sbdsp.c revision 1.41 1 /* $NetBSD: sbdsp.c,v 1.41 1997/04/29 21:01:41 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 */
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/device.h>
50 #include <sys/proc.h>
51 #include <sys/buf.h>
52 #include <vm/vm.h>
53
54 #include <machine/cpu.h>
55 #include <machine/intr.h>
56 #include <machine/pio.h>
57
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60
61 #include <dev/isa/isavar.h>
62 #include <dev/isa/isadmavar.h>
63 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
64
65 #include <dev/isa/sbreg.h>
66 #include <dev/isa/sbdspvar.h>
67
68 #ifdef AUDIO_DEBUG
69 extern void Dprintf __P((const char *, ...));
70 #define DPRINTF(x) if (sbdspdebug) Dprintf x
71 int sbdspdebug = 0;
72 #else
73 #define DPRINTF(x)
74 #endif
75
76 #ifndef SBDSP_NPOLL
77 #define SBDSP_NPOLL 3000
78 #endif
79
80 struct {
81 int wdsp;
82 int rdsp;
83 int wmidi;
84 } sberr;
85
86 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
87 int *tcp, int *modep));
88 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
89
90 /*
91 * Time constant routines follow. See SBK, section 12.
92 * Although they don't come out and say it (in the docs),
93 * the card clearly uses a 1MHz countdown timer, as the
94 * low-speed formula (p. 12-4) is:
95 * tc = 256 - 10^6 / sr
96 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
97 * and a 256MHz clock is used:
98 * tc = 65536 - 256 * 10^ 6 / sr
99 * Since we can only use the upper byte of the HS TC, the two formulae
100 * are equivalent. (Why didn't they say so?) E.g.,
101 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
102 *
103 * The crossover point (from low- to high-speed modes) is different
104 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
105 *
106 * SBPRO SB20
107 * ----- --------
108 * input ls min 4 KHz 4 KHz
109 * input ls max 23 KHz 13 KHz
110 * input hs max 44.1 KHz 15 KHz
111 * output ls min 4 KHz 4 KHz
112 * output ls max 23 KHz 23 KHz
113 * output hs max 44.1 KHz 44.1 KHz
114 */
115 #define SB_LS_MIN 0x06 /* 4000 Hz */
116 #define SB_8K 0x83 /* 8000 Hz */
117 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
118 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
119 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
120 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
121 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
122 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
123
124 int sbdsp16_wait __P((struct sbdsp_softc *));
125 void sbdsp_to __P((void *));
126 void sbdsp_pause __P((struct sbdsp_softc *));
127 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
128 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
129 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
130 int sbdsp_set_io_params __P((struct sbdsp_softc *, struct audio_params *));
131
132 #ifdef AUDIO_DEBUG
133 void sb_printsc __P((struct sbdsp_softc *));
134 #endif
135
136 #ifdef AUDIO_DEBUG
137 void
138 sb_printsc(sc)
139 struct sbdsp_softc *sc;
140 {
141 int i;
142
143 printf("open %d dmachan %d/%d/%d iobase %x\n",
144 sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16, sc->sc_iobase);
145 printf("irate %d itc %d imode %d orate %d otc %d omode %d encoding %x\n",
146 sc->sc_irate, sc->sc_itc, sc->sc_imode,
147 sc->sc_orate, sc->sc_otc, sc->sc_omode);
148 printf("outport %d inport %d spkron %d nintr %lu\n",
149 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
150 printf("precision %d channels %d intr %p arg %p\n",
151 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
152 printf("gain: ");
153 for (i = 0; i < SB_NDEVS; i++)
154 printf("%d ", sc->gain[i]);
155 printf("\n");
156 }
157 #endif
158
159 /*
160 * Probe / attach routines.
161 */
162
163 /*
164 * Probe for the soundblaster hardware.
165 */
166 int
167 sbdsp_probe(sc)
168 struct sbdsp_softc *sc;
169 {
170
171 if (sbdsp_reset(sc) < 0) {
172 DPRINTF(("sbdsp: couldn't reset card\n"));
173 return 0;
174 }
175 /* if flags set, go and probe the jazz16 stuff */
176 if (sc->sc_dev.dv_cfdata->cf_flags != 0) {
177 sc->sc_model = sbdsp_jazz16_probe(sc);
178 } else {
179 sc->sc_model = sbversion(sc);
180 }
181
182 return 1;
183 }
184
185 /*
186 * Try add-on stuff for Jazz16.
187 */
188 u_int
189 sbdsp_jazz16_probe(sc)
190 struct sbdsp_softc *sc;
191 {
192 static u_char jazz16_irq_conf[16] = {
193 -1, -1, 0x02, 0x03,
194 -1, 0x01, -1, 0x04,
195 -1, 0x02, 0x05, -1,
196 -1, -1, -1, 0x06};
197 static u_char jazz16_drq_conf[8] = {
198 -1, 0x01, -1, 0x02,
199 -1, 0x03, -1, 0x04};
200
201 u_int rval = sbversion(sc);
202 bus_space_tag_t iot = sc->sc_iot;
203 bus_space_handle_t ioh;
204
205 DPRINTF(("jazz16 probe\n"));
206
207 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
208 DPRINTF(("bus map failed\n"));
209 return rval;
210 }
211
212 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
213 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
214 DPRINTF(("drq/irq check failed\n"));
215 goto done; /* give up, we can't do it. */
216 }
217
218 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
219 delay(10000); /* delay 10 ms */
220 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
221 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
222
223 if (sbdsp_reset(sc) < 0) {
224 DPRINTF(("sbdsp_reset check failed\n"));
225 goto done; /* XXX? what else could we do? */
226 }
227
228 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
229 DPRINTF(("read16 setup failed\n"));
230 goto done;
231 }
232
233 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
234 DPRINTF(("read16 failed\n"));
235 goto done;
236 }
237
238 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
239 sc->sc_drq16 = sc->sc_drq8;
240 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
241 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
242 jazz16_drq_conf[sc->sc_drq8]) ||
243 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
244 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
245 } else {
246 DPRINTF(("jazz16 detected!\n"));
247 rval |= MODEL_JAZZ16;
248 }
249
250 done:
251 bus_space_unmap(iot, ioh, 1);
252 return rval;
253 }
254
255 /*
256 * Attach hardware to driver, attach hardware driver to audio
257 * pseudo-device driver .
258 */
259 void
260 sbdsp_attach(sc)
261 struct sbdsp_softc *sc;
262 {
263
264 /* Set defaults */
265 if (ISSB16CLASS(sc))
266 sc->sc_irate = sc->sc_orate = 8000;
267 else if (ISSBPROCLASS(sc))
268 sc->sc_itc = sc->sc_otc = SB_8K;
269 else
270 sc->sc_itc = sc->sc_otc = SB_8K;
271 sc->sc_precision = 8;
272 sc->sc_channels = 1;
273
274 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
275 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
276
277 if (ISSBPROCLASS(sc)) {
278 int i;
279
280 /* set mixer to default levels, by sending a mixer
281 reset command. */
282 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
283 /* then some adjustments :) */
284 sbdsp_mix_write(sc, SBP_CD_VOL,
285 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
286 sbdsp_mix_write(sc, SBP_DAC_VOL,
287 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
288 sbdsp_mix_write(sc, SBP_MASTER_VOL,
289 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
290 sbdsp_mix_write(sc, SBP_LINE_VOL,
291 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
292 for (i = 0; i < SB_NDEVS; i++)
293 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
294 sc->in_filter = 0; /* no filters turned on, please */
295 }
296
297 printf(": dsp v%d.%02d%s\n",
298 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
299 ISJAZZ16(sc) ? ": <Jazz16>" : "");
300 }
301
302 /*
303 * Various routines to interface to higher level audio driver
304 */
305
306 void
307 sbdsp_mix_write(sc, mixerport, val)
308 struct sbdsp_softc *sc;
309 int mixerport;
310 int val;
311 {
312 bus_space_tag_t iot = sc->sc_iot;
313 bus_space_handle_t ioh = sc->sc_ioh;
314
315 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
316 delay(10);
317 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
318 delay(30);
319 }
320
321 int
322 sbdsp_mix_read(sc, mixerport)
323 struct sbdsp_softc *sc;
324 int mixerport;
325 {
326 bus_space_tag_t iot = sc->sc_iot;
327 bus_space_handle_t ioh = sc->sc_ioh;
328
329 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
330 delay(10);
331 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
332 }
333
334 int
335 sbdsp_query_encoding(addr, fp)
336 void *addr;
337 struct audio_encoding *fp;
338 {
339 switch (fp->index) {
340 case 0:
341 strcpy(fp->name, AudioEmulaw);
342 fp->format_id = AUDIO_ENCODING_ULAW;
343 break;
344 case 1:
345 strcpy(fp->name, AudioEpcm16);
346 fp->format_id = AUDIO_ENCODING_PCM16;
347 break;
348 default:
349 return (EINVAL);
350 }
351 return (0);
352 }
353
354 int
355 sbdsp_set_io_params(sc, p)
356 struct sbdsp_softc *sc;
357 struct audio_params *p;
358 {
359
360 switch (p->encoding) {
361 case AUDIO_ENCODING_ULAW:
362 case AUDIO_ENCODING_PCM16:
363 case AUDIO_ENCODING_PCM8:
364 break;
365 default:
366 return (EINVAL);
367 }
368
369 if (ISSB16CLASS(sc) || ISJAZZ16(sc)) {
370 if (p->precision != 16 && p->precision != 8)
371 return (EINVAL);
372 } else {
373 if (p->precision != 8)
374 return (EINVAL);
375 }
376
377 if (ISSBPROCLASS(sc)) {
378 if (p->channels != 1 && p->channels != 2)
379 return (EINVAL);
380 if (p->channels == 2 && p->sample_rate > 22000)
381 return (EINVAL);
382 } else {
383 if (p->channels != 1)
384 return (EINVAL);
385 }
386
387 return (0);
388 }
389
390 int
391 sbdsp_set_in_params(addr, p)
392 void *addr;
393 struct audio_params *p;
394 {
395 register struct sbdsp_softc *sc = addr;
396 int error;
397
398 error = sbdsp_set_io_params(sc, p);
399 if (error)
400 return error;
401
402 if (ISSB16CLASS(sc))
403 error = sbdsp16_setrate(sc, p->sample_rate, SB_INPUT_RATE, &sc->sc_irate);
404 else
405 error = sbdsp_srtotc(sc, p->sample_rate, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode);
406 if (error)
407 return error;
408
409 sc->sc_precision = p->precision;
410 sc->sc_channels = p->channels;
411 if (ISSB16CLASS(sc))
412 p->sample_rate = sc->sc_irate;
413 else
414 p->sample_rate = sbdsp_tctosr(sc, sc->sc_itc);
415 return 0;
416 }
417
418 int
419 sbdsp_set_out_params(addr, p)
420 void *addr;
421 struct audio_params *p;
422 {
423 register struct sbdsp_softc *sc = addr;
424 int error;
425
426 error = sbdsp_set_io_params(sc, p);
427 if (error)
428 return error;
429
430 if (ISSB16CLASS(sc))
431 error = sbdsp16_setrate(sc, p->sample_rate, SB_OUTPUT_RATE, &sc->sc_orate);
432 else
433 error = sbdsp_srtotc(sc, p->sample_rate, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode);
434 if (error)
435 return error;
436
437 sc->sc_precision = p->precision;
438 sc->sc_channels = p->channels;
439 if (ISSB16CLASS(sc))
440 p->sample_rate = sc->sc_orate;
441 else
442 p->sample_rate = sbdsp_tctosr(sc, sc->sc_otc);
443 return 0;
444 }
445
446 int
447 sbdsp_set_ifilter(addr, which)
448 void *addr;
449 int which;
450 {
451 register struct sbdsp_softc *sc = addr;
452 int mixval;
453
454 /* XXXX SB16 */
455 if (ISSBPROCLASS(sc)) {
456 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
457 switch (which) {
458 case 0:
459 mixval |= SBP_FILTER_OFF;
460 break;
461 case SBP_TREBLE_EQ:
462 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
463 break;
464 case SBP_BASS_EQ:
465 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
466 break;
467 default:
468 return (EINVAL);
469 }
470 sc->in_filter = mixval & SBP_IFILTER_MASK;
471 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
472 return (0);
473 } else
474 return (EINVAL);
475 }
476
477 int
478 sbdsp_get_ifilter(addr)
479 void *addr;
480 {
481 register struct sbdsp_softc *sc = addr;
482
483 /* XXXX SB16 */
484 if (ISSBPROCLASS(sc)) {
485 sc->in_filter =
486 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
487 switch (sc->in_filter) {
488 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
489 return (SBP_TREBLE_EQ);
490 case SBP_FILTER_ON|SBP_IFILTER_LOW:
491 return (SBP_BASS_EQ);
492 case SBP_FILTER_OFF:
493 default:
494 return (0);
495 }
496 } else
497 return (0);
498 }
499
500 int
501 sbdsp_set_out_port(addr, port)
502 void *addr;
503 int port;
504 {
505 register struct sbdsp_softc *sc = addr;
506
507 sc->out_port = port; /* Just record it */
508
509 return (0);
510 }
511
512 int
513 sbdsp_get_out_port(addr)
514 void *addr;
515 {
516 register struct sbdsp_softc *sc = addr;
517
518 return (sc->out_port);
519 }
520
521
522 int
523 sbdsp_set_in_port(addr, port)
524 void *addr;
525 int port;
526 {
527 register struct sbdsp_softc *sc = addr;
528 int mixport, sbport;
529
530 if (ISSBPROCLASS(sc)) {
531 switch (port) {
532 case SB_MIC_PORT:
533 sbport = SBP_FROM_MIC;
534 mixport = SBP_MIC_VOL;
535 break;
536 case SB_LINE_IN_PORT:
537 sbport = SBP_FROM_LINE;
538 mixport = SBP_LINE_VOL;
539 break;
540 case SB_CD_PORT:
541 sbport = SBP_FROM_CD;
542 mixport = SBP_CD_VOL;
543 break;
544 case SB_DAC_PORT:
545 case SB_FM_PORT:
546 default:
547 return (EINVAL);
548 }
549 } else {
550 switch (port) {
551 case SB_MIC_PORT:
552 sbport = SBP_FROM_MIC;
553 mixport = SBP_MIC_VOL;
554 break;
555 default:
556 return (EINVAL);
557 }
558 }
559
560 sc->in_port = port; /* Just record it */
561
562 /* XXXX SB16 */
563 if (ISSBPROCLASS(sc)) {
564 /* record from that port */
565 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
566 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
567 /* fetch gain from that port */
568 sc->gain[port] = sbdsp_mix_read(sc, mixport);
569 }
570
571 return (0);
572 }
573
574 int
575 sbdsp_get_in_port(addr)
576 void *addr;
577 {
578 register struct sbdsp_softc *sc = addr;
579
580 return (sc->in_port);
581 }
582
583
584 int
585 sbdsp_speaker_ctl(addr, newstate)
586 void *addr;
587 int newstate;
588 {
589 register struct sbdsp_softc *sc = addr;
590
591 if ((newstate == SPKR_ON) &&
592 (sc->spkr_state == SPKR_OFF)) {
593 sbdsp_spkron(sc);
594 sc->spkr_state = SPKR_ON;
595 }
596 if ((newstate == SPKR_OFF) &&
597 (sc->spkr_state == SPKR_ON)) {
598 sbdsp_spkroff(sc);
599 sc->spkr_state = SPKR_OFF;
600 }
601 return(0);
602 }
603
604 int
605 sbdsp_round_blocksize(addr, blk)
606 void *addr;
607 int blk;
608 {
609 register struct sbdsp_softc *sc = addr;
610
611 sc->sc_last_hs_size = 0;
612
613 /* Don't try to DMA too much at once. */
614 if (blk > NBPG)
615 blk = NBPG;
616
617 /* Round to a multiple of the sample size. */
618 blk &= -(sc->sc_channels * sc->sc_precision / 8);
619
620 return (blk);
621 }
622
623 int
624 sbdsp_commit_settings(addr)
625 void *addr;
626 {
627 register struct sbdsp_softc *sc = addr;
628
629 /* XXX these can me moved to sddsp_io_params() now */
630
631 /* due to potentially unfortunate ordering in the above layers,
632 re-do a few sets which may be important--input gains
633 (adjust the proper channels), number of input channels (hit the
634 record rate and set mode) */
635
636 if (ISSBPRO(sc)) {
637 /*
638 * With 2 channels, SBPro can't do more than 22kHz.
639 * Whack the rates down to speed if necessary.
640 * Reset the time constant anyway
641 * because it may have been adjusted with a different number
642 * of channels, which means it might have computed the wrong
643 * mode (low/high speed).
644 */
645 if (sc->sc_channels == 2 &&
646 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
647 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
648 &sc->sc_itc, &sc->sc_imode);
649 } else
650 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
651 SB_INPUT_RATE, &sc->sc_itc,
652 &sc->sc_imode);
653
654 if (sc->sc_channels == 2 &&
655 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
656 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
657 &sc->sc_otc, &sc->sc_omode);
658 } else
659 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
660 SB_OUTPUT_RATE, &sc->sc_otc,
661 &sc->sc_omode);
662 }
663
664 /*
665 * XXX
666 * Should wait for chip to be idle.
667 */
668 sc->sc_dmadir = SB_DMA_NONE;
669
670 return 0;
671 }
672
673
674 int
675 sbdsp_open(sc, dev, flags)
676 register struct sbdsp_softc *sc;
677 dev_t dev;
678 int flags;
679 {
680 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
681
682 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
683 return ENXIO;
684
685 sc->sc_open = 1;
686 sc->sc_mintr = 0;
687 if (ISSBPROCLASS(sc) &&
688 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
689 DPRINTF(("sbdsp_open: can't set mono mode\n"));
690 /* we'll readjust when it's time for DMA. */
691 }
692
693 /*
694 * Leave most things as they were; users must change things if
695 * the previous process didn't leave it they way they wanted.
696 * Looked at another way, it's easy to set up a configuration
697 * in one program and leave it for another to inherit.
698 */
699 DPRINTF(("sbdsp_open: opened\n"));
700
701 return 0;
702 }
703
704 void
705 sbdsp_close(addr)
706 void *addr;
707 {
708 struct sbdsp_softc *sc = addr;
709
710 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
711
712 sc->sc_open = 0;
713 sbdsp_spkroff(sc);
714 sc->spkr_state = SPKR_OFF;
715 sc->sc_mintr = 0;
716 sbdsp_haltdma(sc);
717
718 DPRINTF(("sbdsp_close: closed\n"));
719 }
720
721 /*
722 * Lower-level routines
723 */
724
725 /*
726 * Reset the card.
727 * Return non-zero if the card isn't detected.
728 */
729 int
730 sbdsp_reset(sc)
731 register struct sbdsp_softc *sc;
732 {
733 bus_space_tag_t iot = sc->sc_iot;
734 bus_space_handle_t ioh = sc->sc_ioh;
735
736 sc->sc_intr = 0;
737 if (sc->sc_dmadir != SB_DMA_NONE) {
738 isa_dmaabort(sc->dmachan);
739 sc->sc_dmadir = SB_DMA_NONE;
740 }
741 sc->sc_last_hs_size = 0;
742
743 /*
744 * See SBK, section 11.3.
745 * We pulse a reset signal into the card.
746 * Gee, what a brilliant hardware design.
747 */
748 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
749 delay(10);
750 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
751 delay(30);
752 if (sbdsp_rdsp(sc) != SB_MAGIC)
753 return -1;
754
755 return 0;
756 }
757
758 int
759 sbdsp16_wait(sc)
760 struct sbdsp_softc *sc;
761 {
762 bus_space_tag_t iot = sc->sc_iot;
763 bus_space_handle_t ioh = sc->sc_ioh;
764 register int i;
765
766 for (i = SBDSP_NPOLL; --i >= 0; ) {
767 register u_char x;
768 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
769 delay(10);
770 if ((x & SB_DSP_BUSY) == 0)
771 continue;
772 return 0;
773 }
774 ++sberr.wdsp;
775 return -1;
776 }
777
778 /*
779 * Write a byte to the dsp.
780 * XXX We are at the mercy of the card as we use a
781 * polling loop and wait until it can take the byte.
782 */
783 int
784 sbdsp_wdsp(sc, v)
785 struct sbdsp_softc *sc;
786 int v;
787 {
788 bus_space_tag_t iot = sc->sc_iot;
789 bus_space_handle_t ioh = sc->sc_ioh;
790 register int i;
791
792 for (i = SBDSP_NPOLL; --i >= 0; ) {
793 register u_char x;
794 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
795 delay(10);
796 if ((x & SB_DSP_BUSY) != 0)
797 continue;
798 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
799 delay(10);
800 return 0;
801 }
802 ++sberr.wdsp;
803 return -1;
804 }
805
806 /*
807 * Read a byte from the DSP, using polling.
808 */
809 int
810 sbdsp_rdsp(sc)
811 struct sbdsp_softc *sc;
812 {
813 bus_space_tag_t iot = sc->sc_iot;
814 bus_space_handle_t ioh = sc->sc_ioh;
815 register int i;
816
817 for (i = SBDSP_NPOLL; --i >= 0; ) {
818 register u_char x;
819 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
820 delay(10);
821 if ((x & SB_DSP_READY) == 0)
822 continue;
823 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
824 delay(10);
825 return x;
826 }
827 ++sberr.rdsp;
828 return -1;
829 }
830
831 /*
832 * Doing certain things (like toggling the speaker) make
833 * the SB hardware go away for a while, so pause a little.
834 */
835 void
836 sbdsp_to(arg)
837 void *arg;
838 {
839 wakeup(arg);
840 }
841
842 void
843 sbdsp_pause(sc)
844 struct sbdsp_softc *sc;
845 {
846 extern int hz;
847
848 timeout(sbdsp_to, sbdsp_to, hz/8);
849 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
850 }
851
852 /*
853 * Turn on the speaker. The SBK documention says this operation
854 * can take up to 1/10 of a second. Higher level layers should
855 * probably let the task sleep for this amount of time after
856 * calling here. Otherwise, things might not work (because
857 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
858 *
859 * These engineers had their heads up their ass when
860 * they designed this card.
861 */
862 void
863 sbdsp_spkron(sc)
864 struct sbdsp_softc *sc;
865 {
866 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
867 sbdsp_pause(sc);
868 }
869
870 /*
871 * Turn off the speaker; see comment above.
872 */
873 void
874 sbdsp_spkroff(sc)
875 struct sbdsp_softc *sc;
876 {
877 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
878 sbdsp_pause(sc);
879 }
880
881 /*
882 * Read the version number out of the card. Return major code
883 * in high byte, and minor code in low byte.
884 */
885 short
886 sbversion(sc)
887 struct sbdsp_softc *sc;
888 {
889 short v;
890
891 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
892 return 0;
893 v = sbdsp_rdsp(sc) << 8;
894 v |= sbdsp_rdsp(sc);
895 return ((v >= 0) ? v : 0);
896 }
897
898 /*
899 * Halt a DMA in progress. A low-speed transfer can be
900 * resumed with sbdsp_contdma().
901 */
902 int
903 sbdsp_haltdma(addr)
904 void *addr;
905 {
906 register struct sbdsp_softc *sc = addr;
907
908 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
909
910 sbdsp_reset(sc);
911 return 0;
912 }
913
914 int
915 sbdsp_contdma(addr)
916 void *addr;
917 {
918 register struct sbdsp_softc *sc = addr;
919
920 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
921
922 /* XXX how do we reinitialize the DMA controller state? do we care? */
923 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
924 return(0);
925 }
926
927 int
928 sbdsp16_setrate(sc, sr, isdac, ratep)
929 register struct sbdsp_softc *sc;
930 int sr;
931 int isdac;
932 int *ratep;
933 {
934
935 /*
936 * XXXX
937 * More checks here?
938 */
939 if (sr < 5000 || sr > 45454)
940 return (EINVAL);
941 *ratep = sr;
942 return (0);
943 }
944
945 /*
946 * Convert a linear sampling rate into the DAC time constant.
947 * Set *mode to indicate the high/low-speed DMA operation.
948 * Because of limitations of the card, not all rates are possible.
949 * We return the time constant of the closest possible rate.
950 * The sampling rate limits are different for the DAC and ADC,
951 * so isdac indicates output, and !isdac indicates input.
952 */
953 int
954 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
955 register struct sbdsp_softc *sc;
956 int sr;
957 int isdac;
958 int *tcp, *modep;
959 {
960 int tc, realtc, mode;
961
962 /*
963 * Don't forget to compute which mode we'll be in based on whether
964 * we need to double the rate for stereo on SBPRO.
965 */
966
967 if (sr == 0) {
968 tc = SB_LS_MIN;
969 mode = SB_ADAC_LS;
970 goto out;
971 }
972
973 tc = 256 - (1000000 / sr);
974
975 if (sc->sc_channels == 2 && ISSBPRO(sc))
976 /* compute based on 2x sample rate when needed */
977 realtc = 256 - ( 500000 / sr);
978 else
979 realtc = tc;
980
981 if (tc < SB_LS_MIN) {
982 tc = SB_LS_MIN;
983 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
984 * speed mode. */
985 goto out;
986 } else if (isdac) {
987 if (realtc <= SB_DAC_LS_MAX)
988 mode = SB_ADAC_LS;
989 else {
990 mode = SB_ADAC_HS;
991 if (tc > SB_DAC_HS_MAX)
992 tc = SB_DAC_HS_MAX;
993 }
994 } else {
995 int adc_ls_max, adc_hs_max;
996
997 /* XXX use better rounding--compare distance to nearest tc on both
998 sides of requested speed */
999 if (ISSBPROCLASS(sc)) {
1000 adc_ls_max = SBPRO_ADC_LS_MAX;
1001 adc_hs_max = SBPRO_ADC_HS_MAX;
1002 } else {
1003 adc_ls_max = SBCLA_ADC_LS_MAX;
1004 adc_hs_max = SBCLA_ADC_HS_MAX;
1005 }
1006
1007 if (realtc <= adc_ls_max)
1008 mode = SB_ADAC_LS;
1009 else {
1010 mode = SB_ADAC_HS;
1011 if (tc > adc_hs_max)
1012 tc = adc_hs_max;
1013 }
1014 }
1015
1016 out:
1017 *tcp = tc;
1018 *modep = mode;
1019 return (0);
1020 }
1021
1022 /*
1023 * Convert a DAC time constant to a sampling rate.
1024 * See SBK, section 12.
1025 */
1026 int
1027 sbdsp_tctosr(sc, tc)
1028 register struct sbdsp_softc *sc;
1029 int tc;
1030 {
1031 int adc;
1032
1033 if (ISSBPROCLASS(sc))
1034 adc = SBPRO_ADC_HS_MAX;
1035 else
1036 adc = SBCLA_ADC_HS_MAX;
1037
1038 if (tc > adc)
1039 tc = adc;
1040
1041 return (1000000 / (256 - tc));
1042 }
1043
1044 int
1045 sbdsp_set_timeconst(sc, tc)
1046 register struct sbdsp_softc *sc;
1047 int tc;
1048 {
1049 /*
1050 * A SBPro in stereo mode uses time constants at double the
1051 * actual rate.
1052 */
1053 if (ISSBPRO(sc) && sc->sc_channels == 2)
1054 tc = 256 - ((256 - tc) / 2);
1055
1056 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1057
1058 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1059 sbdsp_wdsp(sc, tc) < 0)
1060 return (EIO);
1061
1062 return (0);
1063 }
1064
1065 int
1066 sbdsp_dma_input(addr, p, cc, intr, arg)
1067 void *addr;
1068 void *p;
1069 int cc;
1070 void (*intr) __P((void *));
1071 void *arg;
1072 {
1073 register struct sbdsp_softc *sc = addr;
1074
1075 #ifdef AUDIO_DEBUG
1076 if (sbdspdebug > 1)
1077 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1078 #endif
1079 if (sc->sc_channels == 2 && (cc & 1)) {
1080 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1081 return EIO;
1082 }
1083
1084 if (sc->sc_dmadir != SB_DMA_IN) {
1085 if (ISSBPRO(sc)) {
1086 if (sc->sc_channels == 2) {
1087 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1088 if (sbdsp_wdsp(sc,
1089 JAZZ16_RECORD_STEREO) < 0) {
1090 goto badmode;
1091 }
1092 } else if (sbdsp_wdsp(sc,
1093 SB_DSP_RECORD_STEREO) < 0)
1094 goto badmode;
1095 sbdsp_mix_write(sc, SBP_INFILTER,
1096 (sbdsp_mix_read(sc, SBP_INFILTER) &
1097 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1098 } else {
1099 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1100 if (sbdsp_wdsp(sc,
1101 JAZZ16_RECORD_MONO) < 0)
1102 {
1103 goto badmode;
1104 }
1105 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1106 goto badmode;
1107 sbdsp_mix_write(sc, SBP_INFILTER,
1108 (sbdsp_mix_read(sc, SBP_INFILTER) &
1109 ~SBP_IFILTER_MASK) | sc->in_filter);
1110 }
1111 }
1112
1113 if (ISSB16CLASS(sc)) {
1114 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1115 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1116 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1117 goto giveup;
1118 } else
1119 sbdsp_set_timeconst(sc, sc->sc_itc);
1120
1121 sc->sc_dmadir = SB_DMA_IN;
1122 sc->dmaflags = DMAMODE_READ;
1123 if (ISSB2CLASS(sc))
1124 sc->dmaflags |= DMAMODE_LOOP;
1125 } else {
1126 /* Already started; just return. */
1127 if (ISSB2CLASS(sc))
1128 return 0;
1129 }
1130
1131 sc->dmaaddr = p;
1132 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1133 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1134 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1135 sc->sc_intr = intr;
1136 sc->sc_arg = arg;
1137
1138 if (sc->sc_precision == 16)
1139 cc >>= 1;
1140 --cc;
1141 if (ISSB16CLASS(sc)) {
1142 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1143 SB_DSP16_RDMA_8) < 0 ||
1144 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1145 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1146 sbdsp16_wait(sc) ||
1147 sbdsp_wdsp(sc, cc) < 0 ||
1148 sbdsp_wdsp(sc, cc >> 8) < 0) {
1149 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1150 goto giveup;
1151 }
1152 } else if (ISSB2CLASS(sc)) {
1153 if (cc != sc->sc_last_hs_size) {
1154 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1155 sbdsp_wdsp(sc, cc) < 0 ||
1156 sbdsp_wdsp(sc, cc >> 8) < 0) {
1157 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1158 goto giveup;
1159 }
1160 sc->sc_last_hs_size = cc;
1161 }
1162 if (sbdsp_wdsp(sc,
1163 sc->sc_imode == SB_ADAC_LS ? SB_DSP_RDMA_LOOP :
1164 SB_DSP_HS_INPUT) < 0) {
1165 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1166 goto giveup;
1167 }
1168 } else {
1169 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1170 sbdsp_wdsp(sc, cc) < 0 ||
1171 sbdsp_wdsp(sc, cc >> 8) < 0) {
1172 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1173 goto giveup;
1174 }
1175 }
1176 return 0;
1177
1178 giveup:
1179 sbdsp_reset(sc);
1180 return EIO;
1181
1182 badmode:
1183 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1184 sc->sc_channels == 2 ? "stereo" : "mono"));
1185 return EIO;
1186 }
1187
1188 int
1189 sbdsp_dma_output(addr, p, cc, intr, arg)
1190 void *addr;
1191 void *p;
1192 int cc;
1193 void (*intr) __P((void *));
1194 void *arg;
1195 {
1196 register struct sbdsp_softc *sc = addr;
1197
1198 #ifdef AUDIO_DEBUG
1199 if (sbdspdebug > 1)
1200 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1201 #endif
1202 if (sc->sc_channels == 2 && (cc & 1)) {
1203 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1204 return EIO;
1205 }
1206
1207 if (sc->sc_dmadir != SB_DMA_OUT) {
1208 if (ISSBPRO(sc)) {
1209 /* make sure we re-set stereo mixer bit when we start
1210 output. */
1211 sbdsp_mix_write(sc, SBP_STEREO,
1212 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1213 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1214 if (ISJAZZ16(sc)) {
1215 /* Yes, we write the record mode to set
1216 16-bit playback mode. weird, huh? */
1217 if (sc->sc_precision == 16) {
1218 sbdsp_wdsp(sc,
1219 sc->sc_channels == 2 ?
1220 JAZZ16_RECORD_STEREO :
1221 JAZZ16_RECORD_MONO);
1222 } else {
1223 sbdsp_wdsp(sc,
1224 sc->sc_channels == 2 ?
1225 SB_DSP_RECORD_STEREO :
1226 SB_DSP_RECORD_MONO);
1227 }
1228 }
1229 }
1230
1231 if (ISSB16CLASS(sc)) {
1232 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1233 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1234 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1235 goto giveup;
1236 } else
1237 sbdsp_set_timeconst(sc, sc->sc_otc);
1238
1239 sc->sc_dmadir = SB_DMA_OUT;
1240 sc->dmaflags = DMAMODE_WRITE;
1241 if (ISSB2CLASS(sc))
1242 sc->dmaflags |= DMAMODE_LOOP;
1243 } else {
1244 /* Already started; just return. */
1245 if (ISSB2CLASS(sc))
1246 return 0;
1247 }
1248
1249 sc->dmaaddr = p;
1250 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1251 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1252 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1253 sc->sc_intr = intr;
1254 sc->sc_arg = arg;
1255
1256 if (sc->sc_precision == 16)
1257 cc >>= 1;
1258 --cc;
1259 if (ISSB16CLASS(sc)) {
1260 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1261 SB_DSP16_WDMA_8) < 0 ||
1262 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1263 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1264 sbdsp16_wait(sc) ||
1265 sbdsp_wdsp(sc, cc) < 0 ||
1266 sbdsp_wdsp(sc, cc >> 8) < 0) {
1267 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1268 goto giveup;
1269 }
1270 } else if (ISSB2CLASS(sc)) {
1271 if (cc != sc->sc_last_hs_size) {
1272 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1273 sbdsp_wdsp(sc, cc) < 0 ||
1274 sbdsp_wdsp(sc, cc >> 8) < 0) {
1275 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1276 goto giveup;
1277 }
1278 sc->sc_last_hs_size = cc;
1279 }
1280 if (sbdsp_wdsp(sc,
1281 sc->sc_omode == SB_ADAC_LS ? SB_DSP_WDMA_LOOP :
1282 SB_DSP_HS_OUTPUT) < 0) {
1283 DPRINTF(("sbdsp_dma_output: SB2 DMA restart failed\n"));
1284 goto giveup;
1285 }
1286 } else {
1287 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1288 sbdsp_wdsp(sc, cc) < 0 ||
1289 sbdsp_wdsp(sc, cc >> 8) < 0) {
1290 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1291 goto giveup;
1292 }
1293 }
1294 return 0;
1295
1296 giveup:
1297 sbdsp_reset(sc);
1298 return EIO;
1299 }
1300
1301 /*
1302 * Only the DSP unit on the sound blaster generates interrupts.
1303 * There are three cases of interrupt: reception of a midi byte
1304 * (when mode is enabled), completion of dma transmission, or
1305 * completion of a dma reception. The three modes are mutually
1306 * exclusive so we know a priori which event has occurred.
1307 */
1308 int
1309 sbdsp_intr(arg)
1310 void *arg;
1311 {
1312 register struct sbdsp_softc *sc = arg;
1313 u_char x;
1314
1315 #ifdef AUDIO_DEBUG
1316 if (sbdspdebug > 1)
1317 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1318 #endif
1319 if (ISSB16CLASS(sc)) {
1320 x = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1321 if ((x & 3) == 0)
1322 return 0;
1323 } else {
1324 if (!isa_dmafinished(sc->dmachan))
1325 return 0;
1326 }
1327 sc->sc_interrupts++;
1328 delay(10);
1329 #if 0
1330 if (sc->sc_mintr != 0) {
1331 x = sbdsp_rdsp(sc);
1332 (*sc->sc_mintr)(sc->sc_arg, x);
1333 } else
1334 #endif
1335 if (sc->sc_intr != 0) {
1336 /* clear interrupt */
1337 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1338 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1339 SBP_DSP_IRQACK8);
1340 if (!ISSB2CLASS(sc))
1341 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1342 sc->dmachan);
1343 (*sc->sc_intr)(sc->sc_arg);
1344 } else {
1345 return 0;
1346 }
1347 return 1;
1348 }
1349
1350 #if 0
1351 /*
1352 * Enter midi uart mode and arrange for read interrupts
1353 * to vector to `intr'. This puts the card in a mode
1354 * which allows only midi I/O; the card must be reset
1355 * to leave this mode. Unfortunately, the card does not
1356 * use transmit interrupts, so bytes must be output
1357 * using polling. To keep the polling overhead to a
1358 * minimum, output should be driven off a timer.
1359 * This is a little tricky since only 320us separate
1360 * consecutive midi bytes.
1361 */
1362 void
1363 sbdsp_set_midi_mode(sc, intr, arg)
1364 struct sbdsp_softc *sc;
1365 void (*intr)();
1366 void *arg;
1367 {
1368
1369 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1370 sc->sc_mintr = intr;
1371 sc->sc_intr = 0;
1372 sc->sc_arg = arg;
1373 }
1374
1375 /*
1376 * Write a byte to the midi port, when in midi uart mode.
1377 */
1378 void
1379 sbdsp_midi_output(sc, v)
1380 struct sbdsp_softc *sc;
1381 int v;
1382 {
1383
1384 if (sbdsp_wdsp(sc, v) < 0)
1385 ++sberr.wmidi;
1386 }
1387 #endif
1388
1389 int
1390 sbdsp_setfd(addr, flag)
1391 void *addr;
1392 int flag;
1393 {
1394 /* Can't do full-duplex */
1395 return(ENOTTY);
1396 }
1397
1398 int
1399 sbdsp_mixer_set_port(addr, cp)
1400 void *addr;
1401 mixer_ctrl_t *cp;
1402 {
1403 register struct sbdsp_softc *sc = addr;
1404 int src, gain;
1405
1406 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1407 cp->un.value.num_channels));
1408
1409 if (!ISSBPROCLASS(sc))
1410 return EINVAL;
1411
1412 /*
1413 * Everything is a value except for SBPro BASS/TREBLE and
1414 * RECORD_SOURCE
1415 */
1416 switch (cp->dev) {
1417 case SB_SPEAKER:
1418 cp->dev = SB_MASTER_VOL;
1419 case SB_MIC_PORT:
1420 case SB_LINE_IN_PORT:
1421 case SB_DAC_PORT:
1422 case SB_FM_PORT:
1423 case SB_CD_PORT:
1424 case SB_MASTER_VOL:
1425 if (cp->type != AUDIO_MIXER_VALUE)
1426 return EINVAL;
1427
1428 /*
1429 * All the mixer ports are stereo except for the microphone.
1430 * If we get a single-channel gain value passed in, then we
1431 * duplicate it to both left and right channels.
1432 */
1433
1434 switch (cp->dev) {
1435 case SB_MIC_PORT:
1436 if (cp->un.value.num_channels != 1)
1437 return EINVAL;
1438
1439 /* handle funny microphone gain */
1440 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1441 break;
1442 case SB_LINE_IN_PORT:
1443 case SB_DAC_PORT:
1444 case SB_FM_PORT:
1445 case SB_CD_PORT:
1446 case SB_MASTER_VOL:
1447 switch (cp->un.value.num_channels) {
1448 case 1:
1449 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1450 break;
1451 case 2:
1452 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1453 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1454 break;
1455 default:
1456 return EINVAL;
1457 }
1458 break;
1459 default:
1460 return EINVAL;
1461 }
1462
1463 switch (cp->dev) {
1464 case SB_MIC_PORT:
1465 src = SBP_MIC_VOL;
1466 break;
1467 case SB_MASTER_VOL:
1468 src = SBP_MASTER_VOL;
1469 break;
1470 case SB_LINE_IN_PORT:
1471 src = SBP_LINE_VOL;
1472 break;
1473 case SB_DAC_PORT:
1474 src = SBP_DAC_VOL;
1475 break;
1476 case SB_FM_PORT:
1477 src = SBP_FM_VOL;
1478 break;
1479 case SB_CD_PORT:
1480 src = SBP_CD_VOL;
1481 break;
1482 default:
1483 return EINVAL;
1484 }
1485
1486 sbdsp_mix_write(sc, src, gain);
1487 sc->gain[cp->dev] = gain;
1488 break;
1489
1490 case SB_TREBLE:
1491 case SB_BASS:
1492 case SB_RECORD_SOURCE:
1493 if (cp->type != AUDIO_MIXER_ENUM)
1494 return EINVAL;
1495
1496 switch (cp->dev) {
1497 case SB_TREBLE:
1498 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1499 case SB_BASS:
1500 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1501 case SB_RECORD_SOURCE:
1502 return sbdsp_set_in_port(addr, cp->un.ord);
1503 }
1504
1505 break;
1506
1507 default:
1508 return EINVAL;
1509 }
1510
1511 return (0);
1512 }
1513
1514 int
1515 sbdsp_mixer_get_port(addr, cp)
1516 void *addr;
1517 mixer_ctrl_t *cp;
1518 {
1519 register struct sbdsp_softc *sc = addr;
1520 int gain;
1521
1522 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1523
1524 if (!ISSBPROCLASS(sc))
1525 return EINVAL;
1526
1527 switch (cp->dev) {
1528 case SB_SPEAKER:
1529 cp->dev = SB_MASTER_VOL;
1530 case SB_MIC_PORT:
1531 case SB_LINE_IN_PORT:
1532 case SB_DAC_PORT:
1533 case SB_FM_PORT:
1534 case SB_CD_PORT:
1535 case SB_MASTER_VOL:
1536 gain = sc->gain[cp->dev];
1537
1538 switch (cp->dev) {
1539 case SB_MIC_PORT:
1540 if (cp->un.value.num_channels != 1)
1541 return EINVAL;
1542
1543 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1544 break;
1545 case SB_LINE_IN_PORT:
1546 case SB_DAC_PORT:
1547 case SB_FM_PORT:
1548 case SB_CD_PORT:
1549 case SB_MASTER_VOL:
1550 switch (cp->un.value.num_channels) {
1551 case 1:
1552 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1553 break;
1554 case 2:
1555 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1556 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1557 break;
1558 default:
1559 return EINVAL;
1560 }
1561 break;
1562 }
1563
1564 break;
1565
1566 case SB_TREBLE:
1567 case SB_BASS:
1568 case SB_RECORD_SOURCE:
1569 switch (cp->dev) {
1570 case SB_TREBLE:
1571 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1572 return 0;
1573 case SB_BASS:
1574 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1575 return 0;
1576 case SB_RECORD_SOURCE:
1577 cp->un.ord = sbdsp_get_in_port(addr);
1578 return 0;
1579 }
1580
1581 break;
1582
1583 default:
1584 return EINVAL;
1585 }
1586
1587 return (0);
1588 }
1589
1590 int
1591 sbdsp_mixer_query_devinfo(addr, dip)
1592 void *addr;
1593 register mixer_devinfo_t *dip;
1594 {
1595 register struct sbdsp_softc *sc = addr;
1596
1597 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1598
1599 switch (dip->index) {
1600 case SB_MIC_PORT:
1601 dip->type = AUDIO_MIXER_VALUE;
1602 dip->mixer_class = SB_INPUT_CLASS;
1603 dip->prev = AUDIO_MIXER_LAST;
1604 dip->next = AUDIO_MIXER_LAST;
1605 strcpy(dip->label.name, AudioNmicrophone);
1606 dip->un.v.num_channels = 1;
1607 strcpy(dip->un.v.units.name, AudioNvolume);
1608 return 0;
1609
1610 case SB_SPEAKER:
1611 dip->type = AUDIO_MIXER_VALUE;
1612 dip->mixer_class = SB_OUTPUT_CLASS;
1613 dip->prev = AUDIO_MIXER_LAST;
1614 dip->next = AUDIO_MIXER_LAST;
1615 strcpy(dip->label.name, AudioNspeaker);
1616 dip->un.v.num_channels = 1;
1617 strcpy(dip->un.v.units.name, AudioNvolume);
1618 return 0;
1619
1620 case SB_INPUT_CLASS:
1621 dip->type = AUDIO_MIXER_CLASS;
1622 dip->mixer_class = SB_INPUT_CLASS;
1623 dip->next = dip->prev = AUDIO_MIXER_LAST;
1624 strcpy(dip->label.name, AudioCInputs);
1625 return 0;
1626
1627 case SB_OUTPUT_CLASS:
1628 dip->type = AUDIO_MIXER_CLASS;
1629 dip->mixer_class = SB_OUTPUT_CLASS;
1630 dip->next = dip->prev = AUDIO_MIXER_LAST;
1631 strcpy(dip->label.name, AudioCOutputs);
1632 return 0;
1633 }
1634
1635 if (ISSBPROCLASS(sc)) {
1636 switch (dip->index) {
1637 case SB_LINE_IN_PORT:
1638 dip->type = AUDIO_MIXER_VALUE;
1639 dip->mixer_class = SB_INPUT_CLASS;
1640 dip->prev = AUDIO_MIXER_LAST;
1641 dip->next = AUDIO_MIXER_LAST;
1642 strcpy(dip->label.name, AudioNline);
1643 dip->un.v.num_channels = 2;
1644 strcpy(dip->un.v.units.name, AudioNvolume);
1645 return 0;
1646
1647 case SB_DAC_PORT:
1648 dip->type = AUDIO_MIXER_VALUE;
1649 dip->mixer_class = SB_INPUT_CLASS;
1650 dip->prev = AUDIO_MIXER_LAST;
1651 dip->next = AUDIO_MIXER_LAST;
1652 strcpy(dip->label.name, AudioNdac);
1653 dip->un.v.num_channels = 2;
1654 strcpy(dip->un.v.units.name, AudioNvolume);
1655 return 0;
1656
1657 case SB_CD_PORT:
1658 dip->type = AUDIO_MIXER_VALUE;
1659 dip->mixer_class = SB_INPUT_CLASS;
1660 dip->prev = AUDIO_MIXER_LAST;
1661 dip->next = AUDIO_MIXER_LAST;
1662 strcpy(dip->label.name, AudioNcd);
1663 dip->un.v.num_channels = 2;
1664 strcpy(dip->un.v.units.name, AudioNvolume);
1665 return 0;
1666
1667 case SB_FM_PORT:
1668 dip->type = AUDIO_MIXER_VALUE;
1669 dip->mixer_class = SB_INPUT_CLASS;
1670 dip->prev = AUDIO_MIXER_LAST;
1671 dip->next = AUDIO_MIXER_LAST;
1672 strcpy(dip->label.name, AudioNfmsynth);
1673 dip->un.v.num_channels = 2;
1674 strcpy(dip->un.v.units.name, AudioNvolume);
1675 return 0;
1676
1677 case SB_MASTER_VOL:
1678 dip->type = AUDIO_MIXER_VALUE;
1679 dip->mixer_class = SB_OUTPUT_CLASS;
1680 dip->prev = AUDIO_MIXER_LAST;
1681 dip->next = AUDIO_MIXER_LAST;
1682 strcpy(dip->label.name, AudioNvolume);
1683 dip->un.v.num_channels = 2;
1684 strcpy(dip->un.v.units.name, AudioNvolume);
1685 return 0;
1686
1687 case SB_RECORD_SOURCE:
1688 dip->mixer_class = SB_RECORD_CLASS;
1689 dip->type = AUDIO_MIXER_ENUM;
1690 dip->prev = AUDIO_MIXER_LAST;
1691 dip->next = AUDIO_MIXER_LAST;
1692 strcpy(dip->label.name, AudioNsource);
1693 dip->un.e.num_mem = 3;
1694 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1695 dip->un.e.member[0].ord = SB_MIC_PORT;
1696 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1697 dip->un.e.member[1].ord = SB_CD_PORT;
1698 strcpy(dip->un.e.member[2].label.name, AudioNline);
1699 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1700 return 0;
1701
1702 case SB_BASS:
1703 dip->type = AUDIO_MIXER_ENUM;
1704 dip->mixer_class = SB_INPUT_CLASS;
1705 dip->prev = AUDIO_MIXER_LAST;
1706 dip->next = AUDIO_MIXER_LAST;
1707 strcpy(dip->label.name, AudioNbass);
1708 dip->un.e.num_mem = 2;
1709 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1710 dip->un.e.member[0].ord = 0;
1711 strcpy(dip->un.e.member[1].label.name, AudioNon);
1712 dip->un.e.member[1].ord = 1;
1713 return 0;
1714
1715 case SB_TREBLE:
1716 dip->type = AUDIO_MIXER_ENUM;
1717 dip->mixer_class = SB_INPUT_CLASS;
1718 dip->prev = AUDIO_MIXER_LAST;
1719 dip->next = AUDIO_MIXER_LAST;
1720 strcpy(dip->label.name, AudioNtreble);
1721 dip->un.e.num_mem = 2;
1722 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1723 dip->un.e.member[0].ord = 0;
1724 strcpy(dip->un.e.member[1].label.name, AudioNon);
1725 dip->un.e.member[1].ord = 1;
1726 return 0;
1727
1728 case SB_RECORD_CLASS: /* record source class */
1729 dip->type = AUDIO_MIXER_CLASS;
1730 dip->mixer_class = SB_RECORD_CLASS;
1731 dip->next = dip->prev = AUDIO_MIXER_LAST;
1732 strcpy(dip->label.name, AudioCRecord);
1733 return 0;
1734 }
1735 }
1736
1737 return ENXIO;
1738 }
1739