sbdsp.c revision 1.49 1 /* $NetBSD: sbdsp.c,v 1.49 1997/05/18 00:36:03 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 */
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/device.h>
50 #include <sys/proc.h>
51 #include <sys/buf.h>
52 #include <vm/vm.h>
53
54 #include <machine/cpu.h>
55 #include <machine/intr.h>
56 #include <machine/pio.h>
57
58 #include <sys/audioio.h>
59 #include <dev/audio_if.h>
60 #include <dev/mulaw.h>
61
62 #include <dev/isa/isavar.h>
63 #include <dev/isa/isadmavar.h>
64 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
65
66 #include <dev/isa/sbreg.h>
67 #include <dev/isa/sbdspvar.h>
68
69 #ifdef AUDIO_DEBUG
70 extern void Dprintf __P((const char *, ...));
71 #define DPRINTF(x) if (sbdspdebug) Dprintf x
72 int sbdspdebug = 0;
73 #else
74 #define DPRINTF(x)
75 #endif
76
77 #ifndef SBDSP_NPOLL
78 #define SBDSP_NPOLL 3000
79 #endif
80
81 struct {
82 int wdsp;
83 int rdsp;
84 int wmidi;
85 } sberr;
86
87 void sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
88 int *tcp, int *modep));
89 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
90
91 /*
92 * Time constant routines follow. See SBK, section 12.
93 * Although they don't come out and say it (in the docs),
94 * the card clearly uses a 1MHz countdown timer, as the
95 * low-speed formula (p. 12-4) is:
96 * tc = 256 - 10^6 / sr
97 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
98 * and a 256MHz clock is used:
99 * tc = 65536 - 256 * 10^ 6 / sr
100 * Since we can only use the upper byte of the HS TC, the two formulae
101 * are equivalent. (Why didn't they say so?) E.g.,
102 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
103 *
104 * The crossover point (from low- to high-speed modes) is different
105 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
106 *
107 * SBPRO SB20
108 * ----- --------
109 * input ls min 4 KHz 4 KHz
110 * input ls max 23 KHz 13 KHz
111 * input hs max 44.1 KHz 15 KHz
112 * output ls min 4 KHz 4 KHz
113 * output ls max 23 KHz 23 KHz
114 * output hs max 44.1 KHz 44.1 KHz
115 */
116 #define SB_LS_MIN 0x06 /* 4000 Hz */
117 #define SB_8K 0x83 /* 8000 Hz */
118 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
119 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
120 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
121 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
122 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
123 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
124
125 int sbdsp16_wait __P((struct sbdsp_softc *));
126 void sbdsp_to __P((void *));
127 void sbdsp_pause __P((struct sbdsp_softc *));
128 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
129 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
130 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
131
132 #ifdef AUDIO_DEBUG
133 void sb_printsc __P((struct sbdsp_softc *));
134
135 void
136 sb_printsc(sc)
137 struct sbdsp_softc *sc;
138 {
139 int i;
140
141 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
142 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
143 sc->sc_iobase, sc->sc_irq);
144 printf("irate %d itc %d imode %d orate %d otc %d omode %d\n",
145 sc->sc_irate, sc->sc_itc, sc->sc_imode,
146 sc->sc_orate, sc->sc_otc, sc->sc_omode);
147 printf("outport %u inport %u spkron %u nintr %lu\n",
148 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
149 printf("precision %u channels %d intr %p arg %p\n",
150 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
151 printf("gain:");
152 for (i = 0; i < SB_NDEVS; i++)
153 printf(" %u", sc->gain[i]);
154 printf("\n");
155 }
156 #endif /* AUDIO_DEBUG */
157
158 /*
159 * Probe / attach routines.
160 */
161
162 /*
163 * Probe for the soundblaster hardware.
164 */
165 int
166 sbdsp_probe(sc)
167 struct sbdsp_softc *sc;
168 {
169
170 if (sbdsp_reset(sc) < 0) {
171 DPRINTF(("sbdsp: couldn't reset card\n"));
172 return 0;
173 }
174 /* if flags set, go and probe the jazz16 stuff */
175 if (sc->sc_dev.dv_cfdata->cf_flags != 0) {
176 sc->sc_model = sbdsp_jazz16_probe(sc);
177 } else {
178 sc->sc_model = sbversion(sc);
179 }
180
181 #if 0
182 sc->sc_model = 0x100; /* XXX pretend to be just a tired old SB XXX */
183 #endif
184
185 return 1;
186 }
187
188 /*
189 * Try add-on stuff for Jazz16.
190 */
191 u_int
192 sbdsp_jazz16_probe(sc)
193 struct sbdsp_softc *sc;
194 {
195 static u_char jazz16_irq_conf[16] = {
196 -1, -1, 0x02, 0x03,
197 -1, 0x01, -1, 0x04,
198 -1, 0x02, 0x05, -1,
199 -1, -1, -1, 0x06};
200 static u_char jazz16_drq_conf[8] = {
201 -1, 0x01, -1, 0x02,
202 -1, 0x03, -1, 0x04};
203
204 u_int rval = sbversion(sc);
205 bus_space_tag_t iot = sc->sc_iot;
206 bus_space_handle_t ioh;
207
208 DPRINTF(("jazz16 probe\n"));
209
210 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
211 DPRINTF(("bus map failed\n"));
212 return rval;
213 }
214
215 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
216 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
217 DPRINTF(("drq/irq check failed\n"));
218 goto done; /* give up, we can't do it. */
219 }
220
221 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
222 delay(10000); /* delay 10 ms */
223 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
224 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
225
226 if (sbdsp_reset(sc) < 0) {
227 DPRINTF(("sbdsp_reset check failed\n"));
228 goto done; /* XXX? what else could we do? */
229 }
230
231 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
232 DPRINTF(("read16 setup failed\n"));
233 goto done;
234 }
235
236 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
237 DPRINTF(("read16 failed\n"));
238 goto done;
239 }
240
241 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
242 sc->sc_drq16 = sc->sc_drq8;
243 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
244 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
245 jazz16_drq_conf[sc->sc_drq8]) ||
246 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
247 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
248 } else {
249 DPRINTF(("jazz16 detected!\n"));
250 rval |= MODEL_JAZZ16;
251 }
252
253 done:
254 bus_space_unmap(iot, ioh, 1);
255 return rval;
256 }
257
258 /*
259 * Attach hardware to driver, attach hardware driver to audio
260 * pseudo-device driver .
261 */
262 void
263 sbdsp_attach(sc)
264 struct sbdsp_softc *sc;
265 {
266
267 /* Set defaults */
268 if (ISSB16CLASS(sc))
269 sc->sc_irate = sc->sc_orate = 8000;
270 else if (ISSBPROCLASS(sc))
271 sc->sc_itc = sc->sc_otc = SB_8K;
272 else
273 sc->sc_itc = sc->sc_otc = SB_8K;
274 sc->sc_precision = 8;
275 sc->sc_channels = 1;
276
277 (void) sbdsp_set_in_port(sc, SB_MIC_PORT);
278 (void) sbdsp_set_out_port(sc, SB_SPEAKER);
279
280 if (ISSBPROCLASS(sc)) {
281 int i;
282
283 /* set mixer to default levels, by sending a mixer
284 reset command. */
285 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
286 /* then some adjustments :) */
287 sbdsp_mix_write(sc, SBP_CD_VOL,
288 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
289 sbdsp_mix_write(sc, SBP_DAC_VOL,
290 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
291 sbdsp_mix_write(sc, SBP_MASTER_VOL,
292 sbdsp_stereo_vol(SBP_MAXVOL/2, SBP_MAXVOL/2));
293 sbdsp_mix_write(sc, SBP_LINE_VOL,
294 sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL));
295 for (i = 0; i < SB_NDEVS; i++)
296 sc->gain[i] = sbdsp_stereo_vol(SBP_MAXVOL, SBP_MAXVOL);
297 sc->in_filter = 0; /* no filters turned on, please */
298 }
299
300 printf(": dsp v%d.%02d%s\n",
301 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
302 ISJAZZ16(sc) ? ": <Jazz16>" : "");
303 }
304
305 /*
306 * Various routines to interface to higher level audio driver
307 */
308
309 void
310 sbdsp_mix_write(sc, mixerport, val)
311 struct sbdsp_softc *sc;
312 int mixerport;
313 int val;
314 {
315 bus_space_tag_t iot = sc->sc_iot;
316 bus_space_handle_t ioh = sc->sc_ioh;
317 int s;
318
319 s = splaudio();
320 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
321 delay(20);
322 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
323 delay(30);
324 splx(s);
325 }
326
327 int
328 sbdsp_mix_read(sc, mixerport)
329 struct sbdsp_softc *sc;
330 int mixerport;
331 {
332 bus_space_tag_t iot = sc->sc_iot;
333 bus_space_handle_t ioh = sc->sc_ioh;
334 int val;
335 int s;
336
337 s = splaudio();
338 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
339 delay(20);
340 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
341 delay(30);
342 splx(s);
343 return val;
344 }
345
346 int
347 sbdsp_query_encoding(addr, fp)
348 void *addr;
349 struct audio_encoding *fp;
350 {
351 struct sbdsp_softc *sc = addr;
352
353 switch (fp->index) {
354 case 0:
355 strcpy(fp->name, AudioEulinear);
356 fp->encoding = AUDIO_ENCODING_ULINEAR;
357 fp->precision = 8;
358 fp->flags = 0;
359 break;
360 case 1:
361 strcpy(fp->name, AudioEmulaw);
362 fp->encoding = AUDIO_ENCODING_ULAW;
363 fp->precision = 8;
364 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
365 break;
366 case 2:
367 strcpy(fp->name, AudioElinear);
368 fp->encoding = AUDIO_ENCODING_LINEAR;
369 fp->precision = 8;
370 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
371 break;
372 default:
373 if (!(ISSB16CLASS(sc) || ISJAZZ16(sc)))
374 return (EINVAL);
375 switch(fp->index) {
376 case 3:
377 strcpy(fp->name, AudioElinear_le);
378 fp->encoding = AUDIO_ENCODING_LINEAR_LE;
379 fp->precision = 16;
380 fp->flags = 0;
381 break;
382 case 4:
383 strcpy(fp->name, AudioEulinear_le);
384 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
385 fp->precision = 16;
386 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
387 break;
388 case 5:
389 strcpy(fp->name, AudioElinear_be);
390 fp->encoding = AUDIO_ENCODING_LINEAR_BE;
391 fp->precision = 16;
392 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
393 break;
394 case 6:
395 strcpy(fp->name, AudioEulinear_be);
396 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
397 fp->precision = 16;
398 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
399 break;
400 default:
401 return (EINVAL);
402 }
403 }
404 return (0);
405 }
406
407 int
408 sbdsp_set_params(addr, mode, p, q)
409 void *addr;
410 int mode;
411 struct audio_params *p, *q;
412 {
413 struct sbdsp_softc *sc = addr;
414 int maxspeed;
415 void (*swcode) __P((void *, u_char *buf, int cnt));
416 int can16 = ISSB16CLASS(sc) || ISJAZZ16(sc);
417
418 switch (p->encoding) {
419 case AUDIO_ENCODING_LINEAR_LE:
420 if (p->precision == 8)
421 swcode = change_sign8;
422 else if (can16)
423 swcode = 0;
424 else
425 return EINVAL;
426 break;
427 case AUDIO_ENCODING_ULINEAR_LE:
428 if (p->precision == 8)
429 swcode = 0;
430 else if (can16)
431 swcode = change_sign16;
432 else
433 return EINVAL;
434 break;
435 case AUDIO_ENCODING_LINEAR_BE:
436 if (p->precision == 8)
437 swcode = change_sign8;
438 else if (can16)
439 swcode = swap_bytes;
440 else
441 return EINVAL;
442 break;
443 case AUDIO_ENCODING_ULINEAR_BE:
444 if (p->precision == 8)
445 swcode = 0;
446 else if (can16)
447 swcode = swap_bytes_change_sign16;
448 else
449 return EINVAL;
450 break;
451 case AUDIO_ENCODING_ULAW:
452 swcode = mode == AUMODE_PLAY ?
453 mulaw_to_ulinear8 : ulinear8_to_mulaw;
454 break;
455 default:
456 return EINVAL;
457 }
458
459
460 if (!ISSBPROCLASS(sc)) {
461 /* v 1.x or v 2.x */
462 if (mode == AUMODE_PLAY) {
463 if (ISSB2CLASS(sc) && SBVER_MINOR(sc->sc_model) > 0)
464 maxspeed = 44100;
465 else
466 maxspeed = 22727;
467 } else
468 maxspeed = 12987;
469 if (p->sample_rate < 4000 || p->sample_rate > maxspeed)
470 return EINVAL;
471 if (p->channels != 1)
472 return EINVAL;
473 } else if (!can16) {
474 /* v 3.x (SBPRO) */
475 if (p->channels == 1)
476 maxspeed = 45454;
477 else
478 maxspeed = 22727;
479 if (p->sample_rate < 4000 || p->sample_rate > maxspeed)
480 return EINVAL;
481 } else {
482 /* >= v 4.x */
483 if (p->sample_rate < 4000 || p->sample_rate > 44100)
484 return EINVAL;
485 }
486
487 if (ISSB16CLASS(sc)) {
488 if (mode == AUMODE_RECORD)
489 sc->sc_irate = p->sample_rate;
490 else
491 sc->sc_orate = p->sample_rate;
492 } else {
493 sbdsp_srtotc(sc, p->sample_rate, SB_OUTPUT_RATE,
494 &sc->sc_otc, &sc->sc_omode);
495 p->sample_rate = sbdsp_tctosr(sc, sc->sc_otc);
496 }
497
498 sc->sc_precision = p->precision;
499 sc->sc_channels = p->channels;
500
501 p->sw_code = swcode;
502
503 /* Update setting for the other mode. */
504 q->encoding = p->encoding;
505 q->channels = p->channels;
506 q->precision = p->precision;
507
508 /*
509 * XXX
510 * Should wait for chip to be idle.
511 */
512 sc->sc_dmadir = SB_DMA_NONE;
513
514 return 0;
515 }
516
517 int
518 sbdsp_set_ifilter(addr, which)
519 void *addr;
520 int which;
521 {
522 register struct sbdsp_softc *sc = addr;
523 int mixval;
524
525 /* XXXX SB16 */
526 if (ISSBPROCLASS(sc)) {
527 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
528 switch (which) {
529 case 0:
530 mixval |= SBP_FILTER_OFF;
531 break;
532 case SBP_TREBLE_EQ:
533 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
534 break;
535 case SBP_BASS_EQ:
536 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
537 break;
538 default:
539 return (EINVAL);
540 }
541 sc->in_filter = mixval & SBP_IFILTER_MASK;
542 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
543 return (0);
544 } else
545 return (EINVAL);
546 }
547
548 int
549 sbdsp_get_ifilter(addr)
550 void *addr;
551 {
552 register struct sbdsp_softc *sc = addr;
553
554 /* XXXX SB16 */
555 if (ISSBPROCLASS(sc)) {
556 sc->in_filter =
557 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
558 switch (sc->in_filter) {
559 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
560 return (SBP_TREBLE_EQ);
561 case SBP_FILTER_ON|SBP_IFILTER_LOW:
562 return (SBP_BASS_EQ);
563 case SBP_FILTER_OFF:
564 default:
565 return (0);
566 }
567 } else
568 return (0);
569 }
570
571 int
572 sbdsp_set_out_port(addr, port)
573 void *addr;
574 int port;
575 {
576 register struct sbdsp_softc *sc = addr;
577
578 sc->out_port = port; /* Just record it */
579
580 return (0);
581 }
582
583 int
584 sbdsp_get_out_port(addr)
585 void *addr;
586 {
587 register struct sbdsp_softc *sc = addr;
588
589 return (sc->out_port);
590 }
591
592
593 int
594 sbdsp_set_in_port(addr, port)
595 void *addr;
596 int port;
597 {
598 register struct sbdsp_softc *sc = addr;
599 int mixport, sbport;
600
601 if (ISSBPROCLASS(sc)) {
602 switch (port) {
603 case SB_MIC_PORT:
604 sbport = SBP_FROM_MIC;
605 mixport = SBP_MIC_VOL;
606 break;
607 case SB_LINE_IN_PORT:
608 sbport = SBP_FROM_LINE;
609 mixport = SBP_LINE_VOL;
610 break;
611 case SB_CD_PORT:
612 sbport = SBP_FROM_CD;
613 mixport = SBP_CD_VOL;
614 break;
615 case SB_DAC_PORT:
616 case SB_FM_PORT:
617 default:
618 return (EINVAL);
619 }
620 } else {
621 switch (port) {
622 case SB_MIC_PORT:
623 sbport = SBP_FROM_MIC;
624 mixport = SBP_MIC_VOL;
625 break;
626 default:
627 return (EINVAL);
628 }
629 }
630
631 sc->in_port = port; /* Just record it */
632
633 /* XXXX SB16 */
634 if (ISSBPROCLASS(sc)) {
635 /* record from that port */
636 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
637 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
638 /* fetch gain from that port */
639 sc->gain[port] = sbdsp_mix_read(sc, mixport);
640 }
641
642 return (0);
643 }
644
645 int
646 sbdsp_get_in_port(addr)
647 void *addr;
648 {
649 register struct sbdsp_softc *sc = addr;
650
651 return (sc->in_port);
652 }
653
654
655 int
656 sbdsp_speaker_ctl(addr, newstate)
657 void *addr;
658 int newstate;
659 {
660 register struct sbdsp_softc *sc = addr;
661
662 if ((newstate == SPKR_ON) &&
663 (sc->spkr_state == SPKR_OFF)) {
664 sbdsp_spkron(sc);
665 sc->spkr_state = SPKR_ON;
666 }
667 if ((newstate == SPKR_OFF) &&
668 (sc->spkr_state == SPKR_ON)) {
669 sbdsp_spkroff(sc);
670 sc->spkr_state = SPKR_OFF;
671 }
672 return(0);
673 }
674
675 int
676 sbdsp_round_blocksize(addr, blk)
677 void *addr;
678 int blk;
679 {
680 register struct sbdsp_softc *sc = addr;
681
682 sc->sc_last_hs_size = 0;
683
684 /* Don't try to DMA too much at once. */
685 if (blk > NBPG)
686 blk = NBPG;
687
688 /* Round to a multiple of the sample size. */
689 blk &= -(sc->sc_channels * sc->sc_precision / 8);
690
691 if (blk > 1364)
692 blk = 1364; /* XXX */
693
694 return (blk);
695 }
696
697 int
698 sbdsp_commit_settings(addr)
699 void *addr;
700 {
701 return 0;
702 }
703
704
705 int
706 sbdsp_open(sc, dev, flags)
707 register struct sbdsp_softc *sc;
708 dev_t dev;
709 int flags;
710 {
711 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
712
713 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
714 return ENXIO;
715
716 sc->sc_open = 1;
717 sc->sc_mintr = 0;
718 if (ISSBPROCLASS(sc) &&
719 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
720 DPRINTF(("sbdsp_open: can't set mono mode\n"));
721 /* we'll readjust when it's time for DMA. */
722 }
723
724 /*
725 * Leave most things as they were; users must change things if
726 * the previous process didn't leave it they way they wanted.
727 * Looked at another way, it's easy to set up a configuration
728 * in one program and leave it for another to inherit.
729 */
730 DPRINTF(("sbdsp_open: opened\n"));
731
732 return 0;
733 }
734
735 void
736 sbdsp_close(addr)
737 void *addr;
738 {
739 struct sbdsp_softc *sc = addr;
740
741 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
742
743 sc->sc_open = 0;
744 sbdsp_spkroff(sc);
745 sc->spkr_state = SPKR_OFF;
746 sc->sc_mintr = 0;
747 sbdsp_haltdma(sc);
748
749 DPRINTF(("sbdsp_close: closed\n"));
750 }
751
752 /*
753 * Lower-level routines
754 */
755
756 /*
757 * Reset the card.
758 * Return non-zero if the card isn't detected.
759 */
760 int
761 sbdsp_reset(sc)
762 register struct sbdsp_softc *sc;
763 {
764 bus_space_tag_t iot = sc->sc_iot;
765 bus_space_handle_t ioh = sc->sc_ioh;
766
767 sc->sc_intr = 0;
768 if (sc->sc_dmadir != SB_DMA_NONE) {
769 isa_dmaabort(sc->dmachan);
770 sc->sc_dmadir = SB_DMA_NONE;
771 }
772 sc->sc_last_hs_size = 0;
773
774 /*
775 * See SBK, section 11.3.
776 * We pulse a reset signal into the card.
777 * Gee, what a brilliant hardware design.
778 */
779 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
780 delay(10);
781 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
782 delay(30);
783 if (sbdsp_rdsp(sc) != SB_MAGIC)
784 return -1;
785
786 return 0;
787 }
788
789 int
790 sbdsp16_wait(sc)
791 struct sbdsp_softc *sc;
792 {
793 bus_space_tag_t iot = sc->sc_iot;
794 bus_space_handle_t ioh = sc->sc_ioh;
795 register int i;
796
797 for (i = SBDSP_NPOLL; --i >= 0; ) {
798 register u_char x;
799 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
800 delay(10);
801 if ((x & SB_DSP_BUSY) == 0)
802 continue;
803 return 0;
804 }
805 ++sberr.wdsp;
806 return -1;
807 }
808
809 /*
810 * Write a byte to the dsp.
811 * XXX We are at the mercy of the card as we use a
812 * polling loop and wait until it can take the byte.
813 */
814 int
815 sbdsp_wdsp(sc, v)
816 struct sbdsp_softc *sc;
817 int v;
818 {
819 bus_space_tag_t iot = sc->sc_iot;
820 bus_space_handle_t ioh = sc->sc_ioh;
821 register int i;
822
823 for (i = SBDSP_NPOLL; --i >= 0; ) {
824 register u_char x;
825 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
826 delay(10);
827 if ((x & SB_DSP_BUSY) != 0)
828 continue;
829 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
830 delay(10);
831 return 0;
832 }
833 ++sberr.wdsp;
834 return -1;
835 }
836
837 /*
838 * Read a byte from the DSP, using polling.
839 */
840 int
841 sbdsp_rdsp(sc)
842 struct sbdsp_softc *sc;
843 {
844 bus_space_tag_t iot = sc->sc_iot;
845 bus_space_handle_t ioh = sc->sc_ioh;
846 register int i;
847
848 for (i = SBDSP_NPOLL; --i >= 0; ) {
849 register u_char x;
850 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
851 delay(10);
852 if ((x & SB_DSP_READY) == 0)
853 continue;
854 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
855 delay(10);
856 return x;
857 }
858 ++sberr.rdsp;
859 return -1;
860 }
861
862 /*
863 * Doing certain things (like toggling the speaker) make
864 * the SB hardware go away for a while, so pause a little.
865 */
866 void
867 sbdsp_to(arg)
868 void *arg;
869 {
870 wakeup(arg);
871 }
872
873 void
874 sbdsp_pause(sc)
875 struct sbdsp_softc *sc;
876 {
877 extern int hz;
878
879 timeout(sbdsp_to, sbdsp_to, hz/8);
880 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
881 }
882
883 /*
884 * Turn on the speaker. The SBK documention says this operation
885 * can take up to 1/10 of a second. Higher level layers should
886 * probably let the task sleep for this amount of time after
887 * calling here. Otherwise, things might not work (because
888 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
889 *
890 * These engineers had their heads up their ass when
891 * they designed this card.
892 */
893 void
894 sbdsp_spkron(sc)
895 struct sbdsp_softc *sc;
896 {
897 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
898 sbdsp_pause(sc);
899 }
900
901 /*
902 * Turn off the speaker; see comment above.
903 */
904 void
905 sbdsp_spkroff(sc)
906 struct sbdsp_softc *sc;
907 {
908 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
909 sbdsp_pause(sc);
910 }
911
912 /*
913 * Read the version number out of the card. Return major code
914 * in high byte, and minor code in low byte.
915 */
916 short
917 sbversion(sc)
918 struct sbdsp_softc *sc;
919 {
920 short v;
921
922 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
923 return 0;
924 v = sbdsp_rdsp(sc) << 8;
925 v |= sbdsp_rdsp(sc);
926 return ((v >= 0) ? v : 0);
927 }
928
929 /*
930 * Halt a DMA in progress. A low-speed transfer can be
931 * resumed with sbdsp_contdma().
932 */
933 int
934 sbdsp_haltdma(addr)
935 void *addr;
936 {
937 register struct sbdsp_softc *sc = addr;
938
939 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
940
941 sbdsp_reset(sc);
942 return 0;
943 }
944
945 int
946 sbdsp_contdma(addr)
947 void *addr;
948 {
949 register struct sbdsp_softc *sc = addr;
950
951 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
952
953 /* XXX how do we reinitialize the DMA controller state? do we care? */
954 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
955 return(0);
956 }
957
958 /*
959 * Convert a linear sampling rate into the DAC time constant.
960 * Set *mode to indicate the high/low-speed DMA operation.
961 * Because of limitations of the card, not all rates are possible.
962 * We return the time constant of the closest possible rate.
963 * The sampling rate limits are different for the DAC and ADC,
964 * so isdac indicates output, and !isdac indicates input.
965 */
966 void
967 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
968 register struct sbdsp_softc *sc;
969 int sr;
970 int isdac;
971 int *tcp, *modep;
972 {
973 int tc, realtc, mode;
974
975 /*
976 * Don't forget to compute which mode we'll be in based on whether
977 * we need to double the rate for stereo on SBPRO.
978 */
979
980 if (sr == 0) {
981 tc = SB_LS_MIN;
982 mode = SB_ADAC_LS;
983 goto out;
984 }
985
986 tc = 256 - (1000000 / sr);
987
988 if (sc->sc_channels == 2 && ISSBPRO(sc))
989 /* compute based on 2x sample rate when needed */
990 realtc = 256 - ( 500000 / sr);
991 else
992 realtc = tc;
993
994 if (tc < SB_LS_MIN) {
995 tc = SB_LS_MIN;
996 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
997 * speed mode. */
998 goto out;
999 } else if (isdac) {
1000 if (realtc <= SB_DAC_LS_MAX)
1001 mode = SB_ADAC_LS;
1002 else {
1003 mode = SB_ADAC_HS;
1004 if (tc > SB_DAC_HS_MAX)
1005 tc = SB_DAC_HS_MAX;
1006 }
1007 } else {
1008 int adc_ls_max, adc_hs_max;
1009
1010 /* XXX use better rounding--compare distance to nearest tc on both
1011 sides of requested speed */
1012 if (ISSBPROCLASS(sc)) {
1013 adc_ls_max = SBPRO_ADC_LS_MAX;
1014 adc_hs_max = SBPRO_ADC_HS_MAX;
1015 } else {
1016 adc_ls_max = SBCLA_ADC_LS_MAX;
1017 adc_hs_max = SBCLA_ADC_HS_MAX;
1018 }
1019
1020 if (realtc <= adc_ls_max)
1021 mode = SB_ADAC_LS;
1022 else {
1023 mode = SB_ADAC_HS;
1024 if (tc > adc_hs_max)
1025 tc = adc_hs_max;
1026 }
1027 }
1028
1029 out:
1030 *tcp = tc;
1031 *modep = mode;
1032 }
1033
1034 /*
1035 * Convert a DAC time constant to a sampling rate.
1036 * See SBK, section 12.
1037 */
1038 int
1039 sbdsp_tctosr(sc, tc)
1040 register struct sbdsp_softc *sc;
1041 int tc;
1042 {
1043 int adc;
1044
1045 if (ISSBPROCLASS(sc))
1046 adc = SBPRO_ADC_HS_MAX;
1047 else
1048 adc = SBCLA_ADC_HS_MAX;
1049
1050 if (tc > adc)
1051 tc = adc;
1052
1053 return (1000000 / (256 - tc));
1054 }
1055
1056 int
1057 sbdsp_set_timeconst(sc, tc)
1058 register struct sbdsp_softc *sc;
1059 int tc;
1060 {
1061 /*
1062 * A SBPro in stereo mode uses time constants at double the
1063 * actual rate.
1064 */
1065 if (ISSBPRO(sc) && sc->sc_channels == 2)
1066 tc = 256 - ((256 - tc) / 2);
1067
1068 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1069
1070 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1071 sbdsp_wdsp(sc, tc) < 0)
1072 return (EIO);
1073
1074 return (0);
1075 }
1076
1077 int
1078 sbdsp_dma_input(addr, p, cc, intr, arg)
1079 void *addr;
1080 void *p;
1081 int cc;
1082 void (*intr) __P((void *));
1083 void *arg;
1084 {
1085 register struct sbdsp_softc *sc = addr;
1086
1087 #ifdef AUDIO_DEBUG
1088 if (sbdspdebug > 1)
1089 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1090 #endif
1091 if (sc->sc_channels == 2 && (cc & 1)) {
1092 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1093 return EIO;
1094 }
1095
1096 if (sc->sc_dmadir != SB_DMA_IN) {
1097 if (ISSBPRO(sc)) {
1098 if (sc->sc_channels == 2) {
1099 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1100 if (sbdsp_wdsp(sc,
1101 JAZZ16_RECORD_STEREO) < 0) {
1102 goto badmode;
1103 }
1104 } else if (sbdsp_wdsp(sc,
1105 SB_DSP_RECORD_STEREO) < 0)
1106 goto badmode;
1107 sbdsp_mix_write(sc, SBP_INFILTER,
1108 (sbdsp_mix_read(sc, SBP_INFILTER) &
1109 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1110 } else {
1111 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1112 if (sbdsp_wdsp(sc,
1113 JAZZ16_RECORD_MONO) < 0)
1114 {
1115 goto badmode;
1116 }
1117 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1118 goto badmode;
1119 sbdsp_mix_write(sc, SBP_INFILTER,
1120 (sbdsp_mix_read(sc, SBP_INFILTER) &
1121 ~SBP_IFILTER_MASK) | sc->in_filter);
1122 }
1123 }
1124
1125 if (ISSB16CLASS(sc)) {
1126 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1127 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1128 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1129 goto giveup;
1130 } else
1131 sbdsp_set_timeconst(sc, sc->sc_itc);
1132
1133 sc->sc_dmadir = SB_DMA_IN;
1134 sc->dmaflags = DMAMODE_READ;
1135 if (ISSB2CLASS(sc))
1136 sc->dmaflags |= DMAMODE_LOOP;
1137 } else {
1138 /* Already started; just return. */
1139 if (ISSB2CLASS(sc))
1140 return 0;
1141 }
1142
1143 sc->dmaaddr = p;
1144 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1145 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1146 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1147 sc->sc_intr = intr;
1148 sc->sc_arg = arg;
1149
1150 if (sc->sc_precision == 16)
1151 cc >>= 1;
1152 --cc;
1153 if (ISSB16CLASS(sc)) {
1154 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1155 SB_DSP16_RDMA_8) < 0 ||
1156 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1157 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1158 sbdsp16_wait(sc) ||
1159 sbdsp_wdsp(sc, cc) < 0 ||
1160 sbdsp_wdsp(sc, cc >> 8) < 0) {
1161 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1162 goto giveup;
1163 }
1164 } else if (ISSB2CLASS(sc)) {
1165 if (cc != sc->sc_last_hs_size) {
1166 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1167 sbdsp_wdsp(sc, cc) < 0 ||
1168 sbdsp_wdsp(sc, cc >> 8) < 0) {
1169 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1170 goto giveup;
1171 }
1172 sc->sc_last_hs_size = cc;
1173 }
1174 if (sbdsp_wdsp(sc,
1175 sc->sc_imode == SB_ADAC_LS ? SB_DSP_RDMA_LOOP :
1176 SB_DSP_HS_INPUT) < 0) {
1177 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1178 goto giveup;
1179 }
1180 } else {
1181 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1182 sbdsp_wdsp(sc, cc) < 0 ||
1183 sbdsp_wdsp(sc, cc >> 8) < 0) {
1184 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1185 goto giveup;
1186 }
1187 }
1188 return 0;
1189
1190 giveup:
1191 sbdsp_reset(sc);
1192 return EIO;
1193
1194 badmode:
1195 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1196 sc->sc_channels == 2 ? "stereo" : "mono"));
1197 return EIO;
1198 }
1199
1200 int
1201 sbdsp_dma_output(addr, p, cc, intr, arg)
1202 void *addr;
1203 void *p;
1204 int cc;
1205 void (*intr) __P((void *));
1206 void *arg;
1207 {
1208 register struct sbdsp_softc *sc = addr;
1209
1210 #ifdef AUDIO_DEBUG
1211 if (sbdspdebug > 1)
1212 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1213 #endif
1214 if (sc->sc_channels == 2 && (cc & 1)) {
1215 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1216 return EIO;
1217 }
1218
1219 if (sc->sc_dmadir != SB_DMA_OUT) {
1220 if (ISSBPRO(sc)) {
1221 /* make sure we re-set stereo mixer bit when we start
1222 output. */
1223 sbdsp_mix_write(sc, SBP_STEREO,
1224 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1225 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1226 if (ISJAZZ16(sc)) {
1227 /* Yes, we write the record mode to set
1228 16-bit playback mode. weird, huh? */
1229 if (sc->sc_precision == 16) {
1230 sbdsp_wdsp(sc,
1231 sc->sc_channels == 2 ?
1232 JAZZ16_RECORD_STEREO :
1233 JAZZ16_RECORD_MONO);
1234 } else {
1235 sbdsp_wdsp(sc,
1236 sc->sc_channels == 2 ?
1237 SB_DSP_RECORD_STEREO :
1238 SB_DSP_RECORD_MONO);
1239 }
1240 }
1241 }
1242
1243 if (ISSB16CLASS(sc)) {
1244 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1245 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1246 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1247 goto giveup;
1248 } else
1249 sbdsp_set_timeconst(sc, sc->sc_otc);
1250
1251 sc->sc_dmadir = SB_DMA_OUT;
1252 sc->dmaflags = DMAMODE_WRITE;
1253 if (ISSB2CLASS(sc))
1254 sc->dmaflags |= DMAMODE_LOOP;
1255 } else {
1256 /* Already started; just return. */
1257 if (ISSB2CLASS(sc))
1258 return 0;
1259 }
1260
1261 sc->dmaaddr = p;
1262 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1263 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1264 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1265 sc->sc_intr = intr;
1266 sc->sc_arg = arg;
1267
1268 if (sc->sc_precision == 16)
1269 cc >>= 1;
1270 --cc;
1271 if (ISSB16CLASS(sc)) {
1272 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1273 SB_DSP16_WDMA_8) < 0 ||
1274 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1275 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1276 sbdsp16_wait(sc) ||
1277 sbdsp_wdsp(sc, cc) < 0 ||
1278 sbdsp_wdsp(sc, cc >> 8) < 0) {
1279 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1280 goto giveup;
1281 }
1282 } else if (ISSB2CLASS(sc)) {
1283 if (cc != sc->sc_last_hs_size) {
1284 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1285 sbdsp_wdsp(sc, cc) < 0 ||
1286 sbdsp_wdsp(sc, cc >> 8) < 0) {
1287 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1288 goto giveup;
1289 }
1290 sc->sc_last_hs_size = cc;
1291 }
1292 if (sbdsp_wdsp(sc,
1293 sc->sc_omode == SB_ADAC_LS ? SB_DSP_WDMA_LOOP :
1294 SB_DSP_HS_OUTPUT) < 0) {
1295 DPRINTF(("sbdsp_dma_output: SB2 DMA restart failed\n"));
1296 goto giveup;
1297 }
1298 } else {
1299 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1300 sbdsp_wdsp(sc, cc) < 0 ||
1301 sbdsp_wdsp(sc, cc >> 8) < 0) {
1302 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1303 goto giveup;
1304 }
1305 }
1306 return 0;
1307
1308 giveup:
1309 sbdsp_reset(sc);
1310 return EIO;
1311 }
1312
1313 /*
1314 * Only the DSP unit on the sound blaster generates interrupts.
1315 * There are three cases of interrupt: reception of a midi byte
1316 * (when mode is enabled), completion of dma transmission, or
1317 * completion of a dma reception. The three modes are mutually
1318 * exclusive so we know a priori which event has occurred.
1319 */
1320 int
1321 sbdsp_intr(arg)
1322 void *arg;
1323 {
1324 register struct sbdsp_softc *sc = arg;
1325 u_char x;
1326
1327 #ifdef AUDIO_DEBUG
1328 if (sbdspdebug > 1)
1329 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1330 #endif
1331 if (ISSB16CLASS(sc)) {
1332 x = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1333 if ((x & 3) == 0)
1334 return 0;
1335 } else {
1336 if (!isa_dmafinished(sc->dmachan))
1337 return 0;
1338 }
1339 sc->sc_interrupts++;
1340 delay(10);
1341 #if 0
1342 if (sc->sc_mintr != 0) {
1343 x = sbdsp_rdsp(sc);
1344 (*sc->sc_mintr)(sc->sc_arg, x);
1345 } else
1346 #endif
1347 if (sc->sc_intr != 0) {
1348 /* clear interrupt */
1349 bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1350 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1351 SBP_DSP_IRQACK8);
1352 if (!ISSB2CLASS(sc))
1353 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1354 sc->dmachan);
1355 (*sc->sc_intr)(sc->sc_arg);
1356 } else {
1357 return 0;
1358 }
1359 return 1;
1360 }
1361
1362 #if 0
1363 /*
1364 * Enter midi uart mode and arrange for read interrupts
1365 * to vector to `intr'. This puts the card in a mode
1366 * which allows only midi I/O; the card must be reset
1367 * to leave this mode. Unfortunately, the card does not
1368 * use transmit interrupts, so bytes must be output
1369 * using polling. To keep the polling overhead to a
1370 * minimum, output should be driven off a timer.
1371 * This is a little tricky since only 320us separate
1372 * consecutive midi bytes.
1373 */
1374 void
1375 sbdsp_set_midi_mode(sc, intr, arg)
1376 struct sbdsp_softc *sc;
1377 void (*intr)();
1378 void *arg;
1379 {
1380
1381 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1382 sc->sc_mintr = intr;
1383 sc->sc_intr = 0;
1384 sc->sc_arg = arg;
1385 }
1386
1387 /*
1388 * Write a byte to the midi port, when in midi uart mode.
1389 */
1390 void
1391 sbdsp_midi_output(sc, v)
1392 struct sbdsp_softc *sc;
1393 int v;
1394 {
1395
1396 if (sbdsp_wdsp(sc, v) < 0)
1397 ++sberr.wmidi;
1398 }
1399 #endif
1400
1401 int
1402 sbdsp_setfd(addr, flag)
1403 void *addr;
1404 int flag;
1405 {
1406 /* Can't do full-duplex */
1407 return(ENOTTY);
1408 }
1409
1410 int
1411 sbdsp_mixer_set_port(addr, cp)
1412 void *addr;
1413 mixer_ctrl_t *cp;
1414 {
1415 register struct sbdsp_softc *sc = addr;
1416 int src, gain;
1417
1418 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1419 cp->un.value.num_channels));
1420
1421 if (!ISSBPROCLASS(sc))
1422 return EINVAL;
1423
1424 /*
1425 * Everything is a value except for SBPro BASS/TREBLE and
1426 * RECORD_SOURCE
1427 */
1428 switch (cp->dev) {
1429 case SB_SPEAKER:
1430 cp->dev = SB_MASTER_VOL;
1431 case SB_MIC_PORT:
1432 case SB_LINE_IN_PORT:
1433 case SB_DAC_PORT:
1434 case SB_FM_PORT:
1435 case SB_CD_PORT:
1436 case SB_MASTER_VOL:
1437 if (cp->type != AUDIO_MIXER_VALUE)
1438 return EINVAL;
1439
1440 /*
1441 * All the mixer ports are stereo except for the microphone.
1442 * If we get a single-channel gain value passed in, then we
1443 * duplicate it to both left and right channels.
1444 */
1445
1446 switch (cp->dev) {
1447 case SB_MIC_PORT:
1448 if (cp->un.value.num_channels != 1)
1449 return EINVAL;
1450
1451 /* handle funny microphone gain */
1452 gain = SBP_AGAIN_TO_MICGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1453 break;
1454 case SB_LINE_IN_PORT:
1455 case SB_DAC_PORT:
1456 case SB_FM_PORT:
1457 case SB_CD_PORT:
1458 case SB_MASTER_VOL:
1459 switch (cp->un.value.num_channels) {
1460 case 1:
1461 gain = sbdsp_mono_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]));
1462 break;
1463 case 2:
1464 gain = sbdsp_stereo_vol(SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]),
1465 SBP_AGAIN_TO_SBGAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]));
1466 break;
1467 default:
1468 return EINVAL;
1469 }
1470 break;
1471 default:
1472 return EINVAL;
1473 }
1474
1475 switch (cp->dev) {
1476 case SB_MIC_PORT:
1477 src = SBP_MIC_VOL;
1478 break;
1479 case SB_MASTER_VOL:
1480 src = SBP_MASTER_VOL;
1481 break;
1482 case SB_LINE_IN_PORT:
1483 src = SBP_LINE_VOL;
1484 break;
1485 case SB_DAC_PORT:
1486 src = SBP_DAC_VOL;
1487 break;
1488 case SB_FM_PORT:
1489 src = SBP_FM_VOL;
1490 break;
1491 case SB_CD_PORT:
1492 src = SBP_CD_VOL;
1493 break;
1494 default:
1495 return EINVAL;
1496 }
1497
1498 sbdsp_mix_write(sc, src, gain);
1499 sc->gain[cp->dev] = gain;
1500 break;
1501
1502 case SB_TREBLE:
1503 case SB_BASS:
1504 case SB_RECORD_SOURCE:
1505 if (cp->type != AUDIO_MIXER_ENUM)
1506 return EINVAL;
1507
1508 switch (cp->dev) {
1509 case SB_TREBLE:
1510 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_TREBLE_EQ : 0);
1511 case SB_BASS:
1512 return sbdsp_set_ifilter(addr, cp->un.ord ? SBP_BASS_EQ : 0);
1513 case SB_RECORD_SOURCE:
1514 return sbdsp_set_in_port(addr, cp->un.ord);
1515 }
1516
1517 break;
1518
1519 default:
1520 return EINVAL;
1521 }
1522
1523 return (0);
1524 }
1525
1526 int
1527 sbdsp_mixer_get_port(addr, cp)
1528 void *addr;
1529 mixer_ctrl_t *cp;
1530 {
1531 register struct sbdsp_softc *sc = addr;
1532 int gain;
1533
1534 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1535
1536 if (!ISSBPROCLASS(sc))
1537 return EINVAL;
1538
1539 switch (cp->dev) {
1540 case SB_SPEAKER:
1541 cp->dev = SB_MASTER_VOL;
1542 case SB_MIC_PORT:
1543 case SB_LINE_IN_PORT:
1544 case SB_DAC_PORT:
1545 case SB_FM_PORT:
1546 case SB_CD_PORT:
1547 case SB_MASTER_VOL:
1548 gain = sc->gain[cp->dev];
1549
1550 switch (cp->dev) {
1551 case SB_MIC_PORT:
1552 if (cp->un.value.num_channels != 1)
1553 return EINVAL;
1554
1555 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_MICGAIN_TO_AGAIN(gain);
1556 break;
1557 case SB_LINE_IN_PORT:
1558 case SB_DAC_PORT:
1559 case SB_FM_PORT:
1560 case SB_CD_PORT:
1561 case SB_MASTER_VOL:
1562 switch (cp->un.value.num_channels) {
1563 case 1:
1564 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = SBP_SBGAIN_TO_AGAIN(gain);
1565 break;
1566 case 2:
1567 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = SBP_LEFTGAIN(gain);
1568 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = SBP_RIGHTGAIN(gain);
1569 break;
1570 default:
1571 return EINVAL;
1572 }
1573 break;
1574 }
1575
1576 break;
1577
1578 case SB_TREBLE:
1579 case SB_BASS:
1580 case SB_RECORD_SOURCE:
1581 switch (cp->dev) {
1582 case SB_TREBLE:
1583 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_TREBLE_EQ;
1584 return 0;
1585 case SB_BASS:
1586 cp->un.ord = sbdsp_get_ifilter(addr) == SBP_BASS_EQ;
1587 return 0;
1588 case SB_RECORD_SOURCE:
1589 cp->un.ord = sbdsp_get_in_port(addr);
1590 return 0;
1591 }
1592
1593 break;
1594
1595 default:
1596 return EINVAL;
1597 }
1598
1599 return (0);
1600 }
1601
1602 int
1603 sbdsp_mixer_query_devinfo(addr, dip)
1604 void *addr;
1605 register mixer_devinfo_t *dip;
1606 {
1607 register struct sbdsp_softc *sc = addr;
1608
1609 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1610
1611 switch (dip->index) {
1612 case SB_MIC_PORT:
1613 dip->type = AUDIO_MIXER_VALUE;
1614 dip->mixer_class = SB_INPUT_CLASS;
1615 dip->prev = AUDIO_MIXER_LAST;
1616 dip->next = AUDIO_MIXER_LAST;
1617 strcpy(dip->label.name, AudioNmicrophone);
1618 dip->un.v.num_channels = 1;
1619 strcpy(dip->un.v.units.name, AudioNvolume);
1620 return 0;
1621
1622 case SB_SPEAKER:
1623 dip->type = AUDIO_MIXER_VALUE;
1624 dip->mixer_class = SB_OUTPUT_CLASS;
1625 dip->prev = AUDIO_MIXER_LAST;
1626 dip->next = AUDIO_MIXER_LAST;
1627 strcpy(dip->label.name, AudioNspeaker);
1628 dip->un.v.num_channels = 1;
1629 strcpy(dip->un.v.units.name, AudioNvolume);
1630 return 0;
1631
1632 case SB_INPUT_CLASS:
1633 dip->type = AUDIO_MIXER_CLASS;
1634 dip->mixer_class = SB_INPUT_CLASS;
1635 dip->next = dip->prev = AUDIO_MIXER_LAST;
1636 strcpy(dip->label.name, AudioCInputs);
1637 return 0;
1638
1639 case SB_OUTPUT_CLASS:
1640 dip->type = AUDIO_MIXER_CLASS;
1641 dip->mixer_class = SB_OUTPUT_CLASS;
1642 dip->next = dip->prev = AUDIO_MIXER_LAST;
1643 strcpy(dip->label.name, AudioCOutputs);
1644 return 0;
1645 }
1646
1647 if (ISSBPROCLASS(sc)) {
1648 switch (dip->index) {
1649 case SB_LINE_IN_PORT:
1650 dip->type = AUDIO_MIXER_VALUE;
1651 dip->mixer_class = SB_INPUT_CLASS;
1652 dip->prev = AUDIO_MIXER_LAST;
1653 dip->next = AUDIO_MIXER_LAST;
1654 strcpy(dip->label.name, AudioNline);
1655 dip->un.v.num_channels = 2;
1656 strcpy(dip->un.v.units.name, AudioNvolume);
1657 return 0;
1658
1659 case SB_DAC_PORT:
1660 dip->type = AUDIO_MIXER_VALUE;
1661 dip->mixer_class = SB_INPUT_CLASS;
1662 dip->prev = AUDIO_MIXER_LAST;
1663 dip->next = AUDIO_MIXER_LAST;
1664 strcpy(dip->label.name, AudioNdac);
1665 dip->un.v.num_channels = 2;
1666 strcpy(dip->un.v.units.name, AudioNvolume);
1667 return 0;
1668
1669 case SB_CD_PORT:
1670 dip->type = AUDIO_MIXER_VALUE;
1671 dip->mixer_class = SB_INPUT_CLASS;
1672 dip->prev = AUDIO_MIXER_LAST;
1673 dip->next = AUDIO_MIXER_LAST;
1674 strcpy(dip->label.name, AudioNcd);
1675 dip->un.v.num_channels = 2;
1676 strcpy(dip->un.v.units.name, AudioNvolume);
1677 return 0;
1678
1679 case SB_FM_PORT:
1680 dip->type = AUDIO_MIXER_VALUE;
1681 dip->mixer_class = SB_INPUT_CLASS;
1682 dip->prev = AUDIO_MIXER_LAST;
1683 dip->next = AUDIO_MIXER_LAST;
1684 strcpy(dip->label.name, AudioNfmsynth);
1685 dip->un.v.num_channels = 2;
1686 strcpy(dip->un.v.units.name, AudioNvolume);
1687 return 0;
1688
1689 case SB_MASTER_VOL:
1690 dip->type = AUDIO_MIXER_VALUE;
1691 dip->mixer_class = SB_OUTPUT_CLASS;
1692 dip->prev = AUDIO_MIXER_LAST;
1693 dip->next = AUDIO_MIXER_LAST;
1694 strcpy(dip->label.name, AudioNvolume);
1695 dip->un.v.num_channels = 2;
1696 strcpy(dip->un.v.units.name, AudioNvolume);
1697 return 0;
1698
1699 case SB_RECORD_SOURCE:
1700 dip->mixer_class = SB_RECORD_CLASS;
1701 dip->type = AUDIO_MIXER_ENUM;
1702 dip->prev = AUDIO_MIXER_LAST;
1703 dip->next = AUDIO_MIXER_LAST;
1704 strcpy(dip->label.name, AudioNsource);
1705 dip->un.e.num_mem = 3;
1706 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1707 dip->un.e.member[0].ord = SB_MIC_PORT;
1708 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1709 dip->un.e.member[1].ord = SB_CD_PORT;
1710 strcpy(dip->un.e.member[2].label.name, AudioNline);
1711 dip->un.e.member[2].ord = SB_LINE_IN_PORT;
1712 return 0;
1713
1714 case SB_BASS:
1715 dip->type = AUDIO_MIXER_ENUM;
1716 dip->mixer_class = SB_INPUT_CLASS;
1717 dip->prev = AUDIO_MIXER_LAST;
1718 dip->next = AUDIO_MIXER_LAST;
1719 strcpy(dip->label.name, AudioNbass);
1720 dip->un.e.num_mem = 2;
1721 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1722 dip->un.e.member[0].ord = 0;
1723 strcpy(dip->un.e.member[1].label.name, AudioNon);
1724 dip->un.e.member[1].ord = 1;
1725 return 0;
1726
1727 case SB_TREBLE:
1728 dip->type = AUDIO_MIXER_ENUM;
1729 dip->mixer_class = SB_INPUT_CLASS;
1730 dip->prev = AUDIO_MIXER_LAST;
1731 dip->next = AUDIO_MIXER_LAST;
1732 strcpy(dip->label.name, AudioNtreble);
1733 dip->un.e.num_mem = 2;
1734 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1735 dip->un.e.member[0].ord = 0;
1736 strcpy(dip->un.e.member[1].label.name, AudioNon);
1737 dip->un.e.member[1].ord = 1;
1738 return 0;
1739
1740 case SB_RECORD_CLASS: /* record source class */
1741 dip->type = AUDIO_MIXER_CLASS;
1742 dip->mixer_class = SB_RECORD_CLASS;
1743 dip->next = dip->prev = AUDIO_MIXER_LAST;
1744 strcpy(dip->label.name, AudioCRecord);
1745 return 0;
1746 }
1747 }
1748
1749 return ENXIO;
1750 }
1751