];
1557
1558 switch (cp->dev) {
1559 case SB_MIC_PORT:
1560 if (cp->un.value.num_channels != 1)
1561 return EINVAL;
1562
1563 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1564 break;
1565 case SB_LINE_IN_PORT:
1566 case SB_DAC_PORT:
1567 case SB_FM_PORT:
1568 case SB_CD_PORT:
1569 case SB_MASTER_VOL:
1570 switch (cp->un.value.num_channels) {
1571 case 1:
1572 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1573 break;
1574 case 2:
1575 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1576 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1577 break;
1578 default:
1579 return EINVAL;
1580 }
1581 break;
1582 }
1583
1584 break;
1585
1586 case SB_TREBLE:
1587 case SB_BASS:
1588 case SB_RECORD_SOURCE:
1589 switch (cp->dev) {
1590 case SB_TREBLE:
1591 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1592 return 0;
1593 case SB_BASS:
1594 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1595 return 0;
1596 case SB_RECORD_SOURCE:
1597 cp->un.ord = sbdsp_get_in_port(addr);
1598 return 0;
1599 }
1600
1601 break;
1602
1603 default:
1604 return EINVAL;
1605 }
1606
1607 return (0);
1608 }
1609
1610 int
1611 sbdsp_mixer_query_devinfo(addr, dip)
1612 void *addr;
1613 register mixer_devinfo_t *dip;
1614 {
1615 register struct sbdsp_softc *sc = addr;
1616
1617 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1618
1619 switch (dip->index) {
1620 case SB_MIC_PORT:
1621 dip->type = AUDIO_MIXER_VALUE;
1622 dip->mixer_class = SB_INPUT_CLASS;
1623 dip->prev = AUDIO_MIXER_LAST;
1624 dip->next = AUDIO_MIXER_LAST;
1625 strcpy(dip->label.name, AudioNmicrophone);
1626 dip->un.v.num_channels = 1;
1627 strcpy(dip->un.v.units.name, AudioNvolume);
1628 return 0;
1629
1630 case SB_SPEAKER:
1631 dip->type = AUDIO_MIXER_VALUE;
1632 dip->mixer_class = SB_OUTPUT_CLASS;
1633 dip->prev = AUDIO_MIXER_LAST;
1634 dip->next = AUDIO_MIXER_LAST;
1635 strcpy(dip->label.name, AudioNspeaker);
1636 dip->un.v.num_channels = 1;
1637 strcpy(dip->un.v.units.name, AudioNvolume);
1638 return 0;
1639
1640 case SB_INPUT_CLASS:
1641 dip->type = AUDIO_MIXER_CLASS;
1642 dip->mixer_class = SB_INPUT_CLASS;
1643 dip->next = dip->prev = AUDIO_MIXER_LAST;
1644 strcpy(dip->label.name, AudioCInputs);
1645 return 0;
1646
1647 case SB_OUTPUT_CLASS:
1648 dip->type = AUDIO_MIXER_CLASS;
1649 dip->mixer_class = SB_OUTPUT_CLASS;
1650 dip->next = dip->prev = AUDIO_MIXER_LAST;
1651 strcpy(dip->label.name, AudioCOutputs);
1652 return 0;
1653 }
1654
1655 if (ISSBPROCLASS(sc)) {
1656 switch (dip->index) {
1657 case SB_LINE_IN_PORT:
1658 dip->type = AUDIO_MIXER_VALUE;
1659 dip->mixer_class = SB_INPUT_CLASS;
1660 dip->prev = AUDIO_MIXER_LAST;
1661 dip->next = AUDIO_MIXER_LAST;
1662 strcpy(dip->label.name, AudioNline);
1663 dip->un.v.num_channels = 2;
1664 strcpy(dip->un.v.units.name, AudioNvolume);
1665 return 0;
1666
1667 case SB_DAC_PORT:
1668 dip->type = AUDIO_MIXER_VALUE;
1669 dip->mixer_class = SB_INPUT_CLASS;
1670 dip->prev = AUDIO_MIXER_LAST;
1671 dip->next = AUDIO_MIXER_LAST;
1672 strcpy(dip->label.name, AudioNdac);
1673 dip->un.v.num_channels = 2;
1674 strcpy(dip->un.v.units.name, AudioNvolume);
1675 return 0;
1676
1677 case SB_CD_PORT:
1678 dip->type = AUDIO_MIXER_VALUE;
1679 dip->mixer_class = SB_INPUT_CLASS;
1680 dip->prev = AUDIO_MIXER_LAST;
1681 dip->next = AUDIO_MIXER_LAST;
1682 strcpy(dip->label.name, AudioNcd);
1683 dip->un.v.num_channels = 2;
1684 strcpy(dip->un.v.units.name, AudioNvolume);
1685 return 0;
1686
1687 case SB_FM_PORT:
1688 dip->type = AUDIO_MIXER_VALUE;
1689 dip->mixer_class = SB_INPUT_CLASS;
1690 dip->prev = AUDIO_MIXER_LAST;
1691 dip->next = AUDIO_MIXER_LAST;
1692 strcpy(dip->label.name, AudioNfmsynth);
1693 dip->un.v.num_channels = 2;
1694 strcpy(dip->un.v.units.name, AudioNvolume);
1695 return 0;
1696
1697 case SB_MASTER_VOL:
1698 dip->type = AUDIO_MIXER_VALUE;
1699 dip->mixer_class = SB_OUTPUT_CLASS;
1700 dip->prev = AUDIO_MIXER_LAST;
1701 dip->next = AUDIO_MIXER_LAST;
1702 strcpy(dip->label.name, AudioNvolume);
1703 dip->un.v.num_channels = 2;
1704 strcpy(dip->un.v.units.name, AudioNvolume);
1705 return 0;
1706
1707 case SB_RECORD_SOURCE:
1708 dip->mixer_class = SB_RECORD_CLASS;
1709 dip->type = AUDIO_MIXER_ENUM;
1710 dip->prev = AUDIO_MIXER_LAST;
1711 dip->next = AUDIO_MIXER_LAST;
1712 strcpy(dip->label.name, AudioNsource);
1713 dip->un.e.num_mem = 3;
1714 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1715 dip->un.e.member[0].ord = SB_MIC_PORT;
1716 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1717 dip->un.e.member[1].ord = SB_CD_PORT;
1718 strcpy(dip->un.e.member[2].label.name, AudioNline);
1719 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1720 return 0;
1721
1722 case SB_BASS:
1723 dip->type = AUDIO_MIXER_ENUM;
1724 dip->mixer_class = SB_INPUT_CLASS;
1725 dip->prev = AUDIO_MIXER_LAST;
1726 dip->next = AUDIO_MIXER_LAST;
1727 strcpy(dip->label.name, AudioNbass);
1728 dip->un.e.num_mem = 2;
1729 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1730 dip->un.e.member[0].ord = 0;
1731 strcpy(dip->un.e.member[1].label.name, AudioNon);
1732 dip->un.e.member[1].ord = 1;
1733 return 0;
1734
1735 case SB_TREBLE:
1736 dip->type = AUDIO_MIXER_ENUM;
1737 dip->mixer_class = SB_INPUT_CLASS;
1738 dip->prev = AUDIO_MIXER_LAST;
1739 dip->next = AUDIO_MIXER_LAST;
1740 strcpy(dip->label.name, AudioNtreble);
1741 dip->un.e.num_mem = 2;
1742 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1743 dip->un.e.member[0].ord = 0;
1744 strcpy(dip->un.e.member[1].label.name, AudioNon);
1745 dip->un.e.member[1].ord = 1;
1746 return 0;
1747
1748 case SB_RECORD_CLASS: /* record source class */
1749 dip->type = AUDIO_MIXER_CLASS;
1750 dip->mixer_class = SB_RECORD_CLASS;
1751 dip->next = dip->prev = AUDIO_MIXER_LAST;
1752 strcpy(dip->label.name, AudioCRecord);
1753 return 0;
1754 }
1755 }
1756
1757 return ENXIO;
1758 }
1759