sbdsp.c revision 1.45 1 /* $NetBSD: sbdsp.c,v 1.45 1997/05/09 22:16:41 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 */
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/device.h>
50 #include <sys/proc.h>
51 #include <sys/buf.h>
52 #include <vm/vm.h>
53
54 #include <machine/cpu.h>
55 #include <machine/intr.h>
56 #include <machine/pio.h>
57
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60 #include <dev/mulaw.h>
61
62 #include <dev/isa/isavar.h>
63 #include <dev/isa/isadmavar.h>
64 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
65
66 #include <dev/isa/sbreg.h>
67 #include <dev/isa/sbdspvar.h>
68
69 #ifdef AUDIO_DEBUG
70 extern void Dprintf __P((const char *, ...));
71 #define DPRINTF(x) if (sbdspdebug) Dprintf x
72 int sbdspdebug = 0;
73 #else
74 #define DPRINTF(x)
75 #endif
76
77 #ifndef SBDSP_NPOLL
78 #define SBDSP_NPOLL 3000
79 #endif
80
81 struct {
82 int wdsp;
83 int rdsp;
84 int wmidi;
85 } sberr;
86
87 int sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
88 int *tcp, int *modep));
89 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
90
91 /*
92 * Time constant routines follow. See SBK, section 12.
93 * Although they don't come out and say it (in the docs),
94 * the card clearly uses a 1MHz countdown timer, as the
95 * low-speed formula (p. 12-4) is:
96 * tc = 256 - 10^6 / sr
97 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
98 * and a 256MHz clock is used:
99 * tc = 65536 - 256 * 10^ 6 / sr
100 * Since we can only use the upper byte of the HS TC, the two formulae
101 * are equivalent. (Why didn't they say so?) E.g.,
102 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
103 *
104 * The crossover point (from low- to high-speed modes) is different
105 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
106 *
107 * SBPRO SB20
108 * ----- --------
109 * input ls min 4 KHz 4 KHz
110 * input ls max 23 KHz 13 KHz
111 * input hs max 44.1 KHz 15 KHz
112 * output ls min 4 KHz 4 KHz
113 * output ls max 23 KHz 23 KHz
114 * output hs max 44.1 KHz 44.1 KHz
115 */
116 #define SB_LS_MIN 0x06 /* 4000 Hz */
117 #define SB_8K 0x83 /* 8000 Hz */
118 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
119 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
120 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
121 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
122 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
123 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
124
125 int sbdsp16_wait __P((struct sbdsp_softc *));
126 void sbdsp_to __P((void *));
127 void sbdsp_pause __P((struct sbdsp_softc *));
128 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
129 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
130 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
131 int sbdsp_set_io_params __P((struct sbdsp_softc *, struct audio_params *));
132 void sbdsp_mulaw_expand __P((void *, u_char *, int));
133 void sbdsp_mulaw_compress __P((void *, u_char *, int));
134
135 #ifdef AUDIO_DEBUG
136 void sb_printsc __P((struct sbdsp_softc *));
137
138 void
139 sb_printsc(sc)
140 struct sbdsp_softc *sc;
141 {
142 int i;
143
144 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
145 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
146 sc->sc_iobase, sc->sc_irq);
147 printf("irate %d itc %d imode %d orate %d otc %d omode %d\n",
148 sc->sc_irate, sc->sc_itc, sc->sc_imode,
149 sc->sc_orate, sc->sc_otc, sc->sc_omode);
150 printf("outport %u inport %u spkron %u nintr %lu\n",
151 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
152 printf("precision %u channels %d intr %p arg %p\n",
153 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
154 printf("gain:");
155 for (i = 0; i < SB_NDEVS; i++)
156 printf(" %u", sc->gain[i]);
157 printf("\n");
158 }
159 #endif /* AUDIO_DEBUG */
160
161 /*
162 * Probe / attach routines.
163 */
164
165 /*
166 * Probe for the soundblaster hardware.
167 */
168 int
169 sbdsp_probe(sc)
170 struct sbdsp_softc *sc;
171 {
172
173 if (sbdsp_reset(sc) < 0) {
174 DPRINTF(("sbdsp: couldn't reset card\n"));
175 return 0;
176 }
177 /* if flags set, go and probe the jazz16 stuff */
178 if (sc->sc_dev.dv_cfdata->cf_flags != 0) {
179 sc->sc_model = sbdsp_jazz16_probe(sc);
180 } else {
181 sc->sc_model = sbversion(sc);
182 }
183
184 sc->sc_model = 0x100; /* XXX pretend to be just a tired old SB XXX */
185
186 return 1;
187 }
188
189 /*
190 * Try add-on stuff for Jazz16.
191 */
192 u_int
193 sbdsp_jazz16_probe(sc)
194 struct sbdsp_softc *sc;
195 {
196 static u_char jazz16_irq_conf[16] = {
197 -1, -1, 0x02, 0x03,
198 -1, 0x01, -1, 0x04,
199 -1, 0x02, 0x05, -1,
200 -1, -1, -1, 0x06};
201 static u_char jazz16_drq_conf[8] = {
202 -1, 0x01, -1, 0x02,
203 -1, 0x03, -1, 0x04};
204
205 u_int rval = sbversion(sc);
206 bus_space_tag_t iot = sc->sc_iot;
207 bus_space_handle_t ioh;
208
209 DPRINTF(("jazz16 probe\n"));
210
211 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
212 DPRINTF(("bus map failed\n"));
213 return rval;
214 }
215
216 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
217 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
218 DPRINTF(("drq/irq check failed\n"));
219 goto done; /* give up, we can't do it. */
220 }
221
222 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
223 delay(10000); /* delay 10 ms */
224 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
225 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
226
227 if (sbdsp_reset(sc) < 0) {
228 DPRINTF(("sbdsp_reset check failed\n"));
229 goto done; /* XXX? what else could we do? */
230 }
231
232 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
233 DPRINTF(("read16 setup failed\n"));
234 goto done;
235 }
236
237 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
238 DPRINTF(("read16 failed\n"));
239 goto done;
240 }
241
242 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
243 sc->sc_drq16 = sc->sc_drq8;
244 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
245 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
246 jazz16_drq_conf[sc->sc_drq8]) ||
247 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
248 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
249 } else {
250 DPRINTF(("jazz16 detected!\n"));
251 rval |= MODEL_JAZZ16;
252 }
253
254 done:
255 bus_space_unmap(iot, ioh, 1);
256 return rval;
257 }
258
259 /*
260 * Attach hardware to driver, attach hardware driver to audio
261 * pseudo-device driver .
262 */
263 void
264 sbdsp_attach(sc)
265 struct sbdsp_softc *sc;
266 {
267
268 /* Set defaults */
269 if (ISSB16CLASS(sc))
270 sc->sc_irate = sc->sc_orate = 8000;
271 else if (ISSBPROCLASS(sc))
272 sc->sc_itc = sc->sc_otc = SB_8K;
273 else
274 sc->sc_itc = sc->sc_otc = SB_8K;
275 sc->sc_precision = 8;
276 sc->sc_channels = 1;
277
278 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
279 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
280
281 if (ISSBPROCLASS(sc)) {
282 int i;
283
284 /* set mixer to default levels, by sending a mixer
285 reset command. */
286 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
287 /* then some adjustments :) */
288 sbdsp_mix_write(sc, SBP_CD_VOL,
289 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
290 sbdsp_mix_write(sc, SBP_DAC_VOL,
291 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
292 sbdsp_mix_write(sc, SBP_MASTER_VOL,
293 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
294 sbdsp_mix_write(sc, SBP_LINE_VOL,
295 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
296 for (i = 0; i < SB_NDEVS; i++)
297 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
298 sc->in_filter = 0; /* no filters turned on, please */
299 }
300
301 printf(": dsp v%d.%02d%s\n",
302 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
303 ISJAZZ16(sc) ? ": <Jazz16>" : "");
304 }
305
306 /*
307 * Various routines to interface to higher level audio driver
308 */
309
310 void
311 sbdsp_mix_write(sc, mixerport, val)
312 struct sbdsp_softc *sc;
313 int mixerport;
314 int val;
315 {
316 bus_space_tag_t iot = sc->sc_iot;
317 bus_space_handle_t ioh = sc->sc_ioh;
318
319 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
320 delay(10);
321 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
322 delay(30);
323 }
324
325 int
326 sbdsp_mix_read(sc, mixerport)
327 struct sbdsp_softc *sc;
328 int mixerport;
329 {
330 bus_space_tag_t iot = sc->sc_iot;
331 bus_space_handle_t ioh = sc->sc_ioh;
332
333 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
334 delay(10);
335 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
336 }
337
338 int
339 sbdsp_query_encoding(addr, fp)
340 void *addr;
341 struct audio_encoding *fp;
342 {
343 switch (fp->index) {
344 case 0:
345 strcpy(fp->name, AudioEmulaw);
346 fp->encoding = AUDIO_ENCODING_ULAW;
347 fp->precision = 8;
348 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
349 break;
350 case 1:
351 strcpy(fp->name, AudioElinear_le);
352 fp->encoding = AUDIO_ENCODING_LINEAR_LE;
353 fp->precision = 16;
354 fp->flags = 0;
355 break;
356 case 2:
357 strcpy(fp->name, AudioEulinear);
358 fp->encoding = AUDIO_ENCODING_ULINEAR;
359 fp->precision = 8;
360 fp->flags = 0;
361 break;
362 default:
363 return (EINVAL);
364 }
365 return (0);
366 }
367
368 int
369 sbdsp_set_io_params(sc, p)
370 struct sbdsp_softc *sc;
371 struct audio_params *p;
372 {
373
374 switch (p->encoding) {
375 case AUDIO_ENCODING_ULAW:
376 case AUDIO_ENCODING_LINEAR_LE:
377 break;
378 default:
379 return (EINVAL);
380 }
381
382 if (ISSB16CLASS(sc) || ISJAZZ16(sc)) {
383 if (p->precision != 16 && p->precision != 8)
384 return (EINVAL);
385 } else {
386 if (p->precision != 8)
387 return (EINVAL);
388 }
389
390 if (ISSBPROCLASS(sc)) {
391 if (p->channels != 1 && p->channels != 2)
392 return (EINVAL);
393 if (p->channels == 2 && p->sample_rate > 22000)
394 return (EINVAL);
395 } else {
396 if (p->channels != 1)
397 return (EINVAL);
398 }
399
400 return (0);
401 }
402
403 void
404 sbdsp_mulaw_expand(v, p, cc)
405 void *v;
406 u_char *p;
407 int cc;
408 {
409 mulaw_to_ulinear8(p, cc);
410 }
411
412 void
413 sbdsp_mulaw_compress(v, p, cc)
414 void *v;
415 u_char *p;
416 int cc;
417 {
418 ulinear8_to_mulaw(p, cc);
419 }
420
421 int
422 sbdsp_set_params(addr, mode, p, q)
423 void *addr;
424 int mode;
425 struct audio_params *p, *q;
426 {
427 register struct sbdsp_softc *sc = addr;
428 int error, rate;
429
430 error = sbdsp_set_io_params(sc, p);
431 if (error)
432 return error;
433
434 if (mode == AUMODE_RECORD) {
435 if (ISSB16CLASS(sc)) {
436 error = sbdsp16_setrate(sc, p->sample_rate, SB_INPUT_RATE,
437 &sc->sc_irate);
438 rate = sc->sc_irate;
439 } else {
440 error = sbdsp_srtotc(sc, p->sample_rate, SB_INPUT_RATE,
441 &sc->sc_itc, &sc->sc_imode);
442 rate = sbdsp_tctosr(sc, sc->sc_itc);
443 }
444 } else {
445 if (ISSB16CLASS(sc)) {
446 error = sbdsp16_setrate(sc, p->sample_rate, SB_OUTPUT_RATE,
447 &sc->sc_orate);
448 rate = sc->sc_orate;
449 } else {
450 error = sbdsp_srtotc(sc, p->sample_rate, SB_OUTPUT_RATE,
451 &sc->sc_otc, &sc->sc_omode);
452 rate = sbdsp_tctosr(sc, sc->sc_otc);
453 }
454 }
455 if (error)
456 return error;
457
458 sc->sc_precision = p->precision;
459 sc->sc_channels = p->channels;
460
461 p->sample_rate = rate;
462 if (p->encoding == AUDIO_ENCODING_ULAW) {
463 p->sw_code = mode == AUMODE_PLAY ?
464 sbdsp_mulaw_expand : sbdsp_mulaw_compress;
465 } else
466 p->sw_code = 0;
467
468 /* Update setting for the other mode. */
469 q->encoding = p->encoding;
470 q->channels = p->channels;
471 q->precision = p->precision;
472 return 0;
473 }
474
475 int
476 sbdsp_set_ifilter(addr, which)
477 void *addr;
478 int which;
479 {
480 register struct sbdsp_softc *sc = addr;
481 int mixval;
482
483 /* XXXX SB16 */
484 if (ISSBPROCLASS(sc)) {
485 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
486 switch (which) {
487 case 0:
488 mixval |= SBP_FILTER_OFF;
489 break;
490 case SBP_TREBLE_EQ:
491 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
492 break;
493 case SBP_BASS_EQ:
494 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
495 break;
496 default:
497 return (EINVAL);
498 }
499 sc->in_filter = mixval & SBP_IFILTER_MASK;
500 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
501 return (0);
502 } else
503 return (EINVAL);
504 }
505
506 int
507 sbdsp_get_ifilter(addr)
508 void *addr;
509 {
510 register struct sbdsp_softc *sc = addr;
511
512 /* XXXX SB16 */
513 if (ISSBPROCLASS(sc)) {
514 sc->in_filter =
515 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
516 switch (sc->in_filter) {
517 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
518 return (SBP_TREBLE_EQ);
519 case SBP_FILTER_ON|SBP_IFILTER_LOW:
520 return (SBP_BASS_EQ);
521 case SBP_FILTER_OFF:
522 default:
523 return (0);
524 }
525 } else
526 return (0);
527 }
528
529 int
530 sbdsp_set_out_port(addr, port)
531 void *addr;
532 int port;
533 {
534 register struct sbdsp_softc *sc = addr;
535
536 sc->out_port = port; /* Just record it */
537
538 return (0);
539 }
540
541 int
542 sbdsp_get_out_port(addr)
543 void *addr;
544 {
545 register struct sbdsp_softc *sc = addr;
546
547 return (sc->out_port);
548 }
549
550
551 int
552 sbdsp_set_in_port(addr, port)
553 void *addr;
554 int port;
555 {
556 register struct sbdsp_softc *sc = addr;
557 int mixport, sbport;
558
559 if (ISSBPROCLASS(sc)) {
560 switch (port) {
561 case SB_MIC_PORT:
562 sbport = SBP_FROM_MIC;
563 mixport = SBP_MIC_VOL;
564 break;
565 case SB_LINE_IN_PORT:
566 sbport = SBP_FROM_LINE;
567 mixport = SBP_LINE_VOL;
568 break;
569 case SB_CD_PORT:
570 sbport = SBP_FROM_CD;
571 mixport = SBP_CD_VOL;
572 break;
573 case SB_DAC_PORT:
574 case SB_FM_PORT:
575 default:
576 return (EINVAL);
577 }
578 } else {
579 switch (port) {
580 case SB_MIC_PORT:
581 sbport = SBP_FROM_MIC;
582 mixport = SBP_MIC_VOL;
583 break;
584 default:
585 return (EINVAL);
586 }
587 }
588
589 sc->in_port = port; /* Just record it */
590
591 /* XXXX SB16 */
592 if (ISSBPROCLASS(sc)) {
593 /* record from that port */
594 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
595 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
596 /* fetch gain from that port */
597 sc->gain[port] = sbdsp_mix_read(sc, mixport);
598 }
599
600 return (0);
601 }
602
603 int
604 sbdsp_get_in_port(addr)
605 void *addr;
606 {
607 register struct sbdsp_softc *sc = addr;
608
609 return (sc->in_port);
610 }
611
612
613 int
614 sbdsp_speaker_ctl(addr, newstate)
615 void *addr;
616 int newstate;
617 {
618 register struct sbdsp_softc *sc = addr;
619
620 if ((newstate == SPKR_ON) &&
621 (sc->spkr_state == SPKR_OFF)) {
622 sbdsp_spkron(sc);
623 sc->spkr_state = SPKR_ON;
624 }
625 if ((newstate == SPKR_OFF) &&
626 (sc->spkr_state == SPKR_ON)) {
627 sbdsp_spkroff(sc);
628 sc->spkr_state = SPKR_OFF;
629 }
630 return(0);
631 }
632
633 int
634 sbdsp_round_blocksize(addr, blk)
635 void *addr;
636 int blk;
637 {
638 register struct sbdsp_softc *sc = addr;
639
640 sc->sc_last_hs_size = 0;
641
642 /* Don't try to DMA too much at once. */
643 if (blk > NBPG)
644 blk = NBPG;
645
646 /* Round to a multiple of the sample size. */
647 blk &= -(sc->sc_channels * sc->sc_precision / 8);
648
649 return (blk);
650 }
651
652 int
653 sbdsp_commit_settings(addr)
654 void *addr;
655 {
656 register struct sbdsp_softc *sc = addr;
657
658 /* XXX these can me moved to sddsp_io_params() now */
659
660 /* due to potentially unfortunate ordering in the above layers,
661 re-do a few sets which may be important--input gains
662 (adjust the proper channels), number of input channels (hit the
663 record rate and set mode) */
664
665 if (ISSBPRO(sc)) {
666 /*
667 * With 2 channels, SBPro can't do more than 22kHz.
668 * Whack the rates down to speed if necessary.
669 * Reset the time constant anyway
670 * because it may have been adjusted with a different number
671 * of channels, which means it might have computed the wrong
672 * mode (low/high speed).
673 */
674 if (sc->sc_channels == 2 &&
675 sbdsp_tctosr(sc, sc->sc_itc) > 22727) {
676 sbdsp_srtotc(sc, 22727, SB_INPUT_RATE,
677 &sc->sc_itc, &sc->sc_imode);
678 } else
679 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_itc),
680 SB_INPUT_RATE, &sc->sc_itc,
681 &sc->sc_imode);
682
683 if (sc->sc_channels == 2 &&
684 sbdsp_tctosr(sc, sc->sc_otc) > 22727) {
685 sbdsp_srtotc(sc, 22727, SB_OUTPUT_RATE,
686 &sc->sc_otc, &sc->sc_omode);
687 } else
688 sbdsp_srtotc(sc, sbdsp_tctosr(sc, sc->sc_otc),
689 SB_OUTPUT_RATE, &sc->sc_otc,
690 &sc->sc_omode);
691 }
692
693 /*
694 * XXX
695 * Should wait for chip to be idle.
696 */
697 sc->sc_dmadir = SB_DMA_NONE;
698
699 return 0;
700 }
701
702
703 int
704 sbdsp_open(sc, dev, flags)
705 register struct sbdsp_softc *sc;
706 dev_t dev;
707 int flags;
708 {
709 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
710
711 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
712 return ENXIO;
713
714 sc->sc_open = 1;
715 sc->sc_mintr = 0;
716 if (ISSBPROCLASS(sc) &&
717 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
718 DPRINTF(("sbdsp_open: can't set mono mode\n"));
719 /* we'll readjust when it's time for DMA. */
720 }
721
722 /*
723 * Leave most things as they were; users must change things if
724 * the previous process didn't leave it they way they wanted.
725 * Looked at another way, it's easy to set up a configuration
726 * in one program and leave it for another to inherit.
727 */
728 DPRINTF(("sbdsp_open: opened\n"));
729
730 return 0;
731 }
732
733 void
734 sbdsp_close(addr)
735 void *addr;
736 {
737 struct sbdsp_softc *sc = addr;
738
739 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
740
741 sc->sc_open = 0;
742 sbdsp_spkroff(sc);
743 sc->spkr_state = SPKR_OFF;
744 sc->sc_mintr = 0;
745 sbdsp_haltdma(sc);
746
747 DPRINTF(("sbdsp_close: closed\n"));
748 }
749
750 /*
751 * Lower-level routines
752 */
753
754 /*
755 * Reset the card.
756 * Return non-zero if the card isn't detected.
757 */
758 int
759 sbdsp_reset(sc)
760 register struct sbdsp_softc *sc;
761 {
762 bus_space_tag_t iot = sc->sc_iot;
763 bus_space_handle_t ioh = sc->sc_ioh;
764
765 sc->sc_intr = 0;
766 if (sc->sc_dmadir != SB_DMA_NONE) {
767 isa_dmaabort(sc->dmachan);
768 sc->sc_dmadir = SB_DMA_NONE;
769 }
770 sc->sc_last_hs_size = 0;
771
772 /*
773 * See SBK, section 11.3.
774 * We pulse a reset signal into the card.
775 * Gee, what a brilliant hardware design.
776 */
777 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
778 delay(10);
779 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
780 delay(30);
781 if (sbdsp_rdsp(sc) != SB_MAGIC)
782 return -1;
783
784 return 0;
785 }
786
787 int
788 sbdsp16_wait(sc)
789 struct sbdsp_softc *sc;
790 {
791 bus_space_tag_t iot = sc->sc_iot;
792 bus_space_handle_t ioh = sc->sc_ioh;
793 register int i;
794
795 for (i = SBDSP_NPOLL; --i >= 0; ) {
796 register u_char x;
797 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
798 delay(10);
799 if ((x & SB_DSP_BUSY) == 0)
800 continue;
801 return 0;
802 }
803 ++sberr.wdsp;
804 return -1;
805 }
806
807 /*
808 * Write a byte to the dsp.
809 * XXX We are at the mercy of the card as we use a
810 * polling loop and wait until it can take the byte.
811 */
812 int
813 sbdsp_wdsp(sc, v)
814 struct sbdsp_softc *sc;
815 int v;
816 {
817 bus_space_tag_t iot = sc->sc_iot;
818 bus_space_handle_t ioh = sc->sc_ioh;
819 register int i;
820
821 for (i = SBDSP_NPOLL; --i >= 0; ) {
822 register u_char x;
823 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
824 delay(10);
825 if ((x & SB_DSP_BUSY) != 0)
826 continue;
827 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
828 delay(10);
829 return 0;
830 }
831 ++sberr.wdsp;
832 return -1;
833 }
834
835 /*
836 * Read a byte from the DSP, using polling.
837 */
838 int
839 sbdsp_rdsp(sc)
840 struct sbdsp_softc *sc;
841 {
842 bus_space_tag_t iot = sc->sc_iot;
843 bus_space_handle_t ioh = sc->sc_ioh;
844 register int i;
845
846 for (i = SBDSP_NPOLL; --i >= 0; ) {
847 register u_char x;
848 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
849 delay(10);
850 if ((x & SB_DSP_READY) == 0)
851 continue;
852 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
853 delay(10);
854 return x;
855 }
856 ++sberr.rdsp;
857 return -1;
858 }
859
860 /*
861 * Doing certain things (like toggling the speaker) make
862 * the SB hardware go away for a while, so pause a little.
863 */
864 void
865 sbdsp_to(arg)
866 void *arg;
867 {
868 wakeup(arg);
869 }
870
871 void
872 sbdsp_pause(sc)
873 struct sbdsp_softc *sc;
874 {
875 extern int hz;
876
877 timeout(sbdsp_to, sbdsp_to, hz/8);
878 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
879 }
880
881 /*
882 * Turn on the speaker. The SBK documention says this operation
883 * can take up to 1/10 of a second. Higher level layers should
884 * probably let the task sleep for this amount of time after
885 * calling here. Otherwise, things might not work (because
886 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
887 *
888 * These engineers had their heads up their ass when
889 * they designed this card.
890 */
891 void
892 sbdsp_spkron(sc)
893 struct sbdsp_softc *sc;
894 {
895 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
896 sbdsp_pause(sc);
897 }
898
899 /*
900 * Turn off the speaker; see comment above.
901 */
902 void
903 sbdsp_spkroff(sc)
904 struct sbdsp_softc *sc;
905 {
906 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
907 sbdsp_pause(sc);
908 }
909
910 /*
911 * Read the version number out of the card. Return major code
912 * in high byte, and minor code in low byte.
913 */
914 short
915 sbversion(sc)
916 struct sbdsp_softc *sc;
917 {
918 short v;
919
920 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
921 return 0;
922 v = sbdsp_rdsp(sc) << 8;
923 v |= sbdsp_rdsp(sc);
924 return ((v >= 0) ? v : 0);
925 }
926
927 /*
928 * Halt a DMA in progress. A low-speed transfer can be
929 * resumed with sbdsp_contdma().
930 */
931 int
932 sbdsp_haltdma(addr)
933 void *addr;
934 {
935 register struct sbdsp_softc *sc = addr;
936
937 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
938
939 sbdsp_reset(sc);
940 return 0;
941 }
942
943 int
944 sbdsp_contdma(addr)
945 void *addr;
946 {
947 register struct sbdsp_softc *sc = addr;
948
949 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
950
951 /* XXX how do we reinitialize the DMA controller state? do we care? */
952 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
953 return(0);
954 }
955
956 int
957 sbdsp16_setrate(sc, sr, isdac, ratep)
958 register struct sbdsp_softc *sc;
959 int sr;
960 int isdac;
961 int *ratep;
962 {
963
964 /*
965 * XXXX
966 * More checks here?
967 */
968 if (sr < 5000 || sr > 45454)
969 return (EINVAL);
970 *ratep = sr;
971 return (0);
972 }
973
974 /*
975 * Convert a linear sampling rate into the DAC time constant.
976 * Set *mode to indicate the high/low-speed DMA operation.
977 * Because of limitations of the card, not all rates are possible.
978 * We return the time constant of the closest possible rate.
979 * The sampling rate limits are different for the DAC and ADC,
980 * so isdac indicates output, and !isdac indicates input.
981 */
982 int
983 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
984 register struct sbdsp_softc *sc;
985 int sr;
986 int isdac;
987 int *tcp, *modep;
988 {
989 int tc, realtc, mode;
990
991 /*
992 * Don't forget to compute which mode we'll be in based on whether
993 * we need to double the rate for stereo on SBPRO.
994 */
995
996 if (sr == 0) {
997 tc = SB_LS_MIN;
998 mode = SB_ADAC_LS;
999 goto out;
1000 }
1001
1002 tc = 256 - (1000000 / sr);
1003
1004 if (sc->sc_channels == 2 && ISSBPRO(sc))
1005 /* compute based on 2x sample rate when needed */
1006 realtc = 256 - ( 500000 / sr);
1007 else
1008 realtc = tc;
1009
1010 if (tc < SB_LS_MIN) {
1011 tc = SB_LS_MIN;
1012 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
1013 * speed mode. */
1014 goto out;
1015 } else if (isdac) {
1016 if (realtc <= SB_DAC_LS_MAX)
1017 mode = SB_ADAC_LS;
1018 else {
1019 mode = SB_ADAC_HS;
1020 if (tc > SB_DAC_HS_MAX)
1021 tc = SB_DAC_HS_MAX;
1022 }
1023 } else {
1024 int adc_ls_max, adc_hs_max;
1025
1026 /* XXX use better rounding--compare distance to nearest tc on both
1027 sides of requested speed */
1028 if (ISSBPROCLASS(sc)) {
1029 adc_ls_max = SBPRO_ADC_LS_MAX;
1030 adc_hs_max = SBPRO_ADC_HS_MAX;
1031 } else {
1032 adc_ls_max = SBCLA_ADC_LS_MAX;
1033 adc_hs_max = SBCLA_ADC_HS_MAX;
1034 }
1035
1036 if (realtc <= adc_ls_max)
1037 mode = SB_ADAC_LS;
1038 else {
1039 mode = SB_ADAC_HS;
1040 if (tc > adc_hs_max)
1041 tc = adc_hs_max;
1042 }
1043 }
1044
1045 out:
1046 *tcp = tc;
1047 *modep = mode;
1048 return (0);
1049 }
1050
1051 /*
1052 * Convert a DAC time constant to a sampling rate.
1053 * See SBK, section 12.
1054 */
1055 int
1056 sbdsp_tctosr(sc, tc)
1057 register struct sbdsp_softc *sc;
1058 int tc;
1059 {
1060 int adc;
1061
1062 if (ISSBPROCLASS(sc))
1063 adc = SBPRO_ADC_HS_MAX;
1064 else
1065 adc = SBCLA_ADC_HS_MAX;
1066
1067 if (tc > adc)
1068 tc = adc;
1069
1070 return (1000000 / (256 - tc));
1071 }
1072
1073 int
1074 sbdsp_set_timeconst(sc, tc)
1075 register struct sbdsp_softc *sc;
1076 int tc;
1077 {
1078 /*
1079 * A SBPro in stereo mode uses time constants at double the
1080 * actual rate.
1081 */
1082 if (ISSBPRO(sc) && sc->sc_channels == 2)
1083 tc = 256 - ((256 - tc) / 2);
1084
1085 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1086
1087 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1088 sbdsp_wdsp(sc, tc) < 0)
1089 return (EIO);
1090
1091 return (0);
1092 }
1093
1094 int
1095 sbdsp_dma_input(addr, p, cc, intr, arg)
1096 void *addr;
1097 void *p;
1098 int cc;
1099 void (*intr) __P((void *));
1100 void *arg;
1101 {
1102 register struct sbdsp_softc *sc = addr;
1103
1104 #ifdef AUDIO_DEBUG
1105 if (sbdspdebug > 1)
1106 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1107 #endif
1108 if (sc->sc_channels == 2 && (cc & 1)) {
1109 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1110 return EIO;
1111 }
1112
1113 if (sc->sc_dmadir != SB_DMA_IN) {
1114 if (ISSBPRO(sc)) {
1115 if (sc->sc_channels == 2) {
1116 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1117 if (sbdsp_wdsp(sc,
1118 JAZZ16_RECORD_STEREO) < 0) {
1119 goto badmode;
1120 }
1121 } else if (sbdsp_wdsp(sc,
1122 SB_DSP_RECORD_STEREO) < 0)
1123 goto badmode;
1124 sbdsp_mix_write(sc, SBP_INFILTER,
1125 (sbdsp_mix_read(sc, SBP_INFILTER) &
1126 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1127 } else {
1128 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1129 if (sbdsp_wdsp(sc,
1130 JAZZ16_RECORD_MONO) < 0)
1131 {
1132 goto badmode;
1133 }
1134 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1135 goto badmode;
1136 sbdsp_mix_write(sc, SBP_INFILTER,
1137 (sbdsp_mix_read(sc, SBP_INFILTER) &
1138 ~SBP_IFILTER_MASK) | sc->in_filter);
1139 }
1140 }
1141
1142 if (ISSB16CLASS(sc)) {
1143 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1144 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1145 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1146 goto giveup;
1147 } else
1148 sbdsp_set_timeconst(sc, sc->sc_itc);
1149
1150 sc->sc_dmadir = SB_DMA_IN;
1151 sc->dmaflags = DMAMODE_READ;
1152 if (ISSB2CLASS(sc))
1153 sc->dmaflags |= DMAMODE_LOOP;
1154 } else {
1155 /* Already started; just return. */
1156 if (ISSB2CLASS(sc))
1157 return 0;
1158 }
1159
1160 sc->dmaaddr = p;
1161 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1162 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1163 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1164 sc->sc_intr = intr;
1165 sc->sc_arg = arg;
1166
1167 if (sc->sc_precision == 16)
1168 cc >>= 1;
1169 --cc;
1170 if (ISSB16CLASS(sc)) {
1171 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1172 SB_DSP16_RDMA_8) < 0 ||
1173 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1174 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1175 sbdsp16_wait(sc) ||
1176 sbdsp_wdsp(sc, cc) < 0 ||
1177 sbdsp_wdsp(sc, cc >> 8) < 0) {
1178 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1179 goto giveup;
1180 }
1181 } else if (ISSB2CLASS(sc)) {
1182 if (cc != sc->sc_last_hs_size) {
1183 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1184 sbdsp_wdsp(sc, cc) < 0 ||
1185 sbdsp_wdsp(sc, cc >> 8) < 0) {
1186 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1187 goto giveup;
1188 }
1189 sc->sc_last_hs_size = cc;
1190 }
1191 if (sbdsp_wdsp(sc,
1192 sc->sc_imode == SB_ADAC_LS ? SB_DSP_RDMA_LOOP :
1193 SB_DSP_HS_INPUT) < 0) {
1194 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1195 goto giveup;
1196 }
1197 } else {
1198 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1199 sbdsp_wdsp(sc, cc) < 0 ||
1200 sbdsp_wdsp(sc, cc >> 8) < 0) {
1201 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1202 goto giveup;
1203 }
1204 }
1205 return 0;
1206
1207 giveup:
1208 sbdsp_reset(sc);
1209 return EIO;
1210
1211 badmode:
1212 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1213 sc->sc_channels == 2 ? "stereo" : "mono"));
1214 return EIO;
1215 }
1216
1217 int
1218 sbdsp_dma_output(addr, p, cc, intr, arg)
1219 void *addr;
1220 void *p;
1221 int cc;
1222 void (*intr) __P((void *));
1223 void *arg;
1224 {
1225 register struct sbdsp_softc *sc = addr;
1226
1227 #ifdef AUDIO_DEBUG
1228 if (sbdspdebug > 1)
1229 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1230 #endif
1231 if (sc->sc_channels == 2 && (cc & 1)) {
1232 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1233 return EIO;
1234 }
1235
1236 if (sc->sc_dmadir != SB_DMA_OUT) {
1237 if (ISSBPRO(sc)) {
1238 /* make sure we re-set stereo mixer bit when we start
1239 output. */
1240 sbdsp_mix_write(sc, SBP_STEREO,
1241 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1242 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1243 if (ISJAZZ16(sc)) {
1244 /* Yes, we write the record mode to set
1245 16-bit playback mode. weird, huh? */
1246 if (sc->sc_precision == 16) {
1247 sbdsp_wdsp(sc,
1248 sc->sc_channels == 2 ?
1249 JAZZ16_RECORD_STEREO :
1250 JAZZ16_RECORD_MONO);
1251 } else {
1252 sbdsp_wdsp(sc,
1253 sc->sc_channels == 2 ?
1254 SB_DSP_RECORD_STEREO :
1255 SB_DSP_RECORD_MONO);
1256 }
1257 }
1258 }
1259
1260 if (ISSB16CLASS(sc)) {
1261 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1262 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1263 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1264 goto giveup;
1265 } else
1266 sbdsp_set_timeconst(sc, sc->sc_otc);
1267
1268 sc->sc_dmadir = SB_DMA_OUT;
1269 sc->dmaflags = DMAMODE_WRITE;
1270 if (ISSB2CLASS(sc))
1271 sc->dmaflags |= DMAMODE_LOOP;
1272 } else {
1273 /* Already started; just return. */
1274 if (ISSB2CLASS(sc))
1275 return 0;
1276 }
1277
1278 sc->dmaaddr = p;
1279 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1280 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1281 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1282 sc->sc_intr = intr;
1283 sc->sc_arg = arg;
1284
1285 if (sc->sc_precision == 16)
1286 cc >>= 1;
1287 --cc;
1288 if (ISSB16CLASS(sc)) {
1289 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1290 SB_DSP16_WDMA_8) < 0 ||
1291 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1292 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1293 sbdsp16_wait(sc) ||
1294 sbdsp_wdsp(sc, cc) < 0 ||
1295 sbdsp_wdsp(sc, cc >> 8) < 0) {
1296 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1297 goto giveup;
1298 }
1299 } else if (ISSB2CLASS(sc)) {
1300 if (cc != sc->sc_last_hs_size) {
1301 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1302 sbdsp_wdsp(sc, cc) < 0 ||
1303 sbdsp_wdsp(sc, cc >> 8) < 0) {
1304 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1305 goto giveup;
1306 }
1307 sc->sc_last_hs_size = cc;
1308 }
1309 if (sbdsp_wdsp(sc,
1310 sc->sc_omode == SB_ADAC_LS ? SB_DSP_WDMA_LOOP :
1311 SB_DSP_HS_OUTPUT) < 0) {
1312 DPRINTF(("sbdsp_dma_output: SB2 DMA restart failed\n"));
1313 goto giveup;
1314 }
1315 } else {
1316 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1317 sbdsp_wdsp(sc, cc) < 0 ||
1318 sbdsp_wdsp(sc, cc >> 8) < 0) {
1319 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1320 goto giveup;
1321 }
1322 }
1323 return 0;
1324
1325 giveup:
1326 sbdsp_reset(sc);
1327 return EIO;
1328 }
1329
1330 /*
1331 * Only the DSP unit on the sound blaster generates interrupts.
1332 * There are three cases of interrupt: reception of a midi byte
1333 * (when mode is enabled), completion of dma transmission, or
1334 * completion of a dma reception. The three modes are mutually
1335 * exclusive so we know a priori which event has occurred.
1336 */
1337 int
1338 sbdsp_intr(arg)
1339 void *arg;
1340 {
1341 register struct sbdsp_softc *sc = arg;
1342 u_char x;
1343
1344 #ifdef AUDIO_DEBUG
1345 if (sbdspdebug > 1)
1346 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1347 #endif
1348 if (ISSB16CLASS(sc)) {
1349 x = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1350 if ((x & 3) == 0)
1351 return 0;
1352 } else {
1353 if (!isa_dmafinished(sc->dmachan))
1354 return 0;
1355 }
1356 sc->sc_interrupts++;
1357 delay(10);
1358 #if 0
1359 if (sc->sc_mintr != 0) {
1360 x = sbdsp_rdsp(sc);
1361 (*sc->sc_mintr)(sc->sc_arg, x);
1362 } else
1363 #endif
1364 if (sc->sc_intr != 0) {
1365 /* clear interrupt */
1366 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1367 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1368 SBP_DSP_IRQACK8);
1369 if (!ISSB2CLASS(sc))
1370 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1371 sc->dmachan);
1372 (*sc->sc_intr)(sc->sc_arg);
1373 } else {
1374 return 0;
1375 }
1376 return 1;
1377 }
1378
1379 #if 0
1380 /*
1381 * Enter midi uart mode and arrange for read interrupts
1382 * to vector to `intr'. This puts the card in a mode
1383 * which allows only midi I/O; the card must be reset
1384 * to leave this mode. Unfortunately, the card does not
1385 * use transmit interrupts, so bytes must be output
1386 * using polling. To keep the polling overhead to a
1387 * minimum, output should be driven off a timer.
1388 * This is a little tricky since only 320us separate
1389 * consecutive midi bytes.
1390 */
1391 void
1392 sbdsp_set_midi_mode(sc, intr, arg)
1393 struct sbdsp_softc *sc;
1394 void (*intr)();
1395 void *arg;
1396 {
1397
1398 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1399 sc->sc_mintr = intr;
1400 sc->sc_intr = 0;
1401 sc->sc_arg = arg;
1402 }
1403
1404 /*
1405 * Write a byte to the midi port, when in midi uart mode.
1406 */
1407 void
1408 sbdsp_midi_output(sc, v)
1409 struct sbdsp_softc *sc;
1410 int v;
1411 {
1412
1413 if (sbdsp_wdsp(sc, v) < 0)
1414 ++sberr.wmidi;
1415 }
1416 #endif
1417
1418 int
1419 sbdsp_setfd(addr, flag)
1420 void *addr;
1421 int flag;
1422 {
1423 /* Can't do full-duplex */
1424 return(ENOTTY);
1425 }
1426
1427 int
1428 sbdsp_mixer_set_port(addr, cp)
1429 void *addr;
1430 mixer_ctrl_t *cp;
1431 {
1432 register struct sbdsp_softc *sc = addr;
1433 int src, gain;
1434
1435 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1436 cp->un.value.num_channels));
1437
1438 if (!ISSBPROCLASS(sc))
1439 return EINVAL;
1440
1441 /*
1442 * Everything is a value except for SBPro BASS/TREBLE and
1443 * RECORD_SOURCE
1444 */
1445 switch (cp->dev) {
1446 case SB_SPEAKER:
1447 cp->dev = SB_MASTER_VOL;
1448 case SB_MIC_PORT:
1449 case SB_LINE_IN_PORT:
1450 case SB_DAC_PORT:
1451 case SB_FM_PORT:
1452 case SB_CD_PORT:
1453 case SB_MASTER_VOL:
1454 if (cp->type != AUDIO_MIXER_VALUE)
1455 return EINVAL;
1456
1457 /*
1458 * All the mixer ports are stereo except for the microphone.
1459 * If we get a single-channel gain value passed in, then we
1460 * duplicate it to both left and right channels.
1461 */
1462
1463 switch (cp->dev) {
1464 case SB_MIC_PORT:
1465 if (cp->un.value.num_channels != 1)
1466 return EINVAL;
1467
1468 /* handle funny microphone gain */
1469 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1470 break;
1471 case SB_LINE_IN_PORT:
1472 case SB_DAC_PORT:
1473 case SB_FM_PORT:
1474 case SB_CD_PORT:
1475 case SB_MASTER_VOL:
1476 switch (cp->un.value.num_channels) {
1477 case 1:
1478 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1479 break;
1480 case 2:
1481 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1482 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1483 break;
1484 default:
1485 return EINVAL;
1486 }
1487 break;
1488 default:
1489 return EINVAL;
1490 }
1491
1492 switch (cp->dev) {
1493 case SB_MIC_PORT:
1494 src = SBP_MIC_VOL;
1495 break;
1496 case SB_MASTER_VOL:
1497 src = SBP_MASTER_VOL;
1498 break;
1499 case SB_LINE_IN_PORT:
1500 src = SBP_LINE_VOL;
1501 break;
1502 case SB_DAC_PORT:
1503 src = SBP_DAC_VOL;
1504 break;
1505 case SB_FM_PORT:
1506 src = SBP_FM_VOL;
1507 break;
1508 case SB_CD_PORT:
1509 src = SBP_CD_VOL;
1510 break;
1511 default:
1512 return EINVAL;
1513 }
1514
1515 sbdsp_mix_write(sc, src, gain);
1516 sc->gain[cp->dev] = gain;
1517 break;
1518
1519 case SB_TREBLE:
1520 case SB_BASS:
1521 case SB_RECORD_SOURCE:
1522 if (cp->type != AUDIO_MIXER_ENUM)
1523 return EINVAL;
1524
1525 switch (cp->dev) {
1526 case SB_TREBLE:
1527 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1528 case SB_BASS:
1529 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1530 case SB_RECORD_SOURCE:
1531 return sbdsp_set_in_port(addr, cp->un.ord);
1532 }
1533
1534 break;
1535
1536 default:
1537 return EINVAL;
1538 }
1539
1540 return (0);
1541 }
1542
1543 int
1544 sbdsp_mixer_get_port(addr, cp)
1545 void *addr;
1546 mixer_ctrl_t *cp;
1547 {
1548 register struct sbdsp_softc *sc = addr;
1549 int gain;
1550
1551 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1552
1553 if (!ISSBPROCLASS(sc))
1554 return EINVAL;
1555
1556 switch (cp->dev) {
1557 case SB_SPEAKER:
1558 cp->dev = SB_MASTER_VOL;
1559 case SB_MIC_PORT:
1560 case SB_LINE_IN_PORT:
1561 case SB_DAC_PORT:
1562 case SB_FM_PORT:
1563 case SB_CD_PORT:
1564 case SB_MASTER_VOL:
1565 gain = sc->gain[cp->dev];
1566
1567 switch (cp->dev) {
1568 case SB_MIC_PORT:
1569 if (cp->un.value.num_channels != 1)
1570 return EINVAL;
1571
1572 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1573 break;
1574 case SB_LINE_IN_PORT:
1575 case SB_DAC_PORT:
1576 case SB_FM_PORT:
1577 case SB_CD_PORT:
1578 case SB_MASTER_VOL:
1579 switch (cp->un.value.num_channels) {
1580 case 1:
1581 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1582 break;
1583 case 2:
1584 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1585 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1586 break;
1587 default:
1588 return EINVAL;
1589 }
1590 break;
1591 }
1592
1593 break;
1594
1595 case SB_TREBLE:
1596 case SB_BASS:
1597 case SB_RECORD_SOURCE:
1598 switch (cp->dev) {
1599 case SB_TREBLE:
1600 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1601 return 0;
1602 case SB_BASS:
1603 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1604 return 0;
1605 case SB_RECORD_SOURCE:
1606 cp->un.ord = sbdsp_get_in_port(addr);
1607 return 0;
1608 }
1609
1610 break;
1611
1612 default:
1613 return EINVAL;
1614 }
1615
1616 return (0);
1617 }
1618
1619 int
1620 sbdsp_mixer_query_devinfo(addr, dip)
1621 void *addr;
1622 register mixer_devinfo_t *dip;
1623 {
1624 register struct sbdsp_softc *sc = addr;
1625
1626 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1627
1628 switch (dip->index) {
1629 case SB_MIC_PORT:
1630 dip->type = AUDIO_MIXER_VALUE;
1631 dip->mixer_class = SB_INPUT_CLASS;
1632 dip->prev = AUDIO_MIXER_LAST;
1633 dip->next = AUDIO_MIXER_LAST;
1634 strcpy(dip->label.name, AudioNmicrophone);
1635 dip->un.v.num_channels = 1;
1636 strcpy(dip->un.v.units.name, AudioNvolume);
1637 return 0;
1638
1639 case SB_SPEAKER:
1640 dip->type = AUDIO_MIXER_VALUE;
1641 dip->mixer_class = SB_OUTPUT_CLASS;
1642 dip->prev = AUDIO_MIXER_LAST;
1643 dip->next = AUDIO_MIXER_LAST;
1644 strcpy(dip->label.name, AudioNspeaker);
1645 dip->un.v.num_channels = 1;
1646 strcpy(dip->un.v.units.name, AudioNvolume);
1647 return 0;
1648
1649 case SB_INPUT_CLASS:
1650 dip->type = AUDIO_MIXER_CLASS;
1651 dip->mixer_class = SB_INPUT_CLASS;
1652 dip->next = dip->prev = AUDIO_MIXER_LAST;
1653 strcpy(dip->label.name, AudioCInputs);
1654 return 0;
1655
1656 case SB_OUTPUT_CLASS:
1657 dip->type = AUDIO_MIXER_CLASS;
1658 dip->mixer_class = SB_OUTPUT_CLASS;
1659 dip->next = dip->prev = AUDIO_MIXER_LAST;
1660 strcpy(dip->label.name, AudioCOutputs);
1661 return 0;
1662 }
1663
1664 if (ISSBPROCLASS(sc)) {
1665 switch (dip->index) {
1666 case SB_LINE_IN_PORT:
1667 dip->type = AUDIO_MIXER_VALUE;
1668 dip->mixer_class = SB_INPUT_CLASS;
1669 dip->prev = AUDIO_MIXER_LAST;
1670 dip->next = AUDIO_MIXER_LAST;
1671 strcpy(dip->label.name, AudioNline);
1672 dip->un.v.num_channels = 2;
1673 strcpy(dip->un.v.units.name, AudioNvolume);
1674 return 0;
1675
1676 case SB_DAC_PORT:
1677 dip->type = AUDIO_MIXER_VALUE;
1678 dip->mixer_class = SB_INPUT_CLASS;
1679 dip->prev = AUDIO_MIXER_LAST;
1680 dip->next = AUDIO_MIXER_LAST;
1681 strcpy(dip->label.name, AudioNdac);
1682 dip->un.v.num_channels = 2;
1683 strcpy(dip->un.v.units.name, AudioNvolume);
1684 return 0;
1685
1686 case SB_CD_PORT:
1687 dip->type = AUDIO_MIXER_VALUE;
1688 dip->mixer_class = SB_INPUT_CLASS;
1689 dip->prev = AUDIO_MIXER_LAST;
1690 dip->next = AUDIO_MIXER_LAST;
1691 strcpy(dip->label.name, AudioNcd);
1692 dip->un.v.num_channels = 2;
1693 strcpy(dip->un.v.units.name, AudioNvolume);
1694 return 0;
1695
1696 case SB_FM_PORT:
1697 dip->type = AUDIO_MIXER_VALUE;
1698 dip->mixer_class = SB_INPUT_CLASS;
1699 dip->prev = AUDIO_MIXER_LAST;
1700 dip->next = AUDIO_MIXER_LAST;
1701 strcpy(dip->label.name, AudioNfmsynth);
1702 dip->un.v.num_channels = 2;
1703 strcpy(dip->un.v.units.name, AudioNvolume);
1704 return 0;
1705
1706 case SB_MASTER_VOL:
1707 dip->type = AUDIO_MIXER_VALUE;
1708 dip->mixer_class = SB_OUTPUT_CLASS;
1709 dip->prev = AUDIO_MIXER_LAST;
1710 dip->next = AUDIO_MIXER_LAST;
1711 strcpy(dip->label.name, AudioNvolume);
1712 dip->un.v.num_channels = 2;
1713 strcpy(dip->un.v.units.name, AudioNvolume);
1714 return 0;
1715
1716 case SB_RECORD_SOURCE:
1717 dip->mixer_class = SB_RECORD_CLASS;
1718 dip->type = AUDIO_MIXER_ENUM;
1719 dip->prev = AUDIO_MIXER_LAST;
1720 dip->next = AUDIO_MIXER_LAST;
1721 strcpy(dip->label.name, AudioNsource);
1722 dip->un.e.num_mem = 3;
1723 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1724 dip->un.e.member[0].ord = SB_MIC_PORT;
1725 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1726 dip->un.e.member[1].ord = SB_CD_PORT;
1727 strcpy(dip->un.e.member[2].label.name, AudioNline);
1728 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1729 return 0;
1730
1731 case SB_BASS:
1732 dip->type = AUDIO_MIXER_ENUM;
1733 dip->mixer_class = SB_INPUT_CLASS;
1734 dip->prev = AUDIO_MIXER_LAST;
1735 dip->next = AUDIO_MIXER_LAST;
1736 strcpy(dip->label.name, AudioNbass);
1737 dip->un.e.num_mem = 2;
1738 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1739 dip->un.e.member[0].ord = 0;
1740 strcpy(dip->un.e.member[1].label.name, AudioNon);
1741 dip->un.e.member[1].ord = 1;
1742 return 0;
1743
1744 case SB_TREBLE:
1745 dip->type = AUDIO_MIXER_ENUM;
1746 dip->mixer_class = SB_INPUT_CLASS;
1747 dip->prev = AUDIO_MIXER_LAST;
1748 dip->next = AUDIO_MIXER_LAST;
1749 strcpy(dip->label.name, AudioNtreble);
1750 dip->un.e.num_mem = 2;
1751 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1752 dip->un.e.member[0].ord = 0;
1753 strcpy(dip->un.e.member[1].label.name, AudioNon);
1754 dip->un.e.member[1].ord = 1;
1755 return 0;
1756
1757 case SB_RECORD_CLASS: /* record source class */
1758 dip->type = AUDIO_MIXER_CLASS;
1759 dip->mixer_class = SB_RECORD_CLASS;
1760 dip->next = dip->prev = AUDIO_MIXER_LAST;
1761 strcpy(dip->label.name, AudioCRecord);
1762 return 0;
1763 }
1764 }
1765
1766 return ENXIO;
1767 }
1768