sbdsp.c revision 1.46 1 /* $NetBSD: sbdsp.c,v 1.46 1997/05/13 19:02:17 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 */
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/device.h>
50 #include <sys/proc.h>
51 #include <sys/buf.h>
52 #include <vm/vm.h>
53
54 #include <machine/cpu.h>
55 #include <machine/intr.h>
56 #include <machine/pio.h>
57
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60 #include <dev/mulaw.h>
61
62 #include <dev/isa/isavar.h>
63 #include <dev/isa/isadmavar.h>
64 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
65
66 #include <dev/isa/sbreg.h>
67 #include <dev/isa/sbdspvar.h>
68
69 #ifdef AUDIO_DEBUG
70 extern void Dprintf __P((const char *, ...));
71 #define DPRINTF(x) if (sbdspdebug) Dprintf x
72 int sbdspdebug = 0;
73 #else
74 #define DPRINTF(x)
75 #endif
76
77 #ifndef SBDSP_NPOLL
78 #define SBDSP_NPOLL 3000
79 #endif
80
81 struct {
82 int wdsp;
83 int rdsp;
84 int wmidi;
85 } sberr;
86
87 void sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
88 int *tcp, int *modep));
89 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
90
91 /*
92 * Time constant routines follow. See SBK, section 12.
93 * Although they don't come out and say it (in the docs),
94 * the card clearly uses a 1MHz countdown timer, as the
95 * low-speed formula (p. 12-4) is:
96 * tc = 256 - 10^6 / sr
97 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
98 * and a 256MHz clock is used:
99 * tc = 65536 - 256 * 10^ 6 / sr
100 * Since we can only use the upper byte of the HS TC, the two formulae
101 * are equivalent. (Why didn't they say so?) E.g.,
102 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
103 *
104 * The crossover point (from low- to high-speed modes) is different
105 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
106 *
107 * SBPRO SB20
108 * ----- --------
109 * input ls min 4 KHz 4 KHz
110 * input ls max 23 KHz 13 KHz
111 * input hs max 44.1 KHz 15 KHz
112 * output ls min 4 KHz 4 KHz
113 * output ls max 23 KHz 23 KHz
114 * output hs max 44.1 KHz 44.1 KHz
115 */
116 #define SB_LS_MIN 0x06 /* 4000 Hz */
117 #define SB_8K 0x83 /* 8000 Hz */
118 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
119 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
120 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
121 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
122 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
123 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
124
125 int sbdsp16_wait __P((struct sbdsp_softc *));
126 void sbdsp_to __P((void *));
127 void sbdsp_pause __P((struct sbdsp_softc *));
128 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
129 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
130 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
131 int sbdsp_set_io_params __P((struct sbdsp_softc *, struct audio_params *));
132
133 #ifdef AUDIO_DEBUG
134 void sb_printsc __P((struct sbdsp_softc *));
135
136 void
137 sb_printsc(sc)
138 struct sbdsp_softc *sc;
139 {
140 int i;
141
142 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
143 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
144 sc->sc_iobase, sc->sc_irq);
145 printf("irate %d itc %d imode %d orate %d otc %d omode %d\n",
146 sc->sc_irate, sc->sc_itc, sc->sc_imode,
147 sc->sc_orate, sc->sc_otc, sc->sc_omode);
148 printf("outport %u inport %u spkron %u nintr %lu\n",
149 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
150 printf("precision %u channels %d intr %p arg %p\n",
151 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
152 printf("gain:");
153 for (i = 0; i < SB_NDEVS; i++)
154 printf(" %u", sc->gain[i]);
155 printf("\n");
156 }
157 #endif /* AUDIO_DEBUG */
158
159 /*
160 * Probe / attach routines.
161 */
162
163 /*
164 * Probe for the soundblaster hardware.
165 */
166 int
167 sbdsp_probe(sc)
168 struct sbdsp_softc *sc;
169 {
170
171 if (sbdsp_reset(sc) < 0) {
172 DPRINTF(("sbdsp: couldn't reset card\n"));
173 return 0;
174 }
175 /* if flags set, go and probe the jazz16 stuff */
176 if (sc->sc_dev.dv_cfdata->cf_flags != 0) {
177 sc->sc_model = sbdsp_jazz16_probe(sc);
178 } else {
179 sc->sc_model = sbversion(sc);
180 }
181
182 #if 0
183 sc->sc_model = 0x100; /* XXX pretend to be just a tired old SB XXX */
184 #endif
185
186 return 1;
187 }
188
189 /*
190 * Try add-on stuff for Jazz16.
191 */
192 u_int
193 sbdsp_jazz16_probe(sc)
194 struct sbdsp_softc *sc;
195 {
196 static u_char jazz16_irq_conf[16] = {
197 -1, -1, 0x02, 0x03,
198 -1, 0x01, -1, 0x04,
199 -1, 0x02, 0x05, -1,
200 -1, -1, -1, 0x06};
201 static u_char jazz16_drq_conf[8] = {
202 -1, 0x01, -1, 0x02,
203 -1, 0x03, -1, 0x04};
204
205 u_int rval = sbversion(sc);
206 bus_space_tag_t iot = sc->sc_iot;
207 bus_space_handle_t ioh;
208
209 DPRINTF(("jazz16 probe\n"));
210
211 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
212 DPRINTF(("bus map failed\n"));
213 return rval;
214 }
215
216 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
217 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
218 DPRINTF(("drq/irq check failed\n"));
219 goto done; /* give up, we can't do it. */
220 }
221
222 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
223 delay(10000); /* delay 10 ms */
224 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
225 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
226
227 if (sbdsp_reset(sc) < 0) {
228 DPRINTF(("sbdsp_reset check failed\n"));
229 goto done; /* XXX? what else could we do? */
230 }
231
232 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
233 DPRINTF(("read16 setup failed\n"));
234 goto done;
235 }
236
237 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
238 DPRINTF(("read16 failed\n"));
239 goto done;
240 }
241
242 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
243 sc->sc_drq16 = sc->sc_drq8;
244 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
245 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
246 jazz16_drq_conf[sc->sc_drq8]) ||
247 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
248 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
249 } else {
250 DPRINTF(("jazz16 detected!\n"));
251 rval |= MODEL_JAZZ16;
252 }
253
254 done:
255 bus_space_unmap(iot, ioh, 1);
256 return rval;
257 }
258
259 /*
260 * Attach hardware to driver, attach hardware driver to audio
261 * pseudo-device driver .
262 */
263 void
264 sbdsp_attach(sc)
265 struct sbdsp_softc *sc;
266 {
267
268 /* Set defaults */
269 if (ISSB16CLASS(sc))
270 sc->sc_irate = sc->sc_orate = 8000;
271 else if (ISSBPROCLASS(sc))
272 sc->sc_itc = sc->sc_otc = SB_8K;
273 else
274 sc->sc_itc = sc->sc_otc = SB_8K;
275 sc->sc_precision = 8;
276 sc->sc_channels = 1;
277
278 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
279 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
280
281 if (ISSBPROCLASS(sc)) {
282 int i;
283
284 /* set mixer to default levels, by sending a mixer
285 reset command. */
286 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
287 /* then some adjustments :) */
288 sbdsp_mix_write(sc, SBP_CD_VOL,
289 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
290 sbdsp_mix_write(sc, SBP_DAC_VOL,
291 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
292 sbdsp_mix_write(sc, SBP_MASTER_VOL,
293 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
294 sbdsp_mix_write(sc, SBP_LINE_VOL,
295 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
296 for (i = 0; i < SB_NDEVS; i++)
297 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
298 sc->in_filter = 0; /* no filters turned on, please */
299 }
300
301 printf(": dsp v%d.%02d%s\n",
302 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
303 ISJAZZ16(sc) ? ": <Jazz16>" : "");
304 }
305
306 /*
307 * Various routines to interface to higher level audio driver
308 */
309
310 void
311 sbdsp_mix_write(sc, mixerport, val)
312 struct sbdsp_softc *sc;
313 int mixerport;
314 int val;
315 {
316 bus_space_tag_t iot = sc->sc_iot;
317 bus_space_handle_t ioh = sc->sc_ioh;
318
319 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
320 delay(10);
321 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
322 delay(30);
323 }
324
325 int
326 sbdsp_mix_read(sc, mixerport)
327 struct sbdsp_softc *sc;
328 int mixerport;
329 {
330 bus_space_tag_t iot = sc->sc_iot;
331 bus_space_handle_t ioh = sc->sc_ioh;
332
333 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
334 delay(10);
335 return bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
336 }
337
338 int
339 sbdsp_query_encoding(addr, fp)
340 void *addr;
341 struct audio_encoding *fp;
342 {
343 struct sbdsp_softc *sc = addr;
344
345 switch (fp->index) {
346 case 0:
347 strcpy(fp->name, AudioEulinear);
348 fp->encoding = AUDIO_ENCODING_ULINEAR;
349 fp->precision = 8;
350 fp->flags = 0;
351 break;
352 case 1:
353 strcpy(fp->name, AudioEmulaw);
354 fp->encoding = AUDIO_ENCODING_ULAW;
355 fp->precision = 8;
356 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
357 break;
358 case 2:
359 strcpy(fp->name, AudioElinear);
360 fp->encoding = AUDIO_ENCODING_LINEAR;
361 fp->precision = 8;
362 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
363 break;
364 default:
365 if (!(ISSB16CLASS(sc) || ISJAZZ16(sc)))
366 return (EINVAL);
367 switch(fp->index) {
368 case 3:
369 strcpy(fp->name, AudioElinear_le);
370 fp->encoding = AUDIO_ENCODING_LINEAR_LE;
371 fp->precision = 16;
372 fp->flags = 0;
373 break;
374 case 4:
375 strcpy(fp->name, AudioEulinear_le);
376 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
377 fp->precision = 16;
378 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
379 break;
380 case 5:
381 strcpy(fp->name, AudioElinear_be);
382 fp->encoding = AUDIO_ENCODING_LINEAR_BE;
383 fp->precision = 16;
384 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
385 break;
386 case 6:
387 strcpy(fp->name, AudioEulinear_be);
388 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
389 fp->precision = 16;
390 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
391 break;
392 default:
393 return (EINVAL);
394 }
395 }
396 return (0);
397 }
398
399 int
400 sbdsp_set_params(addr, mode, p, q)
401 void *addr;
402 int mode;
403 struct audio_params *p, *q;
404 {
405 struct sbdsp_softc *sc = addr;
406 int maxspeed;
407 void (*swcode) __P((void *, u_char *buf, int cnt));
408 int can16 = ISSB16CLASS(sc) || ISJAZZ16(sc);
409
410 switch (p->encoding) {
411 case AUDIO_ENCODING_LINEAR_LE:
412 if (p->precision == 8)
413 swcode = change_sign8;
414 else if (can16)
415 swcode = 0;
416 else
417 return EINVAL;
418 break;
419 case AUDIO_ENCODING_ULINEAR_LE:
420 if (p->precision == 8)
421 swcode = 0;
422 else if (can16)
423 swcode = change_sign16;
424 else
425 return EINVAL;
426 break;
427 case AUDIO_ENCODING_LINEAR_BE:
428 if (p->precision == 8)
429 swcode = change_sign8;
430 else if (can16)
431 swcode = swap_bytes;
432 else
433 return EINVAL;
434 break;
435 case AUDIO_ENCODING_ULINEAR_BE:
436 if (p->precision == 8)
437 swcode = 0;
438 else if (can16)
439 swcode = swap_bytes_change_sign16;
440 else
441 return EINVAL;
442 break;
443 case AUDIO_ENCODING_ULAW:
444 swcode = mode == AUMODE_PLAY ?
445 mulaw_to_ulinear8 : ulinear8_to_mulaw;
446 break;
447 default:
448 return EINVAL;
449 }
450
451
452 if (!ISSBPROCLASS(sc)) {
453 /* v 1.x or v 2.x */
454 if (mode == AUMODE_PLAY) {
455 if (ISSB2CLASS(sc) && SBVER_MINOR(sc->sc_model) > 0)
456 maxspeed = 44100;
457 else
458 maxspeed = 23000;
459 } else
460 maxspeed = 13000;
461 if (p->sample_rate < 4000 || p->sample_rate > maxspeed)
462 return EINVAL;
463 if (p->channels != 1)
464 return EINVAL;
465 } else if (!can16) {
466 /* v 3.x */
467 if (p->channels == 1)
468 maxspeed = 44100;
469 else
470 maxspeed = 23000;
471 if (p->sample_rate < 4000 || p->sample_rate > maxspeed)
472 return EINVAL;
473 } else {
474 /* >= v 4.x */
475 if (p->sample_rate < 4000 || p->sample_rate > 44100)
476 return EINVAL;
477 }
478
479 if (ISSB16CLASS(sc)) {
480 if (mode == AUMODE_RECORD)
481 sc->sc_irate = p->sample_rate;
482 else
483 sc->sc_orate = p->sample_rate;
484 } else {
485 sbdsp_srtotc(sc, p->sample_rate, SB_OUTPUT_RATE,
486 &sc->sc_otc, &sc->sc_omode);
487 p->sample_rate = sbdsp_tctosr(sc, sc->sc_otc);
488 }
489
490 sc->sc_precision = p->precision;
491 sc->sc_channels = p->channels;
492
493 p->sw_code = swcode;
494
495 /* Update setting for the other mode. */
496 q->encoding = p->encoding;
497 q->channels = p->channels;
498 q->precision = p->precision;
499 return 0;
500 }
501
502 int
503 sbdsp_set_ifilter(addr, which)
504 void *addr;
505 int which;
506 {
507 register struct sbdsp_softc *sc = addr;
508 int mixval;
509
510 /* XXXX SB16 */
511 if (ISSBPROCLASS(sc)) {
512 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
513 switch (which) {
514 case 0:
515 mixval |= SBP_FILTER_OFF;
516 break;
517 case SBP_TREBLE_EQ:
518 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
519 break;
520 case SBP_BASS_EQ:
521 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
522 break;
523 default:
524 return (EINVAL);
525 }
526 sc->in_filter = mixval & SBP_IFILTER_MASK;
527 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
528 return (0);
529 } else
530 return (EINVAL);
531 }
532
533 int
534 sbdsp_get_ifilter(addr)
535 void *addr;
536 {
537 register struct sbdsp_softc *sc = addr;
538
539 /* XXXX SB16 */
540 if (ISSBPROCLASS(sc)) {
541 sc->in_filter =
542 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
543 switch (sc->in_filter) {
544 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
545 return (SBP_TREBLE_EQ);
546 case SBP_FILTER_ON|SBP_IFILTER_LOW:
547 return (SBP_BASS_EQ);
548 case SBP_FILTER_OFF:
549 default:
550 return (0);
551 }
552 } else
553 return (0);
554 }
555
556 int
557 sbdsp_set_out_port(addr, port)
558 void *addr;
559 int port;
560 {
561 register struct sbdsp_softc *sc = addr;
562
563 sc->out_port = port; /* Just record it */
564
565 return (0);
566 }
567
568 int
569 sbdsp_get_out_port(addr)
570 void *addr;
571 {
572 register struct sbdsp_softc *sc = addr;
573
574 return (sc->out_port);
575 }
576
577
578 int
579 sbdsp_set_in_port(addr, port)
580 void *addr;
581 int port;
582 {
583 register struct sbdsp_softc *sc = addr;
584 int mixport, sbport;
585
586 if (ISSBPROCLASS(sc)) {
587 switch (port) {
588 case SB_MIC_PORT:
589 sbport = SBP_FROM_MIC;
590 mixport = SBP_MIC_VOL;
591 break;
592 case SB_LINE_IN_PORT:
593 sbport = SBP_FROM_LINE;
594 mixport = SBP_LINE_VOL;
595 break;
596 case SB_CD_PORT:
597 sbport = SBP_FROM_CD;
598 mixport = SBP_CD_VOL;
599 break;
600 case SB_DAC_PORT:
601 case SB_FM_PORT:
602 default:
603 return (EINVAL);
604 }
605 } else {
606 switch (port) {
607 case SB_MIC_PORT:
608 sbport = SBP_FROM_MIC;
609 mixport = SBP_MIC_VOL;
610 break;
611 default:
612 return (EINVAL);
613 }
614 }
615
616 sc->in_port = port; /* Just record it */
617
618 /* XXXX SB16 */
619 if (ISSBPROCLASS(sc)) {
620 /* record from that port */
621 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
622 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
623 /* fetch gain from that port */
624 sc->gain[port] = sbdsp_mix_read(sc, mixport);
625 }
626
627 return (0);
628 }
629
630 int
631 sbdsp_get_in_port(addr)
632 void *addr;
633 {
634 register struct sbdsp_softc *sc = addr;
635
636 return (sc->in_port);
637 }
638
639
640 int
641 sbdsp_speaker_ctl(addr, newstate)
642 void *addr;
643 int newstate;
644 {
645 register struct sbdsp_softc *sc = addr;
646
647 if ((newstate == SPKR_ON) &&
648 (sc->spkr_state == SPKR_OFF)) {
649 sbdsp_spkron(sc);
650 sc->spkr_state = SPKR_ON;
651 }
652 if ((newstate == SPKR_OFF) &&
653 (sc->spkr_state == SPKR_ON)) {
654 sbdsp_spkroff(sc);
655 sc->spkr_state = SPKR_OFF;
656 }
657 return(0);
658 }
659
660 int
661 sbdsp_round_blocksize(addr, blk)
662 void *addr;
663 int blk;
664 {
665 register struct sbdsp_softc *sc = addr;
666
667 sc->sc_last_hs_size = 0;
668
669 /* Don't try to DMA too much at once. */
670 if (blk > NBPG)
671 blk = NBPG;
672
673 /* Round to a multiple of the sample size. */
674 blk &= -(sc->sc_channels * sc->sc_precision / 8);
675
676 return (blk);
677 }
678
679 int
680 sbdsp_commit_settings(addr)
681 void *addr;
682 {
683 register struct sbdsp_softc *sc = addr;
684
685 /*
686 * XXX
687 * Should wait for chip to be idle.
688 */
689 sc->sc_dmadir = SB_DMA_NONE;
690
691 return 0;
692 }
693
694
695 int
696 sbdsp_open(sc, dev, flags)
697 register struct sbdsp_softc *sc;
698 dev_t dev;
699 int flags;
700 {
701 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
702
703 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
704 return ENXIO;
705
706 sc->sc_open = 1;
707 sc->sc_mintr = 0;
708 if (ISSBPROCLASS(sc) &&
709 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
710 DPRINTF(("sbdsp_open: can't set mono mode\n"));
711 /* we'll readjust when it's time for DMA. */
712 }
713
714 /*
715 * Leave most things as they were; users must change things if
716 * the previous process didn't leave it they way they wanted.
717 * Looked at another way, it's easy to set up a configuration
718 * in one program and leave it for another to inherit.
719 */
720 DPRINTF(("sbdsp_open: opened\n"));
721
722 return 0;
723 }
724
725 void
726 sbdsp_close(addr)
727 void *addr;
728 {
729 struct sbdsp_softc *sc = addr;
730
731 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
732
733 sc->sc_open = 0;
734 sbdsp_spkroff(sc);
735 sc->spkr_state = SPKR_OFF;
736 sc->sc_mintr = 0;
737 sbdsp_haltdma(sc);
738
739 DPRINTF(("sbdsp_close: closed\n"));
740 }
741
742 /*
743 * Lower-level routines
744 */
745
746 /*
747 * Reset the card.
748 * Return non-zero if the card isn't detected.
749 */
750 int
751 sbdsp_reset(sc)
752 register struct sbdsp_softc *sc;
753 {
754 bus_space_tag_t iot = sc->sc_iot;
755 bus_space_handle_t ioh = sc->sc_ioh;
756
757 sc->sc_intr = 0;
758 if (sc->sc_dmadir != SB_DMA_NONE) {
759 isa_dmaabort(sc->dmachan);
760 sc->sc_dmadir = SB_DMA_NONE;
761 }
762 sc->sc_last_hs_size = 0;
763
764 /*
765 * See SBK, section 11.3.
766 * We pulse a reset signal into the card.
767 * Gee, what a brilliant hardware design.
768 */
769 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
770 delay(10);
771 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
772 delay(30);
773 if (sbdsp_rdsp(sc) != SB_MAGIC)
774 return -1;
775
776 return 0;
777 }
778
779 int
780 sbdsp16_wait(sc)
781 struct sbdsp_softc *sc;
782 {
783 bus_space_tag_t iot = sc->sc_iot;
784 bus_space_handle_t ioh = sc->sc_ioh;
785 register int i;
786
787 for (i = SBDSP_NPOLL; --i >= 0; ) {
788 register u_char x;
789 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
790 delay(10);
791 if ((x & SB_DSP_BUSY) == 0)
792 continue;
793 return 0;
794 }
795 ++sberr.wdsp;
796 return -1;
797 }
798
799 /*
800 * Write a byte to the dsp.
801 * XXX We are at the mercy of the card as we use a
802 * polling loop and wait until it can take the byte.
803 */
804 int
805 sbdsp_wdsp(sc, v)
806 struct sbdsp_softc *sc;
807 int v;
808 {
809 bus_space_tag_t iot = sc->sc_iot;
810 bus_space_handle_t ioh = sc->sc_ioh;
811 register int i;
812
813 for (i = SBDSP_NPOLL; --i >= 0; ) {
814 register u_char x;
815 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
816 delay(10);
817 if ((x & SB_DSP_BUSY) != 0)
818 continue;
819 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
820 delay(10);
821 return 0;
822 }
823 ++sberr.wdsp;
824 return -1;
825 }
826
827 /*
828 * Read a byte from the DSP, using polling.
829 */
830 int
831 sbdsp_rdsp(sc)
832 struct sbdsp_softc *sc;
833 {
834 bus_space_tag_t iot = sc->sc_iot;
835 bus_space_handle_t ioh = sc->sc_ioh;
836 register int i;
837
838 for (i = SBDSP_NPOLL; --i >= 0; ) {
839 register u_char x;
840 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
841 delay(10);
842 if ((x & SB_DSP_READY) == 0)
843 continue;
844 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
845 delay(10);
846 return x;
847 }
848 ++sberr.rdsp;
849 return -1;
850 }
851
852 /*
853 * Doing certain things (like toggling the speaker) make
854 * the SB hardware go away for a while, so pause a little.
855 */
856 void
857 sbdsp_to(arg)
858 void *arg;
859 {
860 wakeup(arg);
861 }
862
863 void
864 sbdsp_pause(sc)
865 struct sbdsp_softc *sc;
866 {
867 extern int hz;
868
869 timeout(sbdsp_to, sbdsp_to, hz/8);
870 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
871 }
872
873 /*
874 * Turn on the speaker. The SBK documention says this operation
875 * can take up to 1/10 of a second. Higher level layers should
876 * probably let the task sleep for this amount of time after
877 * calling here. Otherwise, things might not work (because
878 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
879 *
880 * These engineers had their heads up their ass when
881 * they designed this card.
882 */
883 void
884 sbdsp_spkron(sc)
885 struct sbdsp_softc *sc;
886 {
887 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
888 sbdsp_pause(sc);
889 }
890
891 /*
892 * Turn off the speaker; see comment above.
893 */
894 void
895 sbdsp_spkroff(sc)
896 struct sbdsp_softc *sc;
897 {
898 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
899 sbdsp_pause(sc);
900 }
901
902 /*
903 * Read the version number out of the card. Return major code
904 * in high byte, and minor code in low byte.
905 */
906 short
907 sbversion(sc)
908 struct sbdsp_softc *sc;
909 {
910 short v;
911
912 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
913 return 0;
914 v = sbdsp_rdsp(sc) << 8;
915 v |= sbdsp_rdsp(sc);
916 return ((v >= 0) ? v : 0);
917 }
918
919 /*
920 * Halt a DMA in progress. A low-speed transfer can be
921 * resumed with sbdsp_contdma().
922 */
923 int
924 sbdsp_haltdma(addr)
925 void *addr;
926 {
927 register struct sbdsp_softc *sc = addr;
928
929 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
930
931 sbdsp_reset(sc);
932 return 0;
933 }
934
935 int
936 sbdsp_contdma(addr)
937 void *addr;
938 {
939 register struct sbdsp_softc *sc = addr;
940
941 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
942
943 /* XXX how do we reinitialize the DMA controller state? do we care? */
944 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
945 return(0);
946 }
947
948 /*
949 * Convert a linear sampling rate into the DAC time constant.
950 * Set *mode to indicate the high/low-speed DMA operation.
951 * Because of limitations of the card, not all rates are possible.
952 * We return the time constant of the closest possible rate.
953 * The sampling rate limits are different for the DAC and ADC,
954 * so isdac indicates output, and !isdac indicates input.
955 */
956 void
957 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
958 register struct sbdsp_softc *sc;
959 int sr;
960 int isdac;
961 int *tcp, *modep;
962 {
963 int tc, realtc, mode;
964
965 /*
966 * Don't forget to compute which mode we'll be in based on whether
967 * we need to double the rate for stereo on SBPRO.
968 */
969
970 if (sr == 0) {
971 tc = SB_LS_MIN;
972 mode = SB_ADAC_LS;
973 goto out;
974 }
975
976 tc = 256 - (1000000 / sr);
977
978 if (sc->sc_channels == 2 && ISSBPRO(sc))
979 /* compute based on 2x sample rate when needed */
980 realtc = 256 - ( 500000 / sr);
981 else
982 realtc = tc;
983
984 if (tc < SB_LS_MIN) {
985 tc = SB_LS_MIN;
986 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
987 * speed mode. */
988 goto out;
989 } else if (isdac) {
990 if (realtc <= SB_DAC_LS_MAX)
991 mode = SB_ADAC_LS;
992 else {
993 mode = SB_ADAC_HS;
994 if (tc > SB_DAC_HS_MAX)
995 tc = SB_DAC_HS_MAX;
996 }
997 } else {
998 int adc_ls_max, adc_hs_max;
999
1000 /* XXX use better rounding--compare distance to nearest tc on both
1001 sides of requested speed */
1002 if (ISSBPROCLASS(sc)) {
1003 adc_ls_max = SBPRO_ADC_LS_MAX;
1004 adc_hs_max = SBPRO_ADC_HS_MAX;
1005 } else {
1006 adc_ls_max = SBCLA_ADC_LS_MAX;
1007 adc_hs_max = SBCLA_ADC_HS_MAX;
1008 }
1009
1010 if (realtc <= adc_ls_max)
1011 mode = SB_ADAC_LS;
1012 else {
1013 mode = SB_ADAC_HS;
1014 if (tc > adc_hs_max)
1015 tc = adc_hs_max;
1016 }
1017 }
1018
1019 out:
1020 *tcp = tc;
1021 *modep = mode;
1022 }
1023
1024 /*
1025 * Convert a DAC time constant to a sampling rate.
1026 * See SBK, section 12.
1027 */
1028 int
1029 sbdsp_tctosr(sc, tc)
1030 register struct sbdsp_softc *sc;
1031 int tc;
1032 {
1033 int adc;
1034
1035 if (ISSBPROCLASS(sc))
1036 adc = SBPRO_ADC_HS_MAX;
1037 else
1038 adc = SBCLA_ADC_HS_MAX;
1039
1040 if (tc > adc)
1041 tc = adc;
1042
1043 return (1000000 / (256 - tc));
1044 }
1045
1046 int
1047 sbdsp_set_timeconst(sc, tc)
1048 register struct sbdsp_softc *sc;
1049 int tc;
1050 {
1051 /*
1052 * A SBPro in stereo mode uses time constants at double the
1053 * actual rate.
1054 */
1055 if (ISSBPRO(sc) && sc->sc_channels == 2)
1056 tc = 256 - ((256 - tc) / 2);
1057
1058 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1059
1060 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1061 sbdsp_wdsp(sc, tc) < 0)
1062 return (EIO);
1063
1064 return (0);
1065 }
1066
1067 int
1068 sbdsp_dma_input(addr, p, cc, intr, arg)
1069 void *addr;
1070 void *p;
1071 int cc;
1072 void (*intr) __P((void *));
1073 void *arg;
1074 {
1075 register struct sbdsp_softc *sc = addr;
1076
1077 #ifdef AUDIO_DEBUG
1078 if (sbdspdebug > 1)
1079 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1080 #endif
1081 if (sc->sc_channels == 2 && (cc & 1)) {
1082 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1083 return EIO;
1084 }
1085
1086 if (sc->sc_dmadir != SB_DMA_IN) {
1087 if (ISSBPRO(sc)) {
1088 if (sc->sc_channels == 2) {
1089 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1090 if (sbdsp_wdsp(sc,
1091 JAZZ16_RECORD_STEREO) < 0) {
1092 goto badmode;
1093 }
1094 } else if (sbdsp_wdsp(sc,
1095 SB_DSP_RECORD_STEREO) < 0)
1096 goto badmode;
1097 sbdsp_mix_write(sc, SBP_INFILTER,
1098 (sbdsp_mix_read(sc, SBP_INFILTER) &
1099 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1100 } else {
1101 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1102 if (sbdsp_wdsp(sc,
1103 JAZZ16_RECORD_MONO) < 0)
1104 {
1105 goto badmode;
1106 }
1107 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1108 goto badmode;
1109 sbdsp_mix_write(sc, SBP_INFILTER,
1110 (sbdsp_mix_read(sc, SBP_INFILTER) &
1111 ~SBP_IFILTER_MASK) | sc->in_filter);
1112 }
1113 }
1114
1115 if (ISSB16CLASS(sc)) {
1116 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1117 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1118 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1119 goto giveup;
1120 } else
1121 sbdsp_set_timeconst(sc, sc->sc_itc);
1122
1123 sc->sc_dmadir = SB_DMA_IN;
1124 sc->dmaflags = DMAMODE_READ;
1125 if (ISSB2CLASS(sc))
1126 sc->dmaflags |= DMAMODE_LOOP;
1127 } else {
1128 /* Already started; just return. */
1129 if (ISSB2CLASS(sc))
1130 return 0;
1131 }
1132
1133 sc->dmaaddr = p;
1134 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1135 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1136 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1137 sc->sc_intr = intr;
1138 sc->sc_arg = arg;
1139
1140 if (sc->sc_precision == 16)
1141 cc >>= 1;
1142 --cc;
1143 if (ISSB16CLASS(sc)) {
1144 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1145 SB_DSP16_RDMA_8) < 0 ||
1146 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1147 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1148 sbdsp16_wait(sc) ||
1149 sbdsp_wdsp(sc, cc) < 0 ||
1150 sbdsp_wdsp(sc, cc >> 8) < 0) {
1151 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1152 goto giveup;
1153 }
1154 } else if (ISSB2CLASS(sc)) {
1155 if (cc != sc->sc_last_hs_size) {
1156 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1157 sbdsp_wdsp(sc, cc) < 0 ||
1158 sbdsp_wdsp(sc, cc >> 8) < 0) {
1159 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1160 goto giveup;
1161 }
1162 sc->sc_last_hs_size = cc;
1163 }
1164 if (sbdsp_wdsp(sc,
1165 sc->sc_imode == SB_ADAC_LS ? SB_DSP_RDMA_LOOP :
1166 SB_DSP_HS_INPUT) < 0) {
1167 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1168 goto giveup;
1169 }
1170 } else {
1171 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1172 sbdsp_wdsp(sc, cc) < 0 ||
1173 sbdsp_wdsp(sc, cc >> 8) < 0) {
1174 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1175 goto giveup;
1176 }
1177 }
1178 return 0;
1179
1180 giveup:
1181 sbdsp_reset(sc);
1182 return EIO;
1183
1184 badmode:
1185 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1186 sc->sc_channels == 2 ? "stereo" : "mono"));
1187 return EIO;
1188 }
1189
1190 int
1191 sbdsp_dma_output(addr, p, cc, intr, arg)
1192 void *addr;
1193 void *p;
1194 int cc;
1195 void (*intr) __P((void *));
1196 void *arg;
1197 {
1198 register struct sbdsp_softc *sc = addr;
1199
1200 #ifdef AUDIO_DEBUG
1201 if (sbdspdebug > 1)
1202 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1203 #endif
1204 if (sc->sc_channels == 2 && (cc & 1)) {
1205 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1206 return EIO;
1207 }
1208
1209 if (sc->sc_dmadir != SB_DMA_OUT) {
1210 if (ISSBPRO(sc)) {
1211 /* make sure we re-set stereo mixer bit when we start
1212 output. */
1213 sbdsp_mix_write(sc, SBP_STEREO,
1214 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1215 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1216 if (ISJAZZ16(sc)) {
1217 /* Yes, we write the record mode to set
1218 16-bit playback mode. weird, huh? */
1219 if (sc->sc_precision == 16) {
1220 sbdsp_wdsp(sc,
1221 sc->sc_channels == 2 ?
1222 JAZZ16_RECORD_STEREO :
1223 JAZZ16_RECORD_MONO);
1224 } else {
1225 sbdsp_wdsp(sc,
1226 sc->sc_channels == 2 ?
1227 SB_DSP_RECORD_STEREO :
1228 SB_DSP_RECORD_MONO);
1229 }
1230 }
1231 }
1232
1233 if (ISSB16CLASS(sc)) {
1234 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1235 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1236 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1237 goto giveup;
1238 } else
1239 sbdsp_set_timeconst(sc, sc->sc_otc);
1240
1241 sc->sc_dmadir = SB_DMA_OUT;
1242 sc->dmaflags = DMAMODE_WRITE;
1243 if (ISSB2CLASS(sc))
1244 sc->dmaflags |= DMAMODE_LOOP;
1245 } else {
1246 /* Already started; just return. */
1247 if (ISSB2CLASS(sc))
1248 return 0;
1249 }
1250
1251 sc->dmaaddr = p;
1252 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1253 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1254 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1255 sc->sc_intr = intr;
1256 sc->sc_arg = arg;
1257
1258 if (sc->sc_precision == 16)
1259 cc >>= 1;
1260 --cc;
1261 if (ISSB16CLASS(sc)) {
1262 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1263 SB_DSP16_WDMA_8) < 0 ||
1264 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1265 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1266 sbdsp16_wait(sc) ||
1267 sbdsp_wdsp(sc, cc) < 0 ||
1268 sbdsp_wdsp(sc, cc >> 8) < 0) {
1269 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1270 goto giveup;
1271 }
1272 } else if (ISSB2CLASS(sc)) {
1273 if (cc != sc->sc_last_hs_size) {
1274 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1275 sbdsp_wdsp(sc, cc) < 0 ||
1276 sbdsp_wdsp(sc, cc >> 8) < 0) {
1277 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1278 goto giveup;
1279 }
1280 sc->sc_last_hs_size = cc;
1281 }
1282 if (sbdsp_wdsp(sc,
1283 sc->sc_omode == SB_ADAC_LS ? SB_DSP_WDMA_LOOP :
1284 SB_DSP_HS_OUTPUT) < 0) {
1285 DPRINTF(("sbdsp_dma_output: SB2 DMA restart failed\n"));
1286 goto giveup;
1287 }
1288 } else {
1289 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1290 sbdsp_wdsp(sc, cc) < 0 ||
1291 sbdsp_wdsp(sc, cc >> 8) < 0) {
1292 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1293 goto giveup;
1294 }
1295 }
1296 return 0;
1297
1298 giveup:
1299 sbdsp_reset(sc);
1300 return EIO;
1301 }
1302
1303 /*
1304 * Only the DSP unit on the sound blaster generates interrupts.
1305 * There are three cases of interrupt: reception of a midi byte
1306 * (when mode is enabled), completion of dma transmission, or
1307 * completion of a dma reception. The three modes are mutually
1308 * exclusive so we know a priori which event has occurred.
1309 */
1310 int
1311 sbdsp_intr(arg)
1312 void *arg;
1313 {
1314 register struct sbdsp_softc *sc = arg;
1315 u_char x;
1316
1317 #ifdef AUDIO_DEBUG
1318 if (sbdspdebug > 1)
1319 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1320 #endif
1321 if (ISSB16CLASS(sc)) {
1322 x = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1323 if ((x & 3) == 0)
1324 return 0;
1325 } else {
1326 if (!isa_dmafinished(sc->dmachan))
1327 return 0;
1328 }
1329 sc->sc_interrupts++;
1330 delay(10);
1331 #if 0
1332 if (sc->sc_mintr != 0) {
1333 x = sbdsp_rdsp(sc);
1334 (*sc->sc_mintr)(sc->sc_arg, x);
1335 } else
1336 #endif
1337 if (sc->sc_intr != 0) {
1338 /* clear interrupt */
1339 x = bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1340 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1341 SBP_DSP_IRQACK8);
1342 if (!ISSB2CLASS(sc))
1343 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1344 sc->dmachan);
1345 (*sc->sc_intr)(sc->sc_arg);
1346 } else {
1347 return 0;
1348 }
1349 return 1;
1350 }
1351
1352 #if 0
1353 /*
1354 * Enter midi uart mode and arrange for read interrupts
1355 * to vector to `intr'. This puts the card in a mode
1356 * which allows only midi I/O; the card must be reset
1357 * to leave this mode. Unfortunately, the card does not
1358 * use transmit interrupts, so bytes must be output
1359 * using polling. To keep the polling overhead to a
1360 * minimum, output should be driven off a timer.
1361 * This is a little tricky since only 320us separate
1362 * consecutive midi bytes.
1363 */
1364 void
1365 sbdsp_set_midi_mode(sc, intr, arg)
1366 struct sbdsp_softc *sc;
1367 void (*intr)();
1368 void *arg;
1369 {
1370
1371 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1372 sc->sc_mintr = intr;
1373 sc->sc_intr = 0;
1374 sc->sc_arg = arg;
1375 }
1376
1377 /*
1378 * Write a byte to the midi port, when in midi uart mode.
1379 */
1380 void
1381 sbdsp_midi_output(sc, v)
1382 struct sbdsp_softc *sc;
1383 int v;
1384 {
1385
1386 if (sbdsp_wdsp(sc, v) < 0)
1387 ++sberr.wmidi;
1388 }
1389 #endif
1390
1391 int
1392 sbdsp_setfd(addr, flag)
1393 void *addr;
1394 int flag;
1395 {
1396 /* Can't do full-duplex */
1397 return(ENOTTY);
1398 }
1399
1400 int
1401 sbdsp_mixer_set_port(addr, cp)
1402 void *addr;
1403 mixer_ctrl_t *cp;
1404 {
1405 register struct sbdsp_softc *sc = addr;
1406 int src, gain;
1407
1408 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1409 cp->un.value.num_channels));
1410
1411 if (!ISSBPROCLASS(sc))
1412 return EINVAL;
1413
1414 /*
1415 * Everything is a value except for SBPro BASS/TREBLE and
1416 * RECORD_SOURCE
1417 */
1418 switch (cp->dev) {
1419 case SB_SPEAKER:
1420 cp->dev = SB_MASTER_VOL;
1421 case SB_MIC_PORT:
1422 case SB_LINE_IN_PORT:
1423 case SB_DAC_PORT:
1424 case SB_FM_PORT:
1425 case SB_CD_PORT:
1426 case SB_MASTER_VOL:
1427 if (cp->type != AUDIO_MIXER_VALUE)
1428 return EINVAL;
1429
1430 /*
1431 * All the mixer ports are stereo except for the microphone.
1432 * If we get a single-channel gain value passed in, then we
1433 * duplicate it to both left and right channels.
1434 */
1435
1436 switch (cp->dev) {
1437 case SB_MIC_PORT:
1438 if (cp->un.value.num_channels != 1)
1439 return EINVAL;
1440
1441 /* handle funny microphone gain */
1442 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1443 break;
1444 case SB_LINE_IN_PORT:
1445 case SB_DAC_PORT:
1446 case SB_FM_PORT:
1447 case SB_CD_PORT:
1448 case SB_MASTER_VOL:
1449 switch (cp->un.value.num_channels) {
1450 case 1:
1451 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1452 break;
1453 case 2:
1454 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1455 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1456 break;
1457 default:
1458 return EINVAL;
1459 }
1460 break;
1461 default:
1462 return EINVAL;
1463 }
1464
1465 switch (cp->dev) {
1466 case SB_MIC_PORT:
1467 src = SBP_MIC_VOL;
1468 break;
1469 case SB_MASTER_VOL:
1470 src = SBP_MASTER_VOL;
1471 break;
1472 case SB_LINE_IN_PORT:
1473 src = SBP_LINE_VOL;
1474 break;
1475 case SB_DAC_PORT:
1476 src = SBP_DAC_VOL;
1477 break;
1478 case SB_FM_PORT:
1479 src = SBP_FM_VOL;
1480 break;
1481 case SB_CD_PORT:
1482 src = SBP_CD_VOL;
1483 break;
1484 default:
1485 return EINVAL;
1486 }
1487
1488 sbdsp_mix_write(sc, src, gain);
1489 sc->gain[cp->dev] = gain;
1490 break;
1491
1492 case SB_TREBLE:
1493 case SB_BASS:
1494 case SB_RECORD_SOURCE:
1495 if (cp->type != AUDIO_MIXER_ENUM)
1496 return EINVAL;
1497
1498 switch (cp->dev) {
1499 case SB_TREBLE:
1500 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1501 case SB_BASS:
1502 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1503 case SB_RECORD_SOURCE:
1504 return sbdsp_set_in_port(addr, cp->un.ord);
1505 }
1506
1507 break;
1508
1509 default:
1510 return EINVAL;
1511 }
1512
1513 return (0);
1514 }
1515
1516 int
1517 sbdsp_mixer_get_port(addr, cp)
1518 void *addr;
1519 mixer_ctrl_t *cp;
1520 {
1521 register struct sbdsp_softc *sc = addr;
1522 int gain;
1523
1524 DPRINTF(("sbdsp_mixer_get_port: port=%d", cp->dev));
1525
1526 if (!ISSBPROCLASS(sc))
1527 return EINVAL;
1528
1529 switch (cp->dev) {
1530 case SB_SPEAKER:
1531 cp->dev = SB_MASTER_VOL;
1532 case SB_MIC_PORT:
1533 case SB_LINE_IN_PORT:
1534 case SB_DAC_PORT:
1535 case SB_FM_PORT:
1536 case SB_CD_PORT:
1537 case SB_MASTER_VOL:
1538 gain = sc->gain[cp->dev];
1539
1540 switch (cp->dev) {
1541 case SB_MIC_PORT:
1542 if (cp->un.value.num_channels != 1)
1543 return EINVAL;
1544
1545 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1546 break;
1547 case SB_LINE_IN_PORT:
1548 case SB_DAC_PORT:
1549 case SB_FM_PORT:
1550 case SB_CD_PORT:
1551 case SB_MASTER_VOL:
1552 switch (cp->un.value.num_channels) {
1553 case 1:
1554 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1555 break;
1556 case 2:
1557 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1558 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1559 break;
1560 default:
1561 return EINVAL;
1562 }
1563 break;
1564 }
1565
1566 break;
1567
1568 case SB_TREBLE:
1569 case SB_BASS:
1570 case SB_RECORD_SOURCE:
1571 switch (cp->dev) {
1572 case SB_TREBLE:
1573 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1574 return 0;
1575 case SB_BASS:
1576 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1577 return 0;
1578 case SB_RECORD_SOURCE:
1579 cp->un.ord = sbdsp_get_in_port(addr);
1580 return 0;
1581 }
1582
1583 break;
1584
1585 default:
1586 return EINVAL;
1587 }
1588
1589 return (0);
1590 }
1591
1592 int
1593 sbdsp_mixer_query_devinfo(addr, dip)
1594 void *addr;
1595 register mixer_devinfo_t *dip;
1596 {
1597 register struct sbdsp_softc *sc = addr;
1598
1599 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1600
1601 switch (dip->index) {
1602 case SB_MIC_PORT:
1603 dip->type = AUDIO_MIXER_VALUE;
1604 dip->mixer_class = SB_INPUT_CLASS;
1605 dip->prev = AUDIO_MIXER_LAST;
1606 dip->next = AUDIO_MIXER_LAST;
1607 strcpy(dip->label.name, AudioNmicrophone);
1608 dip->un.v.num_channels = 1;
1609 strcpy(dip->un.v.units.name, AudioNvolume);
1610 return 0;
1611
1612 case SB_SPEAKER:
1613 dip->type = AUDIO_MIXER_VALUE;
1614 dip->mixer_class = SB_OUTPUT_CLASS;
1615 dip->prev = AUDIO_MIXER_LAST;
1616 dip->next = AUDIO_MIXER_LAST;
1617 strcpy(dip->label.name, AudioNspeaker);
1618 dip->un.v.num_channels = 1;
1619 strcpy(dip->un.v.units.name, AudioNvolume);
1620 return 0;
1621
1622 case SB_INPUT_CLASS:
1623 dip->type = AUDIO_MIXER_CLASS;
1624 dip->mixer_class = SB_INPUT_CLASS;
1625 dip->next = dip->prev = AUDIO_MIXER_LAST;
1626 strcpy(dip->label.name, AudioCInputs);
1627 return 0;
1628
1629 case SB_OUTPUT_CLASS:
1630 dip->type = AUDIO_MIXER_CLASS;
1631 dip->mixer_class = SB_OUTPUT_CLASS;
1632 dip->next = dip->prev = AUDIO_MIXER_LAST;
1633 strcpy(dip->label.name, AudioCOutputs);
1634 return 0;
1635 }
1636
1637 if (ISSBPROCLASS(sc)) {
1638 switch (dip->index) {
1639 case SB_LINE_IN_PORT:
1640 dip->type = AUDIO_MIXER_VALUE;
1641 dip->mixer_class = SB_INPUT_CLASS;
1642 dip->prev = AUDIO_MIXER_LAST;
1643 dip->next = AUDIO_MIXER_LAST;
1644 strcpy(dip->label.name, AudioNline);
1645 dip->un.v.num_channels = 2;
1646 strcpy(dip->un.v.units.name, AudioNvolume);
1647 return 0;
1648
1649 case SB_DAC_PORT:
1650 dip->type = AUDIO_MIXER_VALUE;
1651 dip->mixer_class = SB_INPUT_CLASS;
1652 dip->prev = AUDIO_MIXER_LAST;
1653 dip->next = AUDIO_MIXER_LAST;
1654 strcpy(dip->label.name, AudioNdac);
1655 dip->un.v.num_channels = 2;
1656 strcpy(dip->un.v.units.name, AudioNvolume);
1657 return 0;
1658
1659 case SB_CD_PORT:
1660 dip->type = AUDIO_MIXER_VALUE;
1661 dip->mixer_class = SB_INPUT_CLASS;
1662 dip->prev = AUDIO_MIXER_LAST;
1663 dip->next = AUDIO_MIXER_LAST;
1664 strcpy(dip->label.name, AudioNcd);
1665 dip->un.v.num_channels = 2;
1666 strcpy(dip->un.v.units.name, AudioNvolume);
1667 return 0;
1668
1669 case SB_FM_PORT:
1670 dip->type = AUDIO_MIXER_VALUE;
1671 dip->mixer_class = SB_INPUT_CLASS;
1672 dip->prev = AUDIO_MIXER_LAST;
1673 dip->next = AUDIO_MIXER_LAST;
1674 strcpy(dip->label.name, AudioNfmsynth);
1675 dip->un.v.num_channels = 2;
1676 strcpy(dip->un.v.units.name, AudioNvolume);
1677 return 0;
1678
1679 case SB_MASTER_VOL:
1680 dip->type = AUDIO_MIXER_VALUE;
1681 dip->mixer_class = SB_OUTPUT_CLASS;
1682 dip->prev = AUDIO_MIXER_LAST;
1683 dip->next = AUDIO_MIXER_LAST;
1684 strcpy(dip->label.name, AudioNvolume);
1685 dip->un.v.num_channels = 2;
1686 strcpy(dip->un.v.units.name, AudioNvolume);
1687 return 0;
1688
1689 case SB_RECORD_SOURCE:
1690 dip->mixer_class = SB_RECORD_CLASS;
1691 dip->type = AUDIO_MIXER_ENUM;
1692 dip->prev = AUDIO_MIXER_LAST;
1693 dip->next = AUDIO_MIXER_LAST;
1694 strcpy(dip->label.name, AudioNsource);
1695 dip->un.e.num_mem = 3;
1696 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1697 dip->un.e.member[0].ord = SB_MIC_PORT;
1698 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1699 dip->un.e.member[1].ord = SB_CD_PORT;
1700 strcpy(dip->un.e.member[2].label.name, AudioNline);
1701 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1702 return 0;
1703
1704 case SB_BASS:
1705 dip->type = AUDIO_MIXER_ENUM;
1706 dip->mixer_class = SB_INPUT_CLASS;
1707 dip->prev = AUDIO_MIXER_LAST;
1708 dip->next = AUDIO_MIXER_LAST;
1709 strcpy(dip->label.name, AudioNbass);
1710 dip->un.e.num_mem = 2;
1711 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1712 dip->un.e.member[0].ord = 0;
1713 strcpy(dip->un.e.member[1].label.name, AudioNon);
1714 dip->un.e.member[1].ord = 1;
1715 return 0;
1716
1717 case SB_TREBLE:
1718 dip->type = AUDIO_MIXER_ENUM;
1719 dip->mixer_class = SB_INPUT_CLASS;
1720 dip->prev = AUDIO_MIXER_LAST;
1721 dip->next = AUDIO_MIXER_LAST;
1722 strcpy(dip->label.name, AudioNtreble);
1723 dip->un.e.num_mem = 2;
1724 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1725 dip->un.e.member[0].ord = 0;
1726 strcpy(dip->un.e.member[1].label.name, AudioNon);
1727 dip->un.e.member[1].ord = 1;
1728 return 0;
1729
1730 case SB_RECORD_CLASS: /* record source class */
1731 dip->type = AUDIO_MIXER_CLASS;
1732 dip->mixer_class = SB_RECORD_CLASS;
1733 dip->next = dip->prev = AUDIO_MIXER_LAST;
1734 strcpy(dip->label.name, AudioCRecord);
1735 return 0;
1736 }
1737 }
1738
1739 return ENXIO;
1740 }
1741