sbdsp.c revision 1.44 1 /* $NetBSD: sbdsp.c,v 1.44 1997/05/07 18:51:47 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 */
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/device.h>
50 #include <sys/proc.h>
51 #include <sys/buf.h>
52 #include <vm/vm.h>
53
54 #include <machine/cpu.h>
55 #include <machine/intr.h>
56 #include <machine/pio.h>
57
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60
61 #include <dev/isa/isavar.h>
62 #include <dev/isa/isadmavar.h>
63 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
64
65 #include <dev/isa/sbreg.h>
66 #include <dev/isa/sbdspvar.h>
67
68 #ifdef AUDIO_DEBUG
69 extern void Dprintf __P((const char *, ...));
70 #define DPRINTF(x) if (sbdspdebug) Dprintf x
71 int sbdspdebug = 0;
72 #else
73 #define DPRINTF(x)
74 #endif
75
76 #ifndef SBDSP_NPOLL
77 #define SBDSP_NPOLL 3000
78 #endif
79
80 struct {
81 int wdsp;
82 int rdsp;
83 int wmidi;
84 } sberr;
85
86 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
87 int *tcp, int *modep));
88 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
89
90 /*
91 * Time constant routines follow. See SBK, section 12.
92 * Although they don't come out and say it (in the docs),
93 * the card clearly uses a 1MHz countdown timer, as the
94 * low-speed formula (p. 12-4) is:
95 * tc = 256 - 10^6 / sr
96 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
97 * and a 256MHz clock is used:
98 * tc = 65536 - 256 * 10^ 6 / sr
99 * Since we can only use the upper byte of the HS TC, the two formulae
100 * are equivalent. (Why didn't they say so?) E.g.,
101 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
102 *
103 * The crossover point (from low- to high-speed modes) is different
104 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
105 *
106 * SBPRO SB20
107 * ----- --------
108 * input ls min 4 KHz 4 KHz
109 * input ls max 23 KHz 13 KHz
110 * input hs max 44.1 KHz 15 KHz
111 * output ls min 4 KHz 4 KHz
112 * output ls max 23 KHz 23 KHz
113 * output hs max 44.1 KHz 44.1 KHz
114 */
115 #define SB_LS_MIN 0x06 /* 4000 Hz */
116 #define SB_8K 0x83 /* 8000 Hz */
117 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
118 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
119 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
120 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
121 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
122 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
123
124 int sbdsp16_wait __P((struct sbdsp_softc *));
125 void sbdsp_to __P((void *));
126 void sbdsp_pause __P((struct sbdsp_softc *));
127 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
128 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
129 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
130 int sbdsp_set_io_params __P((struct sbdsp_softc *, struct audio_params *));
131
132 #ifdef AUDIO_DEBUG
133 void sb_printsc __P((struct sbdsp_softc *));
134
135 void
136 sb_printsc(sc)
137 struct sbdsp_softc *sc;
138 {
139 int i;
140
141 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
142 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
143 sc->sc_iobase, sc->sc_irq);
144 printf("irate %d itc %d imode %d orate %d otc %d omode %d\n",
145 sc->sc_irate, sc->sc_itc, sc->sc_imode,
146 sc->sc_orate, sc->sc_otc, sc->sc_omode);
147 printf("outport %u inport %u spkron %u nintr %lu\n",
148 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
149 printf("precision %u channels %d intr %p arg %p\n",
150 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
151 printf("gain:");
152 for (i = 0; i < SB_NDEVS; i++)
153 printf(" %u", sc->gain[i]);
154 printf("\n");
155 }
156 #endif /* AUDIO_DEBUG */
157
158 /*
159 * Probe / attach routines.
160 */
161
162 /*
163 * Probe for the soundblaster hardware.
164 */
165 int
166 sbdsp_probe(sc)
167 struct sbdsp_softc *sc;
168 {
169
170 if (sbdsp_reset(sc) < 0) {
171 DPRINTF(("sbdsp: couldn't reset card\n"));
172 return 0;
173 }
174 /* if flags set, go and probe the jazz16 stuff */
175 if (sc->sc_dev.dv_cfdata->cf_flags != 0) {
176 sc->sc_model = sbdsp_jazz16_probe(sc);
177 } else {
178 sc->sc_model = sbversion(sc);
179 }
180
181 sc->sc_model = 0x100; /* XXX pretend to be just a tired old SB XXX */
182
183 return 1;
184 }
185
186 /*
187 * Try add-on stuff for Jazz16.
188 */
189 u_int
190 sbdsp_jazz16_probe(sc)
191 struct sbdsp_softc *sc;
192 {
193 static u_char jazz16_irq_conf[16] = {
194 -1, -1, 0x02, 0x03,
195 -1, 0x01, -1, 0x04,
196 -1, 0x02, 0x05, -1,
197 -1, -1, -1, 0x06};
198 static u_char jazz16_drq_conf[8] = {
199 -1, 0x01, -1, 0x02,
200 -1, 0x03, -1, 0x04};
201
202 u_int rval = sbversion(sc);
203 bus_space_tag_t iot = sc->sc_iot;
204 bus_space_handle_t ioh;
205
206 DPRINTF(("jazz16 probe\n"));
207
208 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
209 DPRINTF(("bus map failed\n"));
210 return rval;
211 }
212
213 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
214 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
215 DPRINTF(("drq/irq check failed\n"));
216 goto done; /* give up, we can't do it. */
217 }
218
219 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
220 delay(10000); /* delay 10 ms */
221 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
222 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
223
224 if (sbdsp_reset(sc) < 0) {
225 DPRINTF(("sbdsp_reset check failed\n"));
226 goto done; /* XXX? what else could we do? */
227 }
228
229 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
230 DPRINTF(("read16 setup failed\n"));
231 goto done;
232 }
233
234 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
235 DPRINTF(("read16 failed\n"));
236 goto done;
237 }
238
239 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
240 sc->sc_drq16 = sc->sc_drq8;
241 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
242 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
243 jazz16_drq_conf[sc->sc_drq8]) ||
244 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
245 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
246 } else {
247 DPRINTF(("jazz16 detected!\n"));
248 rval |= MODEL_JAZZ16;
249 }
250
251 done:
252 bus_space_unmap(iot, ioh, 1);
253 return rval;
254 }
255
256 /*
257 * Attach hardware to driver, attach hardware driver to audio
258 * pseudo-device driver .
259 */
260 void
261 sbdsp_attach(sc)
262 struct sbdsp_softc *sc;
263 {
264
265 /* Set defaults */
266 if (ISSB16CLASS(sc))
267 sc->sc_irate = sc->sc_orate = 8000;
268 else if (ISSBPROCLASS(sc))
269 sc->sc_itc = sc->sc_otc = SB_8K;
270 else
271 sc->sc_itc = sc->sc_otc = SB_8K;
272 sc->sc_precision = 8;
273 sc->sc_channels = 1;
274
275 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
276 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
277
278 if (ISSBPROCLASS(sc)) {
279 int i;
280
281 /* set mixer to default levels, by sending a mixer
282 reset command. */
283 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
284 /* then some adjustments :) */
285 sbdsp_mix_write(sc, SBP_CD_VOL,
286 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
287 sbdsp_mix_write(sc, SBP_DAC_VOL,
288 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
289 sbdsp_mix_write(sc, SBP_MASTER_VOL,
290 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
291 sbdsp_mix_write(sc, SBP_LINE_VOL,
292 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
293 for (i = 0; i < SB_NDEVS; i++)
294 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
295 sc->in_filter = 0; /* no filters turned on, please */
296 }
297
298 printf(": dsp v%d.%02d%s\n",
299 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
300 ISJAZZ16(sc) ? ": <Jazz16>" : "");
301 }
302
303 /*
304 * Various routines to interface to higher level audio driver
305 */
306
307 void
308 sbdsp_mix_write(sc, mixerport, val)
309 struct sbdsp_softc *sc;
310 int mixerport;
311 int val;
312 {
313 bus_space_tag_t iot = sc->sc_iot;
314 bus_space_handle_t ioh = sc->sc_ioh;
315
316 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
317 delay(10);
318 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
319 delay(30);
320 }
321
322 int
323 sbdsp_mix_read(sc, mixerport)
324 struct sbdsp_softc *sc;
325 int mixerport;
326 {
327 bus_space_tag_t iot = sc->sc_iot;
328 bus_space_handle_t ioh = sc->sc_ioh;
329
330 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
331 delay(10);
332 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
333 }
334
335 int
336 sbdsp_query_encoding(addr, fp)
337 void *addr;
338 struct audio_encoding *fp;
339 {
340 switch (fp->index) {
341 case 0:
342 strcpy(fp->name, AudioEmulaw);
343 fp->encoding = AUDIO_ENCODING_ULAW;
344 fp->precision = 8;
345 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
346 break;
347 case 1:
348 strcpy(fp->name, AudioElinear_le);
349 fp->encoding = AUDIO_ENCODING_LINEAR_LE;
350 fp->precision = 16;
351 fp->flags = 0;
352 break;
353 case 2:
354 strcpy(fp->name, AudioEulinear);
355 fp->encoding = AUDIO_ENCODING_ULINEAR;
356 fp->precision = 8;
357 fp->flags = 0;
358 break;
359 default:
360 return (EINVAL);
361 }
362 return (0);
363 }
364
365 int
366 sbdsp_set_io_params(sc, p)
367 struct sbdsp_softc *sc;
368 struct audio_params *p;
369 {
370
371 switch (p->encoding) {
372 case AUDIO_ENCODING_ULAW:
373 case AUDIO_ENCODING_LINEAR_LE:
374 break;
375 default:
376 return (EINVAL);
377 }
378
379 if (ISSB16CLASS(sc) || ISJAZZ16(sc)) {
380 if (p->precision != 16 && p->precision != 8)
381 return (EINVAL);
382 } else {
383 if (p->precision != 8)
384 return (EINVAL);
385 }
386
387 if (ISSBPROCLASS(sc)) {
388 if (p->channels != 1 && p->channels != 2)
389 return (EINVAL);
390 if (p->channels == 2 && p->sample_rate > 22000)
391 return (EINVAL);
392 } else {
393 if (p->channels != 1)
394 return (EINVAL);
395 }
396
397 return (0);
398 }
399
400 int
401 sbdsp_set_in_params(addr, p)
402 void *addr;
403 struct audio_params *p;
404 {
405 register struct sbdsp_softc *sc = addr;
406 int error;
407
408 error = sbdsp_set_io_params(sc, p);
409 if (error)
410 return error;
411
412 if (ISSB16CLASS(sc))
413 error = sbdsp16_setrate(sc, p->sample_rate, SB_INPUT_RATE, &sc->sc_irate);
414 else
415 error = sbdsp_srtotc(sc, p->sample_rate, SB_INPUT_RATE, &sc->sc_itc, &sc->sc_imode);
416 if (error)
417 return error;
418
419 sc->sc_precision = p->precision;
420 sc->sc_channels = p->channels;
421 if (ISSB16CLASS(sc))
422 p->sample_rate = sc->sc_irate;
423 else
424 p->sample_rate = sbdsp_tctosr(sc, sc->sc_itc);
425 return 0;
426 }
427
428 int
429 sbdsp_set_out_params(addr, p)
430 void *addr;
431 struct audio_params *p;
432 {
433 register struct sbdsp_softc *sc = addr;
434 int error;
435
436 error = sbdsp_set_io_params(sc, p);
437 if (error)
438 return error;
439
440 if (ISSB16CLASS(sc))
441 error = sbdsp16_setrate(sc, p->sample_rate, SB_OUTPUT_RATE, &sc->sc_orate);
442 else
443 error = sbdsp_srtotc(sc, p->sample_rate, SB_OUTPUT_RATE, &sc->sc_otc, &sc->sc_omode);
444 if (error)
445 return error;
446
447 sc->sc_precision = p->precision;
448 sc->sc_channels = p->channels;
449 if (ISSB16CLASS(sc))
450 p->sample_rate = sc->sc_orate;
451 else
452 p->sample_rate = sbdsp_tctosr(sc, sc->sc_otc);
453 return 0;
454 }
455
456 int
457 sbdsp_set_ifilter(addr, which)
458 void *addr;
459 int which;
460 {
461 register struct sbdsp_softc *sc = addr;
462 int mixval;
463
464 /* XXXX SB16 */
465 if (ISSBPROCLASS(sc)) {
466 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
467 switch (which) {
468 case 0:
469 mixval |= SBP_FILTER_OFF;
470 break;
471 case SBP_TREBLE_EQ:
472 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
473 break;
474 case SBP_BASS_EQ:
475 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
476 break;
477 default:
478 return (EINVAL);
479 }
480 sc->in_filter = mixval & SBP_IFILTER_MASK;
481 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
482 return (0);
483 } else
484 return (EINVAL);
485 }
486
487 int
488 sbdsp_get_ifilter(addr)
489 void *addr;
490 {
491 register struct sbdsp_softc *sc = addr;
492
493 /* XXXX SB16 */
494 if (ISSBPROCLASS(sc)) {
495 sc->in_filter =
496 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
497 switch (sc->in_filter) {
498 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
499 return (SBP_TREBLE_EQ);
500 case SBP_FILTER_ON|SBP_IFILTER_LOW:
501 return (SBP_BASS_EQ);
502 case SBP_FILTER_OFF:
503 default:
504 return (0);
505 }
506 } else
507 return (0);
508 }
509
510 int
511 sbdsp_set_out_port(addr, port)
512 void *addr;
513 int port;
514 {
515 register struct sbdsp_softc *sc = addr;
516
517 sc->out_port = port; /* Just record it */
518
519 return (0);
520 }
521
522 int
523 sbdsp_get_out_port(addr)
524 void *addr;
525 {
526 register struct sbdsp_softc *sc = addr;
527
528 return (sc->out_port);
529 }
530
531
532 int
533 sbdsp_set_in_port(addr, port)
534 void *addr;
535 int port;
536 {
537 register struct sbdsp_softc *sc = addr;
538 int mixport, sbport;
539
540 if (ISSBPROCLASS(sc)) {
541 switch (port) {
542 case SB_MIC_PORT:
543 sbport = SBP_FROM_MIC;
544 mixport = SBP_MIC_VOL;
545 break;
546 case SB_LINE_IN_PORT:
547 sbport = SBP_FROM_LINE;
548 mixport = SBP_LINE_VOL;
549 break;
550 case SB_CD_PORT:
551 sbport = SBP_FROM_CD;
552 mixport = SBP_CD_VOL;
553 break;
554 case SB_DAC_PORT:
555 case SB_FM_PORT:
556 default:
557 return (EINVAL);
558 }
559 } else {
560 switch (port) {
561 case SB_MIC_PORT:
562 sbport = SBP_FROM_MIC;
563 mixport = SBP_MIC_VOL;
564 break;
565 default:
566 return (EINVAL);
567 }
568 }
569
570 sc->in_port = port; /* Just record it */
571
572 /* XXXX SB16 */
573 if (ISSBPROCLASS(sc)) {
574 /* record from that port */
575 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
576 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
577 /* fetch gain from that port */
578 sc->gain[port] = sbdsp_mix_read(sc, mixport);
579 }
580
581 return (0);
582 }
583
584 int
585 sbdsp_get_in_port(addr)
586 void *addr;
587 {
588 register struct sbdsp_softc *sc = addr;
589
590 return (sc->in_port);
591 }
592
593
594 int
595 sbdsp_speaker_ctl(addr, newstate)
596 void *addr;
597 int newstate;
598 {
599 register struct sbdsp_softc *sc = addr;
600
601 if ((newstate == SPKR_ON) &&
602 (sc->spkr_state == SPKR_OFF)) {
603 sbdsp_spkron(sc);
604 sc->spkr_state = SPKR_ON;
605 }
606 if ((newstate == SPKR_OFF) &&
607 (sc->spkr_state == SPKR_ON)) {
608 sbdsp_spkroff(sc);
609 sc->spkr_state = SPKR_OFF;
610 }
611 return(0);
612 }
613
614 int
615 sbdsp_round_blocksize(addr, blk)
616 void *addr;
617 int blk;
618 {
619 register struct sbdsp_softc *sc = addr;
620
621 sc->sc_last_hs_size = 0;
622
623 /* Don't try to DMA too much at once. */
624 if (blk > NBPG)
625 blk = NBPG;
626
627 /* Round to a multiple of the sample size. */
628 blk &= -(sc->sc_channels * sc->sc_precision / 8);
629
630 return (blk);
631 }
632
633 int
634 sbdsp_commit_settings(addr)
635 void *addr;
636 {
637 register struct sbdsp_softc *sc = addr;
638
639 /* XXX these can me moved to sddsp_io_params() now */
640
641 /* due to potentially unfortunate ordering in the above layers,
642 re-do a few sets which may be important--input gains
643 (adjust the proper channels), number of input channels (hit the
644 record rate and set mode) */
645
646 if (ISSBPRO(sc)) {
647 /*
648 * With 2 channels, SBPro can't do more than 22kHz.
649 * Whack the rates down to speed if necessary.
650 * Reset the time constant anyway
651 * because it may have been adjusted with a different number
652 * of channels, which means it might have computed the wrong
653 * mode (low/high speed).
654 */
655 if (sc->sc_channels == 2 &&
656 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
657 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
658 &sc->sc_itc, &sc->sc_imode);
659 } else
660 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
661 SB_INPUT_RATE, &sc->sc_itc,
662 &sc->sc_imode);
663
664 if (sc->sc_channels == 2 &&
665 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
666 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
667 &sc->sc_otc, &sc->sc_omode);
668 } else
669 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
670 SB_OUTPUT_RATE, &sc->sc_otc,
671 &sc->sc_omode);
672 }
673
674 /*
675 * XXX
676 * Should wait for chip to be idle.
677 */
678 sc->sc_dmadir = SB_DMA_NONE;
679
680 return 0;
681 }
682
683
684 int
685 sbdsp_open(sc, dev, flags)
686 register struct sbdsp_softc *sc;
687 dev_t dev;
688 int flags;
689 {
690 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
691
692 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
693 return ENXIO;
694
695 sc->sc_open = 1;
696 sc->sc_mintr = 0;
697 if (ISSBPROCLASS(sc) &&
698 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
699 DPRINTF(("sbdsp_open: can't set mono mode\n"));
700 /* we'll readjust when it's time for DMA. */
701 }
702
703 /*
704 * Leave most things as they were; users must change things if
705 * the previous process didn't leave it they way they wanted.
706 * Looked at another way, it's easy to set up a configuration
707 * in one program and leave it for another to inherit.
708 */
709 DPRINTF(("sbdsp_open: opened\n"));
710
711 return 0;
712 }
713
714 void
715 sbdsp_close(addr)
716 void *addr;
717 {
718 struct sbdsp_softc *sc = addr;
719
720 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
721
722 sc->sc_open = 0;
723 sbdsp_spkroff(sc);
724 sc->spkr_state = SPKR_OFF;
725 sc->sc_mintr = 0;
726 sbdsp_haltdma(sc);
727
728 DPRINTF(("sbdsp_close: closed\n"));
729 }
730
731 /*
732 * Lower-level routines
733 */
734
735 /*
736 * Reset the card.
737 * Return non-zero if the card isn't detected.
738 */
739 int
740 sbdsp_reset(sc)
741 register struct sbdsp_softc *sc;
742 {
743 bus_space_tag_t iot = sc->sc_iot;
744 bus_space_handle_t ioh = sc->sc_ioh;
745
746 sc->sc_intr = 0;
747 if (sc->sc_dmadir != SB_DMA_NONE) {
748 isa_dmaabort(sc->dmachan);
749 sc->sc_dmadir = SB_DMA_NONE;
750 }
751 sc->sc_last_hs_size = 0;
752
753 /*
754 * See SBK, section 11.3.
755 * We pulse a reset signal into the card.
756 * Gee, what a brilliant hardware design.
757 */
758 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
759 delay(10);
760 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
761 delay(30);
762 if (sbdsp_rdsp(sc) != SB_MAGIC)
763 return -1;
764
765 return 0;
766 }
767
768 int
769 sbdsp16_wait(sc)
770 struct sbdsp_softc *sc;
771 {
772 bus_space_tag_t iot = sc->sc_iot;
773 bus_space_handle_t ioh = sc->sc_ioh;
774 register int i;
775
776 for (i = SBDSP_NPOLL; --i >= 0; ) {
777 register u_char x;
778 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
779 delay(10);
780 if ((x & SB_DSP_BUSY) == 0)
781 continue;
782 return 0;
783 }
784 ++sberr.wdsp;
785 return -1;
786 }
787
788 /*
789 * Write a byte to the dsp.
790 * XXX We are at the mercy of the card as we use a
791 * polling loop and wait until it can take the byte.
792 */
793 int
794 sbdsp_wdsp(sc, v)
795 struct sbdsp_softc *sc;
796 int v;
797 {
798 bus_space_tag_t iot = sc->sc_iot;
799 bus_space_handle_t ioh = sc->sc_ioh;
800 register int i;
801
802 for (i = SBDSP_NPOLL; --i >= 0; ) {
803 register u_char x;
804 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
805 delay(10);
806 if ((x & SB_DSP_BUSY) != 0)
807 continue;
808 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
809 delay(10);
810 return 0;
811 }
812 ++sberr.wdsp;
813 return -1;
814 }
815
816 /*
817 * Read a byte from the DSP, using polling.
818 */
819 int
820 sbdsp_rdsp(sc)
821 struct sbdsp_softc *sc;
822 {
823 bus_space_tag_t iot = sc->sc_iot;
824 bus_space_handle_t ioh = sc->sc_ioh;
825 register int i;
826
827 for (i = SBDSP_NPOLL; --i >= 0; ) {
828 register u_char x;
829 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
830 delay(10);
831 if ((x & SB_DSP_READY) == 0)
832 continue;
833 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
834 delay(10);
835 return x;
836 }
837 ++sberr.rdsp;
838 return -1;
839 }
840
841 /*
842 * Doing certain things (like toggling the speaker) make
843 * the SB hardware go away for a while, so pause a little.
844 */
845 void
846 sbdsp_to(arg)
847 void *arg;
848 {
849 wakeup(arg);
850 }
851
852 void
853 sbdsp_pause(sc)
854 struct sbdsp_softc *sc;
855 {
856 extern int hz;
857
858 timeout(sbdsp_to, sbdsp_to, hz/8);
859 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
860 }
861
862 /*
863 * Turn on the speaker. The SBK documention says this operation
864 * can take up to 1/10 of a second. Higher level layers should
865 * probably let the task sleep for this amount of time after
866 * calling here. Otherwise, things might not work (because
867 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
868 *
869 * These engineers had their heads up their ass when
870 * they designed this card.
871 */
872 void
873 sbdsp_spkron(sc)
874 struct sbdsp_softc *sc;
875 {
876 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
877 sbdsp_pause(sc);
878 }
879
880 /*
881 * Turn off the speaker; see comment above.
882 */
883 void
884 sbdsp_spkroff(sc)
885 struct sbdsp_softc *sc;
886 {
887 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
888 sbdsp_pause(sc);
889 }
890
891 /*
892 * Read the version number out of the card. Return major code
893 * in high byte, and minor code in low byte.
894 */
895 short
896 sbversion(sc)
897 struct sbdsp_softc *sc;
898 {
899 short v;
900
901 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
902 return 0;
903 v = sbdsp_rdsp(sc) << 8;
904 v |= sbdsp_rdsp(sc);
905 return ((v >= 0) ? v : 0);
906 }
907
908 /*
909 * Halt a DMA in progress. A low-speed transfer can be
910 * resumed with sbdsp_contdma().
911 */
912 int
913 sbdsp_haltdma(addr)
914 void *addr;
915 {
916 register struct sbdsp_softc *sc = addr;
917
918 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
919
920 sbdsp_reset(sc);
921 return 0;
922 }
923
924 int
925 sbdsp_contdma(addr)
926 void *addr;
927 {
928 register struct sbdsp_softc *sc = addr;
929
930 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
931
932 /* XXX how do we reinitialize the DMA controller state? do we care? */
933 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
934 return(0);
935 }
936
937 int
938 sbdsp16_setrate(sc, sr, isdac, ratep)
939 register struct sbdsp_softc *sc;
940 int sr;
941 int isdac;
942 int *ratep;
943 {
944
945 /*
946 * XXXX
947 * More checks here?
948 */
949 if (sr < 5000 || sr > 45454)
950 return (EINVAL);
951 *ratep = sr;
952 return (0);
953 }
954
955 /*
956 * Convert a linear sampling rate into the DAC time constant.
957 * Set *mode to indicate the high/low-speed DMA operation.
958 * Because of limitations of the card, not all rates are possible.
959 * We return the time constant of the closest possible rate.
960 * The sampling rate limits are different for the DAC and ADC,
961 * so isdac indicates output, and !isdac indicates input.
962 */
963 int
964 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
965 register struct sbdsp_softc *sc;
966 int sr;
967 int isdac;
968 int *tcp, *modep;
969 {
970 int tc, realtc, mode;
971
972 /*
973 * Don't forget to compute which mode we'll be in based on whether
974 * we need to double the rate for stereo on SBPRO.
975 */
976
977 if (sr == 0) {
978 tc = SB_LS_MIN;
979 mode = SB_ADAC_LS;
980 goto out;
981 }
982
983 tc = 256 - (1000000 / sr);
984
985 if (sc->sc_channels == 2 && ISSBPRO(sc))
986 /* compute based on 2x sample rate when needed */
987 realtc = 256 - ( 500000 / sr);
988 else
989 realtc = tc;
990
991 if (tc < SB_LS_MIN) {
992 tc = SB_LS_MIN;
993 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
994 * speed mode. */
995 goto out;
996 } else if (isdac) {
997 if (realtc <= SB_DAC_LS_MAX)
998 mode = SB_ADAC_LS;
999 else {
1000 mode = SB_ADAC_HS;
1001 if (tc > SB_DAC_HS_MAX)
1002 tc = SB_DAC_HS_MAX;
1003 }
1004 } else {
1005 int adc_ls_max, adc_hs_max;
1006
1007 /* XXX use better rounding--compare distance to nearest tc on both
1008 sides of requested speed */
1009 if (ISSBPROCLASS(sc)) {
1010 adc_ls_max = SBPRO_ADC_LS_MAX;
1011 adc_hs_max = SBPRO_ADC_HS_MAX;
1012 } else {
1013 adc_ls_max = SBCLA_ADC_LS_MAX;
1014 adc_hs_max = SBCLA_ADC_HS_MAX;
1015 }
1016
1017 if (realtc <= adc_ls_max)
1018 mode = SB_ADAC_LS;
1019 else {
1020 mode = SB_ADAC_HS;
1021 if (tc > adc_hs_max)
1022 tc = adc_hs_max;
1023 }
1024 }
1025
1026 out:
1027 *tcp = tc;
1028 *modep = mode;
1029 return (0);
1030 }
1031
1032 /*
1033 * Convert a DAC time constant to a sampling rate.
1034 * See SBK, section 12.
1035 */
1036 int
1037 sbdsp_tctosr(sc, tc)
1038 register struct sbdsp_softc *sc;
1039 int tc;
1040 {
1041 int adc;
1042
1043 if (ISSBPROCLASS(sc))
1044 adc = SBPRO_ADC_HS_MAX;
1045 else
1046 adc = SBCLA_ADC_HS_MAX;
1047
1048 if (tc > adc)
1049 tc = adc;
1050
1051 return (1000000 / (256 - tc));
1052 }
1053
1054 int
1055 sbdsp_set_timeconst(sc, tc)
1056 register struct sbdsp_softc *sc;
1057 int tc;
1058 {
1059 /*
1060 * A SBPro in stereo mode uses time constants at double the
1061 * actual rate.
1062 */
1063 if (ISSBPRO(sc) && sc->sc_channels == 2)
1064 tc = 256 - ((256 - tc) / 2);
1065
1066 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1067
1068 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1069 sbdsp_wdsp(sc, tc) < 0)
1070 return (EIO);
1071
1072 return (0);
1073 }
1074
1075 int
1076 sbdsp_dma_input(addr, p, cc, intr, arg)
1077 void *addr;
1078 void *p;
1079 int cc;
1080 void (*intr) __P((void *));
1081 void *arg;
1082 {
1083 register struct sbdsp_softc *sc = addr;
1084
1085 #ifdef AUDIO_DEBUG
1086 if (sbdspdebug > 1)
1087 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1088 #endif
1089 if (sc->sc_channels == 2 && (cc & 1)) {
1090 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1091 return EIO;
1092 }
1093
1094 if (sc->sc_dmadir != SB_DMA_IN) {
1095 if (ISSBPRO(sc)) {
1096 if (sc->sc_channels == 2) {
1097 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1098 if (sbdsp_wdsp(sc,
1099 JAZZ16_RECORD_STEREO) < 0) {
1100 goto badmode;
1101 }
1102 } else if (sbdsp_wdsp(sc,
1103 SB_DSP_RECORD_STEREO) < 0)
1104 goto badmode;
1105 sbdsp_mix_write(sc, SBP_INFILTER,
1106 (sbdsp_mix_read(sc, SBP_INFILTER) &
1107 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1108 } else {
1109 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1110 if (sbdsp_wdsp(sc,
1111 JAZZ16_RECORD_MONO) < 0)
1112 {
1113 goto badmode;
1114 }
1115 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1116 goto badmode;
1117 sbdsp_mix_write(sc, SBP_INFILTER,
1118 (sbdsp_mix_read(sc, SBP_INFILTER) &
1119 ~SBP_IFILTER_MASK) | sc->in_filter);
1120 }
1121 }
1122
1123 if (ISSB16CLASS(sc)) {
1124 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1125 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1126 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1127 goto giveup;
1128 } else
1129 sbdsp_set_timeconst(sc, sc->sc_itc);
1130
1131 sc->sc_dmadir = SB_DMA_IN;
1132 sc->dmaflags = DMAMODE_READ;
1133 if (ISSB2CLASS(sc))
1134 sc->dmaflags |= DMAMODE_LOOP;
1135 } else {
1136 /* Already started; just return. */
1137 if (ISSB2CLASS(sc))
1138 return 0;
1139 }
1140
1141 sc->dmaaddr = p;
1142 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1143 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1144 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1145 sc->sc_intr = intr;
1146 sc->sc_arg = arg;
1147
1148 if (sc->sc_precision == 16)
1149 cc >>= 1;
1150 --cc;
1151 if (ISSB16CLASS(sc)) {
1152 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1153 SB_DSP16_RDMA_8) < 0 ||
1154 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1155 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1156 sbdsp16_wait(sc) ||
1157 sbdsp_wdsp(sc, cc) < 0 ||
1158 sbdsp_wdsp(sc, cc >> 8) < 0) {
1159 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1160 goto giveup;
1161 }
1162 } else if (ISSB2CLASS(sc)) {
1163 if (cc != sc->sc_last_hs_size) {
1164 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1165 sbdsp_wdsp(sc, cc) < 0 ||
1166 sbdsp_wdsp(sc, cc >> 8) < 0) {
1167 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1168 goto giveup;
1169 }
1170 sc->sc_last_hs_size = cc;
1171 }
1172 if (sbdsp_wdsp(sc,
1173 sc->sc_imode == SB_ADAC_LS ? SB_DSP_RDMA_LOOP :
1174 SB_DSP_HS_INPUT) < 0) {
1175 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1176 goto giveup;
1177 }
1178 } else {
1179 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1180 sbdsp_wdsp(sc, cc) < 0 ||
1181 sbdsp_wdsp(sc, cc >> 8) < 0) {
1182 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1183 goto giveup;
1184 }
1185 }
1186 return 0;
1187
1188 giveup:
1189 sbdsp_reset(sc);
1190 return EIO;
1191
1192 badmode:
1193 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1194 sc->sc_channels == 2 ? "stereo" : "mono"));
1195 return EIO;
1196 }
1197
1198 int
1199 sbdsp_dma_output(addr, p, cc, intr, arg)
1200 void *addr;
1201 void *p;
1202 int cc;
1203 void (*intr) __P((void *));
1204 void *arg;
1205 {
1206 register struct sbdsp_softc *sc = addr;
1207
1208 #ifdef AUDIO_DEBUG
1209 if (sbdspdebug > 1)
1210 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1211 #endif
1212 if (sc->sc_channels == 2 && (cc & 1)) {
1213 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1214 return EIO;
1215 }
1216
1217 if (sc->sc_dmadir != SB_DMA_OUT) {
1218 if (ISSBPRO(sc)) {
1219 /* make sure we re-set stereo mixer bit when we start
1220 output. */
1221 sbdsp_mix_write(sc, SBP_STEREO,
1222 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1223 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1224 if (ISJAZZ16(sc)) {
1225 /* Yes, we write the record mode to set
1226 16-bit playback mode. weird, huh? */
1227 if (sc->sc_precision == 16) {
1228 sbdsp_wdsp(sc,
1229 sc->sc_channels == 2 ?
1230 JAZZ16_RECORD_STEREO :
1231 JAZZ16_RECORD_MONO);
1232 } else {
1233 sbdsp_wdsp(sc,
1234 sc->sc_channels == 2 ?
1235 SB_DSP_RECORD_STEREO :
1236 SB_DSP_RECORD_MONO);
1237 }
1238 }
1239 }
1240
1241 if (ISSB16CLASS(sc)) {
1242 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1243 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1244 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1245 goto giveup;
1246 } else
1247 sbdsp_set_timeconst(sc, sc->sc_otc);
1248
1249 sc->sc_dmadir = SB_DMA_OUT;
1250 sc->dmaflags = DMAMODE_WRITE;
1251 if (ISSB2CLASS(sc))
1252 sc->dmaflags |= DMAMODE_LOOP;
1253 } else {
1254 /* Already started; just return. */
1255 if (ISSB2CLASS(sc))
1256 return 0;
1257 }
1258
1259 sc->dmaaddr = p;
1260 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1261 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1262 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1263 sc->sc_intr = intr;
1264 sc->sc_arg = arg;
1265
1266 if (sc->sc_precision == 16)
1267 cc >>= 1;
1268 --cc;
1269 if (ISSB16CLASS(sc)) {
1270 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1271 SB_DSP16_WDMA_8) < 0 ||
1272 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1273 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1274 sbdsp16_wait(sc) ||
1275 sbdsp_wdsp(sc, cc) < 0 ||
1276 sbdsp_wdsp(sc, cc >> 8) < 0) {
1277 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1278 goto giveup;
1279 }
1280 } else if (ISSB2CLASS(sc)) {
1281 if (cc != sc->sc_last_hs_size) {
1282 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1283 sbdsp_wdsp(sc, cc) < 0 ||
1284 sbdsp_wdsp(sc, cc >> 8) < 0) {
1285 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1286 goto giveup;
1287 }
1288 sc->sc_last_hs_size = cc;
1289 }
1290 if (sbdsp_wdsp(sc,
1291 sc->sc_omode == SB_ADAC_LS ? SB_DSP_WDMA_LOOP :
1292 SB_DSP_HS_OUTPUT) < 0) {
1293 DPRINTF(("sbdsp_dma_output: SB2 DMA restart failed\n"));
1294 goto giveup;
1295 }
1296 } else {
1297 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1298 sbdsp_wdsp(sc, cc) < 0 ||
1299 sbdsp_wdsp(sc, cc >> 8) < 0) {
1300 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1301 goto giveup;
1302 }
1303 }
1304 return 0;
1305
1306 giveup:
1307 sbdsp_reset(sc);
1308 return EIO;
1309 }
1310
1311 /*
1312 * Only the DSP unit on the sound blaster generates interrupts.
1313 * There are three cases of interrupt: reception of a midi byte
1314 * (when mode is enabled), completion of dma transmission, or
1315 * completion of a dma reception. The three modes are mutually
1316 * exclusive so we know a priori which event has occurred.
1317 */
1318 int
1319 sbdsp_intr(arg)
1320 void *arg;
1321 {
1322 register struct sbdsp_softc *sc = arg;
1323 u_char x;
1324
1325 #ifdef AUDIO_DEBUG
1326 if (sbdspdebug > 1)
1327 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1328 #endif
1329 if (ISSB16CLASS(sc)) {
1330 x = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1331 if ((x & 3) == 0)
1332 return 0;
1333 } else {
1334 if (!isa_dmafinished(sc->dmachan))
1335 return 0;
1336 }
1337 sc->sc_interrupts++;
1338 delay(10);
1339 #if 0
1340 if (sc->sc_mintr != 0) {
1341 x = sbdsp_rdsp(sc);
1342 (*sc->sc_mintr)(sc->sc_arg, x);
1343 } else
1344 #endif
1345 if (sc->sc_intr != 0) {
1346 /* clear interrupt */
1347 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1348 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1349 SBP_DSP_IRQACK8);
1350 if (!ISSB2CLASS(sc))
1351 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1352 sc->dmachan);
1353 (*sc->sc_intr)(sc->sc_arg);
1354 } else {
1355 return 0;
1356 }
1357 return 1;
1358 }
1359
1360 #if 0
1361 /*
1362 * Enter midi uart mode and arrange for read interrupts
1363 * to vector to `intr'. This puts the card in a mode
1364 * which allows only midi I/O; the card must be reset
1365 * to leave this mode. Unfortunately, the card does not
1366 * use transmit interrupts, so bytes must be output
1367 * using polling. To keep the polling overhead to a
1368 * minimum, output should be driven off a timer.
1369 * This is a little tricky since only 320us separate
1370 * consecutive midi bytes.
1371 */
1372 void
1373 sbdsp_set_midi_mode(sc, intr, arg)
1374 struct sbdsp_softc *sc;
1375 void (*intr)();
1376 void *arg;
1377 {
1378
1379 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1380 sc->sc_mintr = intr;
1381 sc->sc_intr = 0;
1382 sc->sc_arg = arg;
1383 }
1384
1385 /*
1386 * Write a byte to the midi port, when in midi uart mode.
1387 */
1388 void
1389 sbdsp_midi_output(sc, v)
1390 struct sbdsp_softc *sc;
1391 int v;
1392 {
1393
1394 if (sbdsp_wdsp(sc, v) < 0)
1395 ++sberr.wmidi;
1396 }
1397 #endif
1398
1399 int
1400 sbdsp_setfd(addr, flag)
1401 void *addr;
1402 int flag;
1403 {
1404 /* Can't do full-duplex */
1405 return(ENOTTY);
1406 }
1407
1408 int
1409 sbdsp_mixer_set_port(addr, cp)
1410 void *addr;
1411 mixer_ctrl_t *cp;
1412 {
1413 register struct sbdsp_softc *sc = addr;
1414 int src, gain;
1415
1416 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1417 cp->un.value.num_channels));
1418
1419 if (!ISSBPROCLASS(sc))
1420 return EINVAL;
1421
1422 /*
1423 * Everything is a value except for SBPro BASS/TREBLE and
1424 * RECORD_SOURCE
1425 */
1426 switch (cp->dev) {
1427 case SB_SPEAKER:
1428 cp->dev = SB_MASTER_VOL;
1429 case SB_MIC_PORT:
1430 case SB_LINE_IN_PORT:
1431 case SB_DAC_PORT:
1432 case SB_FM_PORT:
1433 case SB_CD_PORT:
1434 case SB_MASTER_VOL:
1435 if (cp->type != AUDIO_MIXER_VALUE)
1436 return EINVAL;
1437
1438 /*
1439 * All the mixer ports are stereo except for the microphone.
1440 * If we get a single-channel gain value passed in, then we
1441 * duplicate it to both left and right channels.
1442 */
1443
1444 switch (cp->dev) {
1445 case SB_MIC_PORT:
1446 if (cp->un.value.num_channels != 1)
1447 return EINVAL;
1448
1449 /* handle funny microphone gain */
1450 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1451 break;
1452 case SB_LINE_IN_PORT:
1453 case SB_DAC_PORT:
1454 case SB_FM_PORT:
1455 case SB_CD_PORT:
1456 case SB_MASTER_VOL:
1457 switch (cp->un.value.num_channels) {
1458 case 1:
1459 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1460 break;
1461 case 2:
1462 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1463 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1464 break;
1465 default:
1466 return EINVAL;
1467 }
1468 break;
1469 default:
1470 return EINVAL;
1471 }
1472
1473 switch (cp->dev) {
1474 case SB_MIC_PORT:
1475 src = SBP_MIC_VOL;
1476 break;
1477 case SB_MASTER_VOL:
1478 src = SBP_MASTER_VOL;
1479 break;
1480 case SB_LINE_IN_PORT:
1481 src = SBP_LINE_VOL;
1482 break;
1483 case SB_DAC_PORT:
1484 src = SBP_DAC_VOL;
1485 break;
1486 case SB_FM_PORT:
1487 src = SBP_FM_VOL;
1488 break;
1489 case SB_CD_PORT:
1490 src = SBP_CD_VOL;
1491 break;
1492 default:
1493 return EINVAL;
1494 }
1495
1496 sbdsp_mix_write(sc, src, gain);
1497 sc->gain[cp->dev] = gain;
1498 break;
1499
1500 case SB_TREBLE:
1501 case SB_BASS:
1502 case SB_RECORD_SOURCE:
1503 if (cp->type != AUDIO_MIXER_ENUM)
1504 return EINVAL;
1505
1506 switch (cp->dev) {
1507 case SB_TREBLE:
1508 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1509 case SB_BASS:
1510 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1511 case SB_RECORD_SOURCE:
1512 return sbdsp_set_in_port(addr, cp->un.ord);
1513 }
1514
1515 break;
1516
1517 default:
1518 return EINVAL;
1519 }
1520
1521 return (0);
1522 }
1523
1524 int
1525 sbdsp_mixer_get_port(addr, cp)
1526 void *addr;
1527 mixer_ctrl_t *cp;
1528 {
1529 register struct sbdsp_softc *sc = addr;
1530 int gain;
1531
1532 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1533
1534 if (!ISSBPROCLASS(sc))
1535 return EINVAL;
1536
1537 switch (cp->dev) {
1538 case SB_SPEAKER:
1539 cp->dev = SB_MASTER_VOL;
1540 case SB_MIC_PORT:
1541 case SB_LINE_IN_PORT:
1542 case SB_DAC_PORT:
1543 case SB_FM_PORT:
1544 case SB_CD_PORT:
1545 case SB_MASTER_VOL:
1546 gain = sc->gain[cp->dev];
1547
1548 switch (cp->dev) {
1549 case SB_MIC_PORT:
1550 if (cp->un.value.num_channels != 1)
1551 return EINVAL;
1552
1553 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1554 break;
1555 case SB_LINE_IN_PORT:
1556 case SB_DAC_PORT:
1557 case SB_FM_PORT:
1558 case SB_CD_PORT:
1559 case SB_MASTER_VOL:
1560 switch (cp->un.value.num_channels) {
1561 case 1:
1562 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1563 break;
1564 case 2:
1565 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1566 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1567 break;
1568 default:
1569 return EINVAL;
1570 }
1571 break;
1572 }
1573
1574 break;
1575
1576 case SB_TREBLE:
1577 case SB_BASS:
1578 case SB_RECORD_SOURCE:
1579 switch (cp->dev) {
1580 case SB_TREBLE:
1581 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1582 return 0;
1583 case SB_BASS:
1584 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1585 return 0;
1586 case SB_RECORD_SOURCE:
1587 cp->un.ord = sbdsp_get_in_port(addr);
1588 return 0;
1589 }
1590
1591 break;
1592
1593 default:
1594 return EINVAL;
1595 }
1596
1597 return (0);
1598 }
1599
1600 int
1601 sbdsp_mixer_query_devinfo(addr, dip)
1602 void *addr;
1603 register mixer_devinfo_t *dip;
1604 {
1605 register struct sbdsp_softc *sc = addr;
1606
1607 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1608
1609 switch (dip->index) {
1610 case SB_MIC_PORT:
1611 dip->type = AUDIO_MIXER_VALUE;
1612 dip->mixer_class = SB_INPUT_CLASS;
1613 dip->prev = AUDIO_MIXER_LAST;
1614 dip->next = AUDIO_MIXER_LAST;
1615 strcpy(dip->label.name, AudioNmicrophone);
1616 dip->un.v.num_channels = 1;
1617 strcpy(dip->un.v.units.name, AudioNvolume);
1618 return 0;
1619
1620 case SB_SPEAKER:
1621 dip->type = AUDIO_MIXER_VALUE;
1622 dip->mixer_class = SB_OUTPUT_CLASS;
1623 dip->prev = AUDIO_MIXER_LAST;
1624 dip->next = AUDIO_MIXER_LAST;
1625 strcpy(dip->label.name, AudioNspeaker);
1626 dip->un.v.num_channels = 1;
1627 strcpy(dip->un.v.units.name, AudioNvolume);
1628 return 0;
1629
1630 case SB_INPUT_CLASS:
1631 dip->type = AUDIO_MIXER_CLASS;
1632 dip->mixer_class = SB_INPUT_CLASS;
1633 dip->next = dip->prev = AUDIO_MIXER_LAST;
1634 strcpy(dip->label.name, AudioCInputs);
1635 return 0;
1636
1637 case SB_OUTPUT_CLASS:
1638 dip->type = AUDIO_MIXER_CLASS;
1639 dip->mixer_class = SB_OUTPUT_CLASS;
1640 dip->next = dip->prev = AUDIO_MIXER_LAST;
1641 strcpy(dip->label.name, AudioCOutputs);
1642 return 0;
1643 }
1644
1645 if (ISSBPROCLASS(sc)) {
1646 switch (dip->index) {
1647 case SB_LINE_IN_PORT:
1648 dip->type = AUDIO_MIXER_VALUE;
1649 dip->mixer_class = SB_INPUT_CLASS;
1650 dip->prev = AUDIO_MIXER_LAST;
1651 dip->next = AUDIO_MIXER_LAST;
1652 strcpy(dip->label.name, AudioNline);
1653 dip->un.v.num_channels = 2;
1654 strcpy(dip->un.v.units.name, AudioNvolume);
1655 return 0;
1656
1657 case SB_DAC_PORT:
1658 dip->type = AUDIO_MIXER_VALUE;
1659 dip->mixer_class = SB_INPUT_CLASS;
1660 dip->prev = AUDIO_MIXER_LAST;
1661 dip->next = AUDIO_MIXER_LAST;
1662 strcpy(dip->label.name, AudioNdac);
1663 dip->un.v.num_channels = 2;
1664 strcpy(dip->un.v.units.name, AudioNvolume);
1665 return 0;
1666
1667 case SB_CD_PORT:
1668 dip->type = AUDIO_MIXER_VALUE;
1669 dip->mixer_class = SB_INPUT_CLASS;
1670 dip->prev = AUDIO_MIXER_LAST;
1671 dip->next = AUDIO_MIXER_LAST;
1672 strcpy(dip->label.name, AudioNcd);
1673 dip->un.v.num_channels = 2;
1674 strcpy(dip->un.v.units.name, AudioNvolume);
1675 return 0;
1676
1677 case SB_FM_PORT:
1678 dip->type = AUDIO_MIXER_VALUE;
1679 dip->mixer_class = SB_INPUT_CLASS;
1680 dip->prev = AUDIO_MIXER_LAST;
1681 dip->next = AUDIO_MIXER_LAST;
1682 strcpy(dip->label.name, AudioNfmsynth);
1683 dip->un.v.num_channels = 2;
1684 strcpy(dip->un.v.units.name, AudioNvolume);
1685 return 0;
1686
1687 case SB_MASTER_VOL:
1688 dip->type = AUDIO_MIXER_VALUE;
1689 dip->mixer_class = SB_OUTPUT_CLASS;
1690 dip->prev = AUDIO_MIXER_LAST;
1691 dip->next = AUDIO_MIXER_LAST;
1692 strcpy(dip->label.name, AudioNvolume);
1693 dip->un.v.num_channels = 2;
1694 strcpy(dip->un.v.units.name, AudioNvolume);
1695 return 0;
1696
1697 case SB_RECORD_SOURCE:
1698 dip->mixer_class = SB_RECORD_CLASS;
1699 dip->type = AUDIO_MIXER_ENUM;
1700 dip->prev = AUDIO_MIXER_LAST;
1701 dip->next = AUDIO_MIXER_LAST;
1702 strcpy(dip->label.name, AudioNsource);
1703 dip->un.e.num_mem = 3;
1704 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1705 dip->un.e.member[0].ord = SB_MIC_PORT;
1706 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1707 dip->un.e.member[1].ord = SB_CD_PORT;
1708 strcpy(dip->un.e.member[2].label.name, AudioNline);
1709 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1710 return 0;
1711
1712 case SB_BASS:
1713 dip->type = AUDIO_MIXER_ENUM;
1714 dip->mixer_class = SB_INPUT_CLASS;
1715 dip->prev = AUDIO_MIXER_LAST;
1716 dip->next = AUDIO_MIXER_LAST;
1717 strcpy(dip->label.name, AudioNbass);
1718 dip->un.e.num_mem = 2;
1719 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1720 dip->un.e.member[0].ord = 0;
1721 strcpy(dip->un.e.member[1].label.name, AudioNon);
1722 dip->un.e.member[1].ord = 1;
1723 return 0;
1724
1725 case SB_TREBLE:
1726 dip->type = AUDIO_MIXER_ENUM;
1727 dip->mixer_class = SB_INPUT_CLASS;
1728 dip->prev = AUDIO_MIXER_LAST;
1729 dip->next = AUDIO_MIXER_LAST;
1730 strcpy(dip->label.name, AudioNtreble);
1731 dip->un.e.num_mem = 2;
1732 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1733 dip->un.e.member[0].ord = 0;
1734 strcpy(dip->un.e.member[1].label.name, AudioNon);
1735 dip->un.e.member[1].ord = 1;
1736 return 0;
1737
1738 case SB_RECORD_CLASS: /* record source class */
1739 dip->type = AUDIO_MIXER_CLASS;
1740 dip->mixer_class = SB_RECORD_CLASS;
1741 dip->next = dip->prev = AUDIO_MIXER_LAST;
1742 strcpy(dip->label.name, AudioCRecord);
1743 return 0;
1744 }
1745 }
1746
1747 return ENXIO;
1748 }
1749