sbdsp.c revision 1.42 1 /* $NetBSD: sbdsp.c,v 1.42 1997/04/30 02:08:12 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 */
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/device.h>
50 #include <sys/proc.h>
51 #include <sys/buf.h>
52 #include <vm/vm.h>
53
54 #include <machine/cpu.h>
55 #include <machine/intr.h>
56 #include <machine/pio.h>
57
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60
61 #include <dev/isa/isavar.h>
62 #include <dev/isa/isadmavar.h>
63 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
64
65 #include <dev/isa/sbreg.h>
66 #include <dev/isa/sbdspvar.h>
67
68 #ifdef AUDIO_DEBUG
69 extern void Dprintf __P((const char *, ...));
70 #define DPRINTF(x) if (sbdspdebug) Dprintf x
71 int sbdspdebug = 0;
72 #else
73 #define DPRINTF(x)
74 #endif
75
76 #ifndef SBDSP_NPOLL
77 #define SBDSP_NPOLL 3000
78 #endif
79
80 struct {
81 int wdsp;
82 int rdsp;
83 int wmidi;
84 } sberr;
85
86 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
87 int *tcp, int *modep));
88 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
89
90 /*
91 * Time constant routines follow. See SBK, section 12.
92 * Although they don't come out and say it (in the docs),
93 * the card clearly uses a 1MHz countdown timer, as the
94 * low-speed formula (p. 12-4) is:
95 * tc = 256 - 10^6 / sr
96 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
97 * and a 256MHz clock is used:
98 * tc = 65536 - 256 * 10^ 6 / sr
99 * Since we can only use the upper byte of the HS TC, the two formulae
100 * are equivalent. (Why didn't they say so?) E.g.,
101 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
102 *
103 * The crossover point (from low- to high-speed modes) is different
104 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
105 *
106 * SBPRO SB20
107 * ----- --------
108 * input ls min 4 KHz 4 KHz
109 * input ls max 23 KHz 13 KHz
110 * input hs max 44.1 KHz 15 KHz
111 * output ls min 4 KHz 4 KHz
112 * output ls max 23 KHz 23 KHz
113 * output hs max 44.1 KHz 44.1 KHz
114 */
115 #define SB_LS_MIN 0x06 /* 4000 Hz */
116 #define SB_8K 0x83 /* 8000 Hz */
117 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
118 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
119 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
120 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
121 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
122 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
123
124 int sbdsp16_wait __P((struct sbdsp_softc *));
125 void sbdsp_to __P((void *));
126 void sbdsp_pause __P((struct sbdsp_softc *));
127 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
128 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
129 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
130 int sbdsp_set_io_params __P((struct sbdsp_softc *, struct audio_params *));
131
132 #ifdef AUDIO_DEBUG
133 void sb_printsc __P((struct sbdsp_softc *));
134 #endif
135
136 #ifdef AUDIO_DEBUG
137 void
138 sb_printsc(sc)
139 struct sbdsp_softc *sc;
140 {
141 int i;
142
143 printf("open %d dmachan %d/%d/%d iobase %x\n",
144 sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16, sc->sc_iobase);
145 printf("irate %d itc %d imode %d orate %d otc %d omode %d encoding %x\n",
146 sc->sc_irate, sc->sc_itc, sc->sc_imode,
147 sc->sc_orate, sc->sc_otc, sc->sc_omode);
148 printf("outport %d inport %d spkron %d nintr %lu\n",
149 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
150 printf("precision %d channels %d intr %p arg %p\n",
151 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
152 printf("gain: ");
153 for (i = 0; i < SB_NDEVS; i++)
154 printf("%d ", sc->gain[i]);
155 printf("\n");
156 }
157 #endif
158
159 /*
160 * Probe / attach routines.
161 */
162
163 /*
164 * Probe for the soundblaster hardware.
165 */
166 int
167 sbdsp_probe(sc)
168 struct sbdsp_softc *sc;
169 {
170
171 if (sbdsp_reset(sc) < 0) {
172 DPRINTF(("sbdsp: couldn't reset card\n"));
173 return 0;
174 }
175 /* if flags set, go and probe the jazz16 stuff */
176 if (sc->sc_dev.dv_cfdata->cf_flags != 0) {
177 sc->sc_model = sbdsp_jazz16_probe(sc);
178 } else {
179 sc->sc_model = sbversion(sc);
180 }
181
182 sc->sc_model = 0x100; /* XXX pretend to be just a tired old SB XXX */
183
184 return 1;
185 }
186
187 /*
188 * Try add-on stuff for Jazz16.
189 */
190 u_int
191 sbdsp_jazz16_probe(sc)
192 struct sbdsp_softc *sc;
193 {
194 static u_char jazz16_irq_conf[16] = {
195 -1, -1, 0x02, 0x03,
196 -1, 0x01, -1, 0x04,
197 -1, 0x02, 0x05, -1,
198 -1, -1, -1, 0x06};
199 static u_char jazz16_drq_conf[8] = {
200 -1, 0x01, -1, 0x02,
201 -1, 0x03, -1, 0x04};
202
203 u_int rval = sbversion(sc);
204 bus_space_tag_t iot = sc->sc_iot;
205 bus_space_handle_t ioh;
206
207 DPRINTF(("jazz16 probe\n"));
208
209 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
210 DPRINTF(("bus map failed\n"));
211 return rval;
212 }
213
214 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
215 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
216 DPRINTF(("drq/irq check failed\n"));
217 goto done; /* give up, we can't do it. */
218 }
219
220 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
221 delay(10000); /* delay 10 ms */
222 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
223 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
224
225 if (sbdsp_reset(sc) < 0) {
226 DPRINTF(("sbdsp_reset check failed\n"));
227 goto done; /* XXX? what else could we do? */
228 }
229
230 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
231 DPRINTF(("read16 setup failed\n"));
232 goto done;
233 }
234
235 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
236 DPRINTF(("read16 failed\n"));
237 goto done;
238 }
239
240 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
241 sc->sc_drq16 = sc->sc_drq8;
242 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
243 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
244 jazz16_drq_conf[sc->sc_drq8]) ||
245 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
246 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
247 } else {
248 DPRINTF(("jazz16 detected!\n"));
249 rval |= MODEL_JAZZ16;
250 }
251
252 done:
253 bus_space_unmap(iot, ioh, 1);
254 return rval;
255 }
256
257 /*
258 * Attach hardware to driver, attach hardware driver to audio
259 * pseudo-device driver .
260 */
261 void
262 sbdsp_attach(sc)
263 struct sbdsp_softc *sc;
264 {
265
266 /* Set defaults */
267 if (ISSB16CLASS(sc))
268 sc->sc_irate = sc->sc_orate = 8000;
269 else if (ISSBPROCLASS(sc))
270 sc->sc_itc = sc->sc_otc = SB_8K;
271 else
272 sc->sc_itc = sc->sc_otc = SB_8K;
273 sc->sc_precision = 8;
274 sc->sc_channels = 1;
275
276 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
277 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
278
279 if (ISSBPROCLASS(sc)) {
280 int i;
281
282 /* set mixer to default levels, by sending a mixer
283 reset command. */
284 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
285 /* then some adjustments :) */
286 sbdsp_mix_write(sc, SBP_CD_VOL,
287 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
288 sbdsp_mix_write(sc, SBP_DAC_VOL,
289 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
290 sbdsp_mix_write(sc, SBP_MASTER_VOL,
291 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
292 sbdsp_mix_write(sc, SBP_LINE_VOL,
293 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
294 for (i = 0; i < SB_NDEVS; i++)
295 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
296 sc->in_filter = 0; /* no filters turned on, please */
297 }
298
299 printf(": dsp v%d.%02d%s\n",
300 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
301 ISJAZZ16(sc) ? ": <Jazz16>" : "");
302 }
303
304 /*
305 * Various routines to interface to higher level audio driver
306 */
307
308 void
309 sbdsp_mix_write(sc, mixerport, val)
310 struct sbdsp_softc *sc;
311 int mixerport;
312 int val;
313 {
314 bus_space_tag_t iot = sc->sc_iot;
315 bus_space_handle_t ioh = sc->sc_ioh;
316
317 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
318 delay(10);
319 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
320 delay(30);
321 }
322
323 int
324 sbdsp_mix_read(sc, mixerport)
325 struct sbdsp_softc *sc;
326 int mixerport;
327 {
328 bus_space_tag_t iot = sc->sc_iot;
329 bus_space_handle_t ioh = sc->sc_ioh;
330
331 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
332 delay(10);
333 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
334 }
335
336 int
337 sbdsp_query_encoding(addr, fp)
338 void *addr;
339 struct audio_encoding *fp;
340 {
341 switch (fp->index) {
342 case 0:
343 strcpy(fp->name, AudioEmulaw);
344 fp->format_id = AUDIO_ENCODING_ULAW;
345 break;
346 case 1:
347 strcpy(fp->name, AudioEpcm16);
348 fp->format_id = AUDIO_ENCODING_PCM16;
349 break;
350 default:
351 return (EINVAL);
352 }
353 return (0);
354 }
355
356 int
357 sbdsp_set_io_params(sc, p)
358 struct sbdsp_softc *sc;
359 struct audio_params *p;
360 {
361
362 switch (p->encoding) {
363 case AUDIO_ENCODING_ULAW:
364 case AUDIO_ENCODING_PCM16:
365 case AUDIO_ENCODING_PCM8:
366 break;
367 default:
368 return (EINVAL);
369 }
370
371 if (ISSB16CLASS(sc) || ISJAZZ16(sc)) {
372 if (p->precision != 16 && p->precision != 8)
373 return (EINVAL);
374 } else {
375 if (p->precision != 8)
376 return (EINVAL);
377 }
378
379 if (ISSBPROCLASS(sc)) {
380 if (p->channels != 1 && p->channels != 2)
381 return (EINVAL);
382 if (p->channels == 2 && p->sample_rate > 22000)
383 return (EINVAL);
384 } else {
385 if (p->channels != 1)
386 return (EINVAL);
387 }
388
389 return (0);
390 }
391
392 int
393 sbdsp_set_in_params(addr, p)
394 void *addr;
395 struct audio_params *p;
396 {
397 register struct sbdsp_softc *sc = addr;
398 int error;
399
400 error = sbdsp_set_io_params(sc, p);
401 if (error)
402 return error;
403
404 if (ISSB16CLASS(sc))
405 error = sbdsp16_setrate(sc, p->sample_rate, SB_INPUT_RATE, &sc->sc_irate);
406 else
407 error = sbdsp_srtotc(sc, p->sample_rate, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode);
408 if (error)
409 return error;
410
411 sc->sc_precision = p->precision;
412 sc->sc_channels = p->channels;
413 if (ISSB16CLASS(sc))
414 p->sample_rate = sc->sc_irate;
415 else
416 p->sample_rate = sbdsp_tctosr(sc, sc->sc_itc);
417 return 0;
418 }
419
420 int
421 sbdsp_set_out_params(addr, p)
422 void *addr;
423 struct audio_params *p;
424 {
425 register struct sbdsp_softc *sc = addr;
426 int error;
427
428 error = sbdsp_set_io_params(sc, p);
429 if (error)
430 return error;
431
432 if (ISSB16CLASS(sc))
433 error = sbdsp16_setrate(sc, p->sample_rate, SB_OUTPUT_RATE, &sc->sc_orate);
434 else
435 error = sbdsp_srtotc(sc, p->sample_rate, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode);
436 if (error)
437 return error;
438
439 sc->sc_precision = p->precision;
440 sc->sc_channels = p->channels;
441 if (ISSB16CLASS(sc))
442 p->sample_rate = sc->sc_orate;
443 else
444 p->sample_rate = sbdsp_tctosr(sc, sc->sc_otc);
445 return 0;
446 }
447
448 int
449 sbdsp_set_ifilter(addr, which)
450 void *addr;
451 int which;
452 {
453 register struct sbdsp_softc *sc = addr;
454 int mixval;
455
456 /* XXXX SB16 */
457 if (ISSBPROCLASS(sc)) {
458 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
459 switch (which) {
460 case 0:
461 mixval |= SBP_FILTER_OFF;
462 break;
463 case SBP_TREBLE_EQ:
464 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
465 break;
466 case SBP_BASS_EQ:
467 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
468 break;
469 default:
470 return (EINVAL);
471 }
472 sc->in_filter = mixval & SBP_IFILTER_MASK;
473 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
474 return (0);
475 } else
476 return (EINVAL);
477 }
478
479 int
480 sbdsp_get_ifilter(addr)
481 void *addr;
482 {
483 register struct sbdsp_softc *sc = addr;
484
485 /* XXXX SB16 */
486 if (ISSBPROCLASS(sc)) {
487 sc->in_filter =
488 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
489 switch (sc->in_filter) {
490 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
491 return (SBP_TREBLE_EQ);
492 case SBP_FILTER_ON|SBP_IFILTER_LOW:
493 return (SBP_BASS_EQ);
494 case SBP_FILTER_OFF:
495 default:
496 return (0);
497 }
498 } else
499 return (0);
500 }
501
502 int
503 sbdsp_set_out_port(addr, port)
504 void *addr;
505 int port;
506 {
507 register struct sbdsp_softc *sc = addr;
508
509 sc->out_port = port; /* Just record it */
510
511 return (0);
512 }
513
514 int
515 sbdsp_get_out_port(addr)
516 void *addr;
517 {
518 register struct sbdsp_softc *sc = addr;
519
520 return (sc->out_port);
521 }
522
523
524 int
525 sbdsp_set_in_port(addr, port)
526 void *addr;
527 int port;
528 {
529 register struct sbdsp_softc *sc = addr;
530 int mixport, sbport;
531
532 if (ISSBPROCLASS(sc)) {
533 switch (port) {
534 case SB_MIC_PORT:
535 sbport = SBP_FROM_MIC;
536 mixport = SBP_MIC_VOL;
537 break;
538 case SB_LINE_IN_PORT:
539 sbport = SBP_FROM_LINE;
540 mixport = SBP_LINE_VOL;
541 break;
542 case SB_CD_PORT:
543 sbport = SBP_FROM_CD;
544 mixport = SBP_CD_VOL;
545 break;
546 case SB_DAC_PORT:
547 case SB_FM_PORT:
548 default:
549 return (EINVAL);
550 }
551 } else {
552 switch (port) {
553 case SB_MIC_PORT:
554 sbport = SBP_FROM_MIC;
555 mixport = SBP_MIC_VOL;
556 break;
557 default:
558 return (EINVAL);
559 }
560 }
561
562 sc->in_port = port; /* Just record it */
563
564 /* XXXX SB16 */
565 if (ISSBPROCLASS(sc)) {
566 /* record from that port */
567 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
568 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
569 /* fetch gain from that port */
570 sc->gain[port] = sbdsp_mix_read(sc, mixport);
571 }
572
573 return (0);
574 }
575
576 int
577 sbdsp_get_in_port(addr)
578 void *addr;
579 {
580 register struct sbdsp_softc *sc = addr;
581
582 return (sc->in_port);
583 }
584
585
586 int
587 sbdsp_speaker_ctl(addr, newstate)
588 void *addr;
589 int newstate;
590 {
591 register struct sbdsp_softc *sc = addr;
592
593 if ((newstate == SPKR_ON) &&
594 (sc->spkr_state == SPKR_OFF)) {
595 sbdsp_spkron(sc);
596 sc->spkr_state = SPKR_ON;
597 }
598 if ((newstate == SPKR_OFF) &&
599 (sc->spkr_state == SPKR_ON)) {
600 sbdsp_spkroff(sc);
601 sc->spkr_state = SPKR_OFF;
602 }
603 return(0);
604 }
605
606 int
607 sbdsp_round_blocksize(addr, blk)
608 void *addr;
609 int blk;
610 {
611 register struct sbdsp_softc *sc = addr;
612
613 sc->sc_last_hs_size = 0;
614
615 /* Don't try to DMA too much at once. */
616 if (blk > NBPG)
617 blk = NBPG;
618
619 /* Round to a multiple of the sample size. */
620 blk &= -(sc->sc_channels * sc->sc_precision / 8);
621
622 return (blk);
623 }
624
625 int
626 sbdsp_commit_settings(addr)
627 void *addr;
628 {
629 register struct sbdsp_softc *sc = addr;
630
631 /* XXX these can me moved to sddsp_io_params() now */
632
633 /* due to potentially unfortunate ordering in the above layers,
634 re-do a few sets which may be important--input gains
635 (adjust the proper channels), number of input channels (hit the
636 record rate and set mode) */
637
638 if (ISSBPRO(sc)) {
639 /*
640 * With 2 channels, SBPro can't do more than 22kHz.
641 * Whack the rates down to speed if necessary.
642 * Reset the time constant anyway
643 * because it may have been adjusted with a different number
644 * of channels, which means it might have computed the wrong
645 * mode (low/high speed).
646 */
647 if (sc->sc_channels == 2 &&
648 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
649 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
650 &sc->sc_itc, &sc->sc_imode);
651 } else
652 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
653 SB_INPUT_RATE, &sc->sc_itc,
654 &sc->sc_imode);
655
656 if (sc->sc_channels == 2 &&
657 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
658 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
659 &sc->sc_otc, &sc->sc_omode);
660 } else
661 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
662 SB_OUTPUT_RATE, &sc->sc_otc,
663 &sc->sc_omode);
664 }
665
666 /*
667 * XXX
668 * Should wait for chip to be idle.
669 */
670 sc->sc_dmadir = SB_DMA_NONE;
671
672 return 0;
673 }
674
675
676 int
677 sbdsp_open(sc, dev, flags)
678 register struct sbdsp_softc *sc;
679 dev_t dev;
680 int flags;
681 {
682 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
683
684 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
685 return ENXIO;
686
687 sc->sc_open = 1;
688 sc->sc_mintr = 0;
689 if (ISSBPROCLASS(sc) &&
690 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
691 DPRINTF(("sbdsp_open: can't set mono mode\n"));
692 /* we'll readjust when it's time for DMA. */
693 }
694
695 /*
696 * Leave most things as they were; users must change things if
697 * the previous process didn't leave it they way they wanted.
698 * Looked at another way, it's easy to set up a configuration
699 * in one program and leave it for another to inherit.
700 */
701 DPRINTF(("sbdsp_open: opened\n"));
702
703 return 0;
704 }
705
706 void
707 sbdsp_close(addr)
708 void *addr;
709 {
710 struct sbdsp_softc *sc = addr;
711
712 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
713
714 sc->sc_open = 0;
715 sbdsp_spkroff(sc);
716 sc->spkr_state = SPKR_OFF;
717 sc->sc_mintr = 0;
718 sbdsp_haltdma(sc);
719
720 DPRINTF(("sbdsp_close: closed\n"));
721 }
722
723 /*
724 * Lower-level routines
725 */
726
727 /*
728 * Reset the card.
729 * Return non-zero if the card isn't detected.
730 */
731 int
732 sbdsp_reset(sc)
733 register struct sbdsp_softc *sc;
734 {
735 bus_space_tag_t iot = sc->sc_iot;
736 bus_space_handle_t ioh = sc->sc_ioh;
737
738 sc->sc_intr = 0;
739 if (sc->sc_dmadir != SB_DMA_NONE) {
740 isa_dmaabort(sc->dmachan);
741 sc->sc_dmadir = SB_DMA_NONE;
742 }
743 sc->sc_last_hs_size = 0;
744
745 /*
746 * See SBK, section 11.3.
747 * We pulse a reset signal into the card.
748 * Gee, what a brilliant hardware design.
749 */
750 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
751 delay(10);
752 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
753 delay(30);
754 if (sbdsp_rdsp(sc) != SB_MAGIC)
755 return -1;
756
757 return 0;
758 }
759
760 int
761 sbdsp16_wait(sc)
762 struct sbdsp_softc *sc;
763 {
764 bus_space_tag_t iot = sc->sc_iot;
765 bus_space_handle_t ioh = sc->sc_ioh;
766 register int i;
767
768 for (i = SBDSP_NPOLL; --i >= 0; ) {
769 register u_char x;
770 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
771 delay(10);
772 if ((x & SB_DSP_BUSY) == 0)
773 continue;
774 return 0;
775 }
776 ++sberr.wdsp;
777 return -1;
778 }
779
780 /*
781 * Write a byte to the dsp.
782 * XXX We are at the mercy of the card as we use a
783 * polling loop and wait until it can take the byte.
784 */
785 int
786 sbdsp_wdsp(sc, v)
787 struct sbdsp_softc *sc;
788 int v;
789 {
790 bus_space_tag_t iot = sc->sc_iot;
791 bus_space_handle_t ioh = sc->sc_ioh;
792 register int i;
793
794 for (i = SBDSP_NPOLL; --i >= 0; ) {
795 register u_char x;
796 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
797 delay(10);
798 if ((x & SB_DSP_BUSY) != 0)
799 continue;
800 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
801 delay(10);
802 return 0;
803 }
804 ++sberr.wdsp;
805 return -1;
806 }
807
808 /*
809 * Read a byte from the DSP, using polling.
810 */
811 int
812 sbdsp_rdsp(sc)
813 struct sbdsp_softc *sc;
814 {
815 bus_space_tag_t iot = sc->sc_iot;
816 bus_space_handle_t ioh = sc->sc_ioh;
817 register int i;
818
819 for (i = SBDSP_NPOLL; --i >= 0; ) {
820 register u_char x;
821 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
822 delay(10);
823 if ((x & SB_DSP_READY) == 0)
824 continue;
825 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
826 delay(10);
827 return x;
828 }
829 ++sberr.rdsp;
830 return -1;
831 }
832
833 /*
834 * Doing certain things (like toggling the speaker) make
835 * the SB hardware go away for a while, so pause a little.
836 */
837 void
838 sbdsp_to(arg)
839 void *arg;
840 {
841 wakeup(arg);
842 }
843
844 void
845 sbdsp_pause(sc)
846 struct sbdsp_softc *sc;
847 {
848 extern int hz;
849
850 timeout(sbdsp_to, sbdsp_to, hz/8);
851 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
852 }
853
854 /*
855 * Turn on the speaker. The SBK documention says this operation
856 * can take up to 1/10 of a second. Higher level layers should
857 * probably let the task sleep for this amount of time after
858 * calling here. Otherwise, things might not work (because
859 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
860 *
861 * These engineers had their heads up their ass when
862 * they designed this card.
863 */
864 void
865 sbdsp_spkron(sc)
866 struct sbdsp_softc *sc;
867 {
868 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
869 sbdsp_pause(sc);
870 }
871
872 /*
873 * Turn off the speaker; see comment above.
874 */
875 void
876 sbdsp_spkroff(sc)
877 struct sbdsp_softc *sc;
878 {
879 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
880 sbdsp_pause(sc);
881 }
882
883 /*
884 * Read the version number out of the card. Return major code
885 * in high byte, and minor code in low byte.
886 */
887 short
888 sbversion(sc)
889 struct sbdsp_softc *sc;
890 {
891 short v;
892
893 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
894 return 0;
895 v = sbdsp_rdsp(sc) << 8;
896 v |= sbdsp_rdsp(sc);
897 return ((v >= 0) ? v : 0);
898 }
899
900 /*
901 * Halt a DMA in progress. A low-speed transfer can be
902 * resumed with sbdsp_contdma().
903 */
904 int
905 sbdsp_haltdma(addr)
906 void *addr;
907 {
908 register struct sbdsp_softc *sc = addr;
909
910 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
911
912 sbdsp_reset(sc);
913 return 0;
914 }
915
916 int
917 sbdsp_contdma(addr)
918 void *addr;
919 {
920 register struct sbdsp_softc *sc = addr;
921
922 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
923
924 /* XXX how do we reinitialize the DMA controller state? do we care? */
925 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
926 return(0);
927 }
928
929 int
930 sbdsp16_setrate(sc, sr, isdac, ratep)
931 register struct sbdsp_softc *sc;
932 int sr;
933 int isdac;
934 int *ratep;
935 {
936
937 /*
938 * XXXX
939 * More checks here?
940 */
941 if (sr < 5000 || sr > 45454)
942 return (EINVAL);
943 *ratep = sr;
944 return (0);
945 }
946
947 /*
948 * Convert a linear sampling rate into the DAC time constant.
949 * Set *mode to indicate the high/low-speed DMA operation.
950 * Because of limitations of the card, not all rates are possible.
951 * We return the time constant of the closest possible rate.
952 * The sampling rate limits are different for the DAC and ADC,
953 * so isdac indicates output, and !isdac indicates input.
954 */
955 int
956 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
957 register struct sbdsp_softc *sc;
958 int sr;
959 int isdac;
960 int *tcp, *modep;
961 {
962 int tc, realtc, mode;
963
964 /*
965 * Don't forget to compute which mode we'll be in based on whether
966 * we need to double the rate for stereo on SBPRO.
967 */
968
969 if (sr == 0) {
970 tc = SB_LS_MIN;
971 mode = SB_ADAC_LS;
972 goto out;
973 }
974
975 tc = 256 - (1000000 / sr);
976
977 if (sc->sc_channels == 2 && ISSBPRO(sc))
978 /* compute based on 2x sample rate when needed */
979 realtc = 256 - ( 500000 / sr);
980 else
981 realtc = tc;
982
983 if (tc < SB_LS_MIN) {
984 tc = SB_LS_MIN;
985 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
986 * speed mode. */
987 goto out;
988 } else if (isdac) {
989 if (realtc <= SB_DAC_LS_MAX)
990 mode = SB_ADAC_LS;
991 else {
992 mode = SB_ADAC_HS;
993 if (tc > SB_DAC_HS_MAX)
994 tc = SB_DAC_HS_MAX;
995 }
996 } else {
997 int adc_ls_max, adc_hs_max;
998
999 /* XXX use better rounding--compare distance to nearest tc on both
1000 sides of requested speed */
1001 if (ISSBPROCLASS(sc)) {
1002 adc_ls_max = SBPRO_ADC_LS_MAX;
1003 adc_hs_max = SBPRO_ADC_HS_MAX;
1004 } else {
1005 adc_ls_max = SBCLA_ADC_LS_MAX;
1006 adc_hs_max = SBCLA_ADC_HS_MAX;
1007 }
1008
1009 if (realtc <= adc_ls_max)
1010 mode = SB_ADAC_LS;
1011 else {
1012 mode = SB_ADAC_HS;
1013 if (tc > adc_hs_max)
1014 tc = adc_hs_max;
1015 }
1016 }
1017
1018 out:
1019 *tcp = tc;
1020 *modep = mode;
1021 return (0);
1022 }
1023
1024 /*
1025 * Convert a DAC time constant to a sampling rate.
1026 * See SBK, section 12.
1027 */
1028 int
1029 sbdsp_tctosr(sc, tc)
1030 register struct sbdsp_softc *sc;
1031 int tc;
1032 {
1033 int adc;
1034
1035 if (ISSBPROCLASS(sc))
1036 adc = SBPRO_ADC_HS_MAX;
1037 else
1038 adc = SBCLA_ADC_HS_MAX;
1039
1040 if (tc > adc)
1041 tc = adc;
1042
1043 return (1000000 / (256 - tc));
1044 }
1045
1046 int
1047 sbdsp_set_timeconst(sc, tc)
1048 register struct sbdsp_softc *sc;
1049 int tc;
1050 {
1051 /*
1052 * A SBPro in stereo mode uses time constants at double the
1053 * actual rate.
1054 */
1055 if (ISSBPRO(sc) && sc->sc_channels == 2)
1056 tc = 256 - ((256 - tc) / 2);
1057
1058 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1059
1060 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1061 sbdsp_wdsp(sc, tc) < 0)
1062 return (EIO);
1063
1064 return (0);
1065 }
1066
1067 int
1068 sbdsp_dma_input(addr, p, cc, intr, arg)
1069 void *addr;
1070 void *p;
1071 int cc;
1072 void (*intr) __P((void *));
1073 void *arg;
1074 {
1075 register struct sbdsp_softc *sc = addr;
1076
1077 #ifdef AUDIO_DEBUG
1078 if (sbdspdebug > 1)
1079 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1080 #endif
1081 if (sc->sc_channels == 2 && (cc & 1)) {
1082 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1083 return EIO;
1084 }
1085
1086 if (sc->sc_dmadir != SB_DMA_IN) {
1087 if (ISSBPRO(sc)) {
1088 if (sc->sc_channels == 2) {
1089 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1090 if (sbdsp_wdsp(sc,
1091 JAZZ16_RECORD_STEREO) < 0) {
1092 goto badmode;
1093 }
1094 } else if (sbdsp_wdsp(sc,
1095 SB_DSP_RECORD_STEREO) < 0)
1096 goto badmode;
1097 sbdsp_mix_write(sc, SBP_INFILTER,
1098 (sbdsp_mix_read(sc, SBP_INFILTER) &
1099 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1100 } else {
1101 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1102 if (sbdsp_wdsp(sc,
1103 JAZZ16_RECORD_MONO) < 0)
1104 {
1105 goto badmode;
1106 }
1107 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1108 goto badmode;
1109 sbdsp_mix_write(sc, SBP_INFILTER,
1110 (sbdsp_mix_read(sc, SBP_INFILTER) &
1111 ~SBP_IFILTER_MASK) | sc->in_filter);
1112 }
1113 }
1114
1115 if (ISSB16CLASS(sc)) {
1116 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1117 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1118 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1119 goto giveup;
1120 } else
1121 sbdsp_set_timeconst(sc, sc->sc_itc);
1122
1123 sc->sc_dmadir = SB_DMA_IN;
1124 sc->dmaflags = DMAMODE_READ;
1125 if (ISSB2CLASS(sc))
1126 sc->dmaflags |= DMAMODE_LOOP;
1127 } else {
1128 /* Already started; just return. */
1129 if (ISSB2CLASS(sc))
1130 return 0;
1131 }
1132
1133 sc->dmaaddr = p;
1134 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1135 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1136 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1137 sc->sc_intr = intr;
1138 sc->sc_arg = arg;
1139
1140 if (sc->sc_precision == 16)
1141 cc >>= 1;
1142 --cc;
1143 if (ISSB16CLASS(sc)) {
1144 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1145 SB_DSP16_RDMA_8) < 0 ||
1146 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1147 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1148 sbdsp16_wait(sc) ||
1149 sbdsp_wdsp(sc, cc) < 0 ||
1150 sbdsp_wdsp(sc, cc >> 8) < 0) {
1151 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1152 goto giveup;
1153 }
1154 } else if (ISSB2CLASS(sc)) {
1155 if (cc != sc->sc_last_hs_size) {
1156 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1157 sbdsp_wdsp(sc, cc) < 0 ||
1158 sbdsp_wdsp(sc, cc >> 8) < 0) {
1159 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1160 goto giveup;
1161 }
1162 sc->sc_last_hs_size = cc;
1163 }
1164 if (sbdsp_wdsp(sc,
1165 sc->sc_imode == SB_ADAC_LS ? SB_DSP_RDMA_LOOP :
1166 SB_DSP_HS_INPUT) < 0) {
1167 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1168 goto giveup;
1169 }
1170 } else {
1171 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1172 sbdsp_wdsp(sc, cc) < 0 ||
1173 sbdsp_wdsp(sc, cc >> 8) < 0) {
1174 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1175 goto giveup;
1176 }
1177 }
1178 return 0;
1179
1180 giveup:
1181 sbdsp_reset(sc);
1182 return EIO;
1183
1184 badmode:
1185 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1186 sc->sc_channels == 2 ? "stereo" : "mono"));
1187 return EIO;
1188 }
1189
1190 int
1191 sbdsp_dma_output(addr, p, cc, intr, arg)
1192 void *addr;
1193 void *p;
1194 int cc;
1195 void (*intr) __P((void *));
1196 void *arg;
1197 {
1198 register struct sbdsp_softc *sc = addr;
1199
1200 #ifdef AUDIO_DEBUG
1201 if (sbdspdebug > 1)
1202 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1203 #endif
1204 if (sc->sc_channels == 2 && (cc & 1)) {
1205 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1206 return EIO;
1207 }
1208
1209 if (sc->sc_dmadir != SB_DMA_OUT) {
1210 if (ISSBPRO(sc)) {
1211 /* make sure we re-set stereo mixer bit when we start
1212 output. */
1213 sbdsp_mix_write(sc, SBP_STEREO,
1214 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1215 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1216 if (ISJAZZ16(sc)) {
1217 /* Yes, we write the record mode to set
1218 16-bit playback mode. weird, huh? */
1219 if (sc->sc_precision == 16) {
1220 sbdsp_wdsp(sc,
1221 sc->sc_channels == 2 ?
1222 JAZZ16_RECORD_STEREO :
1223 JAZZ16_RECORD_MONO);
1224 } else {
1225 sbdsp_wdsp(sc,
1226 sc->sc_channels == 2 ?
1227 SB_DSP_RECORD_STEREO :
1228 SB_DSP_RECORD_MONO);
1229 }
1230 }
1231 }
1232
1233 if (ISSB16CLASS(sc)) {
1234 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1235 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1236 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1237 goto giveup;
1238 } else
1239 sbdsp_set_timeconst(sc, sc->sc_otc);
1240
1241 sc->sc_dmadir = SB_DMA_OUT;
1242 sc->dmaflags = DMAMODE_WRITE;
1243 if (ISSB2CLASS(sc))
1244 sc->dmaflags |= DMAMODE_LOOP;
1245 } else {
1246 /* Already started; just return. */
1247 if (ISSB2CLASS(sc))
1248 return 0;
1249 }
1250
1251 sc->dmaaddr = p;
1252 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1253 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1254 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1255 sc->sc_intr = intr;
1256 sc->sc_arg = arg;
1257
1258 if (sc->sc_precision == 16)
1259 cc >>= 1;
1260 --cc;
1261 if (ISSB16CLASS(sc)) {
1262 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1263 SB_DSP16_WDMA_8) < 0 ||
1264 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1265 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1266 sbdsp16_wait(sc) ||
1267 sbdsp_wdsp(sc, cc) < 0 ||
1268 sbdsp_wdsp(sc, cc >> 8) < 0) {
1269 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1270 goto giveup;
1271 }
1272 } else if (ISSB2CLASS(sc)) {
1273 if (cc != sc->sc_last_hs_size) {
1274 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1275 sbdsp_wdsp(sc, cc) < 0 ||
1276 sbdsp_wdsp(sc, cc >> 8) < 0) {
1277 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1278 goto giveup;
1279 }
1280 sc->sc_last_hs_size = cc;
1281 }
1282 if (sbdsp_wdsp(sc,
1283 sc->sc_omode == SB_ADAC_LS ? SB_DSP_WDMA_LOOP :
1284 SB_DSP_HS_OUTPUT) < 0) {
1285 DPRINTF(("sbdsp_dma_output: SB2 DMA restart failed\n"));
1286 goto giveup;
1287 }
1288 } else {
1289 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1290 sbdsp_wdsp(sc, cc) < 0 ||
1291 sbdsp_wdsp(sc, cc >> 8) < 0) {
1292 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1293 goto giveup;
1294 }
1295 }
1296 return 0;
1297
1298 giveup:
1299 sbdsp_reset(sc);
1300 return EIO;
1301 }
1302
1303 /*
1304 * Only the DSP unit on the sound blaster generates interrupts.
1305 * There are three cases of interrupt: reception of a midi byte
1306 * (when mode is enabled), completion of dma transmission, or
1307 * completion of a dma reception. The three modes are mutually
1308 * exclusive so we know a priori which event has occurred.
1309 */
1310 int
1311 sbdsp_intr(arg)
1312 void *arg;
1313 {
1314 register struct sbdsp_softc *sc = arg;
1315 u_char x;
1316
1317 #ifdef AUDIO_DEBUG
1318 if (sbdspdebug > 1)
1319 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1320 #endif
1321 if (ISSB16CLASS(sc)) {
1322 x = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1323 if ((x & 3) == 0)
1324 return 0;
1325 } else {
1326 if (!isa_dmafinished(sc->dmachan))
1327 return 0;
1328 }
1329 sc->sc_interrupts++;
1330 delay(10);
1331 #if 0
1332 if (sc->sc_mintr != 0) {
1333 x = sbdsp_rdsp(sc);
1334 (*sc->sc_mintr)(sc->sc_arg, x);
1335 } else
1336 #endif
1337 if (sc->sc_intr != 0) {
1338 /* clear interrupt */
1339 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1340 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1341 SBP_DSP_IRQACK8);
1342 if (!ISSB2CLASS(sc))
1343 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1344 sc->dmachan);
1345 (*sc->sc_intr)(sc->sc_arg);
1346 } else {
1347 return 0;
1348 }
1349 return 1;
1350 }
1351
1352 #if 0
1353 /*
1354 * Enter midi uart mode and arrange for read interrupts
1355 * to vector to `intr'. This puts the card in a mode
1356 * which allows only midi I/O; the card must be reset
1357 * to leave this mode. Unfortunately, the card does not
1358 * use transmit interrupts, so bytes must be output
1359 * using polling. To keep the polling overhead to a
1360 * minimum, output should be driven off a timer.
1361 * This is a little tricky since only 320us separate
1362 * consecutive midi bytes.
1363 */
1364 void
1365 sbdsp_set_midi_mode(sc, intr, arg)
1366 struct sbdsp_softc *sc;
1367 void (*intr)();
1368 void *arg;
1369 {
1370
1371 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1372 sc->sc_mintr = intr;
1373 sc->sc_intr = 0;
1374 sc->sc_arg = arg;
1375 }
1376
1377 /*
1378 * Write a byte to the midi port, when in midi uart mode.
1379 */
1380 void
1381 sbdsp_midi_output(sc, v)
1382 struct sbdsp_softc *sc;
1383 int v;
1384 {
1385
1386 if (sbdsp_wdsp(sc, v) < 0)
1387 ++sberr.wmidi;
1388 }
1389 #endif
1390
1391 int
1392 sbdsp_setfd(addr, flag)
1393 void *addr;
1394 int flag;
1395 {
1396 /* Can't do full-duplex */
1397 return(ENOTTY);
1398 }
1399
1400 int
1401 sbdsp_mixer_set_port(addr, cp)
1402 void *addr;
1403 mixer_ctrl_t *cp;
1404 {
1405 register struct sbdsp_softc *sc = addr;
1406 int src, gain;
1407
1408 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1409 cp->un.value.num_channels));
1410
1411 if (!ISSBPROCLASS(sc))
1412 return EINVAL;
1413
1414 /*
1415 * Everything is a value except for SBPro BASS/TREBLE and
1416 * RECORD_SOURCE
1417 */
1418 switch (cp->dev) {
1419 case SB_SPEAKER:
1420 cp->dev = SB_MASTER_VOL;
1421 case SB_MIC_PORT:
1422 case SB_LINE_IN_PORT:
1423 case SB_DAC_PORT:
1424 case SB_FM_PORT:
1425 case SB_CD_PORT:
1426 case SB_MASTER_VOL:
1427 if (cp->type != AUDIO_MIXER_VALUE)
1428 return EINVAL;
1429
1430 /*
1431 * All the mixer ports are stereo except for the microphone.
1432 * If we get a single-channel gain value passed in, then we
1433 * duplicate it to both left and right channels.
1434 */
1435
1436 switch (cp->dev) {
1437 case SB_MIC_PORT:
1438 if (cp->un.value.num_channels != 1)
1439 return EINVAL;
1440
1441 /* handle funny microphone gain */
1442 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1443 break;
1444 case SB_LINE_IN_PORT:
1445 case SB_DAC_PORT:
1446 case SB_FM_PORT:
1447 case SB_CD_PORT:
1448 case SB_MASTER_VOL:
1449 switch (cp->un.value.num_channels) {
1450 case 1:
1451 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1452 break;
1453 case 2:
1454 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1455 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1456 break;
1457 default:
1458 return EINVAL;
1459 }
1460 break;
1461 default:
1462 return EINVAL;
1463 }
1464
1465 switch (cp->dev) {
1466 case SB_MIC_PORT:
1467 src = SBP_MIC_VOL;
1468 break;
1469 case SB_MASTER_VOL:
1470 src = SBP_MASTER_VOL;
1471 break;
1472 case SB_LINE_IN_PORT:
1473 src = SBP_LINE_VOL;
1474 break;
1475 case SB_DAC_PORT:
1476 src = SBP_DAC_VOL;
1477 break;
1478 case SB_FM_PORT:
1479 src = SBP_FM_VOL;
1480 break;
1481 case SB_CD_PORT:
1482 src = SBP_CD_VOL;
1483 break;
1484 default:
1485 return EINVAL;
1486 }
1487
1488 sbdsp_mix_write(sc, src, gain);
1489 sc->gain[cp->dev] = gain;
1490 break;
1491
1492 case SB_TREBLE:
1493 case SB_BASS:
1494 case SB_RECORD_SOURCE:
1495 if (cp->type != AUDIO_MIXER_ENUM)
1496 return EINVAL;
1497
1498 switch (cp->dev) {
1499 case SB_TREBLE:
1500 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1501 case SB_BASS:
1502 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1503 case SB_RECORD_SOURCE:
1504 return sbdsp_set_in_port(addr, cp->un.ord);
1505 }
1506
1507 break;
1508
1509 default:
1510 return EINVAL;
1511 }
1512
1513 return (0);
1514 }
1515
1516 int
1517 sbdsp_mixer_get_port(addr, cp)
1518 void *addr;
1519 mixer_ctrl_t *cp;
1520 {
1521 register struct sbdsp_softc *sc = addr;
1522 int gain;
1523
1524 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1525
1526 if (!ISSBPROCLASS(sc))
1527 return EINVAL;
1528
1529 switch (cp->dev) {
1530 case SB_SPEAKER:
1531 cp->dev = SB_MASTER_VOL;
1532 case SB_MIC_PORT:
1533 case SB_LINE_IN_PORT:
1534 case SB_DAC_PORT:
1535 case SB_FM_PORT:
1536 case SB_CD_PORT:
1537 case SB_MASTER_VOL:
1538 gain = sc->gain[cp->dev];
1539
1540 switch (cp->dev) {
1541 case SB_MIC_PORT:
1542 if (cp->un.value.num_channels != 1)
1543 return EINVAL;
1544
1545 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1546 break;
1547 case SB_LINE_IN_PORT:
1548 case SB_DAC_PORT:
1549 case SB_FM_PORT:
1550 case SB_CD_PORT:
1551 case SB_MASTER_VOL:
1552 switch (cp->un.value.num_channels) {
1553 case 1:
1554 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1555 break;
1556 case 2:
1557 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1558 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1559 break;
1560 default:
1561 return EINVAL;
1562 }
1563 break;
1564 }
1565
1566 break;
1567
1568 case SB_TREBLE:
1569 case SB_BASS:
1570 case SB_RECORD_SOURCE:
1571 switch (cp->dev) {
1572 case SB_TREBLE:
1573 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1574 return 0;
1575 case SB_BASS:
1576 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1577 return 0;
1578 case SB_RECORD_SOURCE:
1579 cp->un.ord = sbdsp_get_in_port(addr);
1580 return 0;
1581 }
1582
1583 break;
1584
1585 default:
1586 return EINVAL;
1587 }
1588
1589 return (0);
1590 }
1591
1592 int
1593 sbdsp_mixer_query_devinfo(addr, dip)
1594 void *addr;
1595 register mixer_devinfo_t *dip;
1596 {
1597 register struct sbdsp_softc *sc = addr;
1598
1599 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1600
1601 switch (dip->index) {
1602 case SB_MIC_PORT:
1603 dip->type = AUDIO_MIXER_VALUE;
1604 dip->mixer_class = SB_INPUT_CLASS;
1605 dip->prev = AUDIO_MIXER_LAST;
1606 dip->next = AUDIO_MIXER_LAST;
1607 strcpy(dip->label.name, AudioNmicrophone);
1608 dip->un.v.num_channels = 1;
1609 strcpy(dip->un.v.units.name, AudioNvolume);
1610 return 0;
1611
1612 case SB_SPEAKER:
1613 dip->type = AUDIO_MIXER_VALUE;
1614 dip->mixer_class = SB_OUTPUT_CLASS;
1615 dip->prev = AUDIO_MIXER_LAST;
1616 dip->next = AUDIO_MIXER_LAST;
1617 strcpy(dip->label.name, AudioNspeaker);
1618 dip->un.v.num_channels = 1;
1619 strcpy(dip->un.v.units.name, AudioNvolume);
1620 return 0;
1621
1622 case SB_INPUT_CLASS:
1623 dip->type = AUDIO_MIXER_CLASS;
1624 dip->mixer_class = SB_INPUT_CLASS;
1625 dip->next = dip->prev = AUDIO_MIXER_LAST;
1626 strcpy(dip->label.name, AudioCInputs);
1627 return 0;
1628
1629 case SB_OUTPUT_CLASS:
1630 dip->type = AUDIO_MIXER_CLASS;
1631 dip->mixer_class = SB_OUTPUT_CLASS;
1632 dip->next = dip->prev = AUDIO_MIXER_LAST;
1633 strcpy(dip->label.name, AudioCOutputs);
1634 return 0;
1635 }
1636
1637 if (ISSBPROCLASS(sc)) {
1638 switch (dip->index) {
1639 case SB_LINE_IN_PORT:
1640 dip->type = AUDIO_MIXER_VALUE;
1641 dip->mixer_class = SB_INPUT_CLASS;
1642 dip->prev = AUDIO_MIXER_LAST;
1643 dip->next = AUDIO_MIXER_LAST;
1644 strcpy(dip->label.name, AudioNline);
1645 dip->un.v.num_channels = 2;
1646 strcpy(dip->un.v.units.name, AudioNvolume);
1647 return 0;
1648
1649 case SB_DAC_PORT:
1650 dip->type = AUDIO_MIXER_VALUE;
1651 dip->mixer_class = SB_INPUT_CLASS;
1652 dip->prev = AUDIO_MIXER_LAST;
1653 dip->next = AUDIO_MIXER_LAST;
1654 strcpy(dip->label.name, AudioNdac);
1655 dip->un.v.num_channels = 2;
1656 strcpy(dip->un.v.units.name, AudioNvolume);
1657 return 0;
1658
1659 case SB_CD_PORT:
1660 dip->type = AUDIO_MIXER_VALUE;
1661 dip->mixer_class = SB_INPUT_CLASS;
1662 dip->prev = AUDIO_MIXER_LAST;
1663 dip->next = AUDIO_MIXER_LAST;
1664 strcpy(dip->label.name, AudioNcd);
1665 dip->un.v.num_channels = 2;
1666 strcpy(dip->un.v.units.name, AudioNvolume);
1667 return 0;
1668
1669 case SB_FM_PORT:
1670 dip->type = AUDIO_MIXER_VALUE;
1671 dip->mixer_class = SB_INPUT_CLASS;
1672 dip->prev = AUDIO_MIXER_LAST;
1673 dip->next = AUDIO_MIXER_LAST;
1674 strcpy(dip->label.name, AudioNfmsynth);
1675 dip->un.v.num_channels = 2;
1676 strcpy(dip->un.v.units.name, AudioNvolume);
1677 return 0;
1678
1679 case SB_MASTER_VOL:
1680 dip->type = AUDIO_MIXER_VALUE;
1681 dip->mixer_class = SB_OUTPUT_CLASS;
1682 dip->prev = AUDIO_MIXER_LAST;
1683 dip->next = AUDIO_MIXER_LAST;
1684 strcpy(dip->label.name, AudioNvolume);
1685 dip->un.v.num_channels = 2;
1686 strcpy(dip->un.v.units.name, AudioNvolume);
1687 return 0;
1688
1689 case SB_RECORD_SOURCE:
1690 dip->mixer_class = SB_RECORD_CLASS;
1691 dip->type = AUDIO_MIXER_ENUM;
1692 dip->prev = AUDIO_MIXER_LAST;
1693 dip->next = AUDIO_MIXER_LAST;
1694 strcpy(dip->label.name, AudioNsource);
1695 dip->un.e.num_mem = 3;
1696 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1697 dip->un.e.member[0].ord = SB_MIC_PORT;
1698 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1699 dip->un.e.member[1].ord = SB_CD_PORT;
1700 strcpy(dip->un.e.member[2].label.name, AudioNline);
1701 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1702 return 0;
1703
1704 case SB_BASS:
1705 dip->type = AUDIO_MIXER_ENUM;
1706 dip->mixer_class = SB_INPUT_CLASS;
1707 dip->prev = AUDIO_MIXER_LAST;
1708 dip->next = AUDIO_MIXER_LAST;
1709 strcpy(dip->label.name, AudioNbass);
1710 dip->un.e.num_mem = 2;
1711 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1712 dip->un.e.member[0].ord = 0;
1713 strcpy(dip->un.e.member[1].label.name, AudioNon);
1714 dip->un.e.member[1].ord = 1;
1715 return 0;
1716
1717 case SB_TREBLE:
1718 dip->type = AUDIO_MIXER_ENUM;
1719 dip->mixer_class = SB_INPUT_CLASS;
1720 dip->prev = AUDIO_MIXER_LAST;
1721 dip->next = AUDIO_MIXER_LAST;
1722 strcpy(dip->label.name, AudioNtreble);
1723 dip->un.e.num_mem = 2;
1724 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1725 dip->un.e.member[0].ord = 0;
1726 strcpy(dip->un.e.member[1].label.name, AudioNon);
1727 dip->un.e.member[1].ord = 1;
1728 return 0;
1729
1730 case SB_RECORD_CLASS: /* record source class */
1731 dip->type = AUDIO_MIXER_CLASS;
1732 dip->mixer_class = SB_RECORD_CLASS;
1733 dip->next = dip->prev = AUDIO_MIXER_LAST;
1734 strcpy(dip->label.name, AudioCRecord);
1735 return 0;
1736 }
1737 }
1738
1739 return ENXIO;
1740 }
1741