sbdsp.c revision 1.45.2.2 1 /* $NetBSD: sbdsp.c,v 1.45.2.2 1997/05/19 00:14:42 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 */
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/device.h>
50 #include <sys/proc.h>
51 #include <sys/buf.h>
52 #include <vm/vm.h>
53
54 #include <machine/cpu.h>
55 #include <machine/intr.h>
56 #include <machine/bus.h>
57
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60 #include <dev/mulaw.h>
61
62 #include <dev/isa/isavar.h>
63 #include <dev/isa/isadmavar.h>
64 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
65
66 #include <dev/isa/sbreg.h>
67 #include <dev/isa/sbdspvar.h>
68
69 #ifdef AUDIO_DEBUG
70 extern void Dprintf __P((const char *, ...));
71 #define DPRINTF(x) if (sbdspdebug) Dprintf x
72 int sbdspdebug = 0;
73 #else
74 #define DPRINTF(x)
75 #endif
76
77 #ifndef SBDSP_NPOLL
78 #define SBDSP_NPOLL 3000
79 #endif
80
81 struct {
82 int wdsp;
83 int rdsp;
84 int wmidi;
85 } sberr;
86
87 void sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
88 int *tcp, int *modep));
89 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
90
91 /*
92 * Time constant routines follow. See SBK, section 12.
93 * Although they don't come out and say it (in the docs),
94 * the card clearly uses a 1MHz countdown timer, as the
95 * low-speed formula (p. 12-4) is:
96 * tc = 256 - 10^6 / sr
97 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
98 * and a 256MHz clock is used:
99 * tc = 65536 - 256 * 10^ 6 / sr
100 * Since we can only use the upper byte of the HS TC, the two formulae
101 * are equivalent. (Why didn't they say so?) E.g.,
102 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
103 *
104 * The crossover point (from low- to high-speed modes) is different
105 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
106 *
107 * SBPRO SB20
108 * ----- --------
109 * input ls min 4 KHz 4 KHz
110 * input ls max 23 KHz 13 KHz
111 * input hs max 44.1 KHz 15 KHz
112 * output ls min 4 KHz 4 KHz
113 * output ls max 23 KHz 23 KHz
114 * output hs max 44.1 KHz 44.1 KHz
115 */
116 #define SB_LS_MIN 0x06 /* 4000 Hz */
117 #define SB_8K 0x83 /* 8000 Hz */
118 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
119 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
120 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
121 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
122 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
123 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
124
125 int sbdsp16_wait __P((struct sbdsp_softc *));
126 void sbdsp_to __P((void *));
127 void sbdsp_pause __P((struct sbdsp_softc *));
128 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
129 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
130 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
131
132 #ifdef AUDIO_DEBUG
133 void sb_printsc __P((struct sbdsp_softc *));
134
135 void
136 sb_printsc(sc)
137 struct sbdsp_softc *sc;
138 {
139 int i;
140
141 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
142 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
143 sc->sc_iobase, sc->sc_irq);
144 printf("irate %d itc %d imode %d orate %d otc %d omode %d\n",
145 sc->sc_irate, sc->sc_itc, sc->sc_imode,
146 sc->sc_orate, sc->sc_otc, sc->sc_omode);
147 printf("outport %u inport %u spkron %u nintr %lu\n",
148 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
149 printf("precision %u channels %d intr %p arg %p\n",
150 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
151 printf("gain:");
152 for (i = 0; i < SB_NDEVS; i++)
153 printf(" %u", sc->gain[i]);
154 printf("\n");
155 }
156 #endif /* AUDIO_DEBUG */
157
158 /*
159 * Probe / attach routines.
160 */
161
162 /*
163 * Probe for the soundblaster hardware.
164 */
165 int
166 sbdsp_probe(sc)
167 struct sbdsp_softc *sc;
168 {
169
170 if (sbdsp_reset(sc) < 0) {
171 DPRINTF(("sbdsp: couldn't reset card\n"));
172 return 0;
173 }
174 /* if flags set, go and probe the jazz16 stuff */
175 if (sc->sc_dev.dv_cfdata->cf_flags != 0) {
176 sc->sc_model = sbdsp_jazz16_probe(sc);
177 } else {
178 sc->sc_model = sbversion(sc);
179 }
180
181 #if 0
182 sc->sc_model = 0x100; /* XXX pretend to be just a tired old SB XXX */
183 #endif
184
185 return 1;
186 }
187
188 /*
189 * Try add-on stuff for Jazz16.
190 */
191 u_int
192 sbdsp_jazz16_probe(sc)
193 struct sbdsp_softc *sc;
194 {
195 static u_char jazz16_irq_conf[16] = {
196 -1, -1, 0x02, 0x03,
197 -1, 0x01, -1, 0x04,
198 -1, 0x02, 0x05, -1,
199 -1, -1, -1, 0x06};
200 static u_char jazz16_drq_conf[8] = {
201 -1, 0x01, -1, 0x02,
202 -1, 0x03, -1, 0x04};
203
204 u_int rval = sbversion(sc);
205 bus_space_tag_t iot = sc->sc_iot;
206 bus_space_handle_t ioh;
207
208 DPRINTF(("jazz16 probe\n"));
209
210 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
211 DPRINTF(("bus map failed\n"));
212 return rval;
213 }
214
215 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
216 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
217 DPRINTF(("drq/irq check failed\n"));
218 goto done; /* give up, we can't do it. */
219 }
220
221 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
222 delay(10000); /* delay 10 ms */
223 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
224 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
225
226 if (sbdsp_reset(sc) < 0) {
227 DPRINTF(("sbdsp_reset check failed\n"));
228 goto done; /* XXX? what else could we do? */
229 }
230
231 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
232 DPRINTF(("read16 setup failed\n"));
233 goto done;
234 }
235
236 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
237 DPRINTF(("read16 failed\n"));
238 goto done;
239 }
240
241 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
242 sc->sc_drq16 = sc->sc_drq8;
243 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
244 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
245 jazz16_drq_conf[sc->sc_drq8]) ||
246 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
247 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
248 } else {
249 DPRINTF(("jazz16 detected!\n"));
250 rval |= MODEL_JAZZ16;
251 }
252
253 done:
254 bus_space_unmap(iot, ioh, 1);
255 return rval;
256 }
257
258 /*
259 * Attach hardware to driver, attach hardware driver to audio
260 * pseudo-device driver .
261 */
262 void
263 sbdsp_attach(sc)
264 struct sbdsp_softc *sc;
265 {
266
267 /* Set defaults */
268 if (ISSB16CLASS(sc))
269 sc->sc_irate = sc->sc_orate = 8000;
270 else if (ISSBPROCLASS(sc))
271 sc->sc_itc = sc->sc_otc = SB_8K;
272 else
273 sc->sc_itc = sc->sc_otc = SB_8K;
274 sc->sc_precision = 8;
275 sc->sc_channels = 1;
276
277 if (sc->sc_drq8 != -1) {
278 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8,
279 MAXPHYS /* XXX */, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
280 printf("%s: can't create map for drq %d\n",
281 sc->sc_dev.dv_xname, sc->sc_drq8);
282 return;
283 }
284 }
285 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
286 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16,
287 MAXPHYS /* XXX */, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
288 printf("%s: can't create map for drq %d\n",
289 sc->sc_dev.dv_xname, sc->sc_drq16);
290 return;
291 }
292 }
293 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
294 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
295
296 if (ISSBPROCLASS(sc)) {
297 int i;
298
299 /* set mixer to default levels, by sending a mixer
300 reset command. */
301 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
302 /* then some adjustments :) */
303 sbdsp_mix_write(sc, SBP_CD_VOL,
304 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
305 sbdsp_mix_write(sc, SBP_DAC_VOL,
306 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
307 sbdsp_mix_write(sc, SBP_MASTER_VOL,
308 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
309 sbdsp_mix_write(sc, SBP_LINE_VOL,
310 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
311 for (i = 0; i < SB_NDEVS; i++)
312 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
313 sc->in_filter = 0; /* no filters turned on, please */
314 }
315
316 printf(": dsp v%d.%02d%s\n",
317 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
318 ISJAZZ16(sc) ? ": <Jazz16>" : "");
319 }
320
321 /*
322 * Various routines to interface to higher level audio driver
323 */
324
325 void
326 sbdsp_mix_write(sc, mixerport, val)
327 struct sbdsp_softc *sc;
328 int mixerport;
329 int val;
330 {
331 bus_space_tag_t iot = sc->sc_iot;
332 bus_space_handle_t ioh = sc->sc_ioh;
333 int s;
334
335 s = splaudio();
336 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
337 delay(20);
338 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
339 delay(30);
340 splx(s);
341 }
342
343 int
344 sbdsp_mix_read(sc, mixerport)
345 struct sbdsp_softc *sc;
346 int mixerport;
347 {
348 bus_space_tag_t iot = sc->sc_iot;
349 bus_space_handle_t ioh = sc->sc_ioh;
350 int val;
351 int s;
352
353 s = splaudio();
354 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
355 delay(20);
356 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
357 delay(30);
358 splx(s);
359 return val;
360 }
361
362 int
363 sbdsp_query_encoding(addr, fp)
364 void *addr;
365 struct audio_encoding *fp;
366 {
367 struct sbdsp_softc *sc = addr;
368
369 switch (fp->index) {
370 case 0:
371 strcpy(fp->name, AudioEulinear);
372 fp->encoding = AUDIO_ENCODING_ULINEAR;
373 fp->precision = 8;
374 fp->flags = 0;
375 break;
376 case 1:
377 strcpy(fp->name, AudioEmulaw);
378 fp->encoding = AUDIO_ENCODING_ULAW;
379 fp->precision = 8;
380 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
381 break;
382 case 2:
383 strcpy(fp->name, AudioElinear);
384 fp->encoding = AUDIO_ENCODING_LINEAR;
385 fp->precision = 8;
386 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
387 break;
388 default:
389 if (!(ISSB16CLASS(sc) || ISJAZZ16(sc)))
390 return (EINVAL);
391 switch(fp->index) {
392 case 3:
393 strcpy(fp->name, AudioElinear_le);
394 fp->encoding = AUDIO_ENCODING_LINEAR_LE;
395 fp->precision = 16;
396 fp->flags = 0;
397 break;
398 case 4:
399 strcpy(fp->name, AudioEulinear_le);
400 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
401 fp->precision = 16;
402 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
403 break;
404 case 5:
405 strcpy(fp->name, AudioElinear_be);
406 fp->encoding = AUDIO_ENCODING_LINEAR_BE;
407 fp->precision = 16;
408 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
409 break;
410 case 6:
411 strcpy(fp->name, AudioEulinear_be);
412 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
413 fp->precision = 16;
414 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
415 break;
416 default:
417 return (EINVAL);
418 }
419 }
420 return (0);
421 }
422
423 int
424 sbdsp_set_params(addr, mode, p, q)
425 void *addr;
426 int mode;
427 struct audio_params *p, *q;
428 {
429 struct sbdsp_softc *sc = addr;
430 int maxspeed;
431 void (*swcode) __P((void *, u_char *buf, int cnt));
432 int can16 = ISSB16CLASS(sc) || ISJAZZ16(sc);
433
434 switch (p->encoding) {
435 case AUDIO_ENCODING_LINEAR_LE:
436 if (p->precision == 8)
437 swcode = change_sign8;
438 else if (can16)
439 swcode = 0;
440 else
441 return EINVAL;
442 break;
443 case AUDIO_ENCODING_ULINEAR_LE:
444 if (p->precision == 8)
445 swcode = 0;
446 else if (can16)
447 swcode = change_sign16;
448 else
449 return EINVAL;
450 break;
451 case AUDIO_ENCODING_LINEAR_BE:
452 if (p->precision == 8)
453 swcode = change_sign8;
454 else if (can16)
455 swcode = swap_bytes;
456 else
457 return EINVAL;
458 break;
459 case AUDIO_ENCODING_ULINEAR_BE:
460 if (p->precision == 8)
461 swcode = 0;
462 else if (can16)
463 swcode = swap_bytes_change_sign16;
464 else
465 return EINVAL;
466 break;
467 case AUDIO_ENCODING_ULAW:
468 swcode = mode == AUMODE_PLAY ?
469 mulaw_to_ulinear8 : ulinear8_to_mulaw;
470 break;
471 default:
472 return EINVAL;
473 }
474
475
476 if (!ISSBPROCLASS(sc)) {
477 /* v 1.x or v 2.x */
478 if (mode == AUMODE_PLAY) {
479 if (ISSB2CLASS(sc) && SBVER_MINOR(sc->sc_model) > 0)
480 maxspeed = 44100;
481 else
482 maxspeed = 22727;
483 } else
484 maxspeed = 12987;
485 if (p->sample_rate < 4000 || p->sample_rate > maxspeed)
486 return EINVAL;
487 if (p->channels != 1)
488 return EINVAL;
489 } else if (!can16) {
490 /* v 3.x (SBPRO) */
491 if (p->channels == 1)
492 maxspeed = 45454;
493 else
494 maxspeed = 22727;
495 if (p->sample_rate < 4000 || p->sample_rate > maxspeed)
496 return EINVAL;
497 } else {
498 /* >= v 4.x */
499 if (p->sample_rate < 4000 || p->sample_rate > 44100)
500 return EINVAL;
501 }
502
503 if (ISSB16CLASS(sc)) {
504 if (mode == AUMODE_RECORD)
505 sc->sc_irate = p->sample_rate;
506 else
507 sc->sc_orate = p->sample_rate;
508 } else {
509 sbdsp_srtotc(sc, p->sample_rate, SB_OUTPUT_RATE,
510 &sc->sc_otc, &sc->sc_omode);
511 p->sample_rate = sbdsp_tctosr(sc, sc->sc_otc);
512 }
513
514 sc->sc_precision = p->precision;
515 sc->sc_channels = p->channels;
516
517 p->sw_code = swcode;
518
519 /* Update setting for the other mode. */
520 q->encoding = p->encoding;
521 q->channels = p->channels;
522 q->precision = p->precision;
523
524 /*
525 * XXX
526 * Should wait for chip to be idle.
527 */
528 sc->sc_dmadir = SB_DMA_NONE;
529
530 return 0;
531 }
532
533 int
534 sbdsp_set_ifilter(addr, which)
535 void *addr;
536 int which;
537 {
538 register struct sbdsp_softc *sc = addr;
539 int mixval;
540
541 /* XXXX SB16 */
542 if (ISSBPROCLASS(sc)) {
543 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
544 switch (which) {
545 case 0:
546 mixval |= SBP_FILTER_OFF;
547 break;
548 case SBP_TREBLE_EQ:
549 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
550 break;
551 case SBP_BASS_EQ:
552 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
553 break;
554 default:
555 return (EINVAL);
556 }
557 sc->in_filter = mixval & SBP_IFILTER_MASK;
558 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
559 return (0);
560 } else
561 return (EINVAL);
562 }
563
564 int
565 sbdsp_get_ifilter(addr)
566 void *addr;
567 {
568 register struct sbdsp_softc *sc = addr;
569
570 /* XXXX SB16 */
571 if (ISSBPROCLASS(sc)) {
572 sc->in_filter =
573 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
574 switch (sc->in_filter) {
575 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
576 return (SBP_TREBLE_EQ);
577 case SBP_FILTER_ON|SBP_IFILTER_LOW:
578 return (SBP_BASS_EQ);
579 case SBP_FILTER_OFF:
580 default:
581 return (0);
582 }
583 } else
584 return (0);
585 }
586
587 int
588 sbdsp_set_out_port(addr, port)
589 void *addr;
590 int port;
591 {
592 register struct sbdsp_softc *sc = addr;
593
594 sc->out_port = port; /* Just record it */
595
596 return (0);
597 }
598
599 int
600 sbdsp_get_out_port(addr)
601 void *addr;
602 {
603 register struct sbdsp_softc *sc = addr;
604
605 return (sc->out_port);
606 }
607
608
609 int
610 sbdsp_set_in_port(addr, port)
611 void *addr;
612 int port;
613 {
614 register struct sbdsp_softc *sc = addr;
615 int mixport, sbport;
616
617 if (ISSBPROCLASS(sc)) {
618 switch (port) {
619 case SB_MIC_PORT:
620 sbport = SBP_FROM_MIC;
621 mixport = SBP_MIC_VOL;
622 break;
623 case SB_LINE_IN_PORT:
624 sbport = SBP_FROM_LINE;
625 mixport = SBP_LINE_VOL;
626 break;
627 case SB_CD_PORT:
628 sbport = SBP_FROM_CD;
629 mixport = SBP_CD_VOL;
630 break;
631 case SB_DAC_PORT:
632 case SB_FM_PORT:
633 default:
634 return (EINVAL);
635 }
636 } else {
637 switch (port) {
638 case SB_MIC_PORT:
639 sbport = SBP_FROM_MIC;
640 mixport = SBP_MIC_VOL;
641 break;
642 default:
643 return (EINVAL);
644 }
645 }
646
647 sc->in_port = port; /* Just record it */
648
649 /* XXXX SB16 */
650 if (ISSBPROCLASS(sc)) {
651 /* record from that port */
652 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
653 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
654 /* fetch gain from that port */
655 sc->gain[port] = sbdsp_mix_read(sc, mixport);
656 }
657
658 return (0);
659 }
660
661 int
662 sbdsp_get_in_port(addr)
663 void *addr;
664 {
665 register struct sbdsp_softc *sc = addr;
666
667 return (sc->in_port);
668 }
669
670
671 int
672 sbdsp_speaker_ctl(addr, newstate)
673 void *addr;
674 int newstate;
675 {
676 register struct sbdsp_softc *sc = addr;
677
678 if ((newstate == SPKR_ON) &&
679 (sc->spkr_state == SPKR_OFF)) {
680 sbdsp_spkron(sc);
681 sc->spkr_state = SPKR_ON;
682 }
683 if ((newstate == SPKR_OFF) &&
684 (sc->spkr_state == SPKR_ON)) {
685 sbdsp_spkroff(sc);
686 sc->spkr_state = SPKR_OFF;
687 }
688 return(0);
689 }
690
691 int
692 sbdsp_round_blocksize(addr, blk)
693 void *addr;
694 int blk;
695 {
696 register struct sbdsp_softc *sc = addr;
697
698 sc->sc_last_hs_size = 0;
699
700 /* Don't try to DMA too much at once. */
701 if (blk > NBPG)
702 blk = NBPG;
703
704 /* Round to a multiple of the sample size. */
705 blk &= -(sc->sc_channels * sc->sc_precision / 8);
706
707 if (blk > 1364)
708 blk = 1364; /* XXX */
709
710 return (blk);
711 }
712
713 int
714 sbdsp_commit_settings(addr)
715 void *addr;
716 {
717 return 0;
718 }
719
720
721 int
722 sbdsp_open(sc, dev, flags)
723 register struct sbdsp_softc *sc;
724 dev_t dev;
725 int flags;
726 {
727 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
728
729 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
730 return ENXIO;
731
732 sc->sc_open = 1;
733 sc->sc_mintr = 0;
734 if (ISSBPROCLASS(sc) &&
735 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
736 DPRINTF(("sbdsp_open: can't set mono mode\n"));
737 /* we'll readjust when it's time for DMA. */
738 }
739
740 /*
741 * Leave most things as they were; users must change things if
742 * the previous process didn't leave it they way they wanted.
743 * Looked at another way, it's easy to set up a configuration
744 * in one program and leave it for another to inherit.
745 */
746 DPRINTF(("sbdsp_open: opened\n"));
747
748 return 0;
749 }
750
751 void
752 sbdsp_close(addr)
753 void *addr;
754 {
755 struct sbdsp_softc *sc = addr;
756
757 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
758
759 sc->sc_open = 0;
760 sbdsp_spkroff(sc);
761 sc->spkr_state = SPKR_OFF;
762 sc->sc_mintr = 0;
763 sbdsp_haltdma(sc);
764
765 DPRINTF(("sbdsp_close: closed\n"));
766 }
767
768 /*
769 * Lower-level routines
770 */
771
772 /*
773 * Reset the card.
774 * Return non-zero if the card isn't detected.
775 */
776 int
777 sbdsp_reset(sc)
778 register struct sbdsp_softc *sc;
779 {
780 bus_space_tag_t iot = sc->sc_iot;
781 bus_space_handle_t ioh = sc->sc_ioh;
782
783 sc->sc_intr = 0;
784 if (sc->sc_dmadir != SB_DMA_NONE) {
785 isa_dmaabort(sc->sc_isa, sc->dmachan);
786 sc->sc_dmadir = SB_DMA_NONE;
787 }
788 sc->sc_last_hs_size = 0;
789
790 /*
791 * See SBK, section 11.3.
792 * We pulse a reset signal into the card.
793 * Gee, what a brilliant hardware design.
794 */
795 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
796 delay(10);
797 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
798 delay(30);
799 if (sbdsp_rdsp(sc) != SB_MAGIC)
800 return -1;
801
802 return 0;
803 }
804
805 int
806 sbdsp16_wait(sc)
807 struct sbdsp_softc *sc;
808 {
809 bus_space_tag_t iot = sc->sc_iot;
810 bus_space_handle_t ioh = sc->sc_ioh;
811 register int i;
812
813 for (i = SBDSP_NPOLL; --i >= 0; ) {
814 register u_char x;
815 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
816 delay(10);
817 if ((x & SB_DSP_BUSY) == 0)
818 continue;
819 return 0;
820 }
821 ++sberr.wdsp;
822 return -1;
823 }
824
825 /*
826 * Write a byte to the dsp.
827 * XXX We are at the mercy of the card as we use a
828 * polling loop and wait until it can take the byte.
829 */
830 int
831 sbdsp_wdsp(sc, v)
832 struct sbdsp_softc *sc;
833 int v;
834 {
835 bus_space_tag_t iot = sc->sc_iot;
836 bus_space_handle_t ioh = sc->sc_ioh;
837 register int i;
838
839 for (i = SBDSP_NPOLL; --i >= 0; ) {
840 register u_char x;
841 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
842 delay(10);
843 if ((x & SB_DSP_BUSY) != 0)
844 continue;
845 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
846 delay(10);
847 return 0;
848 }
849 ++sberr.wdsp;
850 return -1;
851 }
852
853 /*
854 * Read a byte from the DSP, using polling.
855 */
856 int
857 sbdsp_rdsp(sc)
858 struct sbdsp_softc *sc;
859 {
860 bus_space_tag_t iot = sc->sc_iot;
861 bus_space_handle_t ioh = sc->sc_ioh;
862 register int i;
863
864 for (i = SBDSP_NPOLL; --i >= 0; ) {
865 register u_char x;
866 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
867 delay(10);
868 if ((x & SB_DSP_READY) == 0)
869 continue;
870 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
871 delay(10);
872 return x;
873 }
874 ++sberr.rdsp;
875 return -1;
876 }
877
878 /*
879 * Doing certain things (like toggling the speaker) make
880 * the SB hardware go away for a while, so pause a little.
881 */
882 void
883 sbdsp_to(arg)
884 void *arg;
885 {
886 wakeup(arg);
887 }
888
889 void
890 sbdsp_pause(sc)
891 struct sbdsp_softc *sc;
892 {
893 extern int hz;
894
895 timeout(sbdsp_to, sbdsp_to, hz/8);
896 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
897 }
898
899 /*
900 * Turn on the speaker. The SBK documention says this operation
901 * can take up to 1/10 of a second. Higher level layers should
902 * probably let the task sleep for this amount of time after
903 * calling here. Otherwise, things might not work (because
904 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
905 *
906 * These engineers had their heads up their ass when
907 * they designed this card.
908 */
909 void
910 sbdsp_spkron(sc)
911 struct sbdsp_softc *sc;
912 {
913 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
914 sbdsp_pause(sc);
915 }
916
917 /*
918 * Turn off the speaker; see comment above.
919 */
920 void
921 sbdsp_spkroff(sc)
922 struct sbdsp_softc *sc;
923 {
924 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
925 sbdsp_pause(sc);
926 }
927
928 /*
929 * Read the version number out of the card. Return major code
930 * in high byte, and minor code in low byte.
931 */
932 short
933 sbversion(sc)
934 struct sbdsp_softc *sc;
935 {
936 short v;
937
938 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
939 return 0;
940 v = sbdsp_rdsp(sc) << 8;
941 v |= sbdsp_rdsp(sc);
942 return ((v >= 0) ? v : 0);
943 }
944
945 /*
946 * Halt a DMA in progress. A low-speed transfer can be
947 * resumed with sbdsp_contdma().
948 */
949 int
950 sbdsp_haltdma(addr)
951 void *addr;
952 {
953 register struct sbdsp_softc *sc = addr;
954
955 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
956
957 sbdsp_reset(sc);
958 return 0;
959 }
960
961 int
962 sbdsp_contdma(addr)
963 void *addr;
964 {
965 register struct sbdsp_softc *sc = addr;
966
967 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
968
969 /* XXX how do we reinitialize the DMA controller state? do we care? */
970 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
971 return(0);
972 }
973
974 /*
975 * Convert a linear sampling rate into the DAC time constant.
976 * Set *mode to indicate the high/low-speed DMA operation.
977 * Because of limitations of the card, not all rates are possible.
978 * We return the time constant of the closest possible rate.
979 * The sampling rate limits are different for the DAC and ADC,
980 * so isdac indicates output, and !isdac indicates input.
981 */
982 void
983 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
984 register struct sbdsp_softc *sc;
985 int sr;
986 int isdac;
987 int *tcp, *modep;
988 {
989 int tc, realtc, mode;
990
991 /*
992 * Don't forget to compute which mode we'll be in based on whether
993 * we need to double the rate for stereo on SBPRO.
994 */
995
996 if (sr == 0) {
997 tc = SB_LS_MIN;
998 mode = SB_ADAC_LS;
999 goto out;
1000 }
1001
1002 tc = 256 - (1000000 / sr);
1003
1004 if (sc->sc_channels == 2 && ISSBPRO(sc))
1005 /* compute based on 2x sample rate when needed */
1006 realtc = 256 - ( 500000 / sr);
1007 else
1008 realtc = tc;
1009
1010 if (tc < SB_LS_MIN) {
1011 tc = SB_LS_MIN;
1012 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
1013 * speed mode. */
1014 goto out;
1015 } else if (isdac) {
1016 if (realtc <= SB_DAC_LS_MAX)
1017 mode = SB_ADAC_LS;
1018 else {
1019 mode = SB_ADAC_HS;
1020 if (tc > SB_DAC_HS_MAX)
1021 tc = SB_DAC_HS_MAX;
1022 }
1023 } else {
1024 int adc_ls_max, adc_hs_max;
1025
1026 /* XXX use better rounding--compare distance to nearest tc on both
1027 sides of requested speed */
1028 if (ISSBPROCLASS(sc)) {
1029 adc_ls_max = SBPRO_ADC_LS_MAX;
1030 adc_hs_max = SBPRO_ADC_HS_MAX;
1031 } else {
1032 adc_ls_max = SBCLA_ADC_LS_MAX;
1033 adc_hs_max = SBCLA_ADC_HS_MAX;
1034 }
1035
1036 if (realtc <= adc_ls_max)
1037 mode = SB_ADAC_LS;
1038 else {
1039 mode = SB_ADAC_HS;
1040 if (tc > adc_hs_max)
1041 tc = adc_hs_max;
1042 }
1043 }
1044
1045 out:
1046 *tcp = tc;
1047 *modep = mode;
1048 }
1049
1050 /*
1051 * Convert a DAC time constant to a sampling rate.
1052 * See SBK, section 12.
1053 */
1054 int
1055 sbdsp_tctosr(sc, tc)
1056 register struct sbdsp_softc *sc;
1057 int tc;
1058 {
1059 int adc;
1060
1061 if (ISSBPROCLASS(sc))
1062 adc = SBPRO_ADC_HS_MAX;
1063 else
1064 adc = SBCLA_ADC_HS_MAX;
1065
1066 if (tc > adc)
1067 tc = adc;
1068
1069 return (1000000 / (256 - tc));
1070 }
1071
1072 int
1073 sbdsp_set_timeconst(sc, tc)
1074 register struct sbdsp_softc *sc;
1075 int tc;
1076 {
1077 /*
1078 * A SBPro in stereo mode uses time constants at double the
1079 * actual rate.
1080 */
1081 if (ISSBPRO(sc) && sc->sc_channels == 2)
1082 tc = 256 - ((256 - tc) / 2);
1083
1084 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1085
1086 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1087 sbdsp_wdsp(sc, tc) < 0)
1088 return (EIO);
1089
1090 return (0);
1091 }
1092
1093 int
1094 sbdsp_dma_input(addr, p, cc, intr, arg)
1095 void *addr;
1096 void *p;
1097 int cc;
1098 void (*intr) __P((void *));
1099 void *arg;
1100 {
1101 register struct sbdsp_softc *sc = addr;
1102
1103 #ifdef AUDIO_DEBUG
1104 if (sbdspdebug > 1)
1105 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1106 #endif
1107 if (sc->sc_channels == 2 && (cc & 1)) {
1108 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1109 return EIO;
1110 }
1111
1112 if (sc->sc_dmadir != SB_DMA_IN) {
1113 if (ISSBPRO(sc)) {
1114 if (sc->sc_channels == 2) {
1115 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1116 if (sbdsp_wdsp(sc,
1117 JAZZ16_RECORD_STEREO) < 0) {
1118 goto badmode;
1119 }
1120 } else if (sbdsp_wdsp(sc,
1121 SB_DSP_RECORD_STEREO) < 0)
1122 goto badmode;
1123 sbdsp_mix_write(sc, SBP_INFILTER,
1124 (sbdsp_mix_read(sc, SBP_INFILTER) &
1125 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1126 } else {
1127 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1128 if (sbdsp_wdsp(sc,
1129 JAZZ16_RECORD_MONO) < 0)
1130 {
1131 goto badmode;
1132 }
1133 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1134 goto badmode;
1135 sbdsp_mix_write(sc, SBP_INFILTER,
1136 (sbdsp_mix_read(sc, SBP_INFILTER) &
1137 ~SBP_IFILTER_MASK) | sc->in_filter);
1138 }
1139 }
1140
1141 if (ISSB16CLASS(sc)) {
1142 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1143 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1144 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1145 goto giveup;
1146 } else
1147 sbdsp_set_timeconst(sc, sc->sc_itc);
1148
1149 sc->sc_dmadir = SB_DMA_IN;
1150 sc->dmaflags = DMAMODE_READ;
1151 if (ISSB2CLASS(sc))
1152 sc->dmaflags |= DMAMODE_LOOP;
1153 } else {
1154 /* Already started; just return. */
1155 if (ISSB2CLASS(sc))
1156 return 0;
1157 }
1158
1159 sc->dmaaddr = p;
1160 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1161 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1162 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1163 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1164 sc->sc_intr = intr;
1165 sc->sc_arg = arg;
1166
1167 if (sc->sc_precision == 16)
1168 cc >>= 1;
1169 --cc;
1170 if (ISSB16CLASS(sc)) {
1171 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1172 SB_DSP16_RDMA_8) < 0 ||
1173 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1174 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1175 sbdsp16_wait(sc) ||
1176 sbdsp_wdsp(sc, cc) < 0 ||
1177 sbdsp_wdsp(sc, cc >> 8) < 0) {
1178 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1179 goto giveup;
1180 }
1181 } else if (ISSB2CLASS(sc)) {
1182 if (cc != sc->sc_last_hs_size) {
1183 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1184 sbdsp_wdsp(sc, cc) < 0 ||
1185 sbdsp_wdsp(sc, cc >> 8) < 0) {
1186 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1187 goto giveup;
1188 }
1189 sc->sc_last_hs_size = cc;
1190 }
1191 if (sbdsp_wdsp(sc,
1192 sc->sc_imode == SB_ADAC_LS ? SB_DSP_RDMA_LOOP :
1193 SB_DSP_HS_INPUT) < 0) {
1194 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1195 goto giveup;
1196 }
1197 } else {
1198 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1199 sbdsp_wdsp(sc, cc) < 0 ||
1200 sbdsp_wdsp(sc, cc >> 8) < 0) {
1201 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1202 goto giveup;
1203 }
1204 }
1205 return 0;
1206
1207 giveup:
1208 sbdsp_reset(sc);
1209 return EIO;
1210
1211 badmode:
1212 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1213 sc->sc_channels == 2 ? "stereo" : "mono"));
1214 return EIO;
1215 }
1216
1217 int
1218 sbdsp_dma_output(addr, p, cc, intr, arg)
1219 void *addr;
1220 void *p;
1221 int cc;
1222 void (*intr) __P((void *));
1223 void *arg;
1224 {
1225 register struct sbdsp_softc *sc = addr;
1226
1227 #ifdef AUDIO_DEBUG
1228 if (sbdspdebug > 1)
1229 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1230 #endif
1231 if (sc->sc_channels == 2 && (cc & 1)) {
1232 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1233 return EIO;
1234 }
1235
1236 if (sc->sc_dmadir != SB_DMA_OUT) {
1237 if (ISSBPRO(sc)) {
1238 /* make sure we re-set stereo mixer bit when we start
1239 output. */
1240 sbdsp_mix_write(sc, SBP_STEREO,
1241 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1242 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1243 if (ISJAZZ16(sc)) {
1244 /* Yes, we write the record mode to set
1245 16-bit playback mode. weird, huh? */
1246 if (sc->sc_precision == 16) {
1247 sbdsp_wdsp(sc,
1248 sc->sc_channels == 2 ?
1249 JAZZ16_RECORD_STEREO :
1250 JAZZ16_RECORD_MONO);
1251 } else {
1252 sbdsp_wdsp(sc,
1253 sc->sc_channels == 2 ?
1254 SB_DSP_RECORD_STEREO :
1255 SB_DSP_RECORD_MONO);
1256 }
1257 }
1258 }
1259
1260 if (ISSB16CLASS(sc)) {
1261 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1262 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1263 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1264 goto giveup;
1265 } else
1266 sbdsp_set_timeconst(sc, sc->sc_otc);
1267
1268 sc->sc_dmadir = SB_DMA_OUT;
1269 sc->dmaflags = DMAMODE_WRITE;
1270 if (ISSB2CLASS(sc))
1271 sc->dmaflags |= DMAMODE_LOOP;
1272 } else {
1273 /* Already started; just return. */
1274 if (ISSB2CLASS(sc))
1275 return 0;
1276 }
1277
1278 sc->dmaaddr = p;
1279 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1280 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1281 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1282 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1283 sc->sc_intr = intr;
1284 sc->sc_arg = arg;
1285
1286 if (sc->sc_precision == 16)
1287 cc >>= 1;
1288 --cc;
1289 if (ISSB16CLASS(sc)) {
1290 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1291 SB_DSP16_WDMA_8) < 0 ||
1292 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1293 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1294 sbdsp16_wait(sc) ||
1295 sbdsp_wdsp(sc, cc) < 0 ||
1296 sbdsp_wdsp(sc, cc >> 8) < 0) {
1297 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1298 goto giveup;
1299 }
1300 } else if (ISSB2CLASS(sc)) {
1301 if (cc != sc->sc_last_hs_size) {
1302 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1303 sbdsp_wdsp(sc, cc) < 0 ||
1304 sbdsp_wdsp(sc, cc >> 8) < 0) {
1305 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1306 goto giveup;
1307 }
1308 sc->sc_last_hs_size = cc;
1309 }
1310 if (sbdsp_wdsp(sc,
1311 sc->sc_omode == SB_ADAC_LS ? SB_DSP_WDMA_LOOP :
1312 SB_DSP_HS_OUTPUT) < 0) {
1313 DPRINTF(("sbdsp_dma_output: SB2 DMA restart failed\n"));
1314 goto giveup;
1315 }
1316 } else {
1317 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1318 sbdsp_wdsp(sc, cc) < 0 ||
1319 sbdsp_wdsp(sc, cc >> 8) < 0) {
1320 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1321 goto giveup;
1322 }
1323 }
1324 return 0;
1325
1326 giveup:
1327 sbdsp_reset(sc);
1328 return EIO;
1329 }
1330
1331 /*
1332 * Only the DSP unit on the sound blaster generates interrupts.
1333 * There are three cases of interrupt: reception of a midi byte
1334 * (when mode is enabled), completion of dma transmission, or
1335 * completion of a dma reception. The three modes are mutually
1336 * exclusive so we know a priori which event has occurred.
1337 */
1338 int
1339 sbdsp_intr(arg)
1340 void *arg;
1341 {
1342 register struct sbdsp_softc *sc = arg;
1343 u_char x;
1344
1345 #ifdef AUDIO_DEBUG
1346 if (sbdspdebug > 1)
1347 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1348 #endif
1349 if (ISSB16CLASS(sc)) {
1350 x = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1351 if ((x & 3) == 0)
1352 return 0;
1353 } else {
1354 if (isa_dmafinished(sc->sc_isa, sc->dmachan) == 0)
1355 return 0;
1356 }
1357 sc->sc_interrupts++;
1358 delay(10);
1359 #if 0
1360 if (sc->sc_mintr != 0) {
1361 x = sbdsp_rdsp(sc);
1362 (*sc->sc_mintr)(sc->sc_arg, x);
1363 } else
1364 #endif
1365 if (sc->sc_intr != 0) {
1366 /* clear interrupt */
1367 bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1368 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1369 SBP_DSP_IRQACK8);
1370 if (!ISSB2CLASS(sc))
1371 isa_dmadone(sc->sc_isa, sc->dmachan);
1372 (*sc->sc_intr)(sc->sc_arg);
1373 } else {
1374 return 0;
1375 }
1376 return 1;
1377 }
1378
1379 #if 0
1380 /*
1381 * Enter midi uart mode and arrange for read interrupts
1382 * to vector to `intr'. This puts the card in a mode
1383 * which allows only midi I/O; the card must be reset
1384 * to leave this mode. Unfortunately, the card does not
1385 * use transmit interrupts, so bytes must be output
1386 * using polling. To keep the polling overhead to a
1387 * minimum, output should be driven off a timer.
1388 * This is a little tricky since only 320us separate
1389 * consecutive midi bytes.
1390 */
1391 void
1392 sbdsp_set_midi_mode(sc, intr, arg)
1393 struct sbdsp_softc *sc;
1394 void (*intr)();
1395 void *arg;
1396 {
1397
1398 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1399 sc->sc_mintr = intr;
1400 sc->sc_intr = 0;
1401 sc->sc_arg = arg;
1402 }
1403
1404 /*
1405 * Write a byte to the midi port, when in midi uart mode.
1406 */
1407 void
1408 sbdsp_midi_output(sc, v)
1409 struct sbdsp_softc *sc;
1410 int v;
1411 {
1412
1413 if (sbdsp_wdsp(sc, v) < 0)
1414 ++sberr.wmidi;
1415 }
1416 #endif
1417
1418 int
1419 sbdsp_setfd(addr, flag)
1420 void *addr;
1421 int flag;
1422 {
1423 /* Can't do full-duplex */
1424 return(ENOTTY);
1425 }
1426
1427 int
1428 sbdsp_mixer_set_port(addr, cp)
1429 void *addr;
1430 mixer_ctrl_t *cp;
1431 {
1432 register struct sbdsp_softc *sc = addr;
1433 int src, gain;
1434
1435 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1436 cp->un.value.num_channels));
1437
1438 if (!ISSBPROCLASS(sc))
1439 return EINVAL;
1440
1441 /*
1442 * Everything is a value except for SBPro BASS/TREBLE and
1443 * RECORD_SOURCE
1444 */
1445 switch (cp->dev) {
1446 case SB_SPEAKER:
1447 cp->dev = SB_MASTER_VOL;
1448 case SB_MIC_PORT:
1449 case SB_LINE_IN_PORT:
1450 case SB_DAC_PORT:
1451 case SB_FM_PORT:
1452 case SB_CD_PORT:
1453 case SB_MASTER_VOL:
1454 if (cp->type != AUDIO_MIXER_VALUE)
1455 return EINVAL;
1456
1457 /*
1458 * All the mixer ports are stereo except for the microphone.
1459 * If we get a single-channel gain value passed in, then we
1460 * duplicate it to both left and right channels.
1461 */
1462
1463 switch (cp->dev) {
1464 case SB_MIC_PORT:
1465 if (cp->un.value.num_channels != 1)
1466 return EINVAL;
1467
1468 /* handle funny microphone gain */
1469 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1470 break;
1471 case SB_LINE_IN_PORT:
1472 case SB_DAC_PORT:
1473 case SB_FM_PORT:
1474 case SB_CD_PORT:
1475 case SB_MASTER_VOL:
1476 switch (cp->un.value.num_channels) {
1477 case 1:
1478 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1479 break;
1480 case 2:
1481 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1482 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1483 break;
1484 default:
1485 return EINVAL;
1486 }
1487 break;
1488 default:
1489 return EINVAL;
1490 }
1491
1492 switch (cp->dev) {
1493 case SB_MIC_PORT:
1494 src = SBP_MIC_VOL;
1495 break;
1496 case SB_MASTER_VOL:
1497 src = SBP_MASTER_VOL;
1498 break;
1499 case SB_LINE_IN_PORT:
1500 src = SBP_LINE_VOL;
1501 break;
1502 case SB_DAC_PORT:
1503 src = SBP_DAC_VOL;
1504 break;
1505 case SB_FM_PORT:
1506 src = SBP_FM_VOL;
1507 break;
1508 case SB_CD_PORT:
1509 src = SBP_CD_VOL;
1510 break;
1511 default:
1512 return EINVAL;
1513 }
1514
1515 sbdsp_mix_write(sc, src, gain);
1516 sc->gain[cp->dev] = gain;
1517 break;
1518
1519 case SB_TREBLE:
1520 case SB_BASS:
1521 case SB_RECORD_SOURCE:
1522 if (cp->type != AUDIO_MIXER_ENUM)
1523 return EINVAL;
1524
1525 switch (cp->dev) {
1526 case SB_TREBLE:
1527 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1528 case SB_BASS:
1529 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1530 case SB_RECORD_SOURCE:
1531 return sbdsp_set_in_port(addr, cp->un.ord);
1532 }
1533
1534 break;
1535
1536 default:
1537 return EINVAL;
1538 }
1539
1540 return (0);
1541 }
1542
1543 int
1544 sbdsp_mixer_get_port(addr, cp)
1545 void *addr;
1546 mixer_ctrl_t *cp;
1547 {
1548 register struct sbdsp_softc *sc = addr;
1549 int gain;
1550
1551 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1552
1553 if (!ISSBPROCLASS(sc))
1554 return EINVAL;
1555
1556 switch (cp->dev) {
1557 case SB_SPEAKER:
1558 cp->dev = SB_MASTER_VOL;
1559 case SB_MIC_PORT:
1560 case SB_LINE_IN_PORT:
1561 case SB_DAC_PORT:
1562 case SB_FM_PORT:
1563 case SB_CD_PORT:
1564 case SB_MASTER_VOL:
1565 gain = sc->gain[cp->dev];
1566
1567 switch (cp->dev) {
1568 case SB_MIC_PORT:
1569 if (cp->un.value.num_channels != 1)
1570 return EINVAL;
1571
1572 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1573 break;
1574 case SB_LINE_IN_PORT:
1575 case SB_DAC_PORT:
1576 case SB_FM_PORT:
1577 case SB_CD_PORT:
1578 case SB_MASTER_VOL:
1579 switch (cp->un.value.num_channels) {
1580 case 1:
1581 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1582 break;
1583 case 2:
1584 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1585 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1586 break;
1587 default:
1588 return EINVAL;
1589 }
1590 break;
1591 }
1592
1593 break;
1594
1595 case SB_TREBLE:
1596 case SB_BASS:
1597 case SB_RECORD_SOURCE:
1598 switch (cp->dev) {
1599 case SB_TREBLE:
1600 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1601 return 0;
1602 case SB_BASS:
1603 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1604 return 0;
1605 case SB_RECORD_SOURCE:
1606 cp->un.ord = sbdsp_get_in_port(addr);
1607 return 0;
1608 }
1609
1610 break;
1611
1612 default:
1613 return EINVAL;
1614 }
1615
1616 return (0);
1617 }
1618
1619 int
1620 sbdsp_mixer_query_devinfo(addr, dip)
1621 void *addr;
1622 register mixer_devinfo_t *dip;
1623 {
1624 register struct sbdsp_softc *sc = addr;
1625
1626 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1627
1628 switch (dip->index) {
1629 case SB_MIC_PORT:
1630 dip->type = AUDIO_MIXER_VALUE;
1631 dip->mixer_class = SB_INPUT_CLASS;
1632 dip->prev = AUDIO_MIXER_LAST;
1633 dip->next = AUDIO_MIXER_LAST;
1634 strcpy(dip->label.name, AudioNmicrophone);
1635 dip->un.v.num_channels = 1;
1636 strcpy(dip->un.v.units.name, AudioNvolume);
1637 return 0;
1638
1639 case SB_SPEAKER:
1640 dip->type = AUDIO_MIXER_VALUE;
1641 dip->mixer_class = SB_OUTPUT_CLASS;
1642 dip->prev = AUDIO_MIXER_LAST;
1643 dip->next = AUDIO_MIXER_LAST;
1644 strcpy(dip->label.name, AudioNspeaker);
1645 dip->un.v.num_channels = 1;
1646 strcpy(dip->un.v.units.name, AudioNvolume);
1647 return 0;
1648
1649 case SB_INPUT_CLASS:
1650 dip->type = AUDIO_MIXER_CLASS;
1651 dip->mixer_class = SB_INPUT_CLASS;
1652 dip->next = dip->prev = AUDIO_MIXER_LAST;
1653 strcpy(dip->label.name, AudioCInputs);
1654 return 0;
1655
1656 case SB_OUTPUT_CLASS:
1657 dip->type = AUDIO_MIXER_CLASS;
1658 dip->mixer_class = SB_OUTPUT_CLASS;
1659 dip->next = dip->prev = AUDIO_MIXER_LAST;
1660 strcpy(dip->label.name, AudioCOutputs);
1661 return 0;
1662 }
1663
1664 if (ISSBPROCLASS(sc)) {
1665 switch (dip->index) {
1666 case SB_LINE_IN_PORT:
1667 dip->type = AUDIO_MIXER_VALUE;
1668 dip->mixer_class = SB_INPUT_CLASS;
1669 dip->prev = AUDIO_MIXER_LAST;
1670 dip->next = AUDIO_MIXER_LAST;
1671 strcpy(dip->label.name, AudioNline);
1672 dip->un.v.num_channels = 2;
1673 strcpy(dip->un.v.units.name, AudioNvolume);
1674 return 0;
1675
1676 case SB_DAC_PORT:
1677 dip->type = AUDIO_MIXER_VALUE;
1678 dip->mixer_class = SB_INPUT_CLASS;
1679 dip->prev = AUDIO_MIXER_LAST;
1680 dip->next = AUDIO_MIXER_LAST;
1681 strcpy(dip->label.name, AudioNdac);
1682 dip->un.v.num_channels = 2;
1683 strcpy(dip->un.v.units.name, AudioNvolume);
1684 return 0;
1685
1686 case SB_CD_PORT:
1687 dip->type = AUDIO_MIXER_VALUE;
1688 dip->mixer_class = SB_INPUT_CLASS;
1689 dip->prev = AUDIO_MIXER_LAST;
1690 dip->next = AUDIO_MIXER_LAST;
1691 strcpy(dip->label.name, AudioNcd);
1692 dip->un.v.num_channels = 2;
1693 strcpy(dip->un.v.units.name, AudioNvolume);
1694 return 0;
1695
1696 case SB_FM_PORT:
1697 dip->type = AUDIO_MIXER_VALUE;
1698 dip->mixer_class = SB_INPUT_CLASS;
1699 dip->prev = AUDIO_MIXER_LAST;
1700 dip->next = AUDIO_MIXER_LAST;
1701 strcpy(dip->label.name, AudioNfmsynth);
1702 dip->un.v.num_channels = 2;
1703 strcpy(dip->un.v.units.name, AudioNvolume);
1704 return 0;
1705
1706 case SB_MASTER_VOL:
1707 dip->type = AUDIO_MIXER_VALUE;
1708 dip->mixer_class = SB_OUTPUT_CLASS;
1709 dip->prev = AUDIO_MIXER_LAST;
1710 dip->next = AUDIO_MIXER_LAST;
1711 strcpy(dip->label.name, AudioNvolume);
1712 dip->un.v.num_channels = 2;
1713 strcpy(dip->un.v.units.name, AudioNvolume);
1714 return 0;
1715
1716 case SB_RECORD_SOURCE:
1717 dip->mixer_class = SB_RECORD_CLASS;
1718 dip->type = AUDIO_MIXER_ENUM;
1719 dip->prev = AUDIO_MIXER_LAST;
1720 dip->next = AUDIO_MIXER_LAST;
1721 strcpy(dip->label.name, AudioNsource);
1722 dip->un.e.num_mem = 3;
1723 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1724 dip->un.e.member[0].ord = SB_MIC_PORT;
1725 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1726 dip->un.e.member[1].ord = SB_CD_PORT;
1727 strcpy(dip->un.e.member[2].label.name, AudioNline);
1728 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1729 return 0;
1730
1731 case SB_BASS:
1732 dip->type = AUDIO_MIXER_ENUM;
1733 dip->mixer_class = SB_INPUT_CLASS;
1734 dip->prev = AUDIO_MIXER_LAST;
1735 dip->next = AUDIO_MIXER_LAST;
1736 strcpy(dip->label.name, AudioNbass);
1737 dip->un.e.num_mem = 2;
1738 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1739 dip->un.e.member[0].ord = 0;
1740 strcpy(dip->un.e.member[1].label.name, AudioNon);
1741 dip->un.e.member[1].ord = 1;
1742 return 0;
1743
1744 case SB_TREBLE:
1745 dip->type = AUDIO_MIXER_ENUM;
1746 dip->mixer_class = SB_INPUT_CLASS;
1747 dip->prev = AUDIO_MIXER_LAST;
1748 dip->next = AUDIO_MIXER_LAST;
1749 strcpy(dip->label.name, AudioNtreble);
1750 dip->un.e.num_mem = 2;
1751 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1752 dip->un.e.member[0].ord = 0;
1753 strcpy(dip->un.e.member[1].label.name, AudioNon);
1754 dip->un.e.member[1].ord = 1;
1755 return 0;
1756
1757 case SB_RECORD_CLASS: /* record source class */
1758 dip->type = AUDIO_MIXER_CLASS;
1759 dip->mixer_class = SB_RECORD_CLASS;
1760 dip->next = dip->prev = AUDIO_MIXER_LAST;
1761 strcpy(dip->label.name, AudioCRecord);
1762 return 0;
1763 }
1764 }
1765
1766 return ENXIO;
1767 }
1768