sbdsp.c revision 1.43 1 /* $NetBSD: sbdsp.c,v 1.43 1997/05/07 04:36:00 mikel Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 */
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/device.h>
50 #include <sys/proc.h>
51 #include <sys/buf.h>
52 #include <vm/vm.h>
53
54 #include <machine/cpu.h>
55 #include <machine/intr.h>
56 #include <machine/pio.h>
57
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60
61 #include <dev/isa/isavar.h>
62 #include <dev/isa/isadmavar.h>
63 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
64
65 #include <dev/isa/sbreg.h>
66 #include <dev/isa/sbdspvar.h>
67
68 #ifdef AUDIO_DEBUG
69 extern void Dprintf __P((const char *, ...));
70 #define DPRINTF(x) if (sbdspdebug) Dprintf x
71 int sbdspdebug = 0;
72 #else
73 #define DPRINTF(x)
74 #endif
75
76 #ifndef SBDSP_NPOLL
77 #define SBDSP_NPOLL 3000
78 #endif
79
80 struct {
81 int wdsp;
82 int rdsp;
83 int wmidi;
84 } sberr;
85
86 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
87 int *tcp, int *modep));
88 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
89
90 /*
91 * Time constant routines follow. See SBK, section 12.
92 * Although they don't come out and say it (in the docs),
93 * the card clearly uses a 1MHz countdown timer, as the
94 * low-speed formula (p. 12-4) is:
95 * tc = 256 - 10^6 / sr
96 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
97 * and a 256MHz clock is used:
98 * tc = 65536 - 256 * 10^ 6 / sr
99 * Since we can only use the upper byte of the HS TC, the two formulae
100 * are equivalent. (Why didn't they say so?) E.g.,
101 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
102 *
103 * The crossover point (from low- to high-speed modes) is different
104 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
105 *
106 * SBPRO SB20
107 * ----- --------
108 * input ls min 4 KHz 4 KHz
109 * input ls max 23 KHz 13 KHz
110 * input hs max 44.1 KHz 15 KHz
111 * output ls min 4 KHz 4 KHz
112 * output ls max 23 KHz 23 KHz
113 * output hs max 44.1 KHz 44.1 KHz
114 */
115 #define SB_LS_MIN 0x06 /* 4000 Hz */
116 #define SB_8K 0x83 /* 8000 Hz */
117 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
118 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
119 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
120 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
121 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
122 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
123
124 int sbdsp16_wait __P((struct sbdsp_softc *));
125 void sbdsp_to __P((void *));
126 void sbdsp_pause __P((struct sbdsp_softc *));
127 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
128 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
129 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
130 int sbdsp_set_io_params __P((struct sbdsp_softc *, struct audio_params *));
131
132 #ifdef AUDIO_DEBUG
133 void sb_printsc __P((struct sbdsp_softc *));
134
135 void
136 sb_printsc(sc)
137 struct sbdsp_softc *sc;
138 {
139 int i;
140
141 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
142 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
143 sc->sc_iobase, sc->sc_irq);
144 printf("irate %d itc %d imode %d orate %d otc %d omode %d\n",
145 sc->sc_irate, sc->sc_itc, sc->sc_imode,
146 sc->sc_orate, sc->sc_otc, sc->sc_omode);
147 printf("outport %u inport %u spkron %u nintr %lu\n",
148 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
149 printf("precision %u channels %d intr %p arg %p\n",
150 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
151 printf("gain:");
152 for (i = 0; i < SB_NDEVS; i++)
153 printf(" %u", sc->gain[i]);
154 printf("\n");
155 }
156 #endif /* AUDIO_DEBUG */
157
158 /*
159 * Probe / attach routines.
160 */
161
162 /*
163 * Probe for the soundblaster hardware.
164 */
165 int
166 sbdsp_probe(sc)
167 struct sbdsp_softc *sc;
168 {
169
170 if (sbdsp_reset(sc) < 0) {
171 DPRINTF(("sbdsp: couldn't reset card\n"));
172 return 0;
173 }
174 /* if flags set, go and probe the jazz16 stuff */
175 if (sc->sc_dev.dv_cfdata->cf_flags != 0) {
176 sc->sc_model = sbdsp_jazz16_probe(sc);
177 } else {
178 sc->sc_model = sbversion(sc);
179 }
180
181 sc->sc_model = 0x100; /* XXX pretend to be just a tired old SB XXX */
182
183 return 1;
184 }
185
186 /*
187 * Try add-on stuff for Jazz16.
188 */
189 u_int
190 sbdsp_jazz16_probe(sc)
191 struct sbdsp_softc *sc;
192 {
193 static u_char jazz16_irq_conf[16] = {
194 -1, -1, 0x02, 0x03,
195 -1, 0x01, -1, 0x04,
196 -1, 0x02, 0x05, -1,
197 -1, -1, -1, 0x06};
198 static u_char jazz16_drq_conf[8] = {
199 -1, 0x01, -1, 0x02,
200 -1, 0x03, -1, 0x04};
201
202 u_int rval = sbversion(sc);
203 bus_space_tag_t iot = sc->sc_iot;
204 bus_space_handle_t ioh;
205
206 DPRINTF(("jazz16 probe\n"));
207
208 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
209 DPRINTF(("bus map failed\n"));
210 return rval;
211 }
212
213 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
214 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
215 DPRINTF(("drq/irq check failed\n"));
216 goto done; /* give up, we can't do it. */
217 }
218
219 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
220 delay(10000); /* delay 10 ms */
221 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
222 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
223
224 if (sbdsp_reset(sc) < 0) {
225 DPRINTF(("sbdsp_reset check failed\n"));
226 goto done; /* XXX? what else could we do? */
227 }
228
229 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
230 DPRINTF(("read16 setup failed\n"));
231 goto done;
232 }
233
234 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
235 DPRINTF(("read16 failed\n"));
236 goto done;
237 }
238
239 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
240 sc->sc_drq16 = sc->sc_drq8;
241 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
242 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
243 jazz16_drq_conf[sc->sc_drq8]) ||
244 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
245 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
246 } else {
247 DPRINTF(("jazz16 detected!\n"));
248 rval |= MODEL_JAZZ16;
249 }
250
251 done:
252 bus_space_unmap(iot, ioh, 1);
253 return rval;
254 }
255
256 /*
257 * Attach hardware to driver, attach hardware driver to audio
258 * pseudo-device driver .
259 */
260 void
261 sbdsp_attach(sc)
262 struct sbdsp_softc *sc;
263 {
264
265 /* Set defaults */
266 if (ISSB16CLASS(sc))
267 sc->sc_irate = sc->sc_orate = 8000;
268 else if (ISSBPROCLASS(sc))
269 sc->sc_itc = sc->sc_otc = SB_8K;
270 else
271 sc->sc_itc = sc->sc_otc = SB_8K;
272 sc->sc_precision = 8;
273 sc->sc_channels = 1;
274
275 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
276 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
277
278 if (ISSBPROCLASS(sc)) {
279 int i;
280
281 /* set mixer to default levels, by sending a mixer
282 reset command. */
283 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
284 /* then some adjustments :) */
285 sbdsp_mix_write(sc, SBP_CD_VOL,
286 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
287 sbdsp_mix_write(sc, SBP_DAC_VOL,
288 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
289 sbdsp_mix_write(sc, SBP_MASTER_VOL,
290 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
291 sbdsp_mix_write(sc, SBP_LINE_VOL,
292 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
293 for (i = 0; i < SB_NDEVS; i++)
294 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
295 sc->in_filter = 0; /* no filters turned on, please */
296 }
297
298 printf(": dsp v%d.%02d%s\n",
299 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
300 ISJAZZ16(sc) ? ": <Jazz16>" : "");
301 }
302
303 /*
304 * Various routines to interface to higher level audio driver
305 */
306
307 void
308 sbdsp_mix_write(sc, mixerport, val)
309 struct sbdsp_softc *sc;
310 int mixerport;
311 int val;
312 {
313 bus_space_tag_t iot = sc->sc_iot;
314 bus_space_handle_t ioh = sc->sc_ioh;
315
316 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
317 delay(10);
318 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
319 delay(30);
320 }
321
322 int
323 sbdsp_mix_read(sc, mixerport)
324 struct sbdsp_softc *sc;
325 int mixerport;
326 {
327 bus_space_tag_t iot = sc->sc_iot;
328 bus_space_handle_t ioh = sc->sc_ioh;
329
330 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
331 delay(10);
332 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
333 }
334
335 int
336 sbdsp_query_encoding(addr, fp)
337 void *addr;
338 struct audio_encoding *fp;
339 {
340 switch (fp->index) {
341 case 0:
342 strcpy(fp->name, AudioEmulaw);
343 fp->format_id = AUDIO_ENCODING_ULAW;
344 break;
345 case 1:
346 strcpy(fp->name, AudioEpcm16);
347 fp->format_id = AUDIO_ENCODING_PCM16;
348 break;
349 default:
350 return (EINVAL);
351 }
352 return (0);
353 }
354
355 int
356 sbdsp_set_io_params(sc, p)
357 struct sbdsp_softc *sc;
358 struct audio_params *p;
359 {
360
361 switch (p->encoding) {
362 case AUDIO_ENCODING_ULAW:
363 case AUDIO_ENCODING_PCM16:
364 case AUDIO_ENCODING_PCM8:
365 break;
366 default:
367 return (EINVAL);
368 }
369
370 if (ISSB16CLASS(sc) || ISJAZZ16(sc)) {
371 if (p->precision != 16 && p->precision != 8)
372 return (EINVAL);
373 } else {
374 if (p->precision != 8)
375 return (EINVAL);
376 }
377
378 if (ISSBPROCLASS(sc)) {
379 if (p->channels != 1 && p->channels != 2)
380 return (EINVAL);
381 if (p->channels == 2 && p->sample_rate > 22000)
382 return (EINVAL);
383 } else {
384 if (p->channels != 1)
385 return (EINVAL);
386 }
387
388 return (0);
389 }
390
391 int
392 sbdsp_set_in_params(addr, p)
393 void *addr;
394 struct audio_params *p;
395 {
396 register struct sbdsp_softc *sc = addr;
397 int error;
398
399 error = sbdsp_set_io_params(sc, p);
400 if (error)
401 return error;
402
403 if (ISSB16CLASS(sc))
404 error = sbdsp16_setrate(sc, p->sample_rate, SB_INPUT_RATE, &sc->sc_irate);
405 else
406 error = sbdsp_srtotc(sc, p->sample_rate, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode);
407 if (error)
408 return error;
409
410 sc->sc_precision = p->precision;
411 sc->sc_channels = p->channels;
412 if (ISSB16CLASS(sc))
413 p->sample_rate = sc->sc_irate;
414 else
415 p->sample_rate = sbdsp_tctosr(sc, sc->sc_itc);
416 return 0;
417 }
418
419 int
420 sbdsp_set_out_params(addr, p)
421 void *addr;
422 struct audio_params *p;
423 {
424 register struct sbdsp_softc *sc = addr;
425 int error;
426
427 error = sbdsp_set_io_params(sc, p);
428 if (error)
429 return error;
430
431 if (ISSB16CLASS(sc))
432 error = sbdsp16_setrate(sc, p->sample_rate, SB_OUTPUT_RATE, &sc->sc_orate);
433 else
434 error = sbdsp_srtotc(sc, p->sample_rate, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode);
435 if (error)
436 return error;
437
438 sc->sc_precision = p->precision;
439 sc->sc_channels = p->channels;
440 if (ISSB16CLASS(sc))
441 p->sample_rate = sc->sc_orate;
442 else
443 p->sample_rate = sbdsp_tctosr(sc, sc->sc_otc);
444 return 0;
445 }
446
447 int
448 sbdsp_set_ifilter(addr, which)
449 void *addr;
450 int which;
451 {
452 register struct sbdsp_softc *sc = addr;
453 int mixval;
454
455 /* XXXX SB16 */
456 if (ISSBPROCLASS(sc)) {
457 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
458 switch (which) {
459 case 0:
460 mixval |= SBP_FILTER_OFF;
461 break;
462 case SBP_TREBLE_EQ:
463 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
464 break;
465 case SBP_BASS_EQ:
466 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
467 break;
468 default:
469 return (EINVAL);
470 }
471 sc->in_filter = mixval & SBP_IFILTER_MASK;
472 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
473 return (0);
474 } else
475 return (EINVAL);
476 }
477
478 int
479 sbdsp_get_ifilter(addr)
480 void *addr;
481 {
482 register struct sbdsp_softc *sc = addr;
483
484 /* XXXX SB16 */
485 if (ISSBPROCLASS(sc)) {
486 sc->in_filter =
487 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
488 switch (sc->in_filter) {
489 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
490 return (SBP_TREBLE_EQ);
491 case SBP_FILTER_ON|SBP_IFILTER_LOW:
492 return (SBP_BASS_EQ);
493 case SBP_FILTER_OFF:
494 default:
495 return (0);
496 }
497 } else
498 return (0);
499 }
500
501 int
502 sbdsp_set_out_port(addr, port)
503 void *addr;
504 int port;
505 {
506 register struct sbdsp_softc *sc = addr;
507
508 sc->out_port = port; /* Just record it */
509
510 return (0);
511 }
512
513 int
514 sbdsp_get_out_port(addr)
515 void *addr;
516 {
517 register struct sbdsp_softc *sc = addr;
518
519 return (sc->out_port);
520 }
521
522
523 int
524 sbdsp_set_in_port(addr, port)
525 void *addr;
526 int port;
527 {
528 register struct sbdsp_softc *sc = addr;
529 int mixport, sbport;
530
531 if (ISSBPROCLASS(sc)) {
532 switch (port) {
533 case SB_MIC_PORT:
534 sbport = SBP_FROM_MIC;
535 mixport = SBP_MIC_VOL;
536 break;
537 case SB_LINE_IN_PORT:
538 sbport = SBP_FROM_LINE;
539 mixport = SBP_LINE_VOL;
540 break;
541 case SB_CD_PORT:
542 sbport = SBP_FROM_CD;
543 mixport = SBP_CD_VOL;
544 break;
545 case SB_DAC_PORT:
546 case SB_FM_PORT:
547 default:
548 return (EINVAL);
549 }
550 } else {
551 switch (port) {
552 case SB_MIC_PORT:
553 sbport = SBP_FROM_MIC;
554 mixport = SBP_MIC_VOL;
555 break;
556 default:
557 return (EINVAL);
558 }
559 }
560
561 sc->in_port = port; /* Just record it */
562
563 /* XXXX SB16 */
564 if (ISSBPROCLASS(sc)) {
565 /* record from that port */
566 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
567 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
568 /* fetch gain from that port */
569 sc->gain[port] = sbdsp_mix_read(sc, mixport);
570 }
571
572 return (0);
573 }
574
575 int
576 sbdsp_get_in_port(addr)
577 void *addr;
578 {
579 register struct sbdsp_softc *sc = addr;
580
581 return (sc->in_port);
582 }
583
584
585 int
586 sbdsp_speaker_ctl(addr, newstate)
587 void *addr;
588 int newstate;
589 {
590 register struct sbdsp_softc *sc = addr;
591
592 if ((newstate == SPKR_ON) &&
593 (sc->spkr_state == SPKR_OFF)) {
594 sbdsp_spkron(sc);
595 sc->spkr_state = SPKR_ON;
596 }
597 if ((newstate == SPKR_OFF) &&
598 (sc->spkr_state == SPKR_ON)) {
599 sbdsp_spkroff(sc);
600 sc->spkr_state = SPKR_OFF;
601 }
602 return(0);
603 }
604
605 int
606 sbdsp_round_blocksize(addr, blk)
607 void *addr;
608 int blk;
609 {
610 register struct sbdsp_softc *sc = addr;
611
612 sc->sc_last_hs_size = 0;
613
614 /* Don't try to DMA too much at once. */
615 if (blk > NBPG)
616 blk = NBPG;
617
618 /* Round to a multiple of the sample size. */
619 blk &= -(sc->sc_channels * sc->sc_precision / 8);
620
621 return (blk);
622 }
623
624 int
625 sbdsp_commit_settings(addr)
626 void *addr;
627 {
628 register struct sbdsp_softc *sc = addr;
629
630 /* XXX these can me moved to sddsp_io_params() now */
631
632 /* due to potentially unfortunate ordering in the above layers,
633 re-do a few sets which may be important--input gains
634 (adjust the proper channels), number of input channels (hit the
635 record rate and set mode) */
636
637 if (ISSBPRO(sc)) {
638 /*
639 * With 2 channels, SBPro can't do more than 22kHz.
640 * Whack the rates down to speed if necessary.
641 * Reset the time constant anyway
642 * because it may have been adjusted with a different number
643 * of channels, which means it might have computed the wrong
644 * mode (low/high speed).
645 */
646 if (sc->sc_channels == 2 &&
647 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
648 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
649 &sc->sc_itc, &sc->sc_imode);
650 } else
651 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
652 SB_INPUT_RATE, &sc->sc_itc,
653 &sc->sc_imode);
654
655 if (sc->sc_channels == 2 &&
656 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
657 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
658 &sc->sc_otc, &sc->sc_omode);
659 } else
660 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
661 SB_OUTPUT_RATE, &sc->sc_otc,
662 &sc->sc_omode);
663 }
664
665 /*
666 * XXX
667 * Should wait for chip to be idle.
668 */
669 sc->sc_dmadir = SB_DMA_NONE;
670
671 return 0;
672 }
673
674
675 int
676 sbdsp_open(sc, dev, flags)
677 register struct sbdsp_softc *sc;
678 dev_t dev;
679 int flags;
680 {
681 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
682
683 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
684 return ENXIO;
685
686 sc->sc_open = 1;
687 sc->sc_mintr = 0;
688 if (ISSBPROCLASS(sc) &&
689 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
690 DPRINTF(("sbdsp_open: can't set mono mode\n"));
691 /* we'll readjust when it's time for DMA. */
692 }
693
694 /*
695 * Leave most things as they were; users must change things if
696 * the previous process didn't leave it they way they wanted.
697 * Looked at another way, it's easy to set up a configuration
698 * in one program and leave it for another to inherit.
699 */
700 DPRINTF(("sbdsp_open: opened\n"));
701
702 return 0;
703 }
704
705 void
706 sbdsp_close(addr)
707 void *addr;
708 {
709 struct sbdsp_softc *sc = addr;
710
711 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
712
713 sc->sc_open = 0;
714 sbdsp_spkroff(sc);
715 sc->spkr_state = SPKR_OFF;
716 sc->sc_mintr = 0;
717 sbdsp_haltdma(sc);
718
719 DPRINTF(("sbdsp_close: closed\n"));
720 }
721
722 /*
723 * Lower-level routines
724 */
725
726 /*
727 * Reset the card.
728 * Return non-zero if the card isn't detected.
729 */
730 int
731 sbdsp_reset(sc)
732 register struct sbdsp_softc *sc;
733 {
734 bus_space_tag_t iot = sc->sc_iot;
735 bus_space_handle_t ioh = sc->sc_ioh;
736
737 sc->sc_intr = 0;
738 if (sc->sc_dmadir != SB_DMA_NONE) {
739 isa_dmaabort(sc->dmachan);
740 sc->sc_dmadir = SB_DMA_NONE;
741 }
742 sc->sc_last_hs_size = 0;
743
744 /*
745 * See SBK, section 11.3.
746 * We pulse a reset signal into the card.
747 * Gee, what a brilliant hardware design.
748 */
749 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
750 delay(10);
751 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
752 delay(30);
753 if (sbdsp_rdsp(sc) != SB_MAGIC)
754 return -1;
755
756 return 0;
757 }
758
759 int
760 sbdsp16_wait(sc)
761 struct sbdsp_softc *sc;
762 {
763 bus_space_tag_t iot = sc->sc_iot;
764 bus_space_handle_t ioh = sc->sc_ioh;
765 register int i;
766
767 for (i = SBDSP_NPOLL; --i >= 0; ) {
768 register u_char x;
769 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
770 delay(10);
771 if ((x & SB_DSP_BUSY) == 0)
772 continue;
773 return 0;
774 }
775 ++sberr.wdsp;
776 return -1;
777 }
778
779 /*
780 * Write a byte to the dsp.
781 * XXX We are at the mercy of the card as we use a
782 * polling loop and wait until it can take the byte.
783 */
784 int
785 sbdsp_wdsp(sc, v)
786 struct sbdsp_softc *sc;
787 int v;
788 {
789 bus_space_tag_t iot = sc->sc_iot;
790 bus_space_handle_t ioh = sc->sc_ioh;
791 register int i;
792
793 for (i = SBDSP_NPOLL; --i >= 0; ) {
794 register u_char x;
795 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
796 delay(10);
797 if ((x & SB_DSP_BUSY) != 0)
798 continue;
799 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
800 delay(10);
801 return 0;
802 }
803 ++sberr.wdsp;
804 return -1;
805 }
806
807 /*
808 * Read a byte from the DSP, using polling.
809 */
810 int
811 sbdsp_rdsp(sc)
812 struct sbdsp_softc *sc;
813 {
814 bus_space_tag_t iot = sc->sc_iot;
815 bus_space_handle_t ioh = sc->sc_ioh;
816 register int i;
817
818 for (i = SBDSP_NPOLL; --i >= 0; ) {
819 register u_char x;
820 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
821 delay(10);
822 if ((x & SB_DSP_READY) == 0)
823 continue;
824 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
825 delay(10);
826 return x;
827 }
828 ++sberr.rdsp;
829 return -1;
830 }
831
832 /*
833 * Doing certain things (like toggling the speaker) make
834 * the SB hardware go away for a while, so pause a little.
835 */
836 void
837 sbdsp_to(arg)
838 void *arg;
839 {
840 wakeup(arg);
841 }
842
843 void
844 sbdsp_pause(sc)
845 struct sbdsp_softc *sc;
846 {
847 extern int hz;
848
849 timeout(sbdsp_to, sbdsp_to, hz/8);
850 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
851 }
852
853 /*
854 * Turn on the speaker. The SBK documention says this operation
855 * can take up to 1/10 of a second. Higher level layers should
856 * probably let the task sleep for this amount of time after
857 * calling here. Otherwise, things might not work (because
858 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
859 *
860 * These engineers had their heads up their ass when
861 * they designed this card.
862 */
863 void
864 sbdsp_spkron(sc)
865 struct sbdsp_softc *sc;
866 {
867 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
868 sbdsp_pause(sc);
869 }
870
871 /*
872 * Turn off the speaker; see comment above.
873 */
874 void
875 sbdsp_spkroff(sc)
876 struct sbdsp_softc *sc;
877 {
878 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
879 sbdsp_pause(sc);
880 }
881
882 /*
883 * Read the version number out of the card. Return major code
884 * in high byte, and minor code in low byte.
885 */
886 short
887 sbversion(sc)
888 struct sbdsp_softc *sc;
889 {
890 short v;
891
892 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
893 return 0;
894 v = sbdsp_rdsp(sc) << 8;
895 v |= sbdsp_rdsp(sc);
896 return ((v >= 0) ? v : 0);
897 }
898
899 /*
900 * Halt a DMA in progress. A low-speed transfer can be
901 * resumed with sbdsp_contdma().
902 */
903 int
904 sbdsp_haltdma(addr)
905 void *addr;
906 {
907 register struct sbdsp_softc *sc = addr;
908
909 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
910
911 sbdsp_reset(sc);
912 return 0;
913 }
914
915 int
916 sbdsp_contdma(addr)
917 void *addr;
918 {
919 register struct sbdsp_softc *sc = addr;
920
921 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
922
923 /* XXX how do we reinitialize the DMA controller state? do we care? */
924 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
925 return(0);
926 }
927
928 int
929 sbdsp16_setrate(sc, sr, isdac, ratep)
930 register struct sbdsp_softc *sc;
931 int sr;
932 int isdac;
933 int *ratep;
934 {
935
936 /*
937 * XXXX
938 * More checks here?
939 */
940 if (sr < 5000 || sr > 45454)
941 return (EINVAL);
942 *ratep = sr;
943 return (0);
944 }
945
946 /*
947 * Convert a linear sampling rate into the DAC time constant.
948 * Set *mode to indicate the high/low-speed DMA operation.
949 * Because of limitations of the card, not all rates are possible.
950 * We return the time constant of the closest possible rate.
951 * The sampling rate limits are different for the DAC and ADC,
952 * so isdac indicates output, and !isdac indicates input.
953 */
954 int
955 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
956 register struct sbdsp_softc *sc;
957 int sr;
958 int isdac;
959 int *tcp, *modep;
960 {
961 int tc, realtc, mode;
962
963 /*
964 * Don't forget to compute which mode we'll be in based on whether
965 * we need to double the rate for stereo on SBPRO.
966 */
967
968 if (sr == 0) {
969 tc = SB_LS_MIN;
970 mode = SB_ADAC_LS;
971 goto out;
972 }
973
974 tc = 256 - (1000000 / sr);
975
976 if (sc->sc_channels == 2 && ISSBPRO(sc))
977 /* compute based on 2x sample rate when needed */
978 realtc = 256 - ( 500000 / sr);
979 else
980 realtc = tc;
981
982 if (tc < SB_LS_MIN) {
983 tc = SB_LS_MIN;
984 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
985 * speed mode. */
986 goto out;
987 } else if (isdac) {
988 if (realtc <= SB_DAC_LS_MAX)
989 mode = SB_ADAC_LS;
990 else {
991 mode = SB_ADAC_HS;
992 if (tc > SB_DAC_HS_MAX)
993 tc = SB_DAC_HS_MAX;
994 }
995 } else {
996 int adc_ls_max, adc_hs_max;
997
998 /* XXX use better rounding--compare distance to nearest tc on both
999 sides of requested speed */
1000 if (ISSBPROCLASS(sc)) {
1001 adc_ls_max = SBPRO_ADC_LS_MAX;
1002 adc_hs_max = SBPRO_ADC_HS_MAX;
1003 } else {
1004 adc_ls_max = SBCLA_ADC_LS_MAX;
1005 adc_hs_max = SBCLA_ADC_HS_MAX;
1006 }
1007
1008 if (realtc <= adc_ls_max)
1009 mode = SB_ADAC_LS;
1010 else {
1011 mode = SB_ADAC_HS;
1012 if (tc > adc_hs_max)
1013 tc = adc_hs_max;
1014 }
1015 }
1016
1017 out:
1018 *tcp = tc;
1019 *modep = mode;
1020 return (0);
1021 }
1022
1023 /*
1024 * Convert a DAC time constant to a sampling rate.
1025 * See SBK, section 12.
1026 */
1027 int
1028 sbdsp_tctosr(sc, tc)
1029 register struct sbdsp_softc *sc;
1030 int tc;
1031 {
1032 int adc;
1033
1034 if (ISSBPROCLASS(sc))
1035 adc = SBPRO_ADC_HS_MAX;
1036 else
1037 adc = SBCLA_ADC_HS_MAX;
1038
1039 if (tc > adc)
1040 tc = adc;
1041
1042 return (1000000 / (256 - tc));
1043 }
1044
1045 int
1046 sbdsp_set_timeconst(sc, tc)
1047 register struct sbdsp_softc *sc;
1048 int tc;
1049 {
1050 /*
1051 * A SBPro in stereo mode uses time constants at double the
1052 * actual rate.
1053 */
1054 if (ISSBPRO(sc) && sc->sc_channels == 2)
1055 tc = 256 - ((256 - tc) / 2);
1056
1057 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1058
1059 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1060 sbdsp_wdsp(sc, tc) < 0)
1061 return (EIO);
1062
1063 return (0);
1064 }
1065
1066 int
1067 sbdsp_dma_input(addr, p, cc, intr, arg)
1068 void *addr;
1069 void *p;
1070 int cc;
1071 void (*intr) __P((void *));
1072 void *arg;
1073 {
1074 register struct sbdsp_softc *sc = addr;
1075
1076 #ifdef AUDIO_DEBUG
1077 if (sbdspdebug > 1)
1078 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1079 #endif
1080 if (sc->sc_channels == 2 && (cc & 1)) {
1081 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1082 return EIO;
1083 }
1084
1085 if (sc->sc_dmadir != SB_DMA_IN) {
1086 if (ISSBPRO(sc)) {
1087 if (sc->sc_channels == 2) {
1088 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1089 if (sbdsp_wdsp(sc,
1090 JAZZ16_RECORD_STEREO) < 0) {
1091 goto badmode;
1092 }
1093 } else if (sbdsp_wdsp(sc,
1094 SB_DSP_RECORD_STEREO) < 0)
1095 goto badmode;
1096 sbdsp_mix_write(sc, SBP_INFILTER,
1097 (sbdsp_mix_read(sc, SBP_INFILTER) &
1098 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1099 } else {
1100 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1101 if (sbdsp_wdsp(sc,
1102 JAZZ16_RECORD_MONO) < 0)
1103 {
1104 goto badmode;
1105 }
1106 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1107 goto badmode;
1108 sbdsp_mix_write(sc, SBP_INFILTER,
1109 (sbdsp_mix_read(sc, SBP_INFILTER) &
1110 ~SBP_IFILTER_MASK) | sc->in_filter);
1111 }
1112 }
1113
1114 if (ISSB16CLASS(sc)) {
1115 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1116 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1117 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1118 goto giveup;
1119 } else
1120 sbdsp_set_timeconst(sc, sc->sc_itc);
1121
1122 sc->sc_dmadir = SB_DMA_IN;
1123 sc->dmaflags = DMAMODE_READ;
1124 if (ISSB2CLASS(sc))
1125 sc->dmaflags |= DMAMODE_LOOP;
1126 } else {
1127 /* Already started; just return. */
1128 if (ISSB2CLASS(sc))
1129 return 0;
1130 }
1131
1132 sc->dmaaddr = p;
1133 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1134 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1135 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1136 sc->sc_intr = intr;
1137 sc->sc_arg = arg;
1138
1139 if (sc->sc_precision == 16)
1140 cc >>= 1;
1141 --cc;
1142 if (ISSB16CLASS(sc)) {
1143 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1144 SB_DSP16_RDMA_8) < 0 ||
1145 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1146 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1147 sbdsp16_wait(sc) ||
1148 sbdsp_wdsp(sc, cc) < 0 ||
1149 sbdsp_wdsp(sc, cc >> 8) < 0) {
1150 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1151 goto giveup;
1152 }
1153 } else if (ISSB2CLASS(sc)) {
1154 if (cc != sc->sc_last_hs_size) {
1155 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1156 sbdsp_wdsp(sc, cc) < 0 ||
1157 sbdsp_wdsp(sc, cc >> 8) < 0) {
1158 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1159 goto giveup;
1160 }
1161 sc->sc_last_hs_size = cc;
1162 }
1163 if (sbdsp_wdsp(sc,
1164 sc->sc_imode == SB_ADAC_LS ? SB_DSP_RDMA_LOOP :
1165 SB_DSP_HS_INPUT) < 0) {
1166 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1167 goto giveup;
1168 }
1169 } else {
1170 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1171 sbdsp_wdsp(sc, cc) < 0 ||
1172 sbdsp_wdsp(sc, cc >> 8) < 0) {
1173 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1174 goto giveup;
1175 }
1176 }
1177 return 0;
1178
1179 giveup:
1180 sbdsp_reset(sc);
1181 return EIO;
1182
1183 badmode:
1184 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1185 sc->sc_channels == 2 ? "stereo" : "mono"));
1186 return EIO;
1187 }
1188
1189 int
1190 sbdsp_dma_output(addr, p, cc, intr, arg)
1191 void *addr;
1192 void *p;
1193 int cc;
1194 void (*intr) __P((void *));
1195 void *arg;
1196 {
1197 register struct sbdsp_softc *sc = addr;
1198
1199 #ifdef AUDIO_DEBUG
1200 if (sbdspdebug > 1)
1201 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1202 #endif
1203 if (sc->sc_channels == 2 && (cc & 1)) {
1204 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1205 return EIO;
1206 }
1207
1208 if (sc->sc_dmadir != SB_DMA_OUT) {
1209 if (ISSBPRO(sc)) {
1210 /* make sure we re-set stereo mixer bit when we start
1211 output. */
1212 sbdsp_mix_write(sc, SBP_STEREO,
1213 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1214 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1215 if (ISJAZZ16(sc)) {
1216 /* Yes, we write the record mode to set
1217 16-bit playback mode. weird, huh? */
1218 if (sc->sc_precision == 16) {
1219 sbdsp_wdsp(sc,
1220 sc->sc_channels == 2 ?
1221 JAZZ16_RECORD_STEREO :
1222 JAZZ16_RECORD_MONO);
1223 } else {
1224 sbdsp_wdsp(sc,
1225 sc->sc_channels == 2 ?
1226 SB_DSP_RECORD_STEREO :
1227 SB_DSP_RECORD_MONO);
1228 }
1229 }
1230 }
1231
1232 if (ISSB16CLASS(sc)) {
1233 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1234 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1235 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1236 goto giveup;
1237 } else
1238 sbdsp_set_timeconst(sc, sc->sc_otc);
1239
1240 sc->sc_dmadir = SB_DMA_OUT;
1241 sc->dmaflags = DMAMODE_WRITE;
1242 if (ISSB2CLASS(sc))
1243 sc->dmaflags |= DMAMODE_LOOP;
1244 } else {
1245 /* Already started; just return. */
1246 if (ISSB2CLASS(sc))
1247 return 0;
1248 }
1249
1250 sc->dmaaddr = p;
1251 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1252 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1253 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1254 sc->sc_intr = intr;
1255 sc->sc_arg = arg;
1256
1257 if (sc->sc_precision == 16)
1258 cc >>= 1;
1259 --cc;
1260 if (ISSB16CLASS(sc)) {
1261 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1262 SB_DSP16_WDMA_8) < 0 ||
1263 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1264 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1265 sbdsp16_wait(sc) ||
1266 sbdsp_wdsp(sc, cc) < 0 ||
1267 sbdsp_wdsp(sc, cc >> 8) < 0) {
1268 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1269 goto giveup;
1270 }
1271 } else if (ISSB2CLASS(sc)) {
1272 if (cc != sc->sc_last_hs_size) {
1273 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1274 sbdsp_wdsp(sc, cc) < 0 ||
1275 sbdsp_wdsp(sc, cc >> 8) < 0) {
1276 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1277 goto giveup;
1278 }
1279 sc->sc_last_hs_size = cc;
1280 }
1281 if (sbdsp_wdsp(sc,
1282 sc->sc_omode == SB_ADAC_LS ? SB_DSP_WDMA_LOOP :
1283 SB_DSP_HS_OUTPUT) < 0) {
1284 DPRINTF(("sbdsp_dma_output: SB2 DMA restart failed\n"));
1285 goto giveup;
1286 }
1287 } else {
1288 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1289 sbdsp_wdsp(sc, cc) < 0 ||
1290 sbdsp_wdsp(sc, cc >> 8) < 0) {
1291 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1292 goto giveup;
1293 }
1294 }
1295 return 0;
1296
1297 giveup:
1298 sbdsp_reset(sc);
1299 return EIO;
1300 }
1301
1302 /*
1303 * Only the DSP unit on the sound blaster generates interrupts.
1304 * There are three cases of interrupt: reception of a midi byte
1305 * (when mode is enabled), completion of dma transmission, or
1306 * completion of a dma reception. The three modes are mutually
1307 * exclusive so we know a priori which event has occurred.
1308 */
1309 int
1310 sbdsp_intr(arg)
1311 void *arg;
1312 {
1313 register struct sbdsp_softc *sc = arg;
1314 u_char x;
1315
1316 #ifdef AUDIO_DEBUG
1317 if (sbdspdebug > 1)
1318 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1319 #endif
1320 if (ISSB16CLASS(sc)) {
1321 x = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1322 if ((x & 3) == 0)
1323 return 0;
1324 } else {
1325 if (!isa_dmafinished(sc->dmachan))
1326 return 0;
1327 }
1328 sc->sc_interrupts++;
1329 delay(10);
1330 #if 0
1331 if (sc->sc_mintr != 0) {
1332 x = sbdsp_rdsp(sc);
1333 (*sc->sc_mintr)(sc->sc_arg, x);
1334 } else
1335 #endif
1336 if (sc->sc_intr != 0) {
1337 /* clear interrupt */
1338 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1339 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1340 SBP_DSP_IRQACK8);
1341 if (!ISSB2CLASS(sc))
1342 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1343 sc->dmachan);
1344 (*sc->sc_intr)(sc->sc_arg);
1345 } else {
1346 return 0;
1347 }
1348 return 1;
1349 }
1350
1351 #if 0
1352 /*
1353 * Enter midi uart mode and arrange for read interrupts
1354 * to vector to `intr'. This puts the card in a mode
1355 * which allows only midi I/O; the card must be reset
1356 * to leave this mode. Unfortunately, the card does not
1357 * use transmit interrupts, so bytes must be output
1358 * using polling. To keep the polling overhead to a
1359 * minimum, output should be driven off a timer.
1360 * This is a little tricky since only 320us separate
1361 * consecutive midi bytes.
1362 */
1363 void
1364 sbdsp_set_midi_mode(sc, intr, arg)
1365 struct sbdsp_softc *sc;
1366 void (*intr)();
1367 void *arg;
1368 {
1369
1370 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1371 sc->sc_mintr = intr;
1372 sc->sc_intr = 0;
1373 sc->sc_arg = arg;
1374 }
1375
1376 /*
1377 * Write a byte to the midi port, when in midi uart mode.
1378 */
1379 void
1380 sbdsp_midi_output(sc, v)
1381 struct sbdsp_softc *sc;
1382 int v;
1383 {
1384
1385 if (sbdsp_wdsp(sc, v) < 0)
1386 ++sberr.wmidi;
1387 }
1388 #endif
1389
1390 int
1391 sbdsp_setfd(addr, flag)
1392 void *addr;
1393 int flag;
1394 {
1395 /* Can't do full-duplex */
1396 return(ENOTTY);
1397 }
1398
1399 int
1400 sbdsp_mixer_set_port(addr, cp)
1401 void *addr;
1402 mixer_ctrl_t *cp;
1403 {
1404 register struct sbdsp_softc *sc = addr;
1405 int src, gain;
1406
1407 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1408 cp->un.value.num_channels));
1409
1410 if (!ISSBPROCLASS(sc))
1411 return EINVAL;
1412
1413 /*
1414 * Everything is a value except for SBPro BASS/TREBLE and
1415 * RECORD_SOURCE
1416 */
1417 switch (cp->dev) {
1418 case SB_SPEAKER:
1419 cp->dev = SB_MASTER_VOL;
1420 case SB_MIC_PORT:
1421 case SB_LINE_IN_PORT:
1422 case SB_DAC_PORT:
1423 case SB_FM_PORT:
1424 case SB_CD_PORT:
1425 case SB_MASTER_VOL:
1426 if (cp->type != AUDIO_MIXER_VALUE)
1427 return EINVAL;
1428
1429 /*
1430 * All the mixer ports are stereo except for the microphone.
1431 * If we get a single-channel gain value passed in, then we
1432 * duplicate it to both left and right channels.
1433 */
1434
1435 switch (cp->dev) {
1436 case SB_MIC_PORT:
1437 if (cp->un.value.num_channels != 1)
1438 return EINVAL;
1439
1440 /* handle funny microphone gain */
1441 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1442 break;
1443 case SB_LINE_IN_PORT:
1444 case SB_DAC_PORT:
1445 case SB_FM_PORT:
1446 case SB_CD_PORT:
1447 case SB_MASTER_VOL:
1448 switch (cp->un.value.num_channels) {
1449 case 1:
1450 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1451 break;
1452 case 2:
1453 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1454 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1455 break;
1456 default:
1457 return EINVAL;
1458 }
1459 break;
1460 default:
1461 return EINVAL;
1462 }
1463
1464 switch (cp->dev) {
1465 case SB_MIC_PORT:
1466 src = SBP_MIC_VOL;
1467 break;
1468 case SB_MASTER_VOL:
1469 src = SBP_MASTER_VOL;
1470 break;
1471 case SB_LINE_IN_PORT:
1472 src = SBP_LINE_VOL;
1473 break;
1474 case SB_DAC_PORT:
1475 src = SBP_DAC_VOL;
1476 break;
1477 case SB_FM_PORT:
1478 src = SBP_FM_VOL;
1479 break;
1480 case SB_CD_PORT:
1481 src = SBP_CD_VOL;
1482 break;
1483 default:
1484 return EINVAL;
1485 }
1486
1487 sbdsp_mix_write(sc, src, gain);
1488 sc->gain[cp->dev] = gain;
1489 break;
1490
1491 case SB_TREBLE:
1492 case SB_BASS:
1493 case SB_RECORD_SOURCE:
1494 if (cp->type != AUDIO_MIXER_ENUM)
1495 return EINVAL;
1496
1497 switch (cp->dev) {
1498 case SB_TREBLE:
1499 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1500 case SB_BASS:
1501 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1502 case SB_RECORD_SOURCE:
1503 return sbdsp_set_in_port(addr, cp->un.ord);
1504 }
1505
1506 break;
1507
1508 default:
1509 return EINVAL;
1510 }
1511
1512 return (0);
1513 }
1514
1515 int
1516 sbdsp_mixer_get_port(addr, cp)
1517 void *addr;
1518 mixer_ctrl_t *cp;
1519 {
1520 register struct sbdsp_softc *sc = addr;
1521 int gain;
1522
1523 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1524
1525 if (!ISSBPROCLASS(sc))
1526 return EINVAL;
1527
1528 switch (cp->dev) {
1529 case SB_SPEAKER:
1530 cp->dev = SB_MASTER_VOL;
1531 case SB_MIC_PORT:
1532 case SB_LINE_IN_PORT:
1533 case SB_DAC_PORT:
1534 case SB_FM_PORT:
1535 case SB_CD_PORT:
1536 case SB_MASTER_VOL:
1537 gain = sc->gain[cp->dev];
1538
1539 switch (cp->dev) {
1540 case SB_MIC_PORT:
1541 if (cp->un.value.num_channels != 1)
1542 return EINVAL;
1543
1544 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1545 break;
1546 case SB_LINE_IN_PORT:
1547 case SB_DAC_PORT:
1548 case SB_FM_PORT:
1549 case SB_CD_PORT:
1550 case SB_MASTER_VOL:
1551 switch (cp->un.value.num_channels) {
1552 case 1:
1553 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1554 break;
1555 case 2:
1556 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1557 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1558 break;
1559 default:
1560 return EINVAL;
1561 }
1562 break;
1563 }
1564
1565 break;
1566
1567 case SB_TREBLE:
1568 case SB_BASS:
1569 case SB_RECORD_SOURCE:
1570 switch (cp->dev) {
1571 case SB_TREBLE:
1572 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1573 return 0;
1574 case SB_BASS:
1575 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1576 return 0;
1577 case SB_RECORD_SOURCE:
1578 cp->un.ord = sbdsp_get_in_port(addr);
1579 return 0;
1580 }
1581
1582 break;
1583
1584 default:
1585 return EINVAL;
1586 }
1587
1588 return (0);
1589 }
1590
1591 int
1592 sbdsp_mixer_query_devinfo(addr, dip)
1593 void *addr;
1594 register mixer_devinfo_t *dip;
1595 {
1596 register struct sbdsp_softc *sc = addr;
1597
1598 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1599
1600 switch (dip->index) {
1601 case SB_MIC_PORT:
1602 dip->type = AUDIO_MIXER_VALUE;
1603 dip->mixer_class = SB_INPUT_CLASS;
1604 dip->prev = AUDIO_MIXER_LAST;
1605 dip->next = AUDIO_MIXER_LAST;
1606 strcpy(dip->label.name, AudioNmicrophone);
1607 dip->un.v.num_channels = 1;
1608 strcpy(dip->un.v.units.name, AudioNvolume);
1609 return 0;
1610
1611 case SB_SPEAKER:
1612 dip->type = AUDIO_MIXER_VALUE;
1613 dip->mixer_class = SB_OUTPUT_CLASS;
1614 dip->prev = AUDIO_MIXER_LAST;
1615 dip->next = AUDIO_MIXER_LAST;
1616 strcpy(dip->label.name, AudioNspeaker);
1617 dip->un.v.num_channels = 1;
1618 strcpy(dip->un.v.units.name, AudioNvolume);
1619 return 0;
1620
1621 case SB_INPUT_CLASS:
1622 dip->type = AUDIO_MIXER_CLASS;
1623 dip->mixer_class = SB_INPUT_CLASS;
1624 dip->next = dip->prev = AUDIO_MIXER_LAST;
1625 strcpy(dip->label.name, AudioCInputs);
1626 return 0;
1627
1628 case SB_OUTPUT_CLASS:
1629 dip->type = AUDIO_MIXER_CLASS;
1630 dip->mixer_class = SB_OUTPUT_CLASS;
1631 dip->next = dip->prev = AUDIO_MIXER_LAST;
1632 strcpy(dip->label.name, AudioCOutputs);
1633 return 0;
1634 }
1635
1636 if (ISSBPROCLASS(sc)) {
1637 switch (dip->index) {
1638 case SB_LINE_IN_PORT:
1639 dip->type = AUDIO_MIXER_VALUE;
1640 dip->mixer_class = SB_INPUT_CLASS;
1641 dip->prev = AUDIO_MIXER_LAST;
1642 dip->next = AUDIO_MIXER_LAST;
1643 strcpy(dip->label.name, AudioNline);
1644 dip->un.v.num_channels = 2;
1645 strcpy(dip->un.v.units.name, AudioNvolume);
1646 return 0;
1647
1648 case SB_DAC_PORT:
1649 dip->type = AUDIO_MIXER_VALUE;
1650 dip->mixer_class = SB_INPUT_CLASS;
1651 dip->prev = AUDIO_MIXER_LAST;
1652 dip->next = AUDIO_MIXER_LAST;
1653 strcpy(dip->label.name, AudioNdac);
1654 dip->un.v.num_channels = 2;
1655 strcpy(dip->un.v.units.name, AudioNvolume);
1656 return 0;
1657
1658 case SB_CD_PORT:
1659 dip->type = AUDIO_MIXER_VALUE;
1660 dip->mixer_class = SB_INPUT_CLASS;
1661 dip->prev = AUDIO_MIXER_LAST;
1662 dip->next = AUDIO_MIXER_LAST;
1663 strcpy(dip->label.name, AudioNcd);
1664 dip->un.v.num_channels = 2;
1665 strcpy(dip->un.v.units.name, AudioNvolume);
1666 return 0;
1667
1668 case SB_FM_PORT:
1669 dip->type = AUDIO_MIXER_VALUE;
1670 dip->mixer_class = SB_INPUT_CLASS;
1671 dip->prev = AUDIO_MIXER_LAST;
1672 dip->next = AUDIO_MIXER_LAST;
1673 strcpy(dip->label.name, AudioNfmsynth);
1674 dip->un.v.num_channels = 2;
1675 strcpy(dip->un.v.units.name, AudioNvolume);
1676 return 0;
1677
1678 case SB_MASTER_VOL:
1679 dip->type = AUDIO_MIXER_VALUE;
1680 dip->mixer_class = SB_OUTPUT_CLASS;
1681 dip->prev = AUDIO_MIXER_LAST;
1682 dip->next = AUDIO_MIXER_LAST;
1683 strcpy(dip->label.name, AudioNvolume);
1684 dip->un.v.num_channels = 2;
1685 strcpy(dip->un.v.units.name, AudioNvolume);
1686 return 0;
1687
1688 case SB_RECORD_SOURCE:
1689 dip->mixer_class = SB_RECORD_CLASS;
1690 dip->type = AUDIO_MIXER_ENUM;
1691 dip->prev = AUDIO_MIXER_LAST;
1692 dip->next = AUDIO_MIXER_LAST;
1693 strcpy(dip->label.name, AudioNsource);
1694 dip->un.e.num_mem = 3;
1695 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1696 dip->un.e.member[0].ord = SB_MIC_PORT;
1697 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1698 dip->un.e.member[1].ord = SB_CD_PORT;
1699 strcpy(dip->un.e.member[2].label.name, AudioNline);
1700 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1701 return 0;
1702
1703 case SB_BASS:
1704 dip->type = AUDIO_MIXER_ENUM;
1705 dip->mixer_class = SB_INPUT_CLASS;
1706 dip->prev = AUDIO_MIXER_LAST;
1707 dip->next = AUDIO_MIXER_LAST;
1708 strcpy(dip->label.name, AudioNbass);
1709 dip->un.e.num_mem = 2;
1710 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1711 dip->un.e.member[0].ord = 0;
1712 strcpy(dip->un.e.member[1].label.name, AudioNon);
1713 dip->un.e.member[1].ord = 1;
1714 return 0;
1715
1716 case SB_TREBLE:
1717 dip->type = AUDIO_MIXER_ENUM;
1718 dip->mixer_class = SB_INPUT_CLASS;
1719 dip->prev = AUDIO_MIXER_LAST;
1720 dip->next = AUDIO_MIXER_LAST;
1721 strcpy(dip->label.name, AudioNtreble);
1722 dip->un.e.num_mem = 2;
1723 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1724 dip->un.e.member[0].ord = 0;
1725 strcpy(dip->un.e.member[1].label.name, AudioNon);
1726 dip->un.e.member[1].ord = 1;
1727 return 0;
1728
1729 case SB_RECORD_CLASS: /* record source class */
1730 dip->type = AUDIO_MIXER_CLASS;
1731 dip->mixer_class = SB_RECORD_CLASS;
1732 dip->next = dip->prev = AUDIO_MIXER_LAST;
1733 strcpy(dip->label.name, AudioCRecord);
1734 return 0;
1735 }
1736 }
1737
1738 return ENXIO;
1739 }
1740