sbdsp.c revision 1.57 1 /* $NetBSD: sbdsp.c,v 1.57 1997/06/06 23:44:02 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <vm/vm.h>
56
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59 #include <machine/bus.h>
60
61 #include <sys/audioio.h>
62 #include <dev/audio_if.h>
63 #include <dev/mulaw.h>
64
65 #include <dev/isa/isavar.h>
66 #include <dev/isa/isadmavar.h>
67
68 #include <dev/isa/sbreg.h>
69 #include <dev/isa/sbdspvar.h>
70
71 #ifdef AUDIO_DEBUG
72 extern void Dprintf __P((const char *, ...));
73 #define DPRINTF(x) if (sbdspdebug) Dprintf x
74 int sbdspdebug = 0;
75 #else
76 #define DPRINTF(x)
77 #endif
78
79 #ifndef SBDSP_NPOLL
80 #define SBDSP_NPOLL 3000
81 #endif
82
83 struct {
84 int wdsp;
85 int rdsp;
86 int wmidi;
87 } sberr;
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 /* XXX Should we round the tc?
115 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
116 */
117 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
118 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
119
120 struct sbmode {
121 short model;
122 u_char channels;
123 u_char precision;
124 u_short lowrate, highrate;
125 u_char cmd;
126 u_char cmdchan;
127 };
128 static struct sbmode sbpmodes[] = {
129 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
130 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
131 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
132 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
133 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
134 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
135 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
136 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
137 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
138 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
139 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
140 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
141 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
142 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
143 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
144 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
145 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
146 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
147 { -1 }
148 };
149 static struct sbmode sbrmodes[] = {
150 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
151 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
152 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
153 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
154 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
155 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
156 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
157 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
158 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
159 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
160 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
161 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
162 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
163 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
164 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
165 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
166 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
167 { -1 }
168 };
169
170 void sbversion __P((struct sbdsp_softc *));
171 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
172 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
173 int sbdsp16_wait __P((struct sbdsp_softc *));
174 void sbdsp_to __P((void *));
175 void sbdsp_pause __P((struct sbdsp_softc *));
176 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
177 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
178 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
179 void sbdsp_set_ifilter __P((void *, int));
180 int sbdsp_get_ifilter __P((void *));
181
182 #ifdef AUDIO_DEBUG
183 void sb_printsc __P((struct sbdsp_softc *));
184
185 void
186 sb_printsc(sc)
187 struct sbdsp_softc *sc;
188 {
189 int i;
190
191 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
192 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
193 sc->sc_iobase, sc->sc_irq);
194 printf("irate %d itc %x orate %d otc %x\n",
195 sc->sc_irate, sc->sc_itc,
196 sc->sc_orate, sc->sc_otc);
197 printf("outport %u inport %u spkron %u nintr %lu\n",
198 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
199 printf("intr %p arg %p\n",
200 sc->sc_intr, sc->sc_arg);
201 printf("gain:");
202 for (i = 0; i < SB_NDEVS; i++)
203 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
204 printf("\n");
205 }
206 #endif /* AUDIO_DEBUG */
207
208 /*
209 * Probe / attach routines.
210 */
211
212 /*
213 * Probe for the soundblaster hardware.
214 */
215 int
216 sbdsp_probe(sc)
217 struct sbdsp_softc *sc;
218 {
219
220 if (sbdsp_reset(sc) < 0) {
221 DPRINTF(("sbdsp: couldn't reset card\n"));
222 return 0;
223 }
224 /* if flags set, go and probe the jazz16 stuff */
225 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
226 sbdsp_jazz16_probe(sc);
227 else
228 sbversion(sc);
229 if (sc->sc_model == SB_UNK) {
230 /* Unknown SB model found. */
231 DPRINTF(("sbdsp: unknown SB model found\n"));
232 return 0;
233 }
234 return 1;
235 }
236
237 /*
238 * Try add-on stuff for Jazz16.
239 */
240 void
241 sbdsp_jazz16_probe(sc)
242 struct sbdsp_softc *sc;
243 {
244 static u_char jazz16_irq_conf[16] = {
245 -1, -1, 0x02, 0x03,
246 -1, 0x01, -1, 0x04,
247 -1, 0x02, 0x05, -1,
248 -1, -1, -1, 0x06};
249 static u_char jazz16_drq_conf[8] = {
250 -1, 0x01, -1, 0x02,
251 -1, 0x03, -1, 0x04};
252
253 bus_space_tag_t iot = sc->sc_iot;
254 bus_space_handle_t ioh;
255
256 sbversion(sc);
257
258 DPRINTF(("jazz16 probe\n"));
259
260 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
261 DPRINTF(("bus map failed\n"));
262 return;
263 }
264
265 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
266 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
267 DPRINTF(("drq/irq check failed\n"));
268 goto done; /* give up, we can't do it. */
269 }
270
271 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
272 delay(10000); /* delay 10 ms */
273 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
274 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
275
276 if (sbdsp_reset(sc) < 0) {
277 DPRINTF(("sbdsp_reset check failed\n"));
278 goto done; /* XXX? what else could we do? */
279 }
280
281 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
282 DPRINTF(("read16 setup failed\n"));
283 goto done;
284 }
285
286 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
287 DPRINTF(("read16 failed\n"));
288 goto done;
289 }
290
291 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
292 sc->sc_drq16 = sc->sc_drq8;
293 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
294 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
295 jazz16_drq_conf[sc->sc_drq8]) ||
296 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
297 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
298 } else {
299 DPRINTF(("jazz16 detected!\n"));
300 sc->sc_model = SB_JAZZ;
301 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
302 }
303
304 done:
305 bus_space_unmap(iot, ioh, 1);
306 }
307
308 /*
309 * Attach hardware to driver, attach hardware driver to audio
310 * pseudo-device driver .
311 */
312 void
313 sbdsp_attach(sc)
314 struct sbdsp_softc *sc;
315 {
316 struct audio_params xparams;
317 int i;
318 u_int v;
319
320 /*
321 * Create our DMA maps.
322 */
323 if (sc->sc_drq8 != -1) {
324 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8,
325 MAXPHYS /* XXX */, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
326 printf("%s: can't create map for drq %d\n",
327 sc->sc_dev.dv_xname, sc->sc_drq8);
328 return;
329 }
330 }
331 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
332 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16,
333 MAXPHYS /* XXX */, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
334 printf("%s: can't create map for drq %d\n",
335 sc->sc_dev.dv_xname, sc->sc_drq16);
336 return;
337 }
338 }
339
340 sbdsp_set_params(sc, AUMODE_RECORD, &audio_default, &xparams);
341 sbdsp_set_params(sc, AUMODE_PLAY, &audio_default, &xparams);
342
343 sbdsp_set_in_port(sc, SB_MIC_VOL);
344 sbdsp_set_out_port(sc, SB_MASTER_VOL);
345
346 if (sc->sc_mixer_model != SBM_NONE) {
347 /* Reset the mixer.*/
348 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
349 /* And set our own default values */
350 for (i = 0; i < SB_NDEVS; i++) {
351 switch(i) {
352 case SB_MIC_VOL:
353 case SB_LINE_IN_VOL:
354 v = 0;
355 break;
356 case SB_BASS:
357 case SB_TREBLE:
358 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
359 break;
360 default:
361 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
362 break;
363 }
364 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
365 sbdsp_set_mixer_gain(sc, i);
366 }
367 sc->in_filter = 0; /* no filters turned on, please */
368 }
369
370 printf(": dsp v%d.%02d%s\n",
371 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
372 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
373 }
374
375 void
376 sbdsp_mix_write(sc, mixerport, val)
377 struct sbdsp_softc *sc;
378 int mixerport;
379 int val;
380 {
381 bus_space_tag_t iot = sc->sc_iot;
382 bus_space_handle_t ioh = sc->sc_ioh;
383 int s;
384
385 s = splaudio();
386 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
387 delay(20);
388 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
389 delay(30);
390 splx(s);
391 }
392
393 int
394 sbdsp_mix_read(sc, mixerport)
395 struct sbdsp_softc *sc;
396 int mixerport;
397 {
398 bus_space_tag_t iot = sc->sc_iot;
399 bus_space_handle_t ioh = sc->sc_ioh;
400 int val;
401 int s;
402
403 s = splaudio();
404 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
405 delay(20);
406 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
407 delay(30);
408 splx(s);
409 return val;
410 }
411
412 /*
413 * Various routines to interface to higher level audio driver
414 */
415
416 int
417 sbdsp_query_encoding(addr, fp)
418 void *addr;
419 struct audio_encoding *fp;
420 {
421 struct sbdsp_softc *sc = addr;
422 int emul;
423
424 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
425
426 switch (fp->index) {
427 case 0:
428 strcpy(fp->name, AudioEulinear);
429 fp->encoding = AUDIO_ENCODING_ULINEAR;
430 fp->precision = 8;
431 fp->flags = 0;
432 return 0;
433 case 1:
434 strcpy(fp->name, AudioEmulaw);
435 fp->encoding = AUDIO_ENCODING_ULAW;
436 fp->precision = 8;
437 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
438 return 0;
439 case 2:
440 strcpy(fp->name, AudioEalaw);
441 fp->encoding = AUDIO_ENCODING_ALAW;
442 fp->precision = 8;
443 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
444 return 0;
445 case 3:
446 strcpy(fp->name, AudioElinear);
447 fp->encoding = AUDIO_ENCODING_LINEAR;
448 fp->precision = 8;
449 fp->flags = emul;
450 return 0;
451 }
452 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
453 return EINVAL;
454
455 switch(fp->index) {
456 case 4:
457 strcpy(fp->name, AudioElinear_le);
458 fp->encoding = AUDIO_ENCODING_LINEAR_LE;
459 fp->precision = 16;
460 fp->flags = 0;
461 return 0;
462 case 5:
463 strcpy(fp->name, AudioEulinear_le);
464 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
465 fp->precision = 16;
466 fp->flags = emul;
467 return 0;
468 case 6:
469 strcpy(fp->name, AudioElinear_be);
470 fp->encoding = AUDIO_ENCODING_LINEAR_BE;
471 fp->precision = 16;
472 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
473 return 0;
474 case 7:
475 strcpy(fp->name, AudioEulinear_be);
476 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
477 fp->precision = 16;
478 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
479 return 0;
480 default:
481 return EINVAL;
482 }
483 return 0;
484 }
485
486 int
487 sbdsp_set_params(addr, mode, p, q)
488 void *addr;
489 int mode;
490 struct audio_params *p, *q;
491 {
492 struct sbdsp_softc *sc = addr;
493 struct sbmode *m;
494 u_int rate, tc = 1, bmode = -1;
495 void (*swcode) __P((void *, u_char *buf, int cnt));
496
497 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
498 m->model != -1; m++) {
499 if (sc->sc_model == m->model &&
500 p->channels == m->channels &&
501 p->precision == m->precision &&
502 p->sample_rate >= m->lowrate &&
503 p->sample_rate < m->highrate)
504 break;
505 }
506 if (m->model == -1)
507 return EINVAL;
508 rate = p->sample_rate;
509 swcode = 0;
510 if (m->model == SB_16) {
511 switch (p->encoding) {
512 case AUDIO_ENCODING_LINEAR_BE:
513 if (p->precision == 16)
514 swcode = swap_bytes;
515 /* fall into */
516 case AUDIO_ENCODING_LINEAR_LE:
517 bmode = 0x10;
518 break;
519 case AUDIO_ENCODING_ULINEAR_BE:
520 if (p->precision == 16)
521 swcode = swap_bytes;
522 /* fall into */
523 case AUDIO_ENCODING_ULINEAR_LE:
524 bmode = 0;
525 break;
526 case AUDIO_ENCODING_ULAW:
527 swcode = mode == AUMODE_PLAY ?
528 mulaw_to_ulinear8 : ulinear8_to_mulaw;
529 bmode = 0;
530 break;
531 case AUDIO_ENCODING_ALAW:
532 swcode = mode == AUMODE_PLAY ?
533 alaw_to_ulinear8 : ulinear8_to_alaw;
534 bmode = 0;
535 break;
536 default:
537 return EINVAL;
538 }
539 if (p->channels == 2)
540 bmode |= 0x20;
541 } else if (m->model == SB_JAZZ && m->precision == 16) {
542 switch (p->encoding) {
543 case AUDIO_ENCODING_LINEAR_LE:
544 break;
545 case AUDIO_ENCODING_ULINEAR_LE:
546 swcode = change_sign16;
547 break;
548 case AUDIO_ENCODING_LINEAR_BE:
549 swcode = swap_bytes;
550 break;
551 case AUDIO_ENCODING_ULINEAR_BE:
552 swcode = mode == AUMODE_PLAY ?
553 swap_bytes_change_sign16 : change_sign16_swap_bytes;
554 break;
555 case AUDIO_ENCODING_ULAW:
556 swcode = mode == AUMODE_PLAY ?
557 mulaw_to_ulinear8 : ulinear8_to_mulaw;
558 break;
559 case AUDIO_ENCODING_ALAW:
560 swcode = mode == AUMODE_PLAY ?
561 alaw_to_ulinear8 : ulinear8_to_alaw;
562 break;
563 default:
564 return EINVAL;
565 }
566 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
567 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
568 } else {
569 switch (p->encoding) {
570 case AUDIO_ENCODING_LINEAR_BE:
571 case AUDIO_ENCODING_LINEAR_LE:
572 swcode = change_sign8;
573 break;
574 case AUDIO_ENCODING_ULINEAR_BE:
575 case AUDIO_ENCODING_ULINEAR_LE:
576 break;
577 case AUDIO_ENCODING_ULAW:
578 swcode = mode == AUMODE_PLAY ?
579 mulaw_to_ulinear8 : ulinear8_to_mulaw;
580 break;
581 case AUDIO_ENCODING_ALAW:
582 swcode = mode == AUMODE_PLAY ?
583 alaw_to_ulinear8 : ulinear8_to_alaw;
584 break;
585 default:
586 return EINVAL;
587 }
588 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
589 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
590 }
591
592 if (mode == AUMODE_PLAY) {
593 sc->sc_orate = rate;
594 sc->sc_otc = tc;
595 sc->sc_omodep = m;
596 sc->sc_obmode = bmode;
597 } else {
598 sc->sc_irate = rate;
599 sc->sc_itc = tc;
600 sc->sc_imodep = m;
601 sc->sc_ibmode = bmode;
602 }
603
604 p->sw_code = swcode;
605
606 /* Update setting for the other mode. */
607 q->encoding = p->encoding;
608 q->channels = p->channels;
609 q->precision = p->precision;
610
611 /*
612 * XXX
613 * Should wait for chip to be idle.
614 */
615 sc->sc_dmadir = SB_DMA_NONE;
616
617 DPRINTF(("set_params: model=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p\n",
618 sc->sc_model, p->sample_rate, p->precision, p->channels,
619 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode));
620
621 return 0;
622 }
623
624 void
625 sbdsp_set_ifilter(addr, which)
626 void *addr;
627 int which;
628 {
629 struct sbdsp_softc *sc = addr;
630 int mixval;
631
632 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
633 switch (which) {
634 case 0:
635 mixval |= SBP_FILTER_OFF;
636 break;
637 case SB_TREBLE:
638 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
639 break;
640 case SB_BASS:
641 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
642 break;
643 default:
644 return;
645 }
646 sc->in_filter = mixval & SBP_IFILTER_MASK;
647 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
648 }
649
650 int
651 sbdsp_get_ifilter(addr)
652 void *addr;
653 {
654 struct sbdsp_softc *sc = addr;
655
656 sc->in_filter =
657 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
658 switch (sc->in_filter) {
659 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
660 return SB_TREBLE;
661 case SBP_FILTER_ON|SBP_IFILTER_LOW:
662 return SB_BASS;
663 default:
664 return 0;
665 }
666 }
667
668 int
669 sbdsp_set_out_port(addr, port)
670 void *addr;
671 int port;
672 {
673 struct sbdsp_softc *sc = addr;
674
675 sc->out_port = port; /* Just record it */
676
677 return 0;
678 }
679
680 int
681 sbdsp_get_out_port(addr)
682 void *addr;
683 {
684 struct sbdsp_softc *sc = addr;
685
686 return sc->out_port;
687 }
688
689
690 int
691 sbdsp_set_in_port(addr, port)
692 void *addr;
693 int port;
694 {
695 return sbdsp_set_in_ports(addr, 1 << port);
696 }
697
698 int
699 sbdsp_set_in_ports(sc, mask)
700 struct sbdsp_softc *sc;
701 int mask;
702 {
703 int bitsl, bitsr;
704 int sbport;
705 int i;
706
707 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
708 sc->sc_mixer_model, mask));
709
710 switch(sc->sc_mixer_model) {
711 case SBM_NONE:
712 return EINVAL;
713 case SBM_CT1335:
714 if (mask != (1 << SB_MIC_VOL))
715 return EINVAL;
716 break;
717 case SBM_CT1345:
718 switch (mask) {
719 case 1 << SB_MIC_VOL:
720 sbport = SBP_FROM_MIC;
721 break;
722 case 1 << SB_LINE_IN_VOL:
723 sbport = SBP_FROM_LINE;
724 break;
725 case 1 << SB_CD_VOL:
726 sbport = SBP_FROM_CD;
727 break;
728 default:
729 return EINVAL;
730 }
731 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
732 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
733 break;
734 case SBM_CT1745:
735 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
736 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
737 return EINVAL;
738 bitsr = 0;
739 if (mask & SB_MIDI_VOL) bitsr |= SBP_MIDI_SRC_R;
740 if (mask & SB_LINE_IN_VOL) bitsr |= SBP_LINE_SRC_R;
741 if (mask & SB_CD_VOL) bitsr |= SBP_CD_SRC_R;
742 bitsl = SB_SRC_R_TO_L(bitsr);
743 if (mask & SB_MIC_VOL) {
744 bitsl |= SBP_MIC_SRC;
745 bitsr |= SBP_MIC_SRC;
746 }
747 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
748 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
749 break;
750 }
751
752 sc->in_mask = mask;
753
754 /* XXX
755 * We have to fake a single port since the upper layer
756 * expects one.
757 */
758 for(i = 0; i < SB_NPORT; i++) {
759 if (mask & (1 << i)) {
760 sc->in_port = i;
761 break;
762 }
763 }
764 return 0;
765 }
766
767 int
768 sbdsp_get_in_port(addr)
769 void *addr;
770 {
771 struct sbdsp_softc *sc = addr;
772
773 return sc->in_port;
774 }
775
776
777 int
778 sbdsp_speaker_ctl(addr, newstate)
779 void *addr;
780 int newstate;
781 {
782 struct sbdsp_softc *sc = addr;
783
784 if ((newstate == SPKR_ON) &&
785 (sc->spkr_state == SPKR_OFF)) {
786 sbdsp_spkron(sc);
787 sc->spkr_state = SPKR_ON;
788 }
789 if ((newstate == SPKR_OFF) &&
790 (sc->spkr_state == SPKR_ON)) {
791 sbdsp_spkroff(sc);
792 sc->spkr_state = SPKR_OFF;
793 }
794 return 0;
795 }
796
797 int
798 sbdsp_round_blocksize(addr, blk)
799 void *addr;
800 int blk;
801 {
802 if (blk > NBPG/3)
803 blk = NBPG/3; /* XXX allow at least 3 blocks */
804
805 /* Round to a multiple of the biggest sample size. */
806 blk &= -4;
807
808 return blk;
809 }
810
811 int
812 sbdsp_commit_settings(addr)
813 void *addr;
814 {
815 return 0;
816 }
817
818 int
819 sbdsp_open(sc, dev, flags)
820 struct sbdsp_softc *sc;
821 dev_t dev;
822 int flags;
823 {
824 DPRINTF(("sbdsp_open: sc=%p\n", sc));
825
826 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
827 return ENXIO;
828
829 sc->sc_open = 1;
830 sc->sc_mintr = 0;
831 if (ISSBPRO(sc) &&
832 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
833 DPRINTF(("sbdsp_open: can't set mono mode\n"));
834 /* we'll readjust when it's time for DMA. */
835 }
836
837 /*
838 * Leave most things as they were; users must change things if
839 * the previous process didn't leave it they way they wanted.
840 * Looked at another way, it's easy to set up a configuration
841 * in one program and leave it for another to inherit.
842 */
843 DPRINTF(("sbdsp_open: opened\n"));
844
845 return 0;
846 }
847
848 void
849 sbdsp_close(addr)
850 void *addr;
851 {
852 struct sbdsp_softc *sc = addr;
853
854 DPRINTF(("sbdsp_close: sc=%p\n", sc));
855
856 sc->sc_open = 0;
857 sbdsp_spkroff(sc);
858 sc->spkr_state = SPKR_OFF;
859 sc->sc_intr = 0;
860 sc->sc_mintr = 0;
861 sbdsp_haltdma(sc);
862
863 DPRINTF(("sbdsp_close: closed\n"));
864 }
865
866 /*
867 * Lower-level routines
868 */
869
870 /*
871 * Reset the card.
872 * Return non-zero if the card isn't detected.
873 */
874 int
875 sbdsp_reset(sc)
876 struct sbdsp_softc *sc;
877 {
878 bus_space_tag_t iot = sc->sc_iot;
879 bus_space_handle_t ioh = sc->sc_ioh;
880
881 sc->sc_intr = 0;
882 if (sc->sc_dmadir != SB_DMA_NONE) {
883 isa_dmaabort(sc->sc_isa, sc->dmachan);
884 sc->sc_dmadir = SB_DMA_NONE;
885 }
886
887 /*
888 * See SBK, section 11.3.
889 * We pulse a reset signal into the card.
890 * Gee, what a brilliant hardware design.
891 */
892 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
893 delay(10);
894 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
895 delay(30);
896 if (sbdsp_rdsp(sc) != SB_MAGIC)
897 return -1;
898
899 return 0;
900 }
901
902 int
903 sbdsp16_wait(sc)
904 struct sbdsp_softc *sc;
905 {
906 bus_space_tag_t iot = sc->sc_iot;
907 bus_space_handle_t ioh = sc->sc_ioh;
908 int i;
909 u_char x;
910
911 for (i = SBDSP_NPOLL; --i >= 0; ) {
912 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
913 delay(10);
914 if ((x & SB_DSP_BUSY) == 0)
915 continue;
916 return 0;
917 }
918 ++sberr.wdsp;
919 return -1;
920 }
921
922 /*
923 * Write a byte to the dsp.
924 * XXX We are at the mercy of the card as we use a
925 * polling loop and wait until it can take the byte.
926 */
927 int
928 sbdsp_wdsp(sc, v)
929 struct sbdsp_softc *sc;
930 int v;
931 {
932 bus_space_tag_t iot = sc->sc_iot;
933 bus_space_handle_t ioh = sc->sc_ioh;
934 int i;
935 u_char x;
936
937 for (i = SBDSP_NPOLL; --i >= 0; ) {
938 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
939 delay(10);
940 if ((x & SB_DSP_BUSY) != 0)
941 continue;
942 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
943 delay(10);
944 return 0;
945 }
946 ++sberr.wdsp;
947 return -1;
948 }
949
950 /*
951 * Read a byte from the DSP, using polling.
952 */
953 int
954 sbdsp_rdsp(sc)
955 struct sbdsp_softc *sc;
956 {
957 bus_space_tag_t iot = sc->sc_iot;
958 bus_space_handle_t ioh = sc->sc_ioh;
959 int i;
960 u_char x;
961
962 for (i = SBDSP_NPOLL; --i >= 0; ) {
963 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
964 delay(10);
965 if ((x & SB_DSP_READY) == 0)
966 continue;
967 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
968 delay(10);
969 return x;
970 }
971 ++sberr.rdsp;
972 return -1;
973 }
974
975 /*
976 * Doing certain things (like toggling the speaker) make
977 * the SB hardware go away for a while, so pause a little.
978 */
979 void
980 sbdsp_to(arg)
981 void *arg;
982 {
983 wakeup(arg);
984 }
985
986 void
987 sbdsp_pause(sc)
988 struct sbdsp_softc *sc;
989 {
990 extern int hz;
991
992 timeout(sbdsp_to, sbdsp_to, hz/8);
993 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
994 }
995
996 /*
997 * Turn on the speaker. The SBK documention says this operation
998 * can take up to 1/10 of a second. Higher level layers should
999 * probably let the task sleep for this amount of time after
1000 * calling here. Otherwise, things might not work (because
1001 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1002 *
1003 * These engineers had their heads up their ass when
1004 * they designed this card.
1005 */
1006 void
1007 sbdsp_spkron(sc)
1008 struct sbdsp_softc *sc;
1009 {
1010 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1011 sbdsp_pause(sc);
1012 }
1013
1014 /*
1015 * Turn off the speaker; see comment above.
1016 */
1017 void
1018 sbdsp_spkroff(sc)
1019 struct sbdsp_softc *sc;
1020 {
1021 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1022 sbdsp_pause(sc);
1023 }
1024
1025 /*
1026 * Read the version number out of the card. Return major code
1027 * in high byte, and minor code in low byte.
1028 */
1029 void
1030 sbversion(sc)
1031 struct sbdsp_softc *sc;
1032 {
1033 int v;
1034
1035 sc->sc_model = SB_UNK;
1036 sc->sc_version = 0;
1037 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1038 return;
1039 v = sbdsp_rdsp(sc) << 8;
1040 v |= sbdsp_rdsp(sc);
1041 if (v < 0)
1042 return;
1043 sc->sc_version = v;
1044 switch(SBVER_MAJOR(v)) {
1045 case 1:
1046 sc->sc_mixer_model = SBM_NONE;
1047 sc->sc_model = SB_1;
1048 break;
1049 case 2:
1050 /* Some SB2 have a mixer, some don't. */
1051 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1052 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1053 /* Check if we can read back the mixer values. */
1054 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1055 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1056 sc->sc_mixer_model = SBM_CT1335;
1057 else
1058 sc->sc_mixer_model = SBM_NONE;
1059 if (SBVER_MINOR(v) == 0)
1060 sc->sc_model = SB_20;
1061 else
1062 sc->sc_model = SB_2x;
1063 break;
1064 case 3:
1065 sc->sc_mixer_model = SBM_CT1345;
1066 sc->sc_model = SB_PRO;
1067 break;
1068 case 4:
1069 sc->sc_mixer_model = SBM_CT1745;
1070 sc->sc_model = SB_16;
1071 break;
1072 }
1073 }
1074
1075 /*
1076 * Halt a DMA in progress. A low-speed transfer can be
1077 * resumed with sbdsp_contdma().
1078 */
1079 int
1080 sbdsp_haltdma(addr)
1081 void *addr;
1082 {
1083 struct sbdsp_softc *sc = addr;
1084
1085 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1086
1087 sbdsp_reset(sc);
1088 return 0;
1089 }
1090
1091 int
1092 sbdsp_contdma(addr)
1093 void *addr;
1094 {
1095 struct sbdsp_softc *sc = addr;
1096
1097 DPRINTF(("sbdsp_contdma: sc=%p\n", sc));
1098
1099 /* XXX how do we reinitialize the DMA controller state? do we care? */
1100 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
1101 return 0;
1102 }
1103
1104 int
1105 sbdsp_set_timeconst(sc, tc)
1106 struct sbdsp_softc *sc;
1107 int tc;
1108 {
1109 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1110
1111 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1112 sbdsp_wdsp(sc, tc) < 0)
1113 return EIO;
1114
1115 return 0;
1116 }
1117
1118 int
1119 sbdsp16_set_rate(sc, cmd, rate)
1120 struct sbdsp_softc *sc;
1121 int cmd, rate;
1122 {
1123 DPRINTF(("sbdsp16_set_rate: sc=%p rate=%d\n", sc, rate));
1124
1125 if (sbdsp_wdsp(sc, cmd) < 0 ||
1126 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1127 sbdsp_wdsp(sc, rate) < 0)
1128 return EIO;
1129 return 0;
1130 }
1131
1132 int
1133 sbdsp_dma_input(addr, p, cc, intr, arg)
1134 void *addr;
1135 void *p;
1136 int cc;
1137 void (*intr) __P((void *));
1138 void *arg;
1139 {
1140 struct sbdsp_softc *sc = addr;
1141 int loop = sc->sc_model != SB_1;
1142 int stereo = sc->sc_imodep->channels == 2;
1143 int filter;
1144
1145 #ifdef AUDIO_DEBUG
1146 if (sbdspdebug > 1)
1147 Dprintf("sbdsp_dma_input: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1148 #endif
1149 #ifdef DIAGNOSTIC
1150 if (sc->sc_imodep->channels == 2 && (cc & 1)) {
1151 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1152 return EIO;
1153 }
1154 #endif
1155
1156 if (sc->sc_dmadir != SB_DMA_IN) {
1157 if (ISSBPRO(sc)) {
1158 if (sbdsp_wdsp(sc, sc->sc_imodep->cmdchan) < 0)
1159 goto badmode;
1160 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1161 sbdsp_mix_write(sc, SBP_INFILTER,
1162 (sbdsp_mix_read(sc, SBP_INFILTER) &
1163 ~SBP_IFILTER_MASK) | filter);
1164 }
1165
1166 if (ISSB16CLASS(sc)) {
1167 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE,
1168 sc->sc_irate))
1169 goto giveup;
1170 } else {
1171 if (sbdsp_set_timeconst(sc, sc->sc_itc))
1172 goto giveup;
1173 }
1174
1175 sc->sc_dmadir = SB_DMA_IN;
1176 sc->dmaflags = DMAMODE_READ;
1177 if (loop)
1178 sc->dmaflags |= DMAMODE_LOOP;
1179 } else {
1180 /* If already started; just return. */
1181 if (loop)
1182 return 0;
1183 }
1184
1185 sc->dmaaddr = p;
1186 sc->dmacnt = loop ? (NBPG/cc)*cc : cc;
1187 sc->dmachan = sc->sc_imodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1188 #ifdef AUDIO_DEBUG
1189 if (sbdspdebug > 1)
1190 Dprintf("sbdsp_dma_input: dmastart %x %p %d %d\n",
1191 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1192 #endif
1193 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1194 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1195 sc->sc_intr = intr;
1196 sc->sc_arg = arg;
1197
1198 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1199 (sc->sc_model != SB_JAZZ && sc->sc_omodep->precision == 16))
1200 cc >>= 1;
1201 --cc;
1202 if (ISSB16CLASS(sc)) {
1203 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1204 sbdsp_wdsp(sc, sc->sc_ibmode) < 0 ||
1205 sbdsp16_wait(sc) ||
1206 sbdsp_wdsp(sc, cc) < 0 ||
1207 sbdsp_wdsp(sc, cc >> 8) < 0) {
1208 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1209 goto giveup;
1210 }
1211 } else {
1212 if (loop) {
1213 DPRINTF(("sbdsp_dma_input: set blocksize=%d\n", cc));
1214 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1215 sbdsp_wdsp(sc, cc) < 0 ||
1216 sbdsp_wdsp(sc, cc >> 8) < 0) {
1217 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1218 goto giveup;
1219 }
1220 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0) {
1221 DPRINTF(("sbdsp_dma_input: SB2 DMA restart failed\n"));
1222 goto giveup;
1223 }
1224 } else {
1225 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1226 sbdsp_wdsp(sc, cc) < 0 ||
1227 sbdsp_wdsp(sc, cc >> 8) < 0) {
1228 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1229 goto giveup;
1230 }
1231 }
1232 }
1233 return 0;
1234
1235 giveup:
1236 sbdsp_reset(sc);
1237 return EIO;
1238
1239 badmode:
1240 DPRINTF(("sbdsp_dma_input: can't set mode\n"));
1241 return EIO;
1242 }
1243
1244 int
1245 sbdsp_dma_output(addr, p, cc, intr, arg)
1246 void *addr;
1247 void *p;
1248 int cc;
1249 void (*intr) __P((void *));
1250 void *arg;
1251 {
1252 struct sbdsp_softc *sc = addr;
1253 int loop = sc->sc_model != SB_1;
1254 int stereo = sc->sc_omodep->channels == 2;
1255 int cmd;
1256
1257 #ifdef AUDIO_DEBUG
1258 if (sbdspdebug > 1)
1259 Dprintf("sbdsp_dma_output: cc=%d 0x%x (0x%x)\n", cc, intr, arg);
1260 #endif
1261 #ifdef DIAGNOSTIC
1262 if (stereo && (cc & 1)) {
1263 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1264 return EIO;
1265 }
1266 #endif
1267
1268 if (sc->sc_dmadir != SB_DMA_OUT) {
1269 if (ISSBPRO(sc)) {
1270 /* make sure we re-set stereo mixer bit when we start
1271 output. */
1272 sbdsp_mix_write(sc, SBP_STEREO,
1273 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1274 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1275 cmd = sc->sc_omodep->cmdchan;
1276 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1277 goto badmode;
1278 }
1279
1280 if (ISSB16CLASS(sc)) {
1281 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE,
1282 sc->sc_orate))
1283 goto giveup;
1284 } else {
1285 if (sbdsp_set_timeconst(sc, sc->sc_otc))
1286 goto giveup;
1287 }
1288
1289 sc->sc_dmadir = SB_DMA_OUT;
1290 sc->dmaflags = DMAMODE_WRITE;
1291 if (loop)
1292 sc->dmaflags |= DMAMODE_LOOP;
1293 } else {
1294 /* Already started; just return. */
1295 if (loop)
1296 return 0;
1297 }
1298
1299 sc->dmaaddr = p;
1300 sc->dmacnt = loop ? (NBPG/cc)*cc : cc;
1301 sc->dmachan = sc->sc_omodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1302 #ifdef AUDIO_DEBUG
1303 if (sbdspdebug > 1)
1304 Dprintf("sbdsp_dma_output: dmastart %x %p %d %d\n",
1305 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1306 #endif
1307 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1308 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1309 sc->sc_intr = intr;
1310 sc->sc_arg = arg;
1311
1312 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1313 (sc->sc_model != SB_JAZZ && sc->sc_omodep->precision == 16))
1314 cc >>= 1;
1315 --cc;
1316 if (ISSB16CLASS(sc)) {
1317 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1318 sbdsp_wdsp(sc, sc->sc_obmode) < 0 ||
1319 sbdsp16_wait(sc) ||
1320 sbdsp_wdsp(sc, cc) < 0 ||
1321 sbdsp_wdsp(sc, cc >> 8) < 0) {
1322 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1323 goto giveup;
1324 }
1325 } else {
1326 if (loop) {
1327 DPRINTF(("sbdsp_dma_output: set blocksize=%d\n", cc));
1328 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1329 sbdsp_wdsp(sc, cc) < 0 ||
1330 sbdsp_wdsp(sc, cc >> 8) < 0) {
1331 DPRINTF(("sbdsp_dma_output: SB2 DMA blocksize failed\n"));
1332 goto giveup;
1333 }
1334 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0) {
1335 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1336 goto giveup;
1337 }
1338 } else {
1339 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1340 sbdsp_wdsp(sc, cc) < 0 ||
1341 sbdsp_wdsp(sc, cc >> 8) < 0) {
1342 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1343 goto giveup;
1344 }
1345 }
1346 }
1347 return 0;
1348
1349 giveup:
1350 sbdsp_reset(sc);
1351 return EIO;
1352
1353 badmode:
1354 DPRINTF(("sbdsp_dma_output: can't set mode\n"));
1355 return EIO;
1356 }
1357
1358 /*
1359 * Only the DSP unit on the sound blaster generates interrupts.
1360 * There are three cases of interrupt: reception of a midi byte
1361 * (when mode is enabled), completion of dma transmission, or
1362 * completion of a dma reception. The three modes are mutually
1363 * exclusive so we know a priori which event has occurred.
1364 */
1365 int
1366 sbdsp_intr(arg)
1367 void *arg;
1368 {
1369 struct sbdsp_softc *sc = arg;
1370 int loop = sc->sc_model != SB_1;
1371 u_char irq;
1372
1373 #ifdef AUDIO_DEBUG
1374 if (sbdspdebug > 1)
1375 Dprintf("sbdsp_intr: intr=0x%x\n", sc->sc_intr);
1376 #endif
1377 if (ISSB16CLASS(sc)) {
1378 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1379 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16)) == 0)
1380 return 0;
1381 } else {
1382 if (!loop && !isa_dmafinished(sc->sc_isa, sc->dmachan))
1383 return 0;
1384 irq = SBP_IRQ_DMA8;
1385 }
1386 sc->sc_interrupts++;
1387 delay(10); /* XXX why? */
1388 #if 0
1389 if (sc->sc_mintr != 0) {
1390 x = sbdsp_rdsp(sc);
1391 (*sc->sc_mintr)(sc->sc_arg, x);
1392 } else
1393 #endif
1394 if (sc->sc_intr != 0) {
1395 /* clear interrupt */
1396 if (irq & SBP_IRQ_DMA8)
1397 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1398 if (irq & SBP_IRQ_DMA16)
1399 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1400 if (!loop)
1401 isa_dmadone(sc->sc_isa, sc->dmachan);
1402 (*sc->sc_intr)(sc->sc_arg);
1403 } else {
1404 return 0;
1405 }
1406 return 1;
1407 }
1408
1409 #if 0
1410 /*
1411 * Enter midi uart mode and arrange for read interrupts
1412 * to vector to `intr'. This puts the card in a mode
1413 * which allows only midi I/O; the card must be reset
1414 * to leave this mode. Unfortunately, the card does not
1415 * use transmit interrupts, so bytes must be output
1416 * using polling. To keep the polling overhead to a
1417 * minimum, output should be driven off a timer.
1418 * This is a little tricky since only 320us separate
1419 * consecutive midi bytes.
1420 */
1421 void
1422 sbdsp_set_midi_mode(sc, intr, arg)
1423 struct sbdsp_softc *sc;
1424 void (*intr)();
1425 void *arg;
1426 {
1427
1428 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1429 sc->sc_mintr = intr;
1430 sc->sc_intr = 0;
1431 sc->sc_arg = arg;
1432 }
1433
1434 /*
1435 * Write a byte to the midi port, when in midi uart mode.
1436 */
1437 void
1438 sbdsp_midi_output(sc, v)
1439 struct sbdsp_softc *sc;
1440 int v;
1441 {
1442
1443 if (sbdsp_wdsp(sc, v) < 0)
1444 ++sberr.wmidi;
1445 }
1446 #endif
1447
1448 int
1449 sbdsp_setfd(addr, flag)
1450 void *addr;
1451 int flag;
1452 {
1453 /* Can't do full-duplex */
1454 return ENOTTY;
1455 }
1456
1457 void
1458 sbdsp_set_mixer_gain(sc, port)
1459 struct sbdsp_softc *sc;
1460 int port;
1461 {
1462 int src, gain;
1463
1464 switch(sc->sc_mixer_model) {
1465 case SBM_NONE:
1466 return;
1467 case SBM_CT1335:
1468 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1469 switch(port) {
1470 case SB_MASTER_VOL:
1471 src = SBP_1335_MASTER_VOL;
1472 break;
1473 case SB_MIDI_VOL:
1474 src = SBP_1335_MIDI_VOL;
1475 break;
1476 case SB_CD_VOL:
1477 src = SBP_1335_CD_VOL;
1478 break;
1479 case SB_VOICE_VOL:
1480 src = SBP_1335_VOICE_VOL;
1481 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1482 break;
1483 default:
1484 return;
1485 }
1486 sbdsp_mix_write(sc, src, gain);
1487 break;
1488 case SBM_CT1345:
1489 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1490 sc->gain[port][SB_RIGHT]);
1491 switch (port) {
1492 case SB_MIC_VOL:
1493 src = SBP_MIC_VOL;
1494 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1495 break;
1496 case SB_MASTER_VOL:
1497 src = SBP_MASTER_VOL;
1498 break;
1499 case SB_LINE_IN_VOL:
1500 src = SBP_LINE_VOL;
1501 break;
1502 case SB_VOICE_VOL:
1503 src = SBP_VOICE_VOL;
1504 break;
1505 case SB_MIDI_VOL:
1506 src = SBP_MIDI_VOL;
1507 break;
1508 case SB_CD_VOL:
1509 src = SBP_CD_VOL;
1510 break;
1511 default:
1512 return;
1513 }
1514 sbdsp_mix_write(sc, src, gain);
1515 break;
1516 case SBM_CT1745:
1517 switch (port) {
1518 case SB_MIC_VOL:
1519 src = SB16P_MIC_L;
1520 break;
1521 case SB_MASTER_VOL:
1522 src = SB16P_MASTER_L;
1523 break;
1524 case SB_LINE_IN_VOL:
1525 src = SB16P_LINE_L;
1526 break;
1527 case SB_VOICE_VOL:
1528 src = SB16P_VOICE_L;
1529 break;
1530 case SB_MIDI_VOL:
1531 src = SB16P_MIDI_L;
1532 break;
1533 case SB_CD_VOL:
1534 src = SB16P_CD_L;
1535 break;
1536 case SB_INPUT_GAIN:
1537 src = SB16P_INPUT_GAIN_L;
1538 break;
1539 case SB_OUTPUT_GAIN:
1540 src = SB16P_OUTPUT_GAIN_L;
1541 break;
1542 case SB_TREBLE:
1543 src = SB16P_TREBLE_L;
1544 break;
1545 case SB_BASS:
1546 src = SB16P_BASS_L;
1547 break;
1548 case SB_PCSPEAKER:
1549 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1550 return;
1551 default:
1552 return;
1553 }
1554 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1555 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1556 break;
1557 }
1558 }
1559
1560 int
1561 sbdsp_mixer_set_port(addr, cp)
1562 void *addr;
1563 mixer_ctrl_t *cp;
1564 {
1565 struct sbdsp_softc *sc = addr;
1566 int lgain, rgain;
1567
1568 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1569 cp->un.value.num_channels));
1570
1571 if (sc->sc_mixer_model == SBM_NONE)
1572 return EINVAL;
1573
1574 switch (cp->dev) {
1575 case SB_TREBLE:
1576 case SB_BASS:
1577 if (sc->sc_mixer_model == SBM_CT1345) {
1578 if (cp->type != AUDIO_MIXER_ENUM)
1579 return EINVAL;
1580 switch (cp->dev) {
1581 case SB_TREBLE:
1582 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1583 return 0;
1584 case SB_BASS:
1585 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1586 return 0;
1587 }
1588 }
1589 case SB_PCSPEAKER:
1590 case SB_INPUT_GAIN:
1591 case SB_OUTPUT_GAIN:
1592 if (sc->sc_mixer_model != SBM_CT1745)
1593 return EINVAL;
1594 case SB_MIC_VOL:
1595 case SB_LINE_IN_VOL:
1596 if (sc->sc_mixer_model == SBM_CT1335)
1597 return EINVAL;
1598 case SB_VOICE_VOL:
1599 case SB_MIDI_VOL:
1600 case SB_CD_VOL:
1601 case SB_MASTER_VOL:
1602 if (cp->type != AUDIO_MIXER_VALUE)
1603 return EINVAL;
1604
1605 /*
1606 * All the mixer ports are stereo except for the microphone.
1607 * If we get a single-channel gain value passed in, then we
1608 * duplicate it to both left and right channels.
1609 */
1610
1611 switch (cp->dev) {
1612 case SB_MIC_VOL:
1613 if (cp->un.value.num_channels != 1)
1614 return EINVAL;
1615
1616 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1617 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1618 break;
1619 case SB_PCSPEAKER:
1620 if (cp->un.value.num_channels != 1)
1621 return EINVAL;
1622 /* fall into */
1623 case SB_INPUT_GAIN:
1624 case SB_OUTPUT_GAIN:
1625 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1626 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1627 break;
1628 default:
1629 switch (cp->un.value.num_channels) {
1630 case 1:
1631 lgain = rgain = SB_ADJUST_GAIN(sc,
1632 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1633 break;
1634 case 2:
1635 if (sc->sc_mixer_model == SBM_CT1335)
1636 return EINVAL;
1637 lgain = SB_ADJUST_GAIN(sc,
1638 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1639 rgain = SB_ADJUST_GAIN(sc,
1640 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1641 break;
1642 default:
1643 return EINVAL;
1644 }
1645 break;
1646 }
1647 sc->gain[cp->dev][SB_LEFT] = lgain;
1648 sc->gain[cp->dev][SB_RIGHT] = rgain;
1649
1650 sbdsp_set_mixer_gain(sc, cp->dev);
1651 break;
1652
1653 case SB_RECORD_SOURCE:
1654 if (sc->sc_mixer_model == SBM_CT1745) {
1655 if (cp->type != AUDIO_MIXER_SET)
1656 return EINVAL;
1657 return sbdsp_set_in_ports(sc, cp->un.mask);
1658 } else {
1659 if (cp->type != AUDIO_MIXER_ENUM)
1660 return EINVAL;
1661 return sbdsp_set_in_port(sc, cp->un.ord);
1662 }
1663 break;
1664
1665 case SB_AGC:
1666 if (sc->sc_mixer_model != SBM_CT1745 || cp->type != AUDIO_MIXER_ENUM)
1667 return EINVAL;
1668 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1669 break;
1670
1671 default:
1672 return EINVAL;
1673 }
1674
1675 return 0;
1676 }
1677
1678 int
1679 sbdsp_mixer_get_port(addr, cp)
1680 void *addr;
1681 mixer_ctrl_t *cp;
1682 {
1683 struct sbdsp_softc *sc = addr;
1684
1685 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1686
1687 if (sc->sc_mixer_model == SBM_NONE)
1688 return EINVAL;
1689
1690 switch (cp->dev) {
1691 case SB_TREBLE:
1692 case SB_BASS:
1693 if (sc->sc_mixer_model == SBM_CT1345) {
1694 switch (cp->dev) {
1695 case SB_TREBLE:
1696 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1697 return 0;
1698 case SB_BASS:
1699 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1700 return 0;
1701 }
1702 }
1703 case SB_PCSPEAKER:
1704 case SB_INPUT_GAIN:
1705 case SB_OUTPUT_GAIN:
1706 if (sc->sc_mixer_model != SBM_CT1745)
1707 return EINVAL;
1708 case SB_MIC_VOL:
1709 case SB_LINE_IN_VOL:
1710 if (sc->sc_mixer_model == SBM_CT1335)
1711 return EINVAL;
1712 case SB_VOICE_VOL:
1713 case SB_MIDI_VOL:
1714 case SB_CD_VOL:
1715 case SB_MASTER_VOL:
1716 switch (cp->dev) {
1717 case SB_MIC_VOL:
1718 case SB_PCSPEAKER:
1719 if (cp->un.value.num_channels != 1)
1720 return EINVAL;
1721 /* fall into */
1722 default:
1723 switch (cp->un.value.num_channels) {
1724 case 1:
1725 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1726 sc->gain[cp->dev][SB_LEFT];
1727 break;
1728 case 2:
1729 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1730 sc->gain[cp->dev][SB_LEFT];
1731 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1732 sc->gain[cp->dev][SB_RIGHT];
1733 break;
1734 default:
1735 return EINVAL;
1736 }
1737 break;
1738 }
1739 break;
1740
1741 case SB_RECORD_SOURCE:
1742 if (sc->sc_mixer_model == SBM_CT1745)
1743 cp->un.mask = sc->in_mask;
1744 else
1745 cp->un.ord = sc->in_port;
1746 break;
1747
1748 case SB_AGC:
1749 if (sc->sc_mixer_model != SBM_CT1745)
1750 return EINVAL;
1751 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1752 break;
1753
1754 default:
1755 return EINVAL;
1756 }
1757
1758 return 0;
1759 }
1760
1761 int
1762 sbdsp_mixer_query_devinfo(addr, dip)
1763 void *addr;
1764 mixer_devinfo_t *dip;
1765 {
1766 struct sbdsp_softc *sc = addr;
1767 int chan, class;
1768
1769 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1770 sc->sc_mixer_model, dip->index));
1771
1772 if (sc->sc_mixer_model == SBM_NONE)
1773 return ENXIO;
1774
1775 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1776 class = sc->sc_mixer_model == SBM_CT1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1777
1778 switch (dip->index) {
1779 case SB_MASTER_VOL:
1780 dip->type = AUDIO_MIXER_VALUE;
1781 dip->mixer_class = SB_OUTPUT_CLASS;
1782 dip->prev = dip->next = AUDIO_MIXER_LAST;
1783 strcpy(dip->label.name, AudioNmaster);
1784 dip->un.v.num_channels = chan;
1785 strcpy(dip->un.v.units.name, AudioNvolume);
1786 return 0;
1787 case SB_MIDI_VOL:
1788 dip->type = AUDIO_MIXER_VALUE;
1789 dip->mixer_class = class;
1790 dip->prev = AUDIO_MIXER_LAST;
1791 dip->next = AUDIO_MIXER_LAST;
1792 strcpy(dip->label.name, AudioNfmsynth);
1793 dip->un.v.num_channels = chan;
1794 strcpy(dip->un.v.units.name, AudioNvolume);
1795 return 0;
1796 case SB_CD_VOL:
1797 dip->type = AUDIO_MIXER_VALUE;
1798 dip->mixer_class = class;
1799 dip->prev = AUDIO_MIXER_LAST;
1800 dip->next = AUDIO_MIXER_LAST;
1801 strcpy(dip->label.name, AudioNcd);
1802 dip->un.v.num_channels = chan;
1803 strcpy(dip->un.v.units.name, AudioNvolume);
1804 return 0;
1805 case SB_VOICE_VOL:
1806 dip->type = AUDIO_MIXER_VALUE;
1807 dip->mixer_class = class;
1808 dip->prev = AUDIO_MIXER_LAST;
1809 dip->next = AUDIO_MIXER_LAST;
1810 strcpy(dip->label.name, AudioNdac);
1811 dip->un.v.num_channels = chan;
1812 strcpy(dip->un.v.units.name, AudioNvolume);
1813 return 0;
1814 case SB_OUTPUT_CLASS:
1815 dip->type = AUDIO_MIXER_CLASS;
1816 dip->mixer_class = SB_OUTPUT_CLASS;
1817 dip->next = dip->prev = AUDIO_MIXER_LAST;
1818 strcpy(dip->label.name, AudioCOutputs);
1819 return 0;
1820 }
1821
1822 if (sc->sc_mixer_model == SBM_CT1335)
1823 return ENXIO;
1824
1825 switch (dip->index) {
1826 case SB_MIC_VOL:
1827 dip->type = AUDIO_MIXER_VALUE;
1828 dip->mixer_class = class;
1829 dip->prev = AUDIO_MIXER_LAST;
1830 dip->next = AUDIO_MIXER_LAST;
1831 strcpy(dip->label.name, AudioNmicrophone);
1832 dip->un.v.num_channels = 1;
1833 strcpy(dip->un.v.units.name, AudioNvolume);
1834 return 0;
1835
1836 case SB_LINE_IN_VOL:
1837 dip->type = AUDIO_MIXER_VALUE;
1838 dip->mixer_class = class;
1839 dip->prev = AUDIO_MIXER_LAST;
1840 dip->next = AUDIO_MIXER_LAST;
1841 strcpy(dip->label.name, AudioNline);
1842 dip->un.v.num_channels = 2;
1843 strcpy(dip->un.v.units.name, AudioNvolume);
1844 return 0;
1845
1846 case SB_RECORD_SOURCE:
1847 dip->mixer_class = SB_RECORD_CLASS;
1848 dip->prev = dip->next = AUDIO_MIXER_LAST;
1849 strcpy(dip->label.name, AudioNsource);
1850 if (sc->sc_mixer_model == SBM_CT1745) {
1851 dip->type = AUDIO_MIXER_SET;
1852 dip->un.s.num_mem = 4;
1853 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1854 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
1855 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1856 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
1857 strcpy(dip->un.s.member[2].label.name, AudioNline);
1858 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
1859 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1860 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
1861 } else {
1862 dip->type = AUDIO_MIXER_ENUM;
1863 dip->un.e.num_mem = 3;
1864 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1865 dip->un.e.member[0].ord = SB_MIC_VOL;
1866 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1867 dip->un.e.member[1].ord = SB_CD_VOL;
1868 strcpy(dip->un.e.member[2].label.name, AudioNline);
1869 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
1870 }
1871 return 0;
1872
1873 case SB_BASS:
1874 dip->prev = dip->next = AUDIO_MIXER_LAST;
1875 strcpy(dip->label.name, AudioNbass);
1876 if (sc->sc_mixer_model == SBM_CT1745) {
1877 dip->type = AUDIO_MIXER_VALUE;
1878 dip->mixer_class = SB_EQUALIZATION_CLASS;
1879 dip->un.v.num_channels = 2;
1880 strcpy(dip->un.v.units.name, AudioNbass);
1881 } else {
1882 dip->type = AUDIO_MIXER_ENUM;
1883 dip->mixer_class = SB_INPUT_CLASS;
1884 dip->un.e.num_mem = 2;
1885 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1886 dip->un.e.member[0].ord = 0;
1887 strcpy(dip->un.e.member[1].label.name, AudioNon);
1888 dip->un.e.member[1].ord = 1;
1889 }
1890 return 0;
1891
1892 case SB_TREBLE:
1893 dip->prev = dip->next = AUDIO_MIXER_LAST;
1894 strcpy(dip->label.name, AudioNtreble);
1895 if (sc->sc_mixer_model == SBM_CT1745) {
1896 dip->type = AUDIO_MIXER_VALUE;
1897 dip->mixer_class = SB_EQUALIZATION_CLASS;
1898 dip->un.v.num_channels = 2;
1899 strcpy(dip->un.v.units.name, AudioNtreble);
1900 } else {
1901 dip->type = AUDIO_MIXER_ENUM;
1902 dip->mixer_class = SB_INPUT_CLASS;
1903 dip->un.e.num_mem = 2;
1904 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1905 dip->un.e.member[0].ord = 0;
1906 strcpy(dip->un.e.member[1].label.name, AudioNon);
1907 dip->un.e.member[1].ord = 1;
1908 }
1909 return 0;
1910
1911 case SB_RECORD_CLASS: /* record source class */
1912 dip->type = AUDIO_MIXER_CLASS;
1913 dip->mixer_class = SB_RECORD_CLASS;
1914 dip->next = dip->prev = AUDIO_MIXER_LAST;
1915 strcpy(dip->label.name, AudioCRecord);
1916 return 0;
1917
1918 }
1919
1920 if (sc->sc_mixer_model == SBM_CT1345)
1921 return ENXIO;
1922
1923 switch(dip->index) {
1924 case SB_PCSPEAKER:
1925 dip->type = AUDIO_MIXER_VALUE;
1926 dip->mixer_class = SB_INPUT_CLASS;
1927 dip->prev = dip->next = AUDIO_MIXER_LAST;
1928 strcpy(dip->label.name, "pc_speaker");
1929 dip->un.v.num_channels = 1;
1930 strcpy(dip->un.v.units.name, AudioNvolume);
1931 return 0;
1932
1933 case SB_INPUT_GAIN:
1934 dip->type = AUDIO_MIXER_VALUE;
1935 dip->mixer_class = SB_INPUT_CLASS;
1936 dip->prev = dip->next = AUDIO_MIXER_LAST;
1937 strcpy(dip->label.name, AudioNinput);
1938 dip->un.v.num_channels = 2;
1939 strcpy(dip->un.v.units.name, AudioNvolume);
1940 return 0;
1941
1942 case SB_OUTPUT_GAIN:
1943 dip->type = AUDIO_MIXER_VALUE;
1944 dip->mixer_class = SB_OUTPUT_CLASS;
1945 dip->prev = dip->next = AUDIO_MIXER_LAST;
1946 strcpy(dip->label.name, AudioNoutput);
1947 dip->un.v.num_channels = 2;
1948 strcpy(dip->un.v.units.name, AudioNvolume);
1949 return 0;
1950
1951 case SB_AGC:
1952 dip->type = AUDIO_MIXER_ENUM;
1953 dip->mixer_class = SB_INPUT_CLASS;
1954 dip->prev = dip->next = AUDIO_MIXER_LAST;
1955 strcpy(dip->label.name, "AGC");
1956 dip->un.e.num_mem = 2;
1957 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1958 dip->un.e.member[0].ord = 0;
1959 strcpy(dip->un.e.member[1].label.name, AudioNon);
1960 dip->un.e.member[1].ord = 1;
1961 return 0;
1962
1963 case SB_INPUT_CLASS:
1964 dip->type = AUDIO_MIXER_CLASS;
1965 dip->mixer_class = SB_INPUT_CLASS;
1966 dip->next = dip->prev = AUDIO_MIXER_LAST;
1967 strcpy(dip->label.name, AudioCInputs);
1968 return 0;
1969
1970 case SB_EQUALIZATION_CLASS:
1971 dip->type = AUDIO_MIXER_CLASS;
1972 dip->mixer_class = SB_EQUALIZATION_CLASS;
1973 dip->next = dip->prev = AUDIO_MIXER_LAST;
1974 strcpy(dip->label.name, AudioCEqualization);
1975 return 0;
1976 }
1977
1978 return ENXIO;
1979 }
1980