sbdsp.c revision 1.50 1 /* $NetBSD: sbdsp.c,v 1.50 1997/05/19 23:14:29 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson with information from
43 * SB "Hardware Programming Guide" and the Linux drivers.
44 */
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/errno.h>
49 #include <sys/ioctl.h>
50 #include <sys/syslog.h>
51 #include <sys/device.h>
52 #include <sys/proc.h>
53 #include <sys/buf.h>
54 #include <vm/vm.h>
55
56 #include <machine/cpu.h>
57 #include <machine/intr.h>
58 #include <machine/pio.h>
59
60 #include <sys/audioio.h>
61 #include <dev/audio_if.h>
62 #include <dev/mulaw.h>
63
64 #include <dev/isa/isavar.h>
65 #include <dev/isa/isadmavar.h>
66 #include <i386/isa/icu.h> /* XXX BROKEN; WHY? */
67
68 #include <dev/isa/sbreg.h>
69 #include <dev/isa/sbdspvar.h>
70
71 #ifdef AUDIO_DEBUG
72 extern void Dprintf __P((const char *, ...));
73 #define DPRINTF(x) if (sbdspdebug) Dprintf x
74 int sbdspdebug = 0;
75 #else
76 #define DPRINTF(x)
77 #endif
78
79 #ifndef SBDSP_NPOLL
80 #define SBDSP_NPOLL 3000
81 #endif
82
83 struct {
84 int wdsp;
85 int rdsp;
86 int wmidi;
87 } sberr;
88
89 void sbdsp_srtotc __P((struct sbdsp_softc *sc, int sr, int isdac,
90 int *tcp, int *modep));
91 u_int sbdsp_jazz16_probe __P((struct sbdsp_softc *));
92 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
93
94 /*
95 * Time constant routines follow. See SBK, section 12.
96 * Although they don't come out and say it (in the docs),
97 * the card clearly uses a 1MHz countdown timer, as the
98 * low-speed formula (p. 12-4) is:
99 * tc = 256 - 10^6 / sr
100 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
101 * and a 256MHz clock is used:
102 * tc = 65536 - 256 * 10^ 6 / sr
103 * Since we can only use the upper byte of the HS TC, the two formulae
104 * are equivalent. (Why didn't they say so?) E.g.,
105 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
106 *
107 * The crossover point (from low- to high-speed modes) is different
108 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
109 *
110 * SBPRO SB20
111 * ----- --------
112 * input ls min 4 KHz 4 KHz
113 * input ls max 23 KHz 13 KHz
114 * input hs max 44.1 KHz 15 KHz
115 * output ls min 4 KHz 4 KHz
116 * output ls max 23 KHz 23 KHz
117 * output hs max 44.1 KHz 44.1 KHz
118 */
119 #define SB_LS_MIN 0x06 /* 4000 Hz */
120 #define SB_8K 0x83 /* 8000 Hz */
121 #define SBPRO_ADC_LS_MAX 0xd4 /* 22727 Hz */
122 #define SBPRO_ADC_HS_MAX 0xea /* 45454 Hz */
123 #define SBCLA_ADC_LS_MAX 0xb3 /* 12987 Hz */
124 #define SBCLA_ADC_HS_MAX 0xbd /* 14925 Hz */
125 #define SB_DAC_LS_MAX 0xd4 /* 22727 Hz */
126 #define SB_DAC_HS_MAX 0xea /* 45454 Hz */
127
128 int sbdsp16_wait __P((struct sbdsp_softc *));
129 void sbdsp_to __P((void *));
130 void sbdsp_pause __P((struct sbdsp_softc *));
131 int sbdsp16_setrate __P((struct sbdsp_softc *, int, int, int *));
132 int sbdsp_tctosr __P((struct sbdsp_softc *, int));
133 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
134 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
135 void sbdsp_set_ifilter __P((void *, int));
136 int sbdsp_get_ifilter __P((void *));
137
138 #ifdef AUDIO_DEBUG
139 void sb_printsc __P((struct sbdsp_softc *));
140
141 void
142 sb_printsc(sc)
143 struct sbdsp_softc *sc;
144 {
145 int i;
146
147 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
148 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
149 sc->sc_iobase, sc->sc_irq);
150 printf("irate %d itc %d imode %d orate %d otc %d omode %d\n",
151 sc->sc_irate, sc->sc_itc, sc->sc_imode,
152 sc->sc_orate, sc->sc_otc, sc->sc_omode);
153 printf("outport %u inport %u spkron %u nintr %lu\n",
154 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
155 printf("precision %u channels %d intr %p arg %p\n",
156 sc->sc_precision, sc->sc_channels, sc->sc_intr, sc->sc_arg);
157 printf("gain:");
158 for (i = 0; i < SB_NDEVS; i++)
159 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
160 printf("\n");
161 }
162 #endif /* AUDIO_DEBUG */
163
164 /*
165 * Probe / attach routines.
166 */
167
168 /*
169 * Probe for the soundblaster hardware.
170 */
171 int
172 sbdsp_probe(sc)
173 struct sbdsp_softc *sc;
174 {
175
176 if (sbdsp_reset(sc) < 0) {
177 DPRINTF(("sbdsp: couldn't reset card\n"));
178 return 0;
179 }
180 /* if flags set, go and probe the jazz16 stuff */
181 if (sc->sc_dev.dv_cfdata->cf_flags != 0) {
182 sc->sc_model = sbdsp_jazz16_probe(sc);
183 } else {
184 sc->sc_model = sbversion(sc);
185 }
186
187 switch(SBVER_MAJOR((sc)->sc_model)) {
188 default:
189 sc->sc_mixer_model = SBM_NONE;
190 break;
191 case 2:
192 /* Some SB2 have a mixer, some don't. */
193 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
194 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
195 /* Check if we can read back the mixer values. */
196 if (sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) == 0x04 &&
197 sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) == 0x06)
198 sc->sc_mixer_model = SBM_CT1335;
199 else
200 sc->sc_mixer_model = SBM_NONE;
201 break;
202 case 3:
203 sc->sc_mixer_model = SBM_CT1345;
204 break;
205 case 4:
206 sc->sc_mixer_model = SBM_CT1745;
207 break;
208 }
209 if (ISJAZZ16(sc))
210 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
211 return 1;
212 }
213
214 /*
215 * Try add-on stuff for Jazz16.
216 */
217 u_int
218 sbdsp_jazz16_probe(sc)
219 struct sbdsp_softc *sc;
220 {
221 static u_char jazz16_irq_conf[16] = {
222 -1, -1, 0x02, 0x03,
223 -1, 0x01, -1, 0x04,
224 -1, 0x02, 0x05, -1,
225 -1, -1, -1, 0x06};
226 static u_char jazz16_drq_conf[8] = {
227 -1, 0x01, -1, 0x02,
228 -1, 0x03, -1, 0x04};
229
230 u_int rval = sbversion(sc);
231 bus_space_tag_t iot = sc->sc_iot;
232 bus_space_handle_t ioh;
233
234 DPRINTF(("jazz16 probe\n"));
235
236 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
237 DPRINTF(("bus map failed\n"));
238 return rval;
239 }
240
241 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
242 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
243 DPRINTF(("drq/irq check failed\n"));
244 goto done; /* give up, we can't do it. */
245 }
246
247 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
248 delay(10000); /* delay 10 ms */
249 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
250 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
251
252 if (sbdsp_reset(sc) < 0) {
253 DPRINTF(("sbdsp_reset check failed\n"));
254 goto done; /* XXX? what else could we do? */
255 }
256
257 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
258 DPRINTF(("read16 setup failed\n"));
259 goto done;
260 }
261
262 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
263 DPRINTF(("read16 failed\n"));
264 goto done;
265 }
266
267 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
268 sc->sc_drq16 = sc->sc_drq8;
269 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
270 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
271 jazz16_drq_conf[sc->sc_drq8]) ||
272 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
273 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
274 } else {
275 DPRINTF(("jazz16 detected!\n"));
276 rval |= MODEL_JAZZ16;
277 }
278
279 done:
280 bus_space_unmap(iot, ioh, 1);
281 return rval;
282 }
283
284 /*
285 * Attach hardware to driver, attach hardware driver to audio
286 * pseudo-device driver .
287 */
288 void
289 sbdsp_attach(sc)
290 struct sbdsp_softc *sc;
291 {
292
293 /* Set defaults */
294 if (ISSB16CLASS(sc))
295 sc->sc_irate = sc->sc_orate = 8000;
296 else
297 sc->sc_itc = sc->sc_otc = SB_8K;
298 sc->sc_precision = 8;
299 sc->sc_channels = 1;
300
301 (void) sbdsp_set_in_port(sc, SB_MIC_VOL);
302 (void) sbdsp_set_out_port(sc, SB_MASTER_VOL);
303
304 if (ISSBPROCLASS(sc)) {
305 int i;
306 u_int v;
307
308 /* set mixer to default levels, by sending a mixer
309 reset command. */
310 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
311 for (i = 0; i < SB_NDEVS; i++) {
312 switch(i) {
313 case SB_MIC_VOL:
314 case SB_LINE_IN_VOL:
315 v = 0;
316 break;
317 case SB_BASS:
318 case SB_TREBLE:
319 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
320 break;
321 default:
322 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
323 break;
324 }
325 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
326 sbdsp_set_mixer_gain(sc, i);
327 }
328 sc->in_filter = 0; /* no filters turned on, please */
329 }
330
331 printf(": dsp v%d.%02d%s\n",
332 SBVER_MAJOR(sc->sc_model), SBVER_MINOR(sc->sc_model),
333 ISJAZZ16(sc) ? ": <Jazz16>" : "");
334 }
335
336 /*
337 * Various routines to interface to higher level audio driver
338 */
339
340 void
341 sbdsp_mix_write(sc, mixerport, val)
342 struct sbdsp_softc *sc;
343 int mixerport;
344 int val;
345 {
346 bus_space_tag_t iot = sc->sc_iot;
347 bus_space_handle_t ioh = sc->sc_ioh;
348 int s;
349
350 s = splaudio();
351 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
352 delay(20);
353 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
354 delay(30);
355 splx(s);
356 }
357
358 int
359 sbdsp_mix_read(sc, mixerport)
360 struct sbdsp_softc *sc;
361 int mixerport;
362 {
363 bus_space_tag_t iot = sc->sc_iot;
364 bus_space_handle_t ioh = sc->sc_ioh;
365 int val;
366 int s;
367
368 s = splaudio();
369 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
370 delay(20);
371 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
372 delay(30);
373 splx(s);
374 return val;
375 }
376
377 int
378 sbdsp_query_encoding(addr, fp)
379 void *addr;
380 struct audio_encoding *fp;
381 {
382 struct sbdsp_softc *sc = addr;
383
384 switch (fp->index) {
385 case 0:
386 strcpy(fp->name, AudioEulinear);
387 fp->encoding = AUDIO_ENCODING_ULINEAR;
388 fp->precision = 8;
389 fp->flags = 0;
390 break;
391 case 1:
392 strcpy(fp->name, AudioEmulaw);
393 fp->encoding = AUDIO_ENCODING_ULAW;
394 fp->precision = 8;
395 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
396 break;
397 case 2:
398 strcpy(fp->name, AudioElinear);
399 fp->encoding = AUDIO_ENCODING_LINEAR;
400 fp->precision = 8;
401 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
402 break;
403 default:
404 if (!(ISSB16CLASS(sc) || ISJAZZ16(sc)))
405 return (EINVAL);
406 switch(fp->index) {
407 case 3:
408 strcpy(fp->name, AudioElinear_le);
409 fp->encoding = AUDIO_ENCODING_LINEAR_LE;
410 fp->precision = 16;
411 fp->flags = 0;
412 break;
413 case 4:
414 strcpy(fp->name, AudioEulinear_le);
415 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
416 fp->precision = 16;
417 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
418 break;
419 case 5:
420 strcpy(fp->name, AudioElinear_be);
421 fp->encoding = AUDIO_ENCODING_LINEAR_BE;
422 fp->precision = 16;
423 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
424 break;
425 case 6:
426 strcpy(fp->name, AudioEulinear_be);
427 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
428 fp->precision = 16;
429 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
430 break;
431 default:
432 return (EINVAL);
433 }
434 }
435 return (0);
436 }
437
438 int
439 sbdsp_set_params(addr, mode, p, q)
440 void *addr;
441 int mode;
442 struct audio_params *p, *q;
443 {
444 struct sbdsp_softc *sc = addr;
445 int maxspeed;
446 void (*swcode) __P((void *, u_char *buf, int cnt));
447 int can16 = ISSB16CLASS(sc) || ISJAZZ16(sc);
448
449 switch (p->encoding) {
450 case AUDIO_ENCODING_LINEAR_LE:
451 if (p->precision == 8)
452 swcode = change_sign8;
453 else if (can16)
454 swcode = 0;
455 else
456 return EINVAL;
457 break;
458 case AUDIO_ENCODING_ULINEAR_LE:
459 if (p->precision == 8)
460 swcode = 0;
461 else if (can16)
462 swcode = change_sign16;
463 else
464 return EINVAL;
465 break;
466 case AUDIO_ENCODING_LINEAR_BE:
467 if (p->precision == 8)
468 swcode = change_sign8;
469 else if (can16)
470 swcode = swap_bytes;
471 else
472 return EINVAL;
473 break;
474 case AUDIO_ENCODING_ULINEAR_BE:
475 if (p->precision == 8)
476 swcode = 0;
477 else if (can16)
478 swcode = swap_bytes_change_sign16;
479 else
480 return EINVAL;
481 break;
482 case AUDIO_ENCODING_ULAW:
483 swcode = mode == AUMODE_PLAY ?
484 mulaw_to_ulinear8 : ulinear8_to_mulaw;
485 break;
486 default:
487 return EINVAL;
488 }
489
490
491 if (!ISSBPROCLASS(sc)) {
492 /* v 1.x or v 2.x */
493 if (mode == AUMODE_PLAY) {
494 if (ISSB2CLASS(sc) && SBVER_MINOR(sc->sc_model) > 0)
495 maxspeed = 45454;
496 else
497 maxspeed = 22727;
498 } else
499 maxspeed = 12987;
500 if (p->sample_rate < 4000 || p->sample_rate > maxspeed)
501 return EINVAL;
502 if (p->channels != 1)
503 return EINVAL;
504 } else if (!can16) {
505 /* v 3.x (SBPRO) */
506 if (p->channels == 1)
507 maxspeed = 45454;
508 else
509 maxspeed = 22727;
510 if (p->sample_rate < 4000 || p->sample_rate > maxspeed)
511 return EINVAL;
512 } else {
513 /* >= v 4.x */
514 if (p->sample_rate < 4000 || p->sample_rate > 45000)
515 return EINVAL;
516 }
517
518 if (ISSB16CLASS(sc)) {
519 if (mode == AUMODE_RECORD)
520 sc->sc_irate = p->sample_rate;
521 else
522 sc->sc_orate = p->sample_rate;
523 } else {
524 sbdsp_srtotc(sc, p->sample_rate, SB_OUTPUT_RATE,
525 &sc->sc_otc, &sc->sc_omode);
526 p->sample_rate = sbdsp_tctosr(sc, sc->sc_otc);
527 }
528
529 sc->sc_precision = p->precision;
530 sc->sc_channels = p->channels;
531
532 p->sw_code = swcode;
533
534 /* Update setting for the other mode. */
535 q->encoding = p->encoding;
536 q->channels = p->channels;
537 q->precision = p->precision;
538
539 /*
540 * XXX
541 * Should wait for chip to be idle.
542 */
543 sc->sc_dmadir = SB_DMA_NONE;
544
545 return 0;
546 }
547
548 void
549 sbdsp_set_ifilter(addr, which)
550 void *addr;
551 int which;
552 {
553 register struct sbdsp_softc *sc = addr;
554 int mixval;
555
556 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
557 switch (which) {
558 case 0:
559 mixval |= SBP_FILTER_OFF;
560 break;
561 case SB_TREBLE:
562 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
563 break;
564 case SB_BASS:
565 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
566 break;
567 default:
568 return;
569 }
570 sc->in_filter = mixval & SBP_IFILTER_MASK;
571 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
572 }
573
574 int
575 sbdsp_get_ifilter(addr)
576 void *addr;
577 {
578 register struct sbdsp_softc *sc = addr;
579
580 sc->in_filter =
581 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
582 switch (sc->in_filter) {
583 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
584 return SB_TREBLE;
585 case SBP_FILTER_ON|SBP_IFILTER_LOW:
586 return SB_BASS;
587 default:
588 return 0;
589 }
590 }
591
592 int
593 sbdsp_set_out_port(addr, port)
594 void *addr;
595 int port;
596 {
597 struct sbdsp_softc *sc = addr;
598
599 sc->out_port = port; /* Just record it */
600
601 return 0;
602 }
603
604 int
605 sbdsp_get_out_port(addr)
606 void *addr;
607 {
608 struct sbdsp_softc *sc = addr;
609
610 return (sc->out_port);
611 }
612
613
614 int
615 sbdsp_set_in_port(addr, port)
616 void *addr;
617 int port;
618 {
619 return sbdsp_set_in_ports(addr, 1 << port);
620 }
621
622 int
623 sbdsp_set_in_ports(sc, mask)
624 struct sbdsp_softc *sc;
625 int mask;
626 {
627 int bitsl, bitsr;
628 int sbport;
629 int i;
630
631 switch(sc->sc_mixer_model) {
632 case SBM_NONE:
633 return EINVAL;
634 case SBM_CT1335:
635 if (mask != (1 << SB_MIC_VOL))
636 return EINVAL;
637 break;
638 case SBM_CT1345:
639 switch (mask) {
640 case 1 << SB_MIC_VOL:
641 sbport = SBP_FROM_MIC;
642 break;
643 case 1 << SB_LINE_IN_VOL:
644 sbport = SBP_FROM_LINE;
645 break;
646 case 1 << SB_CD_VOL:
647 sbport = SBP_FROM_CD;
648 break;
649 default:
650 return EINVAL;
651 }
652 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
653 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
654 break;
655 case SBM_CT1745:
656 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
657 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
658 return EINVAL;
659 bitsr = 0;
660 if (mask & SB_MIDI_VOL) bitsr |= SBP_MIDI_SRC_R;
661 if (mask & SB_LINE_IN_VOL) bitsr |= SBP_LINE_SRC_R;
662 if (mask & SB_CD_VOL) bitsr |= SBP_CD_SRC_R;
663 bitsl = SB_SRC_R_TO_L(bitsr);
664 if (mask & SB_MIC_VOL) {
665 bitsl |= SBP_MIC_SRC;
666 bitsr |= SBP_MIC_SRC;
667 }
668 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
669 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
670 break;
671 }
672
673 sc->in_mask = mask;
674
675 /* XXX
676 * We have to fake a single port since the upper layer
677 * expects one.
678 */
679 for(i = 0; i < SB_NPORT; i++) {
680 if (mask & (1 << i)) {
681 sc->in_port = i;
682 break;
683 }
684 }
685 return 0;
686 }
687
688 int
689 sbdsp_get_in_port(addr)
690 void *addr;
691 {
692 struct sbdsp_softc *sc = addr;
693
694 return sc->in_port;
695 }
696
697
698 int
699 sbdsp_speaker_ctl(addr, newstate)
700 void *addr;
701 int newstate;
702 {
703 struct sbdsp_softc *sc = addr;
704
705 if ((newstate == SPKR_ON) &&
706 (sc->spkr_state == SPKR_OFF)) {
707 sbdsp_spkron(sc);
708 sc->spkr_state = SPKR_ON;
709 }
710 if ((newstate == SPKR_OFF) &&
711 (sc->spkr_state == SPKR_ON)) {
712 sbdsp_spkroff(sc);
713 sc->spkr_state = SPKR_OFF;
714 }
715 return(0);
716 }
717
718 int
719 sbdsp_round_blocksize(addr, blk)
720 void *addr;
721 int blk;
722 {
723 struct sbdsp_softc *sc = addr;
724
725 sc->sc_last_hs_size = 0;
726
727 /* Don't try to DMA too much at once. */
728 if (blk > NBPG)
729 blk = NBPG;
730
731 /* Round to a multiple of the sample size. */
732 blk &= -(sc->sc_channels * sc->sc_precision / 8);
733
734 if (blk > 1364)
735 blk = 1364; /* XXX allow at least 3 blocks */
736
737 return (blk);
738 }
739
740 int
741 sbdsp_commit_settings(addr)
742 void *addr;
743 {
744 return 0;
745 }
746
747 int
748 sbdsp_open(sc, dev, flags)
749 register struct sbdsp_softc *sc;
750 dev_t dev;
751 int flags;
752 {
753 DPRINTF(("sbdsp_open: sc=0x%x\n", sc));
754
755 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
756 return ENXIO;
757
758 sc->sc_open = 1;
759 sc->sc_mintr = 0;
760 if (ISSBPROCLASS(sc) &&
761 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
762 DPRINTF(("sbdsp_open: can't set mono mode\n"));
763 /* we'll readjust when it's time for DMA. */
764 }
765
766 /*
767 * Leave most things as they were; users must change things if
768 * the previous process didn't leave it they way they wanted.
769 * Looked at another way, it's easy to set up a configuration
770 * in one program and leave it for another to inherit.
771 */
772 DPRINTF(("sbdsp_open: opened\n"));
773
774 return 0;
775 }
776
777 void
778 sbdsp_close(addr)
779 void *addr;
780 {
781 struct sbdsp_softc *sc = addr;
782
783 DPRINTF(("sbdsp_close: sc=0x%x\n", sc));
784
785 sc->sc_open = 0;
786 sbdsp_spkroff(sc);
787 sc->spkr_state = SPKR_OFF;
788 sc->sc_mintr = 0;
789 sbdsp_haltdma(sc);
790
791 DPRINTF(("sbdsp_close: closed\n"));
792 }
793
794 /*
795 * Lower-level routines
796 */
797
798 /*
799 * Reset the card.
800 * Return non-zero if the card isn't detected.
801 */
802 int
803 sbdsp_reset(sc)
804 register struct sbdsp_softc *sc;
805 {
806 bus_space_tag_t iot = sc->sc_iot;
807 bus_space_handle_t ioh = sc->sc_ioh;
808
809 sc->sc_intr = 0;
810 if (sc->sc_dmadir != SB_DMA_NONE) {
811 isa_dmaabort(sc->dmachan);
812 sc->sc_dmadir = SB_DMA_NONE;
813 }
814 sc->sc_last_hs_size = 0;
815
816 /*
817 * See SBK, section 11.3.
818 * We pulse a reset signal into the card.
819 * Gee, what a brilliant hardware design.
820 */
821 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
822 delay(10);
823 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
824 delay(30);
825 if (sbdsp_rdsp(sc) != SB_MAGIC)
826 return -1;
827
828 return 0;
829 }
830
831 int
832 sbdsp16_wait(sc)
833 struct sbdsp_softc *sc;
834 {
835 bus_space_tag_t iot = sc->sc_iot;
836 bus_space_handle_t ioh = sc->sc_ioh;
837 register int i;
838
839 for (i = SBDSP_NPOLL; --i >= 0; ) {
840 register u_char x;
841 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
842 delay(10);
843 if ((x & SB_DSP_BUSY) == 0)
844 continue;
845 return 0;
846 }
847 ++sberr.wdsp;
848 return -1;
849 }
850
851 /*
852 * Write a byte to the dsp.
853 * XXX We are at the mercy of the card as we use a
854 * polling loop and wait until it can take the byte.
855 */
856 int
857 sbdsp_wdsp(sc, v)
858 struct sbdsp_softc *sc;
859 int v;
860 {
861 bus_space_tag_t iot = sc->sc_iot;
862 bus_space_handle_t ioh = sc->sc_ioh;
863 register int i;
864
865 for (i = SBDSP_NPOLL; --i >= 0; ) {
866 register u_char x;
867 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
868 delay(10);
869 if ((x & SB_DSP_BUSY) != 0)
870 continue;
871 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
872 delay(10);
873 return 0;
874 }
875 ++sberr.wdsp;
876 return -1;
877 }
878
879 /*
880 * Read a byte from the DSP, using polling.
881 */
882 int
883 sbdsp_rdsp(sc)
884 struct sbdsp_softc *sc;
885 {
886 bus_space_tag_t iot = sc->sc_iot;
887 bus_space_handle_t ioh = sc->sc_ioh;
888 register int i;
889
890 for (i = SBDSP_NPOLL; --i >= 0; ) {
891 register u_char x;
892 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
893 delay(10);
894 if ((x & SB_DSP_READY) == 0)
895 continue;
896 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
897 delay(10);
898 return x;
899 }
900 ++sberr.rdsp;
901 return -1;
902 }
903
904 /*
905 * Doing certain things (like toggling the speaker) make
906 * the SB hardware go away for a while, so pause a little.
907 */
908 void
909 sbdsp_to(arg)
910 void *arg;
911 {
912 wakeup(arg);
913 }
914
915 void
916 sbdsp_pause(sc)
917 struct sbdsp_softc *sc;
918 {
919 extern int hz;
920
921 timeout(sbdsp_to, sbdsp_to, hz/8);
922 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
923 }
924
925 /*
926 * Turn on the speaker. The SBK documention says this operation
927 * can take up to 1/10 of a second. Higher level layers should
928 * probably let the task sleep for this amount of time after
929 * calling here. Otherwise, things might not work (because
930 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
931 *
932 * These engineers had their heads up their ass when
933 * they designed this card.
934 */
935 void
936 sbdsp_spkron(sc)
937 struct sbdsp_softc *sc;
938 {
939 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
940 sbdsp_pause(sc);
941 }
942
943 /*
944 * Turn off the speaker; see comment above.
945 */
946 void
947 sbdsp_spkroff(sc)
948 struct sbdsp_softc *sc;
949 {
950 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
951 sbdsp_pause(sc);
952 }
953
954 /*
955 * Read the version number out of the card. Return major code
956 * in high byte, and minor code in low byte.
957 */
958 short
959 sbversion(sc)
960 struct sbdsp_softc *sc;
961 {
962 short v;
963
964 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
965 return 0;
966 v = sbdsp_rdsp(sc) << 8;
967 v |= sbdsp_rdsp(sc);
968 return ((v >= 0) ? v : 0);
969 }
970
971 /*
972 * Halt a DMA in progress. A low-speed transfer can be
973 * resumed with sbdsp_contdma().
974 */
975 int
976 sbdsp_haltdma(addr)
977 void *addr;
978 {
979 register struct sbdsp_softc *sc = addr;
980
981 DPRINTF(("sbdsp_haltdma: sc=0x%x\n", sc));
982
983 sbdsp_reset(sc);
984 return 0;
985 }
986
987 int
988 sbdsp_contdma(addr)
989 void *addr;
990 {
991 register struct sbdsp_softc *sc = addr;
992
993 DPRINTF(("sbdsp_contdma: sc=0x%x\n", sc));
994
995 /* XXX how do we reinitialize the DMA controller state? do we care? */
996 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
997 return(0);
998 }
999
1000 /*
1001 * Convert a linear sampling rate into the DAC time constant.
1002 * Set *mode to indicate the high/low-speed DMA operation.
1003 * Because of limitations of the card, not all rates are possible.
1004 * We return the time constant of the closest possible rate.
1005 * The sampling rate limits are different for the DAC and ADC,
1006 * so isdac indicates output, and !isdac indicates input.
1007 */
1008 void
1009 sbdsp_srtotc(sc, sr, isdac, tcp, modep)
1010 register struct sbdsp_softc *sc;
1011 int sr;
1012 int isdac;
1013 int *tcp, *modep;
1014 {
1015 int tc, realtc, mode;
1016
1017 /*
1018 * Don't forget to compute which mode we'll be in based on whether
1019 * we need to double the rate for stereo on SBPRO.
1020 */
1021
1022 if (sr == 0) {
1023 tc = SB_LS_MIN;
1024 mode = SB_ADAC_LS;
1025 goto out;
1026 }
1027
1028 tc = 256 - (1000000 / sr);
1029
1030 if (sc->sc_channels == 2 && ISSBPRO(sc))
1031 /* compute based on 2x sample rate when needed */
1032 realtc = 256 - ( 500000 / sr);
1033 else
1034 realtc = tc;
1035
1036 if (tc < SB_LS_MIN) {
1037 tc = SB_LS_MIN;
1038 mode = SB_ADAC_LS; /* NB: 2x minimum speed is still low
1039 * speed mode. */
1040 goto out;
1041 } else if (isdac) {
1042 if (realtc <= SB_DAC_LS_MAX)
1043 mode = SB_ADAC_LS;
1044 else {
1045 mode = SB_ADAC_HS;
1046 if (tc > SB_DAC_HS_MAX)
1047 tc = SB_DAC_HS_MAX;
1048 }
1049 } else {
1050 int adc_ls_max, adc_hs_max;
1051
1052 /* XXX use better rounding--compare distance to nearest tc on both
1053 sides of requested speed */
1054 if (ISSBPROCLASS(sc)) {
1055 adc_ls_max = SBPRO_ADC_LS_MAX;
1056 adc_hs_max = SBPRO_ADC_HS_MAX;
1057 } else {
1058 adc_ls_max = SBCLA_ADC_LS_MAX;
1059 adc_hs_max = SBCLA_ADC_HS_MAX;
1060 }
1061
1062 if (realtc <= adc_ls_max)
1063 mode = SB_ADAC_LS;
1064 else {
1065 mode = SB_ADAC_HS;
1066 if (tc > adc_hs_max)
1067 tc = adc_hs_max;
1068 }
1069 }
1070
1071 out:
1072 *tcp = tc;
1073 *modep = mode;
1074 }
1075
1076 /*
1077 * Convert a DAC time constant to a sampling rate.
1078 * See SBK, section 12.
1079 */
1080 int
1081 sbdsp_tctosr(sc, tc)
1082 register struct sbdsp_softc *sc;
1083 int tc;
1084 {
1085 int adc;
1086
1087 if (ISSBPROCLASS(sc))
1088 adc = SBPRO_ADC_HS_MAX;
1089 else
1090 adc = SBCLA_ADC_HS_MAX;
1091
1092 if (tc > adc)
1093 tc = adc;
1094
1095 return (1000000 / (256 - tc));
1096 }
1097
1098 int
1099 sbdsp_set_timeconst(sc, tc)
1100 register struct sbdsp_softc *sc;
1101 int tc;
1102 {
1103 /*
1104 * A SBPro in stereo mode uses time constants at double the
1105 * actual rate.
1106 */
1107 if (ISSBPRO(sc) && sc->sc_channels == 2)
1108 tc = 256 - ((256 - tc) / 2);
1109
1110 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1111
1112 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1113 sbdsp_wdsp(sc, tc) < 0)
1114 return (EIO);
1115
1116 return (0);
1117 }
1118
1119 int
1120 sbdsp_dma_input(addr, p, cc, intr, arg)
1121 void *addr;
1122 void *p;
1123 int cc;
1124 void (*intr) __P((void *));
1125 void *arg;
1126 {
1127 register struct sbdsp_softc *sc = addr;
1128
1129 #ifdef AUDIO_DEBUG
1130 if (sbdspdebug > 1)
1131 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1132 #endif
1133 if (sc->sc_channels == 2 && (cc & 1)) {
1134 DPRINTF(("sbdsp_dma_input: stereo input, odd bytecnt\n"));
1135 return EIO;
1136 }
1137
1138 if (sc->sc_dmadir != SB_DMA_IN) {
1139 if (ISSBPRO(sc)) {
1140 if (sc->sc_channels == 2) {
1141 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1142 if (sbdsp_wdsp(sc,
1143 JAZZ16_RECORD_STEREO) < 0) {
1144 goto badmode;
1145 }
1146 } else if (sbdsp_wdsp(sc,
1147 SB_DSP_RECORD_STEREO) < 0)
1148 goto badmode;
1149 sbdsp_mix_write(sc, SBP_INFILTER,
1150 (sbdsp_mix_read(sc, SBP_INFILTER) &
1151 ~SBP_IFILTER_MASK) | SBP_FILTER_OFF);
1152 } else {
1153 if (ISJAZZ16(sc) && sc->sc_precision == 16) {
1154 if (sbdsp_wdsp(sc,
1155 JAZZ16_RECORD_MONO) < 0)
1156 {
1157 goto badmode;
1158 }
1159 } else if (sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0)
1160 goto badmode;
1161 sbdsp_mix_write(sc, SBP_INFILTER,
1162 (sbdsp_mix_read(sc, SBP_INFILTER) &
1163 ~SBP_IFILTER_MASK) | sc->in_filter);
1164 }
1165 }
1166
1167 if (ISSB16CLASS(sc)) {
1168 if (sbdsp_wdsp(sc, SB_DSP16_INPUTRATE) < 0 ||
1169 sbdsp_wdsp(sc, sc->sc_irate >> 8) < 0 ||
1170 sbdsp_wdsp(sc, sc->sc_irate) < 0)
1171 goto giveup;
1172 } else
1173 sbdsp_set_timeconst(sc, sc->sc_itc);
1174
1175 sc->sc_dmadir = SB_DMA_IN;
1176 sc->dmaflags = DMAMODE_READ;
1177 if (ISSB2CLASS(sc))
1178 sc->dmaflags |= DMAMODE_LOOP;
1179 } else {
1180 /* Already started; just return. */
1181 if (ISSB2CLASS(sc))
1182 return 0;
1183 }
1184
1185 sc->dmaaddr = p;
1186 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1187 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1188 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1189 sc->sc_intr = intr;
1190 sc->sc_arg = arg;
1191
1192 if (sc->sc_precision == 16)
1193 cc >>= 1;
1194 --cc;
1195 if (ISSB16CLASS(sc)) {
1196 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_RDMA_16 :
1197 SB_DSP16_RDMA_8) < 0 ||
1198 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1199 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1200 sbdsp16_wait(sc) ||
1201 sbdsp_wdsp(sc, cc) < 0 ||
1202 sbdsp_wdsp(sc, cc >> 8) < 0) {
1203 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1204 goto giveup;
1205 }
1206 } else if (ISSB2CLASS(sc)) {
1207 if (cc != sc->sc_last_hs_size) {
1208 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1209 sbdsp_wdsp(sc, cc) < 0 ||
1210 sbdsp_wdsp(sc, cc >> 8) < 0) {
1211 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1212 goto giveup;
1213 }
1214 sc->sc_last_hs_size = cc;
1215 }
1216 if (sbdsp_wdsp(sc,
1217 sc->sc_imode == SB_ADAC_LS ? SB_DSP_RDMA_LOOP :
1218 SB_DSP_HS_INPUT) < 0) {
1219 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1220 goto giveup;
1221 }
1222 } else {
1223 if (sbdsp_wdsp(sc, SB_DSP_RDMA) < 0 ||
1224 sbdsp_wdsp(sc, cc) < 0 ||
1225 sbdsp_wdsp(sc, cc >> 8) < 0) {
1226 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1227 goto giveup;
1228 }
1229 }
1230 return 0;
1231
1232 giveup:
1233 sbdsp_reset(sc);
1234 return EIO;
1235
1236 badmode:
1237 DPRINTF(("sbdsp_dma_input: can't set %s mode\n",
1238 sc->sc_channels == 2 ? "stereo" : "mono"));
1239 return EIO;
1240 }
1241
1242 int
1243 sbdsp_dma_output(addr, p, cc, intr, arg)
1244 void *addr;
1245 void *p;
1246 int cc;
1247 void (*intr) __P((void *));
1248 void *arg;
1249 {
1250 register struct sbdsp_softc *sc = addr;
1251
1252 #ifdef AUDIO_DEBUG
1253 if (sbdspdebug > 1)
1254 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1255 #endif
1256 if (sc->sc_channels == 2 && (cc & 1)) {
1257 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1258 return EIO;
1259 }
1260
1261 if (sc->sc_dmadir != SB_DMA_OUT) {
1262 if (ISSBPRO(sc)) {
1263 /* make sure we re-set stereo mixer bit when we start
1264 output. */
1265 sbdsp_mix_write(sc, SBP_STEREO,
1266 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1267 (sc->sc_channels == 2 ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1268 if (ISJAZZ16(sc)) {
1269 /* Yes, we write the record mode to set
1270 16-bit playback mode. weird, huh? */
1271 if (sc->sc_precision == 16) {
1272 sbdsp_wdsp(sc,
1273 sc->sc_channels == 2 ?
1274 JAZZ16_RECORD_STEREO :
1275 JAZZ16_RECORD_MONO);
1276 } else {
1277 sbdsp_wdsp(sc,
1278 sc->sc_channels == 2 ?
1279 SB_DSP_RECORD_STEREO :
1280 SB_DSP_RECORD_MONO);
1281 }
1282 }
1283 }
1284
1285 if (ISSB16CLASS(sc)) {
1286 if (sbdsp_wdsp(sc, SB_DSP16_OUTPUTRATE) < 0 ||
1287 sbdsp_wdsp(sc, sc->sc_orate >> 8) < 0 ||
1288 sbdsp_wdsp(sc, sc->sc_orate) < 0)
1289 goto giveup;
1290 } else
1291 sbdsp_set_timeconst(sc, sc->sc_otc);
1292
1293 sc->sc_dmadir = SB_DMA_OUT;
1294 sc->dmaflags = DMAMODE_WRITE;
1295 if (ISSB2CLASS(sc))
1296 sc->dmaflags |= DMAMODE_LOOP;
1297 } else {
1298 /* Already started; just return. */
1299 if (ISSB2CLASS(sc))
1300 return 0;
1301 }
1302
1303 sc->dmaaddr = p;
1304 sc->dmacnt = ISSB2CLASS(sc) ? (NBPG/cc)*cc : cc;
1305 sc->dmachan = sc->sc_precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1306 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1307 sc->sc_intr = intr;
1308 sc->sc_arg = arg;
1309
1310 if (sc->sc_precision == 16)
1311 cc >>= 1;
1312 --cc;
1313 if (ISSB16CLASS(sc)) {
1314 if (sbdsp_wdsp(sc, sc->sc_precision == 16 ? SB_DSP16_WDMA_16 :
1315 SB_DSP16_WDMA_8) < 0 ||
1316 sbdsp_wdsp(sc, (sc->sc_precision == 16 ? 0x10 : 0x00) |
1317 (sc->sc_channels == 2 ? 0x20 : 0x00)) < 0 ||
1318 sbdsp16_wait(sc) ||
1319 sbdsp_wdsp(sc, cc) < 0 ||
1320 sbdsp_wdsp(sc, cc >> 8) < 0) {
1321 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1322 goto giveup;
1323 }
1324 } else if (ISSB2CLASS(sc)) {
1325 if (cc != sc->sc_last_hs_size) {
1326 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1327 sbdsp_wdsp(sc, cc) < 0 ||
1328 sbdsp_wdsp(sc, cc >> 8) < 0) {
1329 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1330 goto giveup;
1331 }
1332 sc->sc_last_hs_size = cc;
1333 }
1334 if (sbdsp_wdsp(sc,
1335 sc->sc_omode == SB_ADAC_LS ? SB_DSP_WDMA_LOOP :
1336 SB_DSP_HS_OUTPUT) < 0) {
1337 DPRINTF(("sbdsp_dma_output: SB2 DMA restart failed\n"));
1338 goto giveup;
1339 }
1340 } else {
1341 if (sbdsp_wdsp(sc, SB_DSP_WDMA) < 0 ||
1342 sbdsp_wdsp(sc, cc) < 0 ||
1343 sbdsp_wdsp(sc, cc >> 8) < 0) {
1344 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1345 goto giveup;
1346 }
1347 }
1348 return 0;
1349
1350 giveup:
1351 sbdsp_reset(sc);
1352 return EIO;
1353 }
1354
1355 /*
1356 * Only the DSP unit on the sound blaster generates interrupts.
1357 * There are three cases of interrupt: reception of a midi byte
1358 * (when mode is enabled), completion of dma transmission, or
1359 * completion of a dma reception. The three modes are mutually
1360 * exclusive so we know a priori which event has occurred.
1361 */
1362 int
1363 sbdsp_intr(arg)
1364 void *arg;
1365 {
1366 register struct sbdsp_softc *sc = arg;
1367 u_char x;
1368
1369 #ifdef AUDIO_DEBUG
1370 if (sbdspdebug > 1)
1371 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1372 #endif
1373 if (ISSB16CLASS(sc)) {
1374 x = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1375 if ((x & 3) == 0)
1376 return 0;
1377 } else {
1378 if (!isa_dmafinished(sc->dmachan))
1379 return 0;
1380 }
1381 sc->sc_interrupts++;
1382 delay(10);
1383 #if 0
1384 if (sc->sc_mintr != 0) {
1385 x = sbdsp_rdsp(sc);
1386 (*sc->sc_mintr)(sc->sc_arg, x);
1387 } else
1388 #endif
1389 if (sc->sc_intr != 0) {
1390 /* clear interrupt */
1391 bus_space_read_1(sc->sc_iot, sc->sc_ioh,
1392 sc->sc_precision == 16 ? SBP_DSP_IRQACK16 :
1393 SBP_DSP_IRQACK8);
1394 if (!ISSB2CLASS(sc))
1395 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1396 sc->dmachan);
1397 (*sc->sc_intr)(sc->sc_arg);
1398 } else {
1399 return 0;
1400 }
1401 return 1;
1402 }
1403
1404 #if 0
1405 /*
1406 * Enter midi uart mode and arrange for read interrupts
1407 * to vector to `intr'. This puts the card in a mode
1408 * which allows only midi I/O; the card must be reset
1409 * to leave this mode. Unfortunately, the card does not
1410 * use transmit interrupts, so bytes must be output
1411 * using polling. To keep the polling overhead to a
1412 * minimum, output should be driven off a timer.
1413 * This is a little tricky since only 320us separate
1414 * consecutive midi bytes.
1415 */
1416 void
1417 sbdsp_set_midi_mode(sc, intr, arg)
1418 struct sbdsp_softc *sc;
1419 void (*intr)();
1420 void *arg;
1421 {
1422
1423 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1424 sc->sc_mintr = intr;
1425 sc->sc_intr = 0;
1426 sc->sc_arg = arg;
1427 }
1428
1429 /*
1430 * Write a byte to the midi port, when in midi uart mode.
1431 */
1432 void
1433 sbdsp_midi_output(sc, v)
1434 struct sbdsp_softc *sc;
1435 int v;
1436 {
1437
1438 if (sbdsp_wdsp(sc, v) < 0)
1439 ++sberr.wmidi;
1440 }
1441 #endif
1442
1443 int
1444 sbdsp_setfd(addr, flag)
1445 void *addr;
1446 int flag;
1447 {
1448 /* Can't do full-duplex */
1449 return(ENOTTY);
1450 }
1451
1452 void
1453 sbdsp_set_mixer_gain(sc, port)
1454 struct sbdsp_softc *sc;
1455 int port;
1456 {
1457 int src, gain;
1458
1459 switch(sc->sc_mixer_model) {
1460 case SBM_NONE:
1461 return;
1462 case SBM_CT1335:
1463 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1464 switch(port) {
1465 case SB_MASTER_VOL:
1466 src = SBP_1335_MASTER_VOL;
1467 break;
1468 case SB_MIDI_VOL:
1469 src = SBP_1335_MIDI_VOL;
1470 break;
1471 case SB_CD_VOL:
1472 src = SBP_1335_CD_VOL;
1473 break;
1474 case SB_VOICE_VOL:
1475 src = SBP_1335_VOICE_VOL;
1476 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1477 break;
1478 default:
1479 return;
1480 }
1481 sbdsp_mix_write(sc, src, gain);
1482 break;
1483 case SBM_CT1345:
1484 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1485 sc->gain[port][SB_RIGHT]);
1486 switch (port) {
1487 case SB_MIC_VOL:
1488 src = SBP_MIC_VOL;
1489 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1490 break;
1491 case SB_MASTER_VOL:
1492 src = SBP_MASTER_VOL;
1493 break;
1494 case SB_LINE_IN_VOL:
1495 src = SBP_LINE_VOL;
1496 break;
1497 case SB_VOICE_VOL:
1498 src = SBP_VOICE_VOL;
1499 break;
1500 case SB_MIDI_VOL:
1501 src = SBP_MIDI_VOL;
1502 break;
1503 case SB_CD_VOL:
1504 src = SBP_CD_VOL;
1505 break;
1506 default:
1507 return;
1508 }
1509 sbdsp_mix_write(sc, src, gain);
1510 break;
1511 case SBM_CT1745:
1512 switch (port) {
1513 case SB_MIC_VOL:
1514 src = SB16P_MIC_L;
1515 break;
1516 case SB_MASTER_VOL:
1517 src = SB16P_MASTER_L;
1518 break;
1519 case SB_LINE_IN_VOL:
1520 src = SB16P_LINE_L;
1521 break;
1522 case SB_VOICE_VOL:
1523 src = SB16P_VOICE_L;
1524 break;
1525 case SB_MIDI_VOL:
1526 src = SB16P_MIDI_L;
1527 break;
1528 case SB_CD_VOL:
1529 src = SB16P_CD_L;
1530 break;
1531 case SB_INPUT_GAIN:
1532 src = SB16P_INPUT_GAIN_L;
1533 break;
1534 case SB_OUTPUT_GAIN:
1535 src = SB16P_OUTPUT_GAIN_L;
1536 break;
1537 case SB_TREBLE:
1538 src = SB16P_TREBLE_L;
1539 break;
1540 case SB_BASS:
1541 src = SB16P_BASS_L;
1542 break;
1543 case SB_PCSPEAKER:
1544 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1545 return;
1546 default:
1547 return;
1548 }
1549 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1550 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1551 break;
1552 }
1553 }
1554
1555 int
1556 sbdsp_mixer_set_port(addr, cp)
1557 void *addr;
1558 mixer_ctrl_t *cp;
1559 {
1560 register struct sbdsp_softc *sc = addr;
1561 int lgain, rgain;
1562
1563 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1564 cp->un.value.num_channels));
1565
1566 if (sc->sc_mixer_model == SBM_NONE)
1567 return EINVAL;
1568
1569 switch (cp->dev) {
1570 case SB_TREBLE:
1571 case SB_BASS:
1572 if (sc->sc_mixer_model == SBM_CT1345) {
1573 if (cp->type != AUDIO_MIXER_ENUM)
1574 return EINVAL;
1575 switch (cp->dev) {
1576 case SB_TREBLE:
1577 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1578 return 0;
1579 case SB_BASS:
1580 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1581 return 0;
1582 }
1583 }
1584 case SB_PCSPEAKER:
1585 case SB_INPUT_GAIN:
1586 case SB_OUTPUT_GAIN:
1587 if (sc->sc_mixer_model != SBM_CT1745)
1588 return EINVAL;
1589 case SB_MIC_VOL:
1590 case SB_LINE_IN_VOL:
1591 if (sc->sc_mixer_model == SBM_CT1335)
1592 return EINVAL;
1593 case SB_VOICE_VOL:
1594 case SB_MIDI_VOL:
1595 case SB_CD_VOL:
1596 case SB_MASTER_VOL:
1597 if (cp->type != AUDIO_MIXER_VALUE)
1598 return EINVAL;
1599
1600 /*
1601 * All the mixer ports are stereo except for the microphone.
1602 * If we get a single-channel gain value passed in, then we
1603 * duplicate it to both left and right channels.
1604 */
1605
1606 switch (cp->dev) {
1607 case SB_MIC_VOL:
1608 if (cp->un.value.num_channels != 1)
1609 return EINVAL;
1610
1611 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1612 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1613 break;
1614 case SB_PCSPEAKER:
1615 if (cp->un.value.num_channels != 1)
1616 return EINVAL;
1617 /* fall into */
1618 case SB_INPUT_GAIN:
1619 case SB_OUTPUT_GAIN:
1620 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1621 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1622 break;
1623 default:
1624 switch (cp->un.value.num_channels) {
1625 case 1:
1626 lgain = rgain = SB_ADJUST_GAIN(sc,
1627 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1628 break;
1629 case 2:
1630 if (sc->sc_mixer_model == SBM_CT1335)
1631 return EINVAL;
1632 lgain = SB_ADJUST_GAIN(sc,
1633 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1634 rgain = SB_ADJUST_GAIN(sc,
1635 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1636 break;
1637 default:
1638 return EINVAL;
1639 }
1640 break;
1641 }
1642 sc->gain[cp->dev][SB_LEFT] = lgain;
1643 sc->gain[cp->dev][SB_RIGHT] = rgain;
1644
1645 sbdsp_set_mixer_gain(sc, cp->dev);
1646 break;
1647
1648 case SB_RECORD_SOURCE:
1649 if (sc->sc_mixer_model == SBM_CT1745) {
1650 if (cp->type != AUDIO_MIXER_SET)
1651 return EINVAL;
1652 return sbdsp_set_in_ports(sc, cp->un.mask);
1653 } else {
1654 if (cp->type != AUDIO_MIXER_ENUM)
1655 return EINVAL;
1656 return sbdsp_set_in_port(sc, cp->un.ord);
1657 }
1658 break;
1659
1660 case SB_AGC:
1661 if (sc->sc_mixer_model != SBM_CT1745 || cp->type != AUDIO_MIXER_ENUM)
1662 return EINVAL;
1663 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1664 break;
1665
1666 default:
1667 return EINVAL;
1668 }
1669
1670 return 0;
1671 }
1672
1673 int
1674 sbdsp_mixer_get_port(addr, cp)
1675 void *addr;
1676 mixer_ctrl_t *cp;
1677 {
1678 register struct sbdsp_softc *sc = addr;
1679
1680 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1681
1682 if (sc->sc_mixer_model == SBM_NONE)
1683 return EINVAL;
1684
1685 switch (cp->dev) {
1686 case SB_TREBLE:
1687 case SB_BASS:
1688 if (sc->sc_mixer_model == SBM_CT1345) {
1689 switch (cp->dev) {
1690 case SB_TREBLE:
1691 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1692 return 0;
1693 case SB_BASS:
1694 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1695 return 0;
1696 }
1697 }
1698 case SB_PCSPEAKER:
1699 case SB_INPUT_GAIN:
1700 case SB_OUTPUT_GAIN:
1701 if (sc->sc_mixer_model != SBM_CT1745)
1702 return EINVAL;
1703 case SB_MIC_VOL:
1704 case SB_LINE_IN_VOL:
1705 if (sc->sc_mixer_model == SBM_CT1335)
1706 return EINVAL;
1707 case SB_VOICE_VOL:
1708 case SB_MIDI_VOL:
1709 case SB_CD_VOL:
1710 case SB_MASTER_VOL:
1711 switch (cp->dev) {
1712 case SB_MIC_VOL:
1713 case SB_PCSPEAKER:
1714 if (cp->un.value.num_channels != 1)
1715 return EINVAL;
1716 /* fall into */
1717 default:
1718 switch (cp->un.value.num_channels) {
1719 case 1:
1720 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1721 sc->gain[cp->dev][SB_LEFT];
1722 break;
1723 case 2:
1724 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1725 sc->gain[cp->dev][SB_LEFT];
1726 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1727 sc->gain[cp->dev][SB_RIGHT];
1728 break;
1729 default:
1730 return EINVAL;
1731 }
1732 break;
1733 }
1734 break;
1735
1736 case SB_RECORD_SOURCE:
1737 if (sc->sc_mixer_model == SBM_CT1745)
1738 cp->un.mask = sc->in_mask;
1739 else
1740 cp->un.ord = sc->in_port;
1741 break;
1742
1743 case SB_AGC:
1744 if (sc->sc_mixer_model != SBM_CT1745)
1745 return EINVAL;
1746 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1747 break;
1748
1749 default:
1750 return EINVAL;
1751 }
1752
1753 return (0);
1754 }
1755
1756 int
1757 sbdsp_mixer_query_devinfo(addr, dip)
1758 void *addr;
1759 mixer_devinfo_t *dip;
1760 {
1761 struct sbdsp_softc *sc = addr;
1762 int chan, class;
1763
1764 DPRINTF(("sbdsp_mixer_query_devinfo: index=%d\n", dip->index));
1765
1766 if (sc->sc_mixer_model == SBM_NONE)
1767 return ENXIO;
1768
1769 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1770 class = sc->sc_mixer_model == SBM_CT1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1771
1772 switch (dip->index) {
1773 case SB_MASTER_VOL:
1774 dip->type = AUDIO_MIXER_VALUE;
1775 dip->mixer_class = SB_OUTPUT_CLASS;
1776 dip->prev = dip->next = AUDIO_MIXER_LAST;
1777 strcpy(dip->label.name, AudioNmaster);
1778 dip->un.v.num_channels = chan;
1779 strcpy(dip->un.v.units.name, AudioNvolume);
1780 return 0;
1781 case SB_MIDI_VOL:
1782 dip->type = AUDIO_MIXER_VALUE;
1783 dip->mixer_class = class;
1784 dip->prev = AUDIO_MIXER_LAST;
1785 dip->next = AUDIO_MIXER_LAST;
1786 strcpy(dip->label.name, AudioNfmsynth);
1787 dip->un.v.num_channels = chan;
1788 strcpy(dip->un.v.units.name, AudioNvolume);
1789 return 0;
1790 case SB_CD_VOL:
1791 dip->type = AUDIO_MIXER_VALUE;
1792 dip->mixer_class = class;
1793 dip->prev = AUDIO_MIXER_LAST;
1794 dip->next = AUDIO_MIXER_LAST;
1795 strcpy(dip->label.name, AudioNcd);
1796 dip->un.v.num_channels = chan;
1797 strcpy(dip->un.v.units.name, AudioNvolume);
1798 return 0;
1799 case SB_VOICE_VOL:
1800 dip->type = AUDIO_MIXER_VALUE;
1801 dip->mixer_class = class;
1802 dip->prev = AUDIO_MIXER_LAST;
1803 dip->next = AUDIO_MIXER_LAST;
1804 strcpy(dip->label.name, AudioNdac);
1805 dip->un.v.num_channels = chan;
1806 strcpy(dip->un.v.units.name, AudioNvolume);
1807 return 0;
1808 case SB_OUTPUT_CLASS:
1809 dip->type = AUDIO_MIXER_CLASS;
1810 dip->mixer_class = SB_OUTPUT_CLASS;
1811 dip->next = dip->prev = AUDIO_MIXER_LAST;
1812 strcpy(dip->label.name, AudioCOutputs);
1813 return 0;
1814 }
1815
1816 if (sc->sc_mixer_model == SBM_CT1335)
1817 return ENXIO;
1818
1819 switch (dip->index) {
1820 case SB_MIC_VOL:
1821 dip->type = AUDIO_MIXER_VALUE;
1822 dip->mixer_class = class;
1823 dip->prev = AUDIO_MIXER_LAST;
1824 dip->next = AUDIO_MIXER_LAST;
1825 strcpy(dip->label.name, AudioNmicrophone);
1826 dip->un.v.num_channels = 1;
1827 strcpy(dip->un.v.units.name, AudioNvolume);
1828 return 0;
1829
1830 case SB_LINE_IN_VOL:
1831 dip->type = AUDIO_MIXER_VALUE;
1832 dip->mixer_class = class;
1833 dip->prev = AUDIO_MIXER_LAST;
1834 dip->next = AUDIO_MIXER_LAST;
1835 strcpy(dip->label.name, AudioNline);
1836 dip->un.v.num_channels = 2;
1837 strcpy(dip->un.v.units.name, AudioNvolume);
1838 return 0;
1839
1840 case SB_RECORD_SOURCE:
1841 dip->mixer_class = SB_RECORD_CLASS;
1842 dip->prev = dip->next = AUDIO_MIXER_LAST;
1843 strcpy(dip->label.name, AudioNsource);
1844 if (sc->sc_mixer_model == SBM_CT1745) {
1845 dip->type = AUDIO_MIXER_SET;
1846 dip->un.s.num_mem = 4;
1847 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1848 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
1849 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1850 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
1851 strcpy(dip->un.s.member[2].label.name, AudioNline);
1852 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
1853 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1854 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
1855 } else {
1856 dip->type = AUDIO_MIXER_ENUM;
1857 dip->un.e.num_mem = 3;
1858 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1859 dip->un.e.member[0].ord = SB_MIC_VOL;
1860 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1861 dip->un.e.member[1].ord = SB_CD_VOL;
1862 strcpy(dip->un.e.member[2].label.name, AudioNline);
1863 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
1864 }
1865 return 0;
1866
1867 case SB_BASS:
1868 dip->prev = dip->next = AUDIO_MIXER_LAST;
1869 strcpy(dip->label.name, AudioNbass);
1870 if (ISSB16CLASS(sc)) {
1871 dip->type = AUDIO_MIXER_VALUE;
1872 dip->mixer_class = SB_EQUALIZATION_CLASS;
1873 dip->un.v.num_channels = 2;
1874 strcpy(dip->un.v.units.name, AudioNbass);
1875 } else {
1876 dip->type = AUDIO_MIXER_ENUM;
1877 dip->mixer_class = SB_INPUT_CLASS;
1878 dip->un.e.num_mem = 2;
1879 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1880 dip->un.e.member[0].ord = 0;
1881 strcpy(dip->un.e.member[1].label.name, AudioNon);
1882 dip->un.e.member[1].ord = 1;
1883 }
1884 return 0;
1885
1886 case SB_TREBLE:
1887 dip->prev = dip->next = AUDIO_MIXER_LAST;
1888 strcpy(dip->label.name, AudioNtreble);
1889 if (ISSB16CLASS(sc)) {
1890 dip->type = AUDIO_MIXER_VALUE;
1891 dip->mixer_class = SB_EQUALIZATION_CLASS;
1892 dip->un.v.num_channels = 2;
1893 strcpy(dip->un.v.units.name, AudioNtreble);
1894 } else {
1895 dip->type = AUDIO_MIXER_ENUM;
1896 dip->mixer_class = SB_INPUT_CLASS;
1897 dip->un.e.num_mem = 2;
1898 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1899 dip->un.e.member[0].ord = 0;
1900 strcpy(dip->un.e.member[1].label.name, AudioNon);
1901 dip->un.e.member[1].ord = 1;
1902 }
1903 return 0;
1904
1905 case SB_RECORD_CLASS: /* record source class */
1906 dip->type = AUDIO_MIXER_CLASS;
1907 dip->mixer_class = SB_RECORD_CLASS;
1908 dip->next = dip->prev = AUDIO_MIXER_LAST;
1909 strcpy(dip->label.name, AudioCRecord);
1910 return 0;
1911
1912 }
1913
1914 if (sc->sc_mixer_model == SBM_CT1345)
1915 return ENXIO;
1916
1917 switch(dip->index) {
1918 case SB_PCSPEAKER:
1919 dip->type = AUDIO_MIXER_VALUE;
1920 dip->mixer_class = SB_INPUT_CLASS;
1921 dip->prev = dip->next = AUDIO_MIXER_LAST;
1922 strcpy(dip->label.name, "pc_speaker");
1923 dip->un.v.num_channels = 1;
1924 strcpy(dip->un.v.units.name, AudioNvolume);
1925 return 0;
1926
1927 case SB_INPUT_GAIN:
1928 dip->type = AUDIO_MIXER_VALUE;
1929 dip->mixer_class = SB_INPUT_CLASS;
1930 dip->prev = dip->next = AUDIO_MIXER_LAST;
1931 strcpy(dip->label.name, AudioNinput);
1932 dip->un.v.num_channels = 2;
1933 strcpy(dip->un.v.units.name, AudioNvolume);
1934 return 0;
1935
1936 case SB_OUTPUT_GAIN:
1937 dip->type = AUDIO_MIXER_VALUE;
1938 dip->mixer_class = SB_OUTPUT_CLASS;
1939 dip->prev = dip->next = AUDIO_MIXER_LAST;
1940 strcpy(dip->label.name, AudioNoutput);
1941 dip->un.v.num_channels = 2;
1942 strcpy(dip->un.v.units.name, AudioNvolume);
1943 return 0;
1944
1945 case SB_AGC:
1946 dip->type = AUDIO_MIXER_ENUM;
1947 dip->mixer_class = SB_INPUT_CLASS;
1948 dip->prev = dip->next = AUDIO_MIXER_LAST;
1949 strcpy(dip->label.name, "AGC");
1950 dip->un.e.num_mem = 2;
1951 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1952 dip->un.e.member[0].ord = 0;
1953 strcpy(dip->un.e.member[1].label.name, AudioNon);
1954 dip->un.e.member[1].ord = 1;
1955 return 0;
1956
1957 case SB_INPUT_CLASS:
1958 dip->type = AUDIO_MIXER_CLASS;
1959 dip->mixer_class = SB_INPUT_CLASS;
1960 dip->next = dip->prev = AUDIO_MIXER_LAST;
1961 strcpy(dip->label.name, AudioCInputs);
1962 return 0;
1963
1964 case SB_EQUALIZATION_CLASS:
1965 dip->type = AUDIO_MIXER_CLASS;
1966 dip->mixer_class = SB_EQUALIZATION_CLASS;
1967 dip->next = dip->prev = AUDIO_MIXER_LAST;
1968 strcpy(dip->label.name, AudioCEqualization);
1969 return 0;
1970 }
1971
1972 return ENXIO;
1973 }
1974