sbdsp.c revision 1.56 1 /* $NetBSD: sbdsp.c,v 1.56 1997/05/29 04:57:02 jtk Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <vm/vm.h>
56
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59 #include <machine/pio.h>
60
61 #include <sys/audioio.h>
62 #include <dev/audio_if.h>
63 #include <dev/mulaw.h>
64
65 #include <dev/isa/isavar.h>
66 #include <dev/isa/isadmavar.h>
67
68 #include <dev/isa/sbreg.h>
69 #include <dev/isa/sbdspvar.h>
70
71 #ifdef AUDIO_DEBUG
72 extern void Dprintf __P((const char *, ...));
73 #define DPRINTF(x) if (sbdspdebug) Dprintf x
74 int sbdspdebug = 0;
75 #else
76 #define DPRINTF(x)
77 #endif
78
79 #ifndef SBDSP_NPOLL
80 #define SBDSP_NPOLL 3000
81 #endif
82
83 struct {
84 int wdsp;
85 int rdsp;
86 int wmidi;
87 } sberr;
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 /* XXX Should we round the tc?
115 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
116 */
117 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
118 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
119
120 struct sbmode {
121 short model;
122 u_char channels;
123 u_char precision;
124 u_short lowrate, highrate;
125 u_char cmd;
126 u_char cmdchan;
127 };
128 static struct sbmode sbpmodes[] = {
129 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
130 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
131 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
132 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
133 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
134 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
135 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
136 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
137 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
138 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
139 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
140 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
141 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
142 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
143 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
144 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
145 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
146 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
147 { -1 }
148 };
149 static struct sbmode sbrmodes[] = {
150 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
151 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
152 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
153 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
154 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
155 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
156 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
157 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
158 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
159 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
160 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
161 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
162 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
163 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
164 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
165 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
166 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
167 { -1 }
168 };
169
170 void sbversion __P((struct sbdsp_softc *));
171 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
172 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
173 int sbdsp16_wait __P((struct sbdsp_softc *));
174 void sbdsp_to __P((void *));
175 void sbdsp_pause __P((struct sbdsp_softc *));
176 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
177 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
178 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
179 void sbdsp_set_ifilter __P((void *, int));
180 int sbdsp_get_ifilter __P((void *));
181
182 #ifdef AUDIO_DEBUG
183 void sb_printsc __P((struct sbdsp_softc *));
184
185 void
186 sb_printsc(sc)
187 struct sbdsp_softc *sc;
188 {
189 int i;
190
191 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
192 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
193 sc->sc_iobase, sc->sc_irq);
194 printf("irate %d itc %x orate %d otc %x\n",
195 sc->sc_irate, sc->sc_itc,
196 sc->sc_orate, sc->sc_otc);
197 printf("outport %u inport %u spkron %u nintr %lu\n",
198 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
199 printf("intr %p arg %p\n",
200 sc->sc_intr, sc->sc_arg);
201 printf("gain:");
202 for (i = 0; i < SB_NDEVS; i++)
203 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
204 printf("\n");
205 }
206 #endif /* AUDIO_DEBUG */
207
208 /*
209 * Probe / attach routines.
210 */
211
212 /*
213 * Probe for the soundblaster hardware.
214 */
215 int
216 sbdsp_probe(sc)
217 struct sbdsp_softc *sc;
218 {
219
220 if (sbdsp_reset(sc) < 0) {
221 DPRINTF(("sbdsp: couldn't reset card\n"));
222 return 0;
223 }
224 /* if flags set, go and probe the jazz16 stuff */
225 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
226 sbdsp_jazz16_probe(sc);
227 else
228 sbversion(sc);
229 if (sc->sc_model == SB_UNK) {
230 /* Unknown SB model found. */
231 DPRINTF(("sbdsp: unknown SB model found\n"));
232 return 0;
233 }
234 return 1;
235 }
236
237 /*
238 * Try add-on stuff for Jazz16.
239 */
240 void
241 sbdsp_jazz16_probe(sc)
242 struct sbdsp_softc *sc;
243 {
244 static u_char jazz16_irq_conf[16] = {
245 -1, -1, 0x02, 0x03,
246 -1, 0x01, -1, 0x04,
247 -1, 0x02, 0x05, -1,
248 -1, -1, -1, 0x06};
249 static u_char jazz16_drq_conf[8] = {
250 -1, 0x01, -1, 0x02,
251 -1, 0x03, -1, 0x04};
252
253 bus_space_tag_t iot = sc->sc_iot;
254 bus_space_handle_t ioh;
255
256 sbversion(sc);
257
258 DPRINTF(("jazz16 probe\n"));
259
260 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
261 DPRINTF(("bus map failed\n"));
262 return;
263 }
264
265 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
266 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
267 DPRINTF(("drq/irq check failed\n"));
268 goto done; /* give up, we can't do it. */
269 }
270
271 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
272 delay(10000); /* delay 10 ms */
273 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
274 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
275
276 if (sbdsp_reset(sc) < 0) {
277 DPRINTF(("sbdsp_reset check failed\n"));
278 goto done; /* XXX? what else could we do? */
279 }
280
281 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
282 DPRINTF(("read16 setup failed\n"));
283 goto done;
284 }
285
286 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
287 DPRINTF(("read16 failed\n"));
288 goto done;
289 }
290
291 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
292 sc->sc_drq16 = sc->sc_drq8;
293 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
294 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
295 jazz16_drq_conf[sc->sc_drq8]) ||
296 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
297 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
298 } else {
299 DPRINTF(("jazz16 detected!\n"));
300 sc->sc_model = SB_JAZZ;
301 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
302 }
303
304 done:
305 bus_space_unmap(iot, ioh, 1);
306 }
307
308 /*
309 * Attach hardware to driver, attach hardware driver to audio
310 * pseudo-device driver .
311 */
312 void
313 sbdsp_attach(sc)
314 struct sbdsp_softc *sc;
315 {
316 struct audio_params xparams;
317 int i;
318 u_int v;
319
320 sbdsp_set_params(sc, AUMODE_RECORD, &audio_default, &xparams);
321 sbdsp_set_params(sc, AUMODE_PLAY, &audio_default, &xparams);
322
323 sbdsp_set_in_port(sc, SB_MIC_VOL);
324 sbdsp_set_out_port(sc, SB_MASTER_VOL);
325
326 if (sc->sc_mixer_model != SBM_NONE) {
327 /* Reset the mixer.*/
328 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
329 /* And set our own default values */
330 for (i = 0; i < SB_NDEVS; i++) {
331 switch(i) {
332 case SB_MIC_VOL:
333 case SB_LINE_IN_VOL:
334 v = 0;
335 break;
336 case SB_BASS:
337 case SB_TREBLE:
338 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
339 break;
340 default:
341 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
342 break;
343 }
344 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
345 sbdsp_set_mixer_gain(sc, i);
346 }
347 sc->in_filter = 0; /* no filters turned on, please */
348 }
349
350 printf(": dsp v%d.%02d%s\n",
351 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
352 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
353 }
354
355 void
356 sbdsp_mix_write(sc, mixerport, val)
357 struct sbdsp_softc *sc;
358 int mixerport;
359 int val;
360 {
361 bus_space_tag_t iot = sc->sc_iot;
362 bus_space_handle_t ioh = sc->sc_ioh;
363 int s;
364
365 s = splaudio();
366 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
367 delay(20);
368 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
369 delay(30);
370 splx(s);
371 }
372
373 int
374 sbdsp_mix_read(sc, mixerport)
375 struct sbdsp_softc *sc;
376 int mixerport;
377 {
378 bus_space_tag_t iot = sc->sc_iot;
379 bus_space_handle_t ioh = sc->sc_ioh;
380 int val;
381 int s;
382
383 s = splaudio();
384 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
385 delay(20);
386 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
387 delay(30);
388 splx(s);
389 return val;
390 }
391
392 /*
393 * Various routines to interface to higher level audio driver
394 */
395
396 int
397 sbdsp_query_encoding(addr, fp)
398 void *addr;
399 struct audio_encoding *fp;
400 {
401 struct sbdsp_softc *sc = addr;
402 int emul;
403
404 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
405
406 switch (fp->index) {
407 case 0:
408 strcpy(fp->name, AudioEulinear);
409 fp->encoding = AUDIO_ENCODING_ULINEAR;
410 fp->precision = 8;
411 fp->flags = 0;
412 return 0;
413 case 1:
414 strcpy(fp->name, AudioEmulaw);
415 fp->encoding = AUDIO_ENCODING_ULAW;
416 fp->precision = 8;
417 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
418 return 0;
419 case 2:
420 strcpy(fp->name, AudioEalaw);
421 fp->encoding = AUDIO_ENCODING_ALAW;
422 fp->precision = 8;
423 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
424 return 0;
425 case 3:
426 strcpy(fp->name, AudioElinear);
427 fp->encoding = AUDIO_ENCODING_LINEAR;
428 fp->precision = 8;
429 fp->flags = emul;
430 return 0;
431 }
432 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
433 return EINVAL;
434
435 switch(fp->index) {
436 case 4:
437 strcpy(fp->name, AudioElinear_le);
438 fp->encoding = AUDIO_ENCODING_LINEAR_LE;
439 fp->precision = 16;
440 fp->flags = 0;
441 return 0;
442 case 5:
443 strcpy(fp->name, AudioEulinear_le);
444 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
445 fp->precision = 16;
446 fp->flags = emul;
447 return 0;
448 case 6:
449 strcpy(fp->name, AudioElinear_be);
450 fp->encoding = AUDIO_ENCODING_LINEAR_BE;
451 fp->precision = 16;
452 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
453 return 0;
454 case 7:
455 strcpy(fp->name, AudioEulinear_be);
456 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
457 fp->precision = 16;
458 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
459 return 0;
460 default:
461 return EINVAL;
462 }
463 return 0;
464 }
465
466 int
467 sbdsp_set_params(addr, mode, p, q)
468 void *addr;
469 int mode;
470 struct audio_params *p, *q;
471 {
472 struct sbdsp_softc *sc = addr;
473 struct sbmode *m;
474 u_int rate, tc = 1, bmode = -1;
475 void (*swcode) __P((void *, u_char *buf, int cnt));
476
477 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
478 m->model != -1; m++) {
479 if (sc->sc_model == m->model &&
480 p->channels == m->channels &&
481 p->precision == m->precision &&
482 p->sample_rate >= m->lowrate &&
483 p->sample_rate < m->highrate)
484 break;
485 }
486 if (m->model == -1)
487 return EINVAL;
488 rate = p->sample_rate;
489 swcode = 0;
490 if (m->model == SB_16) {
491 switch (p->encoding) {
492 case AUDIO_ENCODING_LINEAR_BE:
493 if (p->precision == 16)
494 swcode = swap_bytes;
495 /* fall into */
496 case AUDIO_ENCODING_LINEAR_LE:
497 bmode = 0x10;
498 break;
499 case AUDIO_ENCODING_ULINEAR_BE:
500 if (p->precision == 16)
501 swcode = swap_bytes;
502 /* fall into */
503 case AUDIO_ENCODING_ULINEAR_LE:
504 bmode = 0;
505 break;
506 case AUDIO_ENCODING_ULAW:
507 swcode = mode == AUMODE_PLAY ?
508 mulaw_to_ulinear8 : ulinear8_to_mulaw;
509 bmode = 0;
510 break;
511 case AUDIO_ENCODING_ALAW:
512 swcode = mode == AUMODE_PLAY ?
513 alaw_to_ulinear8 : ulinear8_to_alaw;
514 bmode = 0;
515 break;
516 default:
517 return EINVAL;
518 }
519 if (p->channels == 2)
520 bmode |= 0x20;
521 } else if (m->model == SB_JAZZ && m->precision == 16) {
522 switch (p->encoding) {
523 case AUDIO_ENCODING_LINEAR_LE:
524 break;
525 case AUDIO_ENCODING_ULINEAR_LE:
526 swcode = change_sign16;
527 break;
528 case AUDIO_ENCODING_LINEAR_BE:
529 swcode = swap_bytes;
530 break;
531 case AUDIO_ENCODING_ULINEAR_BE:
532 swcode = mode == AUMODE_PLAY ?
533 swap_bytes_change_sign16 : change_sign16_swap_bytes;
534 break;
535 case AUDIO_ENCODING_ULAW:
536 swcode = mode == AUMODE_PLAY ?
537 mulaw_to_ulinear8 : ulinear8_to_mulaw;
538 break;
539 case AUDIO_ENCODING_ALAW:
540 swcode = mode == AUMODE_PLAY ?
541 alaw_to_ulinear8 : ulinear8_to_alaw;
542 break;
543 default:
544 return EINVAL;
545 }
546 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
547 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
548 } else {
549 switch (p->encoding) {
550 case AUDIO_ENCODING_LINEAR_BE:
551 case AUDIO_ENCODING_LINEAR_LE:
552 swcode = change_sign8;
553 break;
554 case AUDIO_ENCODING_ULINEAR_BE:
555 case AUDIO_ENCODING_ULINEAR_LE:
556 break;
557 case AUDIO_ENCODING_ULAW:
558 swcode = mode == AUMODE_PLAY ?
559 mulaw_to_ulinear8 : ulinear8_to_mulaw;
560 break;
561 case AUDIO_ENCODING_ALAW:
562 swcode = mode == AUMODE_PLAY ?
563 alaw_to_ulinear8 : ulinear8_to_alaw;
564 break;
565 default:
566 return EINVAL;
567 }
568 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
569 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
570 }
571
572 if (mode == AUMODE_PLAY) {
573 sc->sc_orate = rate;
574 sc->sc_otc = tc;
575 sc->sc_omodep = m;
576 sc->sc_obmode = bmode;
577 } else {
578 sc->sc_irate = rate;
579 sc->sc_itc = tc;
580 sc->sc_imodep = m;
581 sc->sc_ibmode = bmode;
582 }
583
584 p->sw_code = swcode;
585
586 /* Update setting for the other mode. */
587 q->encoding = p->encoding;
588 q->channels = p->channels;
589 q->precision = p->precision;
590
591 /*
592 * XXX
593 * Should wait for chip to be idle.
594 */
595 sc->sc_dmadir = SB_DMA_NONE;
596
597 DPRINTF(("set_params: model=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p\n",
598 sc->sc_model, p->sample_rate, p->precision, p->channels,
599 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode));
600
601 return 0;
602 }
603
604 void
605 sbdsp_set_ifilter(addr, which)
606 void *addr;
607 int which;
608 {
609 struct sbdsp_softc *sc = addr;
610 int mixval;
611
612 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
613 switch (which) {
614 case 0:
615 mixval |= SBP_FILTER_OFF;
616 break;
617 case SB_TREBLE:
618 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
619 break;
620 case SB_BASS:
621 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
622 break;
623 default:
624 return;
625 }
626 sc->in_filter = mixval & SBP_IFILTER_MASK;
627 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
628 }
629
630 int
631 sbdsp_get_ifilter(addr)
632 void *addr;
633 {
634 struct sbdsp_softc *sc = addr;
635
636 sc->in_filter =
637 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
638 switch (sc->in_filter) {
639 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
640 return SB_TREBLE;
641 case SBP_FILTER_ON|SBP_IFILTER_LOW:
642 return SB_BASS;
643 default:
644 return 0;
645 }
646 }
647
648 int
649 sbdsp_set_out_port(addr, port)
650 void *addr;
651 int port;
652 {
653 struct sbdsp_softc *sc = addr;
654
655 sc->out_port = port; /* Just record it */
656
657 return 0;
658 }
659
660 int
661 sbdsp_get_out_port(addr)
662 void *addr;
663 {
664 struct sbdsp_softc *sc = addr;
665
666 return sc->out_port;
667 }
668
669
670 int
671 sbdsp_set_in_port(addr, port)
672 void *addr;
673 int port;
674 {
675 return sbdsp_set_in_ports(addr, 1 << port);
676 }
677
678 int
679 sbdsp_set_in_ports(sc, mask)
680 struct sbdsp_softc *sc;
681 int mask;
682 {
683 int bitsl, bitsr;
684 int sbport;
685 int i;
686
687 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
688 sc->sc_mixer_model, mask));
689
690 switch(sc->sc_mixer_model) {
691 case SBM_NONE:
692 return EINVAL;
693 case SBM_CT1335:
694 if (mask != (1 << SB_MIC_VOL))
695 return EINVAL;
696 break;
697 case SBM_CT1345:
698 switch (mask) {
699 case 1 << SB_MIC_VOL:
700 sbport = SBP_FROM_MIC;
701 break;
702 case 1 << SB_LINE_IN_VOL:
703 sbport = SBP_FROM_LINE;
704 break;
705 case 1 << SB_CD_VOL:
706 sbport = SBP_FROM_CD;
707 break;
708 default:
709 return EINVAL;
710 }
711 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
712 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
713 break;
714 case SBM_CT1745:
715 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
716 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
717 return EINVAL;
718 bitsr = 0;
719 if (mask & SB_MIDI_VOL) bitsr |= SBP_MIDI_SRC_R;
720 if (mask & SB_LINE_IN_VOL) bitsr |= SBP_LINE_SRC_R;
721 if (mask & SB_CD_VOL) bitsr |= SBP_CD_SRC_R;
722 bitsl = SB_SRC_R_TO_L(bitsr);
723 if (mask & SB_MIC_VOL) {
724 bitsl |= SBP_MIC_SRC;
725 bitsr |= SBP_MIC_SRC;
726 }
727 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
728 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
729 break;
730 }
731
732 sc->in_mask = mask;
733
734 /* XXX
735 * We have to fake a single port since the upper layer
736 * expects one.
737 */
738 for(i = 0; i < SB_NPORT; i++) {
739 if (mask & (1 << i)) {
740 sc->in_port = i;
741 break;
742 }
743 }
744 return 0;
745 }
746
747 int
748 sbdsp_get_in_port(addr)
749 void *addr;
750 {
751 struct sbdsp_softc *sc = addr;
752
753 return sc->in_port;
754 }
755
756
757 int
758 sbdsp_speaker_ctl(addr, newstate)
759 void *addr;
760 int newstate;
761 {
762 struct sbdsp_softc *sc = addr;
763
764 if ((newstate == SPKR_ON) &&
765 (sc->spkr_state == SPKR_OFF)) {
766 sbdsp_spkron(sc);
767 sc->spkr_state = SPKR_ON;
768 }
769 if ((newstate == SPKR_OFF) &&
770 (sc->spkr_state == SPKR_ON)) {
771 sbdsp_spkroff(sc);
772 sc->spkr_state = SPKR_OFF;
773 }
774 return 0;
775 }
776
777 int
778 sbdsp_round_blocksize(addr, blk)
779 void *addr;
780 int blk;
781 {
782 if (blk > NBPG/3)
783 blk = NBPG/3; /* XXX allow at least 3 blocks */
784
785 /* Round to a multiple of the biggest sample size. */
786 blk &= -4;
787
788 return blk;
789 }
790
791 int
792 sbdsp_commit_settings(addr)
793 void *addr;
794 {
795 return 0;
796 }
797
798 int
799 sbdsp_open(sc, dev, flags)
800 struct sbdsp_softc *sc;
801 dev_t dev;
802 int flags;
803 {
804 DPRINTF(("sbdsp_open: sc=%p\n", sc));
805
806 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
807 return ENXIO;
808
809 sc->sc_open = 1;
810 sc->sc_mintr = 0;
811 if (ISSBPRO(sc) &&
812 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
813 DPRINTF(("sbdsp_open: can't set mono mode\n"));
814 /* we'll readjust when it's time for DMA. */
815 }
816
817 /*
818 * Leave most things as they were; users must change things if
819 * the previous process didn't leave it they way they wanted.
820 * Looked at another way, it's easy to set up a configuration
821 * in one program and leave it for another to inherit.
822 */
823 DPRINTF(("sbdsp_open: opened\n"));
824
825 return 0;
826 }
827
828 void
829 sbdsp_close(addr)
830 void *addr;
831 {
832 struct sbdsp_softc *sc = addr;
833
834 DPRINTF(("sbdsp_close: sc=%p\n", sc));
835
836 sc->sc_open = 0;
837 sbdsp_spkroff(sc);
838 sc->spkr_state = SPKR_OFF;
839 sc->sc_intr = 0;
840 sc->sc_mintr = 0;
841 sbdsp_haltdma(sc);
842
843 DPRINTF(("sbdsp_close: closed\n"));
844 }
845
846 /*
847 * Lower-level routines
848 */
849
850 /*
851 * Reset the card.
852 * Return non-zero if the card isn't detected.
853 */
854 int
855 sbdsp_reset(sc)
856 struct sbdsp_softc *sc;
857 {
858 bus_space_tag_t iot = sc->sc_iot;
859 bus_space_handle_t ioh = sc->sc_ioh;
860
861 sc->sc_intr = 0;
862 if (sc->sc_dmadir != SB_DMA_NONE) {
863 isa_dmaabort(sc->dmachan);
864 sc->sc_dmadir = SB_DMA_NONE;
865 }
866
867 /*
868 * See SBK, section 11.3.
869 * We pulse a reset signal into the card.
870 * Gee, what a brilliant hardware design.
871 */
872 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
873 delay(10);
874 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
875 delay(30);
876 if (sbdsp_rdsp(sc) != SB_MAGIC)
877 return -1;
878
879 return 0;
880 }
881
882 int
883 sbdsp16_wait(sc)
884 struct sbdsp_softc *sc;
885 {
886 bus_space_tag_t iot = sc->sc_iot;
887 bus_space_handle_t ioh = sc->sc_ioh;
888 int i;
889 u_char x;
890
891 for (i = SBDSP_NPOLL; --i >= 0; ) {
892 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
893 delay(10);
894 if ((x & SB_DSP_BUSY) == 0)
895 continue;
896 return 0;
897 }
898 ++sberr.wdsp;
899 return -1;
900 }
901
902 /*
903 * Write a byte to the dsp.
904 * XXX We are at the mercy of the card as we use a
905 * polling loop and wait until it can take the byte.
906 */
907 int
908 sbdsp_wdsp(sc, v)
909 struct sbdsp_softc *sc;
910 int v;
911 {
912 bus_space_tag_t iot = sc->sc_iot;
913 bus_space_handle_t ioh = sc->sc_ioh;
914 int i;
915 u_char x;
916
917 for (i = SBDSP_NPOLL; --i >= 0; ) {
918 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
919 delay(10);
920 if ((x & SB_DSP_BUSY) != 0)
921 continue;
922 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
923 delay(10);
924 return 0;
925 }
926 ++sberr.wdsp;
927 return -1;
928 }
929
930 /*
931 * Read a byte from the DSP, using polling.
932 */
933 int
934 sbdsp_rdsp(sc)
935 struct sbdsp_softc *sc;
936 {
937 bus_space_tag_t iot = sc->sc_iot;
938 bus_space_handle_t ioh = sc->sc_ioh;
939 int i;
940 u_char x;
941
942 for (i = SBDSP_NPOLL; --i >= 0; ) {
943 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
944 delay(10);
945 if ((x & SB_DSP_READY) == 0)
946 continue;
947 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
948 delay(10);
949 return x;
950 }
951 ++sberr.rdsp;
952 return -1;
953 }
954
955 /*
956 * Doing certain things (like toggling the speaker) make
957 * the SB hardware go away for a while, so pause a little.
958 */
959 void
960 sbdsp_to(arg)
961 void *arg;
962 {
963 wakeup(arg);
964 }
965
966 void
967 sbdsp_pause(sc)
968 struct sbdsp_softc *sc;
969 {
970 extern int hz;
971
972 timeout(sbdsp_to, sbdsp_to, hz/8);
973 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
974 }
975
976 /*
977 * Turn on the speaker. The SBK documention says this operation
978 * can take up to 1/10 of a second. Higher level layers should
979 * probably let the task sleep for this amount of time after
980 * calling here. Otherwise, things might not work (because
981 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
982 *
983 * These engineers had their heads up their ass when
984 * they designed this card.
985 */
986 void
987 sbdsp_spkron(sc)
988 struct sbdsp_softc *sc;
989 {
990 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
991 sbdsp_pause(sc);
992 }
993
994 /*
995 * Turn off the speaker; see comment above.
996 */
997 void
998 sbdsp_spkroff(sc)
999 struct sbdsp_softc *sc;
1000 {
1001 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1002 sbdsp_pause(sc);
1003 }
1004
1005 /*
1006 * Read the version number out of the card. Return major code
1007 * in high byte, and minor code in low byte.
1008 */
1009 void
1010 sbversion(sc)
1011 struct sbdsp_softc *sc;
1012 {
1013 int v;
1014
1015 sc->sc_model = SB_UNK;
1016 sc->sc_version = 0;
1017 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1018 return;
1019 v = sbdsp_rdsp(sc) << 8;
1020 v |= sbdsp_rdsp(sc);
1021 if (v < 0)
1022 return;
1023 sc->sc_version = v;
1024 switch(SBVER_MAJOR(v)) {
1025 case 1:
1026 sc->sc_mixer_model = SBM_NONE;
1027 sc->sc_model = SB_1;
1028 break;
1029 case 2:
1030 /* Some SB2 have a mixer, some don't. */
1031 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1032 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1033 /* Check if we can read back the mixer values. */
1034 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1035 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1036 sc->sc_mixer_model = SBM_CT1335;
1037 else
1038 sc->sc_mixer_model = SBM_NONE;
1039 if (SBVER_MINOR(v) == 0)
1040 sc->sc_model = SB_20;
1041 else
1042 sc->sc_model = SB_2x;
1043 break;
1044 case 3:
1045 sc->sc_mixer_model = SBM_CT1345;
1046 sc->sc_model = SB_PRO;
1047 break;
1048 case 4:
1049 sc->sc_mixer_model = SBM_CT1745;
1050 sc->sc_model = SB_16;
1051 break;
1052 }
1053 }
1054
1055 /*
1056 * Halt a DMA in progress. A low-speed transfer can be
1057 * resumed with sbdsp_contdma().
1058 */
1059 int
1060 sbdsp_haltdma(addr)
1061 void *addr;
1062 {
1063 struct sbdsp_softc *sc = addr;
1064
1065 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1066
1067 sbdsp_reset(sc);
1068 return 0;
1069 }
1070
1071 int
1072 sbdsp_contdma(addr)
1073 void *addr;
1074 {
1075 struct sbdsp_softc *sc = addr;
1076
1077 DPRINTF(("sbdsp_contdma: sc=%p\n", sc));
1078
1079 /* XXX how do we reinitialize the DMA controller state? do we care? */
1080 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
1081 return 0;
1082 }
1083
1084 int
1085 sbdsp_set_timeconst(sc, tc)
1086 struct sbdsp_softc *sc;
1087 int tc;
1088 {
1089 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1090
1091 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1092 sbdsp_wdsp(sc, tc) < 0)
1093 return EIO;
1094
1095 return 0;
1096 }
1097
1098 int
1099 sbdsp16_set_rate(sc, cmd, rate)
1100 struct sbdsp_softc *sc;
1101 int cmd, rate;
1102 {
1103 DPRINTF(("sbdsp16_set_rate: sc=%p rate=%d\n", sc, rate));
1104
1105 if (sbdsp_wdsp(sc, cmd) < 0 ||
1106 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1107 sbdsp_wdsp(sc, rate) < 0)
1108 return EIO;
1109 return 0;
1110 }
1111
1112 int
1113 sbdsp_dma_input(addr, p, cc, intr, arg)
1114 void *addr;
1115 void *p;
1116 int cc;
1117 void (*intr) __P((void *));
1118 void *arg;
1119 {
1120 struct sbdsp_softc *sc = addr;
1121 int loop = sc->sc_model != SB_1;
1122 int stereo = sc->sc_imodep->channels == 2;
1123 int filter;
1124
1125 #ifdef AUDIO_DEBUG
1126 if (sbdspdebug > 1)
1127 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1128 #endif
1129 #ifdef DIAGNOSTIC
1130 if (sc->sc_imodep->channels == 2 && (cc & 1)) {
1131 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1132 return EIO;
1133 }
1134 #endif
1135
1136 if (sc->sc_dmadir != SB_DMA_IN) {
1137 if (ISSBPRO(sc)) {
1138 if (sbdsp_wdsp(sc, sc->sc_imodep->cmdchan) < 0)
1139 goto badmode;
1140 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1141 sbdsp_mix_write(sc, SBP_INFILTER,
1142 (sbdsp_mix_read(sc, SBP_INFILTER) &
1143 ~SBP_IFILTER_MASK) | filter);
1144 }
1145
1146 if (ISSB16CLASS(sc)) {
1147 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE,
1148 sc->sc_irate))
1149 goto giveup;
1150 } else {
1151 if (sbdsp_set_timeconst(sc, sc->sc_itc))
1152 goto giveup;
1153 }
1154
1155 sc->sc_dmadir = SB_DMA_IN;
1156 sc->dmaflags = DMAMODE_READ;
1157 if (loop)
1158 sc->dmaflags |= DMAMODE_LOOP;
1159 } else {
1160 /* If already started; just return. */
1161 if (loop)
1162 return 0;
1163 }
1164
1165 sc->dmaaddr = p;
1166 sc->dmacnt = loop ? (NBPG/cc)*cc : cc;
1167 sc->dmachan = sc->sc_imodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1168 #ifdef AUDIO_DEBUG
1169 if (sbdspdebug > 1)
1170 Dprintf("sbdsp_dma_input: dmastart %x %p %d %d\n",
1171 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1172 #endif
1173 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1174 sc->sc_intr = intr;
1175 sc->sc_arg = arg;
1176
1177 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1178 (sc->sc_model != SB_JAZZ && sc->sc_omodep->precision == 16))
1179 cc >>= 1;
1180 --cc;
1181 if (ISSB16CLASS(sc)) {
1182 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1183 sbdsp_wdsp(sc, sc->sc_ibmode) < 0 ||
1184 sbdsp16_wait(sc) ||
1185 sbdsp_wdsp(sc, cc) < 0 ||
1186 sbdsp_wdsp(sc, cc >> 8) < 0) {
1187 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1188 goto giveup;
1189 }
1190 } else {
1191 if (loop) {
1192 DPRINTF(("sbdsp_dma_input: set blocksize=%d\n", cc));
1193 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1194 sbdsp_wdsp(sc, cc) < 0 ||
1195 sbdsp_wdsp(sc, cc >> 8) < 0) {
1196 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1197 goto giveup;
1198 }
1199 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0) {
1200 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1201 goto giveup;
1202 }
1203 } else {
1204 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1205 sbdsp_wdsp(sc, cc) < 0 ||
1206 sbdsp_wdsp(sc, cc >> 8) < 0) {
1207 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1208 goto giveup;
1209 }
1210 }
1211 }
1212 return 0;
1213
1214 giveup:
1215 sbdsp_reset(sc);
1216 return EIO;
1217
1218 badmode:
1219 DPRINTF(("sbdsp_dma_input: can't set mode\n"));
1220 return EIO;
1221 }
1222
1223 int
1224 sbdsp_dma_output(addr, p, cc, intr, arg)
1225 void *addr;
1226 void *p;
1227 int cc;
1228 void (*intr) __P((void *));
1229 void *arg;
1230 {
1231 struct sbdsp_softc *sc = addr;
1232 int loop = sc->sc_model != SB_1;
1233 int stereo = sc->sc_omodep->channels == 2;
1234 int cmd;
1235
1236 #ifdef AUDIO_DEBUG
1237 if (sbdspdebug > 1)
1238 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1239 #endif
1240 #ifdef DIAGNOSTIC
1241 if (stereo && (cc & 1)) {
1242 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1243 return EIO;
1244 }
1245 #endif
1246
1247 if (sc->sc_dmadir != SB_DMA_OUT) {
1248 if (ISSBPRO(sc)) {
1249 /* make sure we re-set stereo mixer bit when we start
1250 output. */
1251 sbdsp_mix_write(sc, SBP_STEREO,
1252 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1253 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1254 cmd = sc->sc_omodep->cmdchan;
1255 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1256 goto badmode;
1257 }
1258
1259 if (ISSB16CLASS(sc)) {
1260 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE,
1261 sc->sc_orate))
1262 goto giveup;
1263 } else {
1264 if (sbdsp_set_timeconst(sc, sc->sc_otc))
1265 goto giveup;
1266 }
1267
1268 sc->sc_dmadir = SB_DMA_OUT;
1269 sc->dmaflags = DMAMODE_WRITE;
1270 if (loop)
1271 sc->dmaflags |= DMAMODE_LOOP;
1272 } else {
1273 /* Already started; just return. */
1274 if (loop)
1275 return 0;
1276 }
1277
1278 sc->dmaaddr = p;
1279 sc->dmacnt = loop ? (NBPG/cc)*cc : cc;
1280 sc->dmachan = sc->sc_omodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1281 #ifdef AUDIO_DEBUG
1282 if (sbdspdebug > 1)
1283 Dprintf("sbdsp_dma_output: dmastart %x %p %d %d\n",
1284 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1285 #endif
1286 isa_dmastart(sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1287 sc->sc_intr = intr;
1288 sc->sc_arg = arg;
1289
1290 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1291 (sc->sc_model != SB_JAZZ && sc->sc_omodep->precision == 16))
1292 cc >>= 1;
1293 --cc;
1294 if (ISSB16CLASS(sc)) {
1295 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1296 sbdsp_wdsp(sc, sc->sc_obmode) < 0 ||
1297 sbdsp16_wait(sc) ||
1298 sbdsp_wdsp(sc, cc) < 0 ||
1299 sbdsp_wdsp(sc, cc >> 8) < 0) {
1300 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1301 goto giveup;
1302 }
1303 } else {
1304 if (loop) {
1305 DPRINTF(("sbdsp_dma_output: set blocksize=%d\n", cc));
1306 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1307 sbdsp_wdsp(sc, cc) < 0 ||
1308 sbdsp_wdsp(sc, cc >> 8) < 0) {
1309 DPRINTF(("sbdsp_dma_output: SB2 DMA blocksize failed\n"));
1310 goto giveup;
1311 }
1312 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0) {
1313 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1314 goto giveup;
1315 }
1316 } else {
1317 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1318 sbdsp_wdsp(sc, cc) < 0 ||
1319 sbdsp_wdsp(sc, cc >> 8) < 0) {
1320 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1321 goto giveup;
1322 }
1323 }
1324 }
1325 return 0;
1326
1327 giveup:
1328 sbdsp_reset(sc);
1329 return EIO;
1330
1331 badmode:
1332 DPRINTF(("sbdsp_dma_output: can't set mode\n"));
1333 return EIO;
1334 }
1335
1336 /*
1337 * Only the DSP unit on the sound blaster generates interrupts.
1338 * There are three cases of interrupt: reception of a midi byte
1339 * (when mode is enabled), completion of dma transmission, or
1340 * completion of a dma reception. The three modes are mutually
1341 * exclusive so we know a priori which event has occurred.
1342 */
1343 int
1344 sbdsp_intr(arg)
1345 void *arg;
1346 {
1347 struct sbdsp_softc *sc = arg;
1348 int loop = sc->sc_model != SB_1;
1349 u_char irq;
1350
1351 #ifdef AUDIO_DEBUG
1352 if (sbdspdebug > 1)
1353 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1354 #endif
1355 if (ISSB16CLASS(sc)) {
1356 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1357 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16)) == 0)
1358 return 0;
1359 } else {
1360 if (!loop && !isa_dmafinished(sc->dmachan))
1361 return 0;
1362 irq = SBP_IRQ_DMA8;
1363 }
1364 sc->sc_interrupts++;
1365 delay(10); /* XXX why? */
1366 #if 0
1367 if (sc->sc_mintr != 0) {
1368 x = sbdsp_rdsp(sc);
1369 (*sc->sc_mintr)(sc->sc_arg, x);
1370 } else
1371 #endif
1372 if (sc->sc_intr != 0) {
1373 /* clear interrupt */
1374 if (irq & SBP_IRQ_DMA8)
1375 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1376 if (irq & SBP_IRQ_DMA16)
1377 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1378 if (!loop)
1379 isa_dmadone(sc->dmaflags, sc->dmaaddr, sc->dmacnt,
1380 sc->dmachan);
1381 (*sc->sc_intr)(sc->sc_arg);
1382 } else {
1383 return 0;
1384 }
1385 return 1;
1386 }
1387
1388 #if 0
1389 /*
1390 * Enter midi uart mode and arrange for read interrupts
1391 * to vector to `intr'. This puts the card in a mode
1392 * which allows only midi I/O; the card must be reset
1393 * to leave this mode. Unfortunately, the card does not
1394 * use transmit interrupts, so bytes must be output
1395 * using polling. To keep the polling overhead to a
1396 * minimum, output should be driven off a timer.
1397 * This is a little tricky since only 320us separate
1398 * consecutive midi bytes.
1399 */
1400 void
1401 sbdsp_set_midi_mode(sc, intr, arg)
1402 struct sbdsp_softc *sc;
1403 void (*intr)();
1404 void *arg;
1405 {
1406
1407 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1408 sc->sc_mintr = intr;
1409 sc->sc_intr = 0;
1410 sc->sc_arg = arg;
1411 }
1412
1413 /*
1414 * Write a byte to the midi port, when in midi uart mode.
1415 */
1416 void
1417 sbdsp_midi_output(sc, v)
1418 struct sbdsp_softc *sc;
1419 int v;
1420 {
1421
1422 if (sbdsp_wdsp(sc, v) < 0)
1423 ++sberr.wmidi;
1424 }
1425 #endif
1426
1427 int
1428 sbdsp_setfd(addr, flag)
1429 void *addr;
1430 int flag;
1431 {
1432 /* Can't do full-duplex */
1433 return ENOTTY;
1434 }
1435
1436 void
1437 sbdsp_set_mixer_gain(sc, port)
1438 struct sbdsp_softc *sc;
1439 int port;
1440 {
1441 int src, gain;
1442
1443 switch(sc->sc_mixer_model) {
1444 case SBM_NONE:
1445 return;
1446 case SBM_CT1335:
1447 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1448 switch(port) {
1449 case SB_MASTER_VOL:
1450 src = SBP_1335_MASTER_VOL;
1451 break;
1452 case SB_MIDI_VOL:
1453 src = SBP_1335_MIDI_VOL;
1454 break;
1455 case SB_CD_VOL:
1456 src = SBP_1335_CD_VOL;
1457 break;
1458 case SB_VOICE_VOL:
1459 src = SBP_1335_VOICE_VOL;
1460 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1461 break;
1462 default:
1463 return;
1464 }
1465 sbdsp_mix_write(sc, src, gain);
1466 break;
1467 case SBM_CT1345:
1468 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1469 sc->gain[port][SB_RIGHT]);
1470 switch (port) {
1471 case SB_MIC_VOL:
1472 src = SBP_MIC_VOL;
1473 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1474 break;
1475 case SB_MASTER_VOL:
1476 src = SBP_MASTER_VOL;
1477 break;
1478 case SB_LINE_IN_VOL:
1479 src = SBP_LINE_VOL;
1480 break;
1481 case SB_VOICE_VOL:
1482 src = SBP_VOICE_VOL;
1483 break;
1484 case SB_MIDI_VOL:
1485 src = SBP_MIDI_VOL;
1486 break;
1487 case SB_CD_VOL:
1488 src = SBP_CD_VOL;
1489 break;
1490 default:
1491 return;
1492 }
1493 sbdsp_mix_write(sc, src, gain);
1494 break;
1495 case SBM_CT1745:
1496 switch (port) {
1497 case SB_MIC_VOL:
1498 src = SB16P_MIC_L;
1499 break;
1500 case SB_MASTER_VOL:
1501 src = SB16P_MASTER_L;
1502 break;
1503 case SB_LINE_IN_VOL:
1504 src = SB16P_LINE_L;
1505 break;
1506 case SB_VOICE_VOL:
1507 src = SB16P_VOICE_L;
1508 break;
1509 case SB_MIDI_VOL:
1510 src = SB16P_MIDI_L;
1511 break;
1512 case SB_CD_VOL:
1513 src = SB16P_CD_L;
1514 break;
1515 case SB_INPUT_GAIN:
1516 src = SB16P_INPUT_GAIN_L;
1517 break;
1518 case SB_OUTPUT_GAIN:
1519 src = SB16P_OUTPUT_GAIN_L;
1520 break;
1521 case SB_TREBLE:
1522 src = SB16P_TREBLE_L;
1523 break;
1524 case SB_BASS:
1525 src = SB16P_BASS_L;
1526 break;
1527 case SB_PCSPEAKER:
1528 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1529 return;
1530 default:
1531 return;
1532 }
1533 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1534 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1535 break;
1536 }
1537 }
1538
1539 int
1540 sbdsp_mixer_set_port(addr, cp)
1541 void *addr;
1542 mixer_ctrl_t *cp;
1543 {
1544 struct sbdsp_softc *sc = addr;
1545 int lgain, rgain;
1546
1547 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1548 cp->un.value.num_channels));
1549
1550 if (sc->sc_mixer_model == SBM_NONE)
1551 return EINVAL;
1552
1553 switch (cp->dev) {
1554 case SB_TREBLE:
1555 case SB_BASS:
1556 if (sc->sc_mixer_model == SBM_CT1345) {
1557 if (cp->type != AUDIO_MIXER_ENUM)
1558 return EINVAL;
1559 switch (cp->dev) {
1560 case SB_TREBLE:
1561 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1562 return 0;
1563 case SB_BASS:
1564 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1565 return 0;
1566 }
1567 }
1568 case SB_PCSPEAKER:
1569 case SB_INPUT_GAIN:
1570 case SB_OUTPUT_GAIN:
1571 if (sc->sc_mixer_model != SBM_CT1745)
1572 return EINVAL;
1573 case SB_MIC_VOL:
1574 case SB_LINE_IN_VOL:
1575 if (sc->sc_mixer_model == SBM_CT1335)
1576 return EINVAL;
1577 case SB_VOICE_VOL:
1578 case SB_MIDI_VOL:
1579 case SB_CD_VOL:
1580 case SB_MASTER_VOL:
1581 if (cp->type != AUDIO_MIXER_VALUE)
1582 return EINVAL;
1583
1584 /*
1585 * All the mixer ports are stereo except for the microphone.
1586 * If we get a single-channel gain value passed in, then we
1587 * duplicate it to both left and right channels.
1588 */
1589
1590 switch (cp->dev) {
1591 case SB_MIC_VOL:
1592 if (cp->un.value.num_channels != 1)
1593 return EINVAL;
1594
1595 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1596 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1597 break;
1598 case SB_PCSPEAKER:
1599 if (cp->un.value.num_channels != 1)
1600 return EINVAL;
1601 /* fall into */
1602 case SB_INPUT_GAIN:
1603 case SB_OUTPUT_GAIN:
1604 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1605 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1606 break;
1607 default:
1608 switch (cp->un.value.num_channels) {
1609 case 1:
1610 lgain = rgain = SB_ADJUST_GAIN(sc,
1611 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1612 break;
1613 case 2:
1614 if (sc->sc_mixer_model == SBM_CT1335)
1615 return EINVAL;
1616 lgain = SB_ADJUST_GAIN(sc,
1617 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1618 rgain = SB_ADJUST_GAIN(sc,
1619 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1620 break;
1621 default:
1622 return EINVAL;
1623 }
1624 break;
1625 }
1626 sc->gain[cp->dev][SB_LEFT] = lgain;
1627 sc->gain[cp->dev][SB_RIGHT] = rgain;
1628
1629 sbdsp_set_mixer_gain(sc, cp->dev);
1630 break;
1631
1632 case SB_RECORD_SOURCE:
1633 if (sc->sc_mixer_model == SBM_CT1745) {
1634 if (cp->type != AUDIO_MIXER_SET)
1635 return EINVAL;
1636 return sbdsp_set_in_ports(sc, cp->un.mask);
1637 } else {
1638 if (cp->type != AUDIO_MIXER_ENUM)
1639 return EINVAL;
1640 return sbdsp_set_in_port(sc, cp->un.ord);
1641 }
1642 break;
1643
1644 case SB_AGC:
1645 if (sc->sc_mixer_model != SBM_CT1745 || cp->type != AUDIO_MIXER_ENUM)
1646 return EINVAL;
1647 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1648 break;
1649
1650 default:
1651 return EINVAL;
1652 }
1653
1654 return 0;
1655 }
1656
1657 int
1658 sbdsp_mixer_get_port(addr, cp)
1659 void *addr;
1660 mixer_ctrl_t *cp;
1661 {
1662 struct sbdsp_softc *sc = addr;
1663
1664 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1665
1666 if (sc->sc_mixer_model == SBM_NONE)
1667 return EINVAL;
1668
1669 switch (cp->dev) {
1670 case SB_TREBLE:
1671 case SB_BASS:
1672 if (sc->sc_mixer_model == SBM_CT1345) {
1673 switch (cp->dev) {
1674 case SB_TREBLE:
1675 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1676 return 0;
1677 case SB_BASS:
1678 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1679 return 0;
1680 }
1681 }
1682 case SB_PCSPEAKER:
1683 case SB_INPUT_GAIN:
1684 case SB_OUTPUT_GAIN:
1685 if (sc->sc_mixer_model != SBM_CT1745)
1686 return EINVAL;
1687 case SB_MIC_VOL:
1688 case SB_LINE_IN_VOL:
1689 if (sc->sc_mixer_model == SBM_CT1335)
1690 return EINVAL;
1691 case SB_VOICE_VOL:
1692 case SB_MIDI_VOL:
1693 case SB_CD_VOL:
1694 case SB_MASTER_VOL:
1695 switch (cp->dev) {
1696 case SB_MIC_VOL:
1697 case SB_PCSPEAKER:
1698 if (cp->un.value.num_channels != 1)
1699 return EINVAL;
1700 /* fall into */
1701 default:
1702 switch (cp->un.value.num_channels) {
1703 case 1:
1704 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1705 sc->gain[cp->dev][SB_LEFT];
1706 break;
1707 case 2:
1708 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1709 sc->gain[cp->dev][SB_LEFT];
1710 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1711 sc->gain[cp->dev][SB_RIGHT];
1712 break;
1713 default:
1714 return EINVAL;
1715 }
1716 break;
1717 }
1718 break;
1719
1720 case SB_RECORD_SOURCE:
1721 if (sc->sc_mixer_model == SBM_CT1745)
1722 cp->un.mask = sc->in_mask;
1723 else
1724 cp->un.ord = sc->in_port;
1725 break;
1726
1727 case SB_AGC:
1728 if (sc->sc_mixer_model != SBM_CT1745)
1729 return EINVAL;
1730 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1731 break;
1732
1733 default:
1734 return EINVAL;
1735 }
1736
1737 return 0;
1738 }
1739
1740 int
1741 sbdsp_mixer_query_devinfo(addr, dip)
1742 void *addr;
1743 mixer_devinfo_t *dip;
1744 {
1745 struct sbdsp_softc *sc = addr;
1746 int chan, class;
1747
1748 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1749 sc->sc_mixer_model, dip->index));
1750
1751 if (sc->sc_mixer_model == SBM_NONE)
1752 return ENXIO;
1753
1754 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1755 class = sc->sc_mixer_model == SBM_CT1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1756
1757 switch (dip->index) {
1758 case SB_MASTER_VOL:
1759 dip->type = AUDIO_MIXER_VALUE;
1760 dip->mixer_class = SB_OUTPUT_CLASS;
1761 dip->prev = dip->next = AUDIO_MIXER_LAST;
1762 strcpy(dip->label.name, AudioNmaster);
1763 dip->un.v.num_channels = chan;
1764 strcpy(dip->un.v.units.name, AudioNvolume);
1765 return 0;
1766 case SB_MIDI_VOL:
1767 dip->type = AUDIO_MIXER_VALUE;
1768 dip->mixer_class = class;
1769 dip->prev = AUDIO_MIXER_LAST;
1770 dip->next = AUDIO_MIXER_LAST;
1771 strcpy(dip->label.name, AudioNfmsynth);
1772 dip->un.v.num_channels = chan;
1773 strcpy(dip->un.v.units.name, AudioNvolume);
1774 return 0;
1775 case SB_CD_VOL:
1776 dip->type = AUDIO_MIXER_VALUE;
1777 dip->mixer_class = class;
1778 dip->prev = AUDIO_MIXER_LAST;
1779 dip->next = AUDIO_MIXER_LAST;
1780 strcpy(dip->label.name, AudioNcd);
1781 dip->un.v.num_channels = chan;
1782 strcpy(dip->un.v.units.name, AudioNvolume);
1783 return 0;
1784 case SB_VOICE_VOL:
1785 dip->type = AUDIO_MIXER_VALUE;
1786 dip->mixer_class = class;
1787 dip->prev = AUDIO_MIXER_LAST;
1788 dip->next = AUDIO_MIXER_LAST;
1789 strcpy(dip->label.name, AudioNdac);
1790 dip->un.v.num_channels = chan;
1791 strcpy(dip->un.v.units.name, AudioNvolume);
1792 return 0;
1793 case SB_OUTPUT_CLASS:
1794 dip->type = AUDIO_MIXER_CLASS;
1795 dip->mixer_class = SB_OUTPUT_CLASS;
1796 dip->next = dip->prev = AUDIO_MIXER_LAST;
1797 strcpy(dip->label.name, AudioCOutputs);
1798 return 0;
1799 }
1800
1801 if (sc->sc_mixer_model == SBM_CT1335)
1802 return ENXIO;
1803
1804 switch (dip->index) {
1805 case SB_MIC_VOL:
1806 dip->type = AUDIO_MIXER_VALUE;
1807 dip->mixer_class = class;
1808 dip->prev = AUDIO_MIXER_LAST;
1809 dip->next = AUDIO_MIXER_LAST;
1810 strcpy(dip->label.name, AudioNmicrophone);
1811 dip->un.v.num_channels = 1;
1812 strcpy(dip->un.v.units.name, AudioNvolume);
1813 return 0;
1814
1815 case SB_LINE_IN_VOL:
1816 dip->type = AUDIO_MIXER_VALUE;
1817 dip->mixer_class = class;
1818 dip->prev = AUDIO_MIXER_LAST;
1819 dip->next = AUDIO_MIXER_LAST;
1820 strcpy(dip->label.name, AudioNline);
1821 dip->un.v.num_channels = 2;
1822 strcpy(dip->un.v.units.name, AudioNvolume);
1823 return 0;
1824
1825 case SB_RECORD_SOURCE:
1826 dip->mixer_class = SB_RECORD_CLASS;
1827 dip->prev = dip->next = AUDIO_MIXER_LAST;
1828 strcpy(dip->label.name, AudioNsource);
1829 if (sc->sc_mixer_model == SBM_CT1745) {
1830 dip->type = AUDIO_MIXER_SET;
1831 dip->un.s.num_mem = 4;
1832 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1833 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
1834 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1835 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
1836 strcpy(dip->un.s.member[2].label.name, AudioNline);
1837 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
1838 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1839 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
1840 } else {
1841 dip->type = AUDIO_MIXER_ENUM;
1842 dip->un.e.num_mem = 3;
1843 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1844 dip->un.e.member[0].ord = SB_MIC_VOL;
1845 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1846 dip->un.e.member[1].ord = SB_CD_VOL;
1847 strcpy(dip->un.e.member[2].label.name, AudioNline);
1848 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
1849 }
1850 return 0;
1851
1852 case SB_BASS:
1853 dip->prev = dip->next = AUDIO_MIXER_LAST;
1854 strcpy(dip->label.name, AudioNbass);
1855 if (sc->sc_mixer_model == SBM_CT1745) {
1856 dip->type = AUDIO_MIXER_VALUE;
1857 dip->mixer_class = SB_EQUALIZATION_CLASS;
1858 dip->un.v.num_channels = 2;
1859 strcpy(dip->un.v.units.name, AudioNbass);
1860 } else {
1861 dip->type = AUDIO_MIXER_ENUM;
1862 dip->mixer_class = SB_INPUT_CLASS;
1863 dip->un.e.num_mem = 2;
1864 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1865 dip->un.e.member[0].ord = 0;
1866 strcpy(dip->un.e.member[1].label.name, AudioNon);
1867 dip->un.e.member[1].ord = 1;
1868 }
1869 return 0;
1870
1871 case SB_TREBLE:
1872 dip->prev = dip->next = AUDIO_MIXER_LAST;
1873 strcpy(dip->label.name, AudioNtreble);
1874 if (sc->sc_mixer_model == SBM_CT1745) {
1875 dip->type = AUDIO_MIXER_VALUE;
1876 dip->mixer_class = SB_EQUALIZATION_CLASS;
1877 dip->un.v.num_channels = 2;
1878 strcpy(dip->un.v.units.name, AudioNtreble);
1879 } else {
1880 dip->type = AUDIO_MIXER_ENUM;
1881 dip->mixer_class = SB_INPUT_CLASS;
1882 dip->un.e.num_mem = 2;
1883 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1884 dip->un.e.member[0].ord = 0;
1885 strcpy(dip->un.e.member[1].label.name, AudioNon);
1886 dip->un.e.member[1].ord = 1;
1887 }
1888 return 0;
1889
1890 case SB_RECORD_CLASS: /* record source class */
1891 dip->type = AUDIO_MIXER_CLASS;
1892 dip->mixer_class = SB_RECORD_CLASS;
1893 dip->next = dip->prev = AUDIO_MIXER_LAST;
1894 strcpy(dip->label.name, AudioCRecord);
1895 return 0;
1896
1897 }
1898
1899 if (sc->sc_mixer_model == SBM_CT1345)
1900 return ENXIO;
1901
1902 switch(dip->index) {
1903 case SB_PCSPEAKER:
1904 dip->type = AUDIO_MIXER_VALUE;
1905 dip->mixer_class = SB_INPUT_CLASS;
1906 dip->prev = dip->next = AUDIO_MIXER_LAST;
1907 strcpy(dip->label.name, "pc_speaker");
1908 dip->un.v.num_channels = 1;
1909 strcpy(dip->un.v.units.name, AudioNvolume);
1910 return 0;
1911
1912 case SB_INPUT_GAIN:
1913 dip->type = AUDIO_MIXER_VALUE;
1914 dip->mixer_class = SB_INPUT_CLASS;
1915 dip->prev = dip->next = AUDIO_MIXER_LAST;
1916 strcpy(dip->label.name, AudioNinput);
1917 dip->un.v.num_channels = 2;
1918 strcpy(dip->un.v.units.name, AudioNvolume);
1919 return 0;
1920
1921 case SB_OUTPUT_GAIN:
1922 dip->type = AUDIO_MIXER_VALUE;
1923 dip->mixer_class = SB_OUTPUT_CLASS;
1924 dip->prev = dip->next = AUDIO_MIXER_LAST;
1925 strcpy(dip->label.name, AudioNoutput);
1926 dip->un.v.num_channels = 2;
1927 strcpy(dip->un.v.units.name, AudioNvolume);
1928 return 0;
1929
1930 case SB_AGC:
1931 dip->type = AUDIO_MIXER_ENUM;
1932 dip->mixer_class = SB_INPUT_CLASS;
1933 dip->prev = dip->next = AUDIO_MIXER_LAST;
1934 strcpy(dip->label.name, "AGC");
1935 dip->un.e.num_mem = 2;
1936 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1937 dip->un.e.member[0].ord = 0;
1938 strcpy(dip->un.e.member[1].label.name, AudioNon);
1939 dip->un.e.member[1].ord = 1;
1940 return 0;
1941
1942 case SB_INPUT_CLASS:
1943 dip->type = AUDIO_MIXER_CLASS;
1944 dip->mixer_class = SB_INPUT_CLASS;
1945 dip->next = dip->prev = AUDIO_MIXER_LAST;
1946 strcpy(dip->label.name, AudioCInputs);
1947 return 0;
1948
1949 case SB_EQUALIZATION_CLASS:
1950 dip->type = AUDIO_MIXER_CLASS;
1951 dip->mixer_class = SB_EQUALIZATION_CLASS;
1952 dip->next = dip->prev = AUDIO_MIXER_LAST;
1953 strcpy(dip->label.name, AudioCEqualization);
1954 return 0;
1955 }
1956
1957 return ENXIO;
1958 }
1959