sbdsp.c revision 1.60 1 /* $NetBSD: sbdsp.c,v 1.60 1997/07/27 01:17:07 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <vm/vm.h>
56
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59 #include <machine/bus.h>
60
61 #include <sys/audioio.h>
62 #include <dev/audio_if.h>
63 #include <dev/mulaw.h>
64
65 #include <dev/isa/isavar.h>
66 #include <dev/isa/isadmavar.h>
67
68 #include <dev/isa/sbreg.h>
69 #include <dev/isa/sbdspvar.h>
70
71 #define MAXDMA 65536 /* XXX */
72
73 #ifdef AUDIO_DEBUG
74 #define DPRINTF(x) if (sbdspdebug) printf x
75 int sbdspdebug = 0;
76 #else
77 #define DPRINTF(x)
78 #endif
79
80 #ifndef SBDSP_NPOLL
81 #define SBDSP_NPOLL 3000
82 #endif
83
84 struct {
85 int wdsp;
86 int rdsp;
87 int wmidi;
88 } sberr;
89
90 /*
91 * Time constant routines follow. See SBK, section 12.
92 * Although they don't come out and say it (in the docs),
93 * the card clearly uses a 1MHz countdown timer, as the
94 * low-speed formula (p. 12-4) is:
95 * tc = 256 - 10^6 / sr
96 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
97 * and a 256MHz clock is used:
98 * tc = 65536 - 256 * 10^ 6 / sr
99 * Since we can only use the upper byte of the HS TC, the two formulae
100 * are equivalent. (Why didn't they say so?) E.g.,
101 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
102 *
103 * The crossover point (from low- to high-speed modes) is different
104 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
105 *
106 * SBPRO SB20
107 * ----- --------
108 * input ls min 4 KHz 4 KHz
109 * input ls max 23 KHz 13 KHz
110 * input hs max 44.1 KHz 15 KHz
111 * output ls min 4 KHz 4 KHz
112 * output ls max 23 KHz 23 KHz
113 * output hs max 44.1 KHz 44.1 KHz
114 */
115 /* XXX Should we round the tc?
116 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
117 */
118 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
119 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
120
121 struct sbmode {
122 short model;
123 u_char channels;
124 u_char precision;
125 u_short lowrate, highrate;
126 u_char cmd;
127 u_char cmdchan;
128 };
129 static struct sbmode sbpmodes[] = {
130 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
131 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
132 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
133 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
134 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
135 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
136 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
137 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
138 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
139 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
140 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
141 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
142 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
143 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
144 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
145 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
146 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
147 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
148 { -1 }
149 };
150 static struct sbmode sbrmodes[] = {
151 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
152 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
153 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
154 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
155 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
156 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
157 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
158 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
159 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
160 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
161 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
162 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
163 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
164 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
165 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
166 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
167 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
168 { -1 }
169 };
170
171 void sbversion __P((struct sbdsp_softc *));
172 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
173 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
174 int sbdsp16_wait __P((struct sbdsp_softc *));
175 void sbdsp_to __P((void *));
176 void sbdsp_pause __P((struct sbdsp_softc *));
177 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
178 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
179 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
180 void sbdsp_set_ifilter __P((void *, int));
181 int sbdsp_get_ifilter __P((void *));
182
183 #ifdef AUDIO_DEBUG
184 void sb_printsc __P((struct sbdsp_softc *));
185
186 void
187 sb_printsc(sc)
188 struct sbdsp_softc *sc;
189 {
190 int i;
191
192 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
193 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
194 sc->sc_iobase, sc->sc_irq);
195 printf("irate %d itc %x orate %d otc %x\n",
196 sc->sc_irate, sc->sc_itc,
197 sc->sc_orate, sc->sc_otc);
198 printf("outport %u inport %u spkron %u nintr %lu\n",
199 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
200 printf("intr %p arg %p\n",
201 sc->sc_intr, sc->sc_arg);
202 printf("gain:");
203 for (i = 0; i < SB_NDEVS; i++)
204 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
205 printf("\n");
206 }
207 #endif /* AUDIO_DEBUG */
208
209 /*
210 * Probe / attach routines.
211 */
212
213 /*
214 * Probe for the soundblaster hardware.
215 */
216 int
217 sbdsp_probe(sc)
218 struct sbdsp_softc *sc;
219 {
220
221 if (sbdsp_reset(sc) < 0) {
222 DPRINTF(("sbdsp: couldn't reset card\n"));
223 return 0;
224 }
225 /* if flags set, go and probe the jazz16 stuff */
226 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
227 sbdsp_jazz16_probe(sc);
228 else
229 sbversion(sc);
230 if (sc->sc_model == SB_UNK) {
231 /* Unknown SB model found. */
232 DPRINTF(("sbdsp: unknown SB model found\n"));
233 return 0;
234 }
235 return 1;
236 }
237
238 /*
239 * Try add-on stuff for Jazz16.
240 */
241 void
242 sbdsp_jazz16_probe(sc)
243 struct sbdsp_softc *sc;
244 {
245 static u_char jazz16_irq_conf[16] = {
246 -1, -1, 0x02, 0x03,
247 -1, 0x01, -1, 0x04,
248 -1, 0x02, 0x05, -1,
249 -1, -1, -1, 0x06};
250 static u_char jazz16_drq_conf[8] = {
251 -1, 0x01, -1, 0x02,
252 -1, 0x03, -1, 0x04};
253
254 bus_space_tag_t iot = sc->sc_iot;
255 bus_space_handle_t ioh;
256
257 sbversion(sc);
258
259 DPRINTF(("jazz16 probe\n"));
260
261 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
262 DPRINTF(("bus map failed\n"));
263 return;
264 }
265
266 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
267 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
268 DPRINTF(("drq/irq check failed\n"));
269 goto done; /* give up, we can't do it. */
270 }
271
272 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
273 delay(10000); /* delay 10 ms */
274 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
275 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
276
277 if (sbdsp_reset(sc) < 0) {
278 DPRINTF(("sbdsp_reset check failed\n"));
279 goto done; /* XXX? what else could we do? */
280 }
281
282 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
283 DPRINTF(("read16 setup failed\n"));
284 goto done;
285 }
286
287 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
288 DPRINTF(("read16 failed\n"));
289 goto done;
290 }
291
292 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
293 sc->sc_drq16 = sc->sc_drq8;
294 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
295 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
296 jazz16_drq_conf[sc->sc_drq8]) ||
297 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
298 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
299 } else {
300 DPRINTF(("jazz16 detected!\n"));
301 sc->sc_model = SB_JAZZ;
302 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
303 }
304
305 done:
306 bus_space_unmap(iot, ioh, 1);
307 }
308
309 /*
310 * Attach hardware to driver, attach hardware driver to audio
311 * pseudo-device driver .
312 */
313 void
314 sbdsp_attach(sc)
315 struct sbdsp_softc *sc;
316 {
317 struct audio_params xparams;
318 int i;
319 u_int v;
320
321 /*
322 * Create our DMA maps.
323 */
324 if (sc->sc_drq8 != -1) {
325 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8,
326 MAXPHYS /* XXX */, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
327 printf("%s: can't create map for drq %d\n",
328 sc->sc_dev.dv_xname, sc->sc_drq8);
329 return;
330 }
331 }
332 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
333 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16,
334 MAXPHYS /* XXX */, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
335 printf("%s: can't create map for drq %d\n",
336 sc->sc_dev.dv_xname, sc->sc_drq16);
337 return;
338 }
339 }
340
341 sbdsp_set_params(sc, AUMODE_RECORD, &audio_default, &xparams);
342 sbdsp_set_params(sc, AUMODE_PLAY, &audio_default, &xparams);
343
344 sbdsp_set_in_port(sc, SB_MIC_VOL);
345 sbdsp_set_out_port(sc, SB_MASTER_VOL);
346
347 if (sc->sc_mixer_model != SBM_NONE) {
348 /* Reset the mixer.*/
349 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
350 /* And set our own default values */
351 for (i = 0; i < SB_NDEVS; i++) {
352 switch(i) {
353 case SB_MIC_VOL:
354 case SB_LINE_IN_VOL:
355 v = 0;
356 break;
357 case SB_BASS:
358 case SB_TREBLE:
359 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
360 break;
361 default:
362 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
363 break;
364 }
365 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
366 sbdsp_set_mixer_gain(sc, i);
367 }
368 sc->in_filter = 0; /* no filters turned on, please */
369 }
370
371 printf(" drq16 %d", sc->sc_drq16);
372 printf(": dsp v%d.%02d%s\n",
373 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
374 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
375 }
376
377 void
378 sbdsp_mix_write(sc, mixerport, val)
379 struct sbdsp_softc *sc;
380 int mixerport;
381 int val;
382 {
383 bus_space_tag_t iot = sc->sc_iot;
384 bus_space_handle_t ioh = sc->sc_ioh;
385 int s;
386
387 s = splaudio();
388 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
389 delay(20);
390 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
391 delay(30);
392 splx(s);
393 }
394
395 int
396 sbdsp_mix_read(sc, mixerport)
397 struct sbdsp_softc *sc;
398 int mixerport;
399 {
400 bus_space_tag_t iot = sc->sc_iot;
401 bus_space_handle_t ioh = sc->sc_ioh;
402 int val;
403 int s;
404
405 s = splaudio();
406 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
407 delay(20);
408 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
409 delay(30);
410 splx(s);
411 return val;
412 }
413
414 /*
415 * Various routines to interface to higher level audio driver
416 */
417
418 int
419 sbdsp_query_encoding(addr, fp)
420 void *addr;
421 struct audio_encoding *fp;
422 {
423 struct sbdsp_softc *sc = addr;
424 int emul;
425
426 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
427
428 switch (fp->index) {
429 case 0:
430 strcpy(fp->name, AudioEulinear);
431 fp->encoding = AUDIO_ENCODING_ULINEAR;
432 fp->precision = 8;
433 fp->flags = 0;
434 return 0;
435 case 1:
436 strcpy(fp->name, AudioEmulaw);
437 fp->encoding = AUDIO_ENCODING_ULAW;
438 fp->precision = 8;
439 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
440 return 0;
441 case 2:
442 strcpy(fp->name, AudioEalaw);
443 fp->encoding = AUDIO_ENCODING_ALAW;
444 fp->precision = 8;
445 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
446 return 0;
447 case 3:
448 strcpy(fp->name, AudioElinear);
449 fp->encoding = AUDIO_ENCODING_SLINEAR;
450 fp->precision = 8;
451 fp->flags = emul;
452 return 0;
453 }
454 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
455 return EINVAL;
456
457 switch(fp->index) {
458 case 4:
459 strcpy(fp->name, AudioElinear_le);
460 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
461 fp->precision = 16;
462 fp->flags = 0;
463 return 0;
464 case 5:
465 strcpy(fp->name, AudioEulinear_le);
466 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
467 fp->precision = 16;
468 fp->flags = emul;
469 return 0;
470 case 6:
471 strcpy(fp->name, AudioElinear_be);
472 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
473 fp->precision = 16;
474 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
475 return 0;
476 case 7:
477 strcpy(fp->name, AudioEulinear_be);
478 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
479 fp->precision = 16;
480 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
481 return 0;
482 default:
483 return EINVAL;
484 }
485 return 0;
486 }
487
488 int
489 sbdsp_set_params(addr, mode, p, q)
490 void *addr;
491 int mode;
492 struct audio_params *p, *q;
493 {
494 struct sbdsp_softc *sc = addr;
495 struct sbmode *m;
496 u_int rate, tc = 1, bmode = -1;
497 void (*swcode) __P((void *, u_char *buf, int cnt));
498
499 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
500 m->model != -1; m++) {
501 if (sc->sc_model == m->model &&
502 p->channels == m->channels &&
503 p->precision == m->precision &&
504 p->sample_rate >= m->lowrate &&
505 p->sample_rate < m->highrate)
506 break;
507 }
508 if (m->model == -1)
509 return EINVAL;
510 rate = p->sample_rate;
511 swcode = 0;
512 if (m->model == SB_16) {
513 switch (p->encoding) {
514 case AUDIO_ENCODING_SLINEAR_BE:
515 if (p->precision == 16)
516 swcode = swap_bytes;
517 /* fall into */
518 case AUDIO_ENCODING_SLINEAR_LE:
519 bmode = 0x10;
520 break;
521 case AUDIO_ENCODING_ULINEAR_BE:
522 if (p->precision == 16)
523 swcode = swap_bytes;
524 /* fall into */
525 case AUDIO_ENCODING_ULINEAR_LE:
526 bmode = 0;
527 break;
528 case AUDIO_ENCODING_ULAW:
529 swcode = mode == AUMODE_PLAY ?
530 mulaw_to_ulinear8 : ulinear8_to_mulaw;
531 bmode = 0;
532 break;
533 case AUDIO_ENCODING_ALAW:
534 swcode = mode == AUMODE_PLAY ?
535 alaw_to_ulinear8 : ulinear8_to_alaw;
536 bmode = 0;
537 break;
538 default:
539 return EINVAL;
540 }
541 if (p->channels == 2)
542 bmode |= 0x20;
543 } else if (m->model == SB_JAZZ && m->precision == 16) {
544 switch (p->encoding) {
545 case AUDIO_ENCODING_SLINEAR_LE:
546 break;
547 case AUDIO_ENCODING_ULINEAR_LE:
548 swcode = change_sign16;
549 break;
550 case AUDIO_ENCODING_SLINEAR_BE:
551 swcode = swap_bytes;
552 break;
553 case AUDIO_ENCODING_ULINEAR_BE:
554 swcode = mode == AUMODE_PLAY ?
555 swap_bytes_change_sign16 : change_sign16_swap_bytes;
556 break;
557 case AUDIO_ENCODING_ULAW:
558 swcode = mode == AUMODE_PLAY ?
559 mulaw_to_ulinear8 : ulinear8_to_mulaw;
560 break;
561 case AUDIO_ENCODING_ALAW:
562 swcode = mode == AUMODE_PLAY ?
563 alaw_to_ulinear8 : ulinear8_to_alaw;
564 break;
565 default:
566 return EINVAL;
567 }
568 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
569 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
570 } else {
571 switch (p->encoding) {
572 case AUDIO_ENCODING_SLINEAR_BE:
573 case AUDIO_ENCODING_SLINEAR_LE:
574 swcode = change_sign8;
575 break;
576 case AUDIO_ENCODING_ULINEAR_BE:
577 case AUDIO_ENCODING_ULINEAR_LE:
578 break;
579 case AUDIO_ENCODING_ULAW:
580 swcode = mode == AUMODE_PLAY ?
581 mulaw_to_ulinear8 : ulinear8_to_mulaw;
582 break;
583 case AUDIO_ENCODING_ALAW:
584 swcode = mode == AUMODE_PLAY ?
585 alaw_to_ulinear8 : ulinear8_to_alaw;
586 break;
587 default:
588 return EINVAL;
589 }
590 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
591 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
592 }
593
594 if (mode == AUMODE_PLAY) {
595 sc->sc_orate = rate;
596 sc->sc_otc = tc;
597 sc->sc_omodep = m;
598 sc->sc_obmode = bmode;
599 } else {
600 sc->sc_irate = rate;
601 sc->sc_itc = tc;
602 sc->sc_imodep = m;
603 sc->sc_ibmode = bmode;
604 }
605
606 p->sw_code = swcode;
607
608 /* Update setting for the other mode. */
609 q->encoding = p->encoding;
610 q->channels = p->channels;
611 q->precision = p->precision;
612
613 /*
614 * XXX
615 * Should wait for chip to be idle.
616 */
617 sc->sc_dmadir = SB_DMA_NONE;
618
619 DPRINTF(("set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p\n",
620 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
621 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode));
622
623 return 0;
624 }
625
626 void
627 sbdsp_set_ifilter(addr, which)
628 void *addr;
629 int which;
630 {
631 struct sbdsp_softc *sc = addr;
632 int mixval;
633
634 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
635 switch (which) {
636 case 0:
637 mixval |= SBP_FILTER_OFF;
638 break;
639 case SB_TREBLE:
640 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
641 break;
642 case SB_BASS:
643 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
644 break;
645 default:
646 return;
647 }
648 sc->in_filter = mixval & SBP_IFILTER_MASK;
649 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
650 }
651
652 int
653 sbdsp_get_ifilter(addr)
654 void *addr;
655 {
656 struct sbdsp_softc *sc = addr;
657
658 sc->in_filter =
659 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
660 switch (sc->in_filter) {
661 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
662 return SB_TREBLE;
663 case SBP_FILTER_ON|SBP_IFILTER_LOW:
664 return SB_BASS;
665 default:
666 return 0;
667 }
668 }
669
670 int
671 sbdsp_set_out_port(addr, port)
672 void *addr;
673 int port;
674 {
675 struct sbdsp_softc *sc = addr;
676
677 sc->out_port = port; /* Just record it */
678
679 return 0;
680 }
681
682 int
683 sbdsp_get_out_port(addr)
684 void *addr;
685 {
686 struct sbdsp_softc *sc = addr;
687
688 return sc->out_port;
689 }
690
691
692 int
693 sbdsp_set_in_port(addr, port)
694 void *addr;
695 int port;
696 {
697 return sbdsp_set_in_ports(addr, 1 << port);
698 }
699
700 int
701 sbdsp_set_in_ports(sc, mask)
702 struct sbdsp_softc *sc;
703 int mask;
704 {
705 int bitsl, bitsr;
706 int sbport;
707 int i;
708
709 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
710 sc->sc_mixer_model, mask));
711
712 switch(sc->sc_mixer_model) {
713 case SBM_NONE:
714 return EINVAL;
715 case SBM_CT1335:
716 if (mask != (1 << SB_MIC_VOL))
717 return EINVAL;
718 break;
719 case SBM_CT1345:
720 switch (mask) {
721 case 1 << SB_MIC_VOL:
722 sbport = SBP_FROM_MIC;
723 break;
724 case 1 << SB_LINE_IN_VOL:
725 sbport = SBP_FROM_LINE;
726 break;
727 case 1 << SB_CD_VOL:
728 sbport = SBP_FROM_CD;
729 break;
730 default:
731 return (EINVAL);
732 }
733 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
734 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
735 break;
736 case SBM_CT1745:
737 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
738 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
739 return EINVAL;
740 bitsr = 0;
741 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
742 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
743 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
744 bitsl = SB_SRC_R_TO_L(bitsr);
745 if (mask & (1<<SB_MIC_VOL)) {
746 bitsl |= SBP_MIC_SRC;
747 bitsr |= SBP_MIC_SRC;
748 }
749 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
750 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
751 break;
752 }
753
754 sc->in_mask = mask;
755
756 /* XXX
757 * We have to fake a single port since the upper layer
758 * expects one.
759 */
760 for(i = 0; i < SB_NPORT; i++) {
761 if (mask & (1 << i)) {
762 sc->in_port = i;
763 break;
764 }
765 }
766 return 0;
767 }
768
769 int
770 sbdsp_get_in_port(addr)
771 void *addr;
772 {
773 struct sbdsp_softc *sc = addr;
774
775 return sc->in_port;
776 }
777
778
779 int
780 sbdsp_speaker_ctl(addr, newstate)
781 void *addr;
782 int newstate;
783 {
784 struct sbdsp_softc *sc = addr;
785
786 if ((newstate == SPKR_ON) &&
787 (sc->spkr_state == SPKR_OFF)) {
788 sbdsp_spkron(sc);
789 sc->spkr_state = SPKR_ON;
790 }
791 if ((newstate == SPKR_OFF) &&
792 (sc->spkr_state == SPKR_ON)) {
793 sbdsp_spkroff(sc);
794 sc->spkr_state = SPKR_OFF;
795 }
796 return 0;
797 }
798
799 int
800 sbdsp_round_blocksize(addr, blk)
801 void *addr;
802 int blk;
803 {
804 if (blk > MAXDMA)
805 blk = MAXDMA; /* cannot DMA more than 64k */
806 blk &= -4; /* round to biggest sample size */
807 return blk;
808 }
809
810 int
811 sbdsp_commit_settings(addr)
812 void *addr;
813 {
814 return 0;
815 }
816
817 int
818 sbdsp_open(sc, dev, flags)
819 struct sbdsp_softc *sc;
820 dev_t dev;
821 int flags;
822 {
823 DPRINTF(("sbdsp_open: sc=%p\n", sc));
824
825 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
826 return ENXIO;
827
828 sc->sc_open = 1;
829 sc->sc_mintr = 0;
830 if (ISSBPRO(sc) &&
831 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
832 DPRINTF(("sbdsp_open: can't set mono mode\n"));
833 /* we'll readjust when it's time for DMA. */
834 }
835
836 /*
837 * Leave most things as they were; users must change things if
838 * the previous process didn't leave it they way they wanted.
839 * Looked at another way, it's easy to set up a configuration
840 * in one program and leave it for another to inherit.
841 */
842 DPRINTF(("sbdsp_open: opened\n"));
843
844 return 0;
845 }
846
847 void
848 sbdsp_close(addr)
849 void *addr;
850 {
851 struct sbdsp_softc *sc = addr;
852
853 DPRINTF(("sbdsp_close: sc=%p\n", sc));
854
855 sc->sc_open = 0;
856 sbdsp_spkroff(sc);
857 sc->spkr_state = SPKR_OFF;
858 sc->sc_intr = 0;
859 sc->sc_mintr = 0;
860 sbdsp_haltdma(sc);
861
862 DPRINTF(("sbdsp_close: closed\n"));
863 }
864
865 /*
866 * Lower-level routines
867 */
868
869 /*
870 * Reset the card.
871 * Return non-zero if the card isn't detected.
872 */
873 int
874 sbdsp_reset(sc)
875 struct sbdsp_softc *sc;
876 {
877 bus_space_tag_t iot = sc->sc_iot;
878 bus_space_handle_t ioh = sc->sc_ioh;
879
880 sc->sc_intr = 0;
881 if (sc->sc_dmadir != SB_DMA_NONE) {
882 isa_dmaabort(sc->sc_isa, sc->dmachan);
883 sc->sc_dmadir = SB_DMA_NONE;
884 }
885
886 /*
887 * See SBK, section 11.3.
888 * We pulse a reset signal into the card.
889 * Gee, what a brilliant hardware design.
890 */
891 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
892 delay(10);
893 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
894 delay(30);
895 if (sbdsp_rdsp(sc) != SB_MAGIC)
896 return -1;
897
898 return 0;
899 }
900
901 int
902 sbdsp16_wait(sc)
903 struct sbdsp_softc *sc;
904 {
905 bus_space_tag_t iot = sc->sc_iot;
906 bus_space_handle_t ioh = sc->sc_ioh;
907 int i;
908 u_char x;
909
910 for (i = SBDSP_NPOLL; --i >= 0; ) {
911 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
912 delay(10);
913 if ((x & SB_DSP_BUSY) == 0)
914 continue;
915 return 0;
916 }
917 ++sberr.wdsp;
918 return -1;
919 }
920
921 /*
922 * Write a byte to the dsp.
923 * XXX We are at the mercy of the card as we use a
924 * polling loop and wait until it can take the byte.
925 */
926 int
927 sbdsp_wdsp(sc, v)
928 struct sbdsp_softc *sc;
929 int v;
930 {
931 bus_space_tag_t iot = sc->sc_iot;
932 bus_space_handle_t ioh = sc->sc_ioh;
933 int i;
934 u_char x;
935
936 for (i = SBDSP_NPOLL; --i >= 0; ) {
937 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
938 delay(10);
939 if ((x & SB_DSP_BUSY) != 0)
940 continue;
941 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
942 delay(10);
943 return 0;
944 }
945 ++sberr.wdsp;
946 return -1;
947 }
948
949 /*
950 * Read a byte from the DSP, using polling.
951 */
952 int
953 sbdsp_rdsp(sc)
954 struct sbdsp_softc *sc;
955 {
956 bus_space_tag_t iot = sc->sc_iot;
957 bus_space_handle_t ioh = sc->sc_ioh;
958 int i;
959 u_char x;
960
961 for (i = SBDSP_NPOLL; --i >= 0; ) {
962 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
963 delay(10);
964 if ((x & SB_DSP_READY) == 0)
965 continue;
966 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
967 delay(10);
968 return x;
969 }
970 ++sberr.rdsp;
971 return -1;
972 }
973
974 /*
975 * Doing certain things (like toggling the speaker) make
976 * the SB hardware go away for a while, so pause a little.
977 */
978 void
979 sbdsp_to(arg)
980 void *arg;
981 {
982 wakeup(arg);
983 }
984
985 void
986 sbdsp_pause(sc)
987 struct sbdsp_softc *sc;
988 {
989 extern int hz;
990
991 timeout(sbdsp_to, sbdsp_to, hz/8);
992 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
993 }
994
995 /*
996 * Turn on the speaker. The SBK documention says this operation
997 * can take up to 1/10 of a second. Higher level layers should
998 * probably let the task sleep for this amount of time after
999 * calling here. Otherwise, things might not work (because
1000 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1001 *
1002 * These engineers had their heads up their ass when
1003 * they designed this card.
1004 */
1005 void
1006 sbdsp_spkron(sc)
1007 struct sbdsp_softc *sc;
1008 {
1009 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1010 sbdsp_pause(sc);
1011 }
1012
1013 /*
1014 * Turn off the speaker; see comment above.
1015 */
1016 void
1017 sbdsp_spkroff(sc)
1018 struct sbdsp_softc *sc;
1019 {
1020 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1021 sbdsp_pause(sc);
1022 }
1023
1024 /*
1025 * Read the version number out of the card.
1026 * Store version information in the softc.
1027 */
1028 void
1029 sbversion(sc)
1030 struct sbdsp_softc *sc;
1031 {
1032 int v;
1033
1034 sc->sc_model = SB_UNK;
1035 sc->sc_version = 0;
1036 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1037 return;
1038 v = sbdsp_rdsp(sc) << 8;
1039 v |= sbdsp_rdsp(sc);
1040 if (v < 0)
1041 return;
1042 sc->sc_version = v;
1043 switch(SBVER_MAJOR(v)) {
1044 case 1:
1045 sc->sc_mixer_model = SBM_NONE;
1046 sc->sc_model = SB_1;
1047 break;
1048 case 2:
1049 /* Some SB2 have a mixer, some don't. */
1050 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1051 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1052 /* Check if we can read back the mixer values. */
1053 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1054 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1055 sc->sc_mixer_model = SBM_CT1335;
1056 else
1057 sc->sc_mixer_model = SBM_NONE;
1058 if (SBVER_MINOR(v) == 0)
1059 sc->sc_model = SB_20;
1060 else
1061 sc->sc_model = SB_2x;
1062 break;
1063 case 3:
1064 sc->sc_mixer_model = SBM_CT1345;
1065 sc->sc_model = SB_PRO;
1066 break;
1067 case 4:
1068 sc->sc_mixer_model = SBM_CT1745;
1069 sc->sc_model = SB_16;
1070 break;
1071 }
1072 }
1073
1074 /*
1075 * Halt a DMA in progress. A low-speed transfer can be
1076 * resumed with sbdsp_contdma().
1077 */
1078 int
1079 sbdsp_haltdma(addr)
1080 void *addr;
1081 {
1082 struct sbdsp_softc *sc = addr;
1083
1084 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1085
1086 sbdsp_reset(sc);
1087 return 0;
1088 }
1089
1090 int
1091 sbdsp_contdma(addr)
1092 void *addr;
1093 {
1094 struct sbdsp_softc *sc = addr;
1095
1096 DPRINTF(("sbdsp_contdma: sc=%p\n", sc));
1097
1098 /* XXX how do we reinitialize the DMA controller state? do we care? */
1099 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
1100 return 0;
1101 }
1102
1103 int
1104 sbdsp_set_timeconst(sc, tc)
1105 struct sbdsp_softc *sc;
1106 int tc;
1107 {
1108 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1109
1110 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1111 sbdsp_wdsp(sc, tc) < 0)
1112 return EIO;
1113
1114 return 0;
1115 }
1116
1117 int
1118 sbdsp16_set_rate(sc, cmd, rate)
1119 struct sbdsp_softc *sc;
1120 int cmd, rate;
1121 {
1122 DPRINTF(("sbdsp16_set_rate: sc=%p rate=%d\n", sc, rate));
1123
1124 if (sbdsp_wdsp(sc, cmd) < 0 ||
1125 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1126 sbdsp_wdsp(sc, rate) < 0)
1127 return EIO;
1128 return 0;
1129 }
1130
1131 int
1132 sbdsp_dma_init_input(addr, buf, cc)
1133 void *addr;
1134 void *buf;
1135 int cc;
1136 {
1137 struct sbdsp_softc *sc = addr;
1138
1139 if (sc->sc_model == SB_1)
1140 return 0;
1141 sc->dmaflags = DMAMODE_READ | DMAMODE_LOOP;
1142 sc->dmaaddr = buf;
1143 sc->dmacnt = cc;
1144 sc->dmachan = sc->sc_imodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1145 DPRINTF(("sbdsp: dma start loop input addr=%p cc=%d chan=%d\n",
1146 buf, cc, sc->dmachan));
1147 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1148 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1149 return 0;
1150 }
1151
1152 int
1153 sbdsp_dma_input(addr, p, cc, intr, arg)
1154 void *addr;
1155 void *p;
1156 int cc;
1157 void (*intr) __P((void *));
1158 void *arg;
1159 {
1160 struct sbdsp_softc *sc = addr;
1161 int loop = sc->sc_model != SB_1;
1162 int stereo = sc->sc_imodep->channels == 2;
1163 int filter;
1164
1165 #ifdef AUDIO_DEBUG
1166 if (sbdspdebug > 1)
1167 printf("sbdsp_dma_input: cc=%d %p (%p)\n", cc, intr, arg);
1168 #endif
1169 #ifdef DIAGNOSTIC
1170 if (sc->sc_imodep->channels == 2 && (cc & 1)) {
1171 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1172 return EIO;
1173 }
1174 #endif
1175
1176 if (sc->sc_dmadir != SB_DMA_IN) {
1177 if (ISSBPRO(sc)) {
1178 if (sbdsp_wdsp(sc, sc->sc_imodep->cmdchan) < 0)
1179 goto badmode;
1180 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1181 sbdsp_mix_write(sc, SBP_INFILTER,
1182 (sbdsp_mix_read(sc, SBP_INFILTER) &
1183 ~SBP_IFILTER_MASK) | filter);
1184 }
1185
1186 if (ISSB16CLASS(sc)) {
1187 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE,
1188 sc->sc_irate)) {
1189 DPRINTF(("sbdsp_dma_input: rate=%d set failed\n",
1190 sc->sc_irate));
1191 goto giveup;
1192 }
1193 } else {
1194 if (sbdsp_set_timeconst(sc, sc->sc_itc)) {
1195 DPRINTF(("sbdsp_dma_output: tc=%d set failed\n",
1196 sc->sc_irate));
1197 goto giveup;
1198 }
1199 }
1200
1201 sc->sc_dmadir = SB_DMA_IN;
1202 sc->dmaflags = DMAMODE_READ;
1203 } else {
1204 /* If already started just return. */
1205 if (loop)
1206 return 0;
1207 }
1208
1209 if (!loop) {
1210 sc->dmaaddr = p;
1211 sc->dmacnt = cc;
1212 sc->dmachan = sc->sc_imodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1213 #ifdef AUDIO_DEBUG
1214 if (sbdspdebug > 2)
1215 printf("sbdsp_dma_input: dmastart %x %p %ld %d\n",
1216 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1217 #endif
1218 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1219 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1220 }
1221 sc->sc_intr = intr;
1222 sc->sc_arg = arg;
1223
1224 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1225 (sc->sc_model != SB_JAZZ && sc->sc_imodep->precision == 16))
1226 cc >>= 1;
1227 --cc;
1228 if (ISSB16CLASS(sc)) {
1229 #ifdef AUDIO_DEBUG
1230 if (sbdspdebug > 2)
1231 printf("sbdsp16 input command %02x %02x %d\n",
1232 sc->sc_imodep->cmd, sc->sc_ibmode, cc);
1233 #endif
1234 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1235 sbdsp_wdsp(sc, sc->sc_ibmode) < 0 ||
1236 sbdsp16_wait(sc) ||
1237 sbdsp_wdsp(sc, cc) < 0 ||
1238 sbdsp_wdsp(sc, cc >> 8) < 0) {
1239 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1240 goto giveup;
1241 }
1242 } else {
1243 if (loop) {
1244 DPRINTF(("sbdsp_dma_input: set blocksize=%d\n", cc));
1245 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1246 sbdsp_wdsp(sc, cc) < 0 ||
1247 sbdsp_wdsp(sc, cc >> 8) < 0) {
1248 DPRINTF(("sbdsp_dma_input: SB2 DMA blocksize failed\n"));
1249 goto giveup;
1250 }
1251 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0) {
1252 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1253 goto giveup;
1254 }
1255 } else {
1256 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1257 sbdsp_wdsp(sc, cc) < 0 ||
1258 sbdsp_wdsp(sc, cc >> 8) < 0) {
1259 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1260 goto giveup;
1261 }
1262 }
1263 }
1264 return 0;
1265
1266 giveup:
1267 sbdsp_reset(sc);
1268 return EIO;
1269
1270 badmode:
1271 DPRINTF(("sbdsp_dma_input: can't set mode\n"));
1272 return EIO;
1273 }
1274
1275 int
1276 sbdsp_dma_init_output(addr, buf, cc)
1277 void *addr;
1278 void *buf;
1279 int cc;
1280 {
1281 struct sbdsp_softc *sc = addr;
1282
1283 if (sc->sc_model == SB_1)
1284 return 0;
1285 sc->dmaflags = DMAMODE_WRITE | DMAMODE_LOOP;
1286 sc->dmaaddr = buf;
1287 sc->dmacnt = cc;
1288 sc->dmachan = sc->sc_omodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1289 DPRINTF(("sbdsp: dma start loop output addr=%p cc=%d chan=%d\n",
1290 buf, cc, sc->dmachan));
1291 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1292 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1293 return 0;
1294 }
1295
1296 int
1297 sbdsp_dma_output(addr, p, cc, intr, arg)
1298 void *addr;
1299 void *p;
1300 int cc;
1301 void (*intr) __P((void *));
1302 void *arg;
1303 {
1304 struct sbdsp_softc *sc = addr;
1305 int loop = sc->sc_model != SB_1;
1306 int stereo = sc->sc_omodep->channels == 2;
1307 int cmd;
1308
1309 #ifdef AUDIO_DEBUG
1310 if (sbdspdebug > 1)
1311 printf("sbdsp_dma_output: cc=%d %p (%p)\n", cc, intr, arg);
1312 #endif
1313 #ifdef DIAGNOSTIC
1314 if (stereo && (cc & 1)) {
1315 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1316 return EIO;
1317 }
1318 #endif
1319
1320 if (sc->sc_dmadir != SB_DMA_OUT) {
1321 if (ISSBPRO(sc)) {
1322 /* make sure we re-set stereo mixer bit when we start
1323 output. */
1324 sbdsp_mix_write(sc, SBP_STEREO,
1325 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1326 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1327 cmd = sc->sc_omodep->cmdchan;
1328 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1329 goto badmode;
1330 }
1331
1332 if (ISSB16CLASS(sc)) {
1333 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE,
1334 sc->sc_orate)) {
1335 DPRINTF(("sbdsp_dma_output: rate=%d set failed\n",
1336 sc->sc_orate));
1337 goto giveup;
1338 }
1339 } else {
1340 if (sbdsp_set_timeconst(sc, sc->sc_otc)) {
1341 DPRINTF(("sbdsp_dma_output: tc=%d set failed\n",
1342 sc->sc_orate));
1343 goto giveup;
1344 }
1345 }
1346
1347 sc->sc_dmadir = SB_DMA_OUT;
1348 sc->dmaflags = DMAMODE_WRITE;
1349 } else {
1350 /* If already started just return. */
1351 if (loop)
1352 return 0;
1353 }
1354
1355 if (!loop) {
1356 sc->dmaaddr = p;
1357 sc->dmacnt = cc;
1358 sc->dmachan = sc->sc_omodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1359 #ifdef AUDIO_DEBUG
1360 if (sbdspdebug > 2)
1361 printf("sbdsp: start dma out flags=%x, addr=%p, cnt=%ld, chan=%d\n",
1362 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1363 #endif
1364 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1365 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1366 }
1367 sc->sc_intr = intr;
1368 sc->sc_arg = arg;
1369
1370 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1371 (sc->sc_model != SB_JAZZ && sc->sc_omodep->precision == 16))
1372 cc >>= 1;
1373 --cc;
1374 if (ISSB16CLASS(sc)) {
1375 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1376 sbdsp_wdsp(sc, sc->sc_obmode) < 0 ||
1377 sbdsp16_wait(sc) ||
1378 sbdsp_wdsp(sc, cc) < 0 ||
1379 sbdsp_wdsp(sc, cc >> 8) < 0) {
1380 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1381 goto giveup;
1382 }
1383 } else {
1384 if (loop) {
1385 DPRINTF(("sbdsp_dma_output: set blocksize=%d\n", cc));
1386 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1387 sbdsp_wdsp(sc, cc) < 0 ||
1388 sbdsp_wdsp(sc, cc >> 8) < 0) {
1389 DPRINTF(("sbdsp_dma_output: SB2 DMA blocksize failed\n"));
1390 goto giveup;
1391 }
1392 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0) {
1393 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1394 goto giveup;
1395 }
1396 } else {
1397 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1398 sbdsp_wdsp(sc, cc) < 0 ||
1399 sbdsp_wdsp(sc, cc >> 8) < 0) {
1400 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1401 goto giveup;
1402 }
1403 }
1404 }
1405 return 0;
1406
1407 giveup:
1408 sbdsp_reset(sc);
1409 return EIO;
1410
1411 badmode:
1412 DPRINTF(("sbdsp_dma_output: can't set mode\n"));
1413 return EIO;
1414 }
1415
1416 /*
1417 * Only the DSP unit on the sound blaster generates interrupts.
1418 * There are three cases of interrupt: reception of a midi byte
1419 * (when mode is enabled), completion of dma transmission, or
1420 * completion of a dma reception. The three modes are mutually
1421 * exclusive so we know a priori which event has occurred.
1422 *
1423 * If there is interrupt sharing or a spurious interrupt occurs
1424 * there is no way to distinuish this on an SB2. So if you have
1425 * an SB2 and experience problems, buy an SB16 (it's only $25).
1426 */
1427 int
1428 sbdsp_intr(arg)
1429 void *arg;
1430 {
1431 struct sbdsp_softc *sc = arg;
1432 int loop = sc->sc_model != SB_1;
1433 u_char irq;
1434
1435 #ifdef AUDIO_DEBUG
1436 if (sbdspdebug > 1)
1437 printf("sbdsp_intr: intr=%p\n", sc->sc_intr);
1438 #endif
1439 if (ISSB16CLASS(sc)) {
1440 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1441 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16)) == 0)
1442 return 0;
1443 } else {
1444 if (!loop && !isa_dmafinished(sc->sc_isa, sc->dmachan))
1445 return 0;
1446 irq = SBP_IRQ_DMA8;
1447 }
1448 sc->sc_interrupts++;
1449 delay(10); /* XXX why? */
1450 #if 0
1451 if (sc->sc_mintr != 0) {
1452 x = sbdsp_rdsp(sc);
1453 (*sc->sc_mintr)(sc->sc_arg, x);
1454 } else
1455 #endif
1456 if (sc->sc_intr != 0) {
1457 /* clear interrupt */
1458 if (irq & SBP_IRQ_DMA8)
1459 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1460 if (irq & SBP_IRQ_DMA16)
1461 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1462 if (!loop)
1463 isa_dmadone(sc->sc_isa, sc->dmachan);
1464 (*sc->sc_intr)(sc->sc_arg);
1465 } else {
1466 return 0;
1467 }
1468 return 1;
1469 }
1470
1471 #if 0
1472 /*
1473 * Enter midi uart mode and arrange for read interrupts
1474 * to vector to `intr'. This puts the card in a mode
1475 * which allows only midi I/O; the card must be reset
1476 * to leave this mode. Unfortunately, the card does not
1477 * use transmit interrupts, so bytes must be output
1478 * using polling. To keep the polling overhead to a
1479 * minimum, output should be driven off a timer.
1480 * This is a little tricky since only 320us separate
1481 * consecutive midi bytes.
1482 */
1483 void
1484 sbdsp_set_midi_mode(sc, intr, arg)
1485 struct sbdsp_softc *sc;
1486 void (*intr)();
1487 void *arg;
1488 {
1489
1490 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1491 sc->sc_mintr = intr;
1492 sc->sc_intr = 0;
1493 sc->sc_arg = arg;
1494 }
1495
1496 /*
1497 * Write a byte to the midi port, when in midi uart mode.
1498 */
1499 void
1500 sbdsp_midi_output(sc, v)
1501 struct sbdsp_softc *sc;
1502 int v;
1503 {
1504
1505 if (sbdsp_wdsp(sc, v) < 0)
1506 ++sberr.wmidi;
1507 }
1508 #endif
1509
1510 int
1511 sbdsp_setfd(addr, flag)
1512 void *addr;
1513 int flag;
1514 {
1515 /* Can't do full-duplex */
1516 return ENOTTY;
1517 }
1518
1519 void
1520 sbdsp_set_mixer_gain(sc, port)
1521 struct sbdsp_softc *sc;
1522 int port;
1523 {
1524 int src, gain;
1525
1526 switch(sc->sc_mixer_model) {
1527 case SBM_NONE:
1528 return;
1529 case SBM_CT1335:
1530 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1531 switch(port) {
1532 case SB_MASTER_VOL:
1533 src = SBP_1335_MASTER_VOL;
1534 break;
1535 case SB_MIDI_VOL:
1536 src = SBP_1335_MIDI_VOL;
1537 break;
1538 case SB_CD_VOL:
1539 src = SBP_1335_CD_VOL;
1540 break;
1541 case SB_VOICE_VOL:
1542 src = SBP_1335_VOICE_VOL;
1543 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1544 break;
1545 default:
1546 return;
1547 }
1548 sbdsp_mix_write(sc, src, gain);
1549 break;
1550 case SBM_CT1345:
1551 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1552 sc->gain[port][SB_RIGHT]);
1553 switch (port) {
1554 case SB_MIC_VOL:
1555 src = SBP_MIC_VOL;
1556 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1557 break;
1558 case SB_MASTER_VOL:
1559 src = SBP_MASTER_VOL;
1560 break;
1561 case SB_LINE_IN_VOL:
1562 src = SBP_LINE_VOL;
1563 break;
1564 case SB_VOICE_VOL:
1565 src = SBP_VOICE_VOL;
1566 break;
1567 case SB_MIDI_VOL:
1568 src = SBP_MIDI_VOL;
1569 break;
1570 case SB_CD_VOL:
1571 src = SBP_CD_VOL;
1572 break;
1573 default:
1574 return;
1575 }
1576 sbdsp_mix_write(sc, src, gain);
1577 break;
1578 case SBM_CT1745:
1579 switch (port) {
1580 case SB_MIC_VOL:
1581 src = SB16P_MIC_L;
1582 break;
1583 case SB_MASTER_VOL:
1584 src = SB16P_MASTER_L;
1585 break;
1586 case SB_LINE_IN_VOL:
1587 src = SB16P_LINE_L;
1588 break;
1589 case SB_VOICE_VOL:
1590 src = SB16P_VOICE_L;
1591 break;
1592 case SB_MIDI_VOL:
1593 src = SB16P_MIDI_L;
1594 break;
1595 case SB_CD_VOL:
1596 src = SB16P_CD_L;
1597 break;
1598 case SB_INPUT_GAIN:
1599 src = SB16P_INPUT_GAIN_L;
1600 break;
1601 case SB_OUTPUT_GAIN:
1602 src = SB16P_OUTPUT_GAIN_L;
1603 break;
1604 case SB_TREBLE:
1605 src = SB16P_TREBLE_L;
1606 break;
1607 case SB_BASS:
1608 src = SB16P_BASS_L;
1609 break;
1610 case SB_PCSPEAKER:
1611 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1612 return;
1613 default:
1614 return;
1615 }
1616 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1617 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1618 break;
1619 }
1620 }
1621
1622 int
1623 sbdsp_mixer_set_port(addr, cp)
1624 void *addr;
1625 mixer_ctrl_t *cp;
1626 {
1627 struct sbdsp_softc *sc = addr;
1628 int lgain, rgain;
1629
1630 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1631 cp->un.value.num_channels));
1632
1633 if (sc->sc_mixer_model == SBM_NONE)
1634 return EINVAL;
1635
1636 switch (cp->dev) {
1637 case SB_TREBLE:
1638 case SB_BASS:
1639 if (sc->sc_mixer_model == SBM_CT1345) {
1640 if (cp->type != AUDIO_MIXER_ENUM)
1641 return EINVAL;
1642 switch (cp->dev) {
1643 case SB_TREBLE:
1644 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1645 return 0;
1646 case SB_BASS:
1647 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1648 return 0;
1649 }
1650 }
1651 case SB_PCSPEAKER:
1652 case SB_INPUT_GAIN:
1653 case SB_OUTPUT_GAIN:
1654 if (sc->sc_mixer_model != SBM_CT1745)
1655 return EINVAL;
1656 case SB_MIC_VOL:
1657 case SB_LINE_IN_VOL:
1658 if (sc->sc_mixer_model == SBM_CT1335)
1659 return EINVAL;
1660 case SB_VOICE_VOL:
1661 case SB_MIDI_VOL:
1662 case SB_CD_VOL:
1663 case SB_MASTER_VOL:
1664 if (cp->type != AUDIO_MIXER_VALUE)
1665 return EINVAL;
1666
1667 /*
1668 * All the mixer ports are stereo except for the microphone.
1669 * If we get a single-channel gain value passed in, then we
1670 * duplicate it to both left and right channels.
1671 */
1672
1673 switch (cp->dev) {
1674 case SB_MIC_VOL:
1675 if (cp->un.value.num_channels != 1)
1676 return EINVAL;
1677
1678 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1679 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1680 break;
1681 case SB_PCSPEAKER:
1682 if (cp->un.value.num_channels != 1)
1683 return EINVAL;
1684 /* fall into */
1685 case SB_INPUT_GAIN:
1686 case SB_OUTPUT_GAIN:
1687 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1688 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1689 break;
1690 default:
1691 switch (cp->un.value.num_channels) {
1692 case 1:
1693 lgain = rgain = SB_ADJUST_GAIN(sc,
1694 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1695 break;
1696 case 2:
1697 if (sc->sc_mixer_model == SBM_CT1335)
1698 return EINVAL;
1699 lgain = SB_ADJUST_GAIN(sc,
1700 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1701 rgain = SB_ADJUST_GAIN(sc,
1702 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1703 break;
1704 default:
1705 return EINVAL;
1706 }
1707 break;
1708 }
1709 sc->gain[cp->dev][SB_LEFT] = lgain;
1710 sc->gain[cp->dev][SB_RIGHT] = rgain;
1711
1712 sbdsp_set_mixer_gain(sc, cp->dev);
1713 break;
1714
1715 case SB_RECORD_SOURCE:
1716 if (sc->sc_mixer_model == SBM_CT1745) {
1717 if (cp->type != AUDIO_MIXER_SET)
1718 return EINVAL;
1719 return sbdsp_set_in_ports(sc, cp->un.mask);
1720 } else {
1721 if (cp->type != AUDIO_MIXER_ENUM)
1722 return EINVAL;
1723 return sbdsp_set_in_port(sc, cp->un.ord);
1724 }
1725 break;
1726
1727 case SB_AGC:
1728 if (sc->sc_mixer_model != SBM_CT1745 || cp->type != AUDIO_MIXER_ENUM)
1729 return EINVAL;
1730 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1731 break;
1732
1733 default:
1734 return EINVAL;
1735 }
1736
1737 return 0;
1738 }
1739
1740 int
1741 sbdsp_mixer_get_port(addr, cp)
1742 void *addr;
1743 mixer_ctrl_t *cp;
1744 {
1745 struct sbdsp_softc *sc = addr;
1746
1747 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1748
1749 if (sc->sc_mixer_model == SBM_NONE)
1750 return EINVAL;
1751
1752 switch (cp->dev) {
1753 case SB_TREBLE:
1754 case SB_BASS:
1755 if (sc->sc_mixer_model == SBM_CT1345) {
1756 switch (cp->dev) {
1757 case SB_TREBLE:
1758 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1759 return 0;
1760 case SB_BASS:
1761 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1762 return 0;
1763 }
1764 }
1765 case SB_PCSPEAKER:
1766 case SB_INPUT_GAIN:
1767 case SB_OUTPUT_GAIN:
1768 if (sc->sc_mixer_model != SBM_CT1745)
1769 return EINVAL;
1770 case SB_MIC_VOL:
1771 case SB_LINE_IN_VOL:
1772 if (sc->sc_mixer_model == SBM_CT1335)
1773 return EINVAL;
1774 case SB_VOICE_VOL:
1775 case SB_MIDI_VOL:
1776 case SB_CD_VOL:
1777 case SB_MASTER_VOL:
1778 switch (cp->dev) {
1779 case SB_MIC_VOL:
1780 case SB_PCSPEAKER:
1781 if (cp->un.value.num_channels != 1)
1782 return EINVAL;
1783 /* fall into */
1784 default:
1785 switch (cp->un.value.num_channels) {
1786 case 1:
1787 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1788 sc->gain[cp->dev][SB_LEFT];
1789 break;
1790 case 2:
1791 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1792 sc->gain[cp->dev][SB_LEFT];
1793 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1794 sc->gain[cp->dev][SB_RIGHT];
1795 break;
1796 default:
1797 return EINVAL;
1798 }
1799 break;
1800 }
1801 break;
1802
1803 case SB_RECORD_SOURCE:
1804 if (sc->sc_mixer_model == SBM_CT1745)
1805 cp->un.mask = sc->in_mask;
1806 else
1807 cp->un.ord = sc->in_port;
1808 break;
1809
1810 case SB_AGC:
1811 if (sc->sc_mixer_model != SBM_CT1745)
1812 return EINVAL;
1813 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1814 break;
1815
1816 default:
1817 return EINVAL;
1818 }
1819
1820 return 0;
1821 }
1822
1823 int
1824 sbdsp_mixer_query_devinfo(addr, dip)
1825 void *addr;
1826 mixer_devinfo_t *dip;
1827 {
1828 struct sbdsp_softc *sc = addr;
1829 int chan, class;
1830
1831 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1832 sc->sc_mixer_model, dip->index));
1833
1834 if (sc->sc_mixer_model == SBM_NONE)
1835 return ENXIO;
1836
1837 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1838 class = sc->sc_mixer_model == SBM_CT1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1839
1840 switch (dip->index) {
1841 case SB_MASTER_VOL:
1842 dip->type = AUDIO_MIXER_VALUE;
1843 dip->mixer_class = SB_OUTPUT_CLASS;
1844 dip->prev = dip->next = AUDIO_MIXER_LAST;
1845 strcpy(dip->label.name, AudioNmaster);
1846 dip->un.v.num_channels = chan;
1847 strcpy(dip->un.v.units.name, AudioNvolume);
1848 return 0;
1849 case SB_MIDI_VOL:
1850 dip->type = AUDIO_MIXER_VALUE;
1851 dip->mixer_class = class;
1852 dip->prev = AUDIO_MIXER_LAST;
1853 dip->next = AUDIO_MIXER_LAST;
1854 strcpy(dip->label.name, AudioNfmsynth);
1855 dip->un.v.num_channels = chan;
1856 strcpy(dip->un.v.units.name, AudioNvolume);
1857 return 0;
1858 case SB_CD_VOL:
1859 dip->type = AUDIO_MIXER_VALUE;
1860 dip->mixer_class = class;
1861 dip->prev = AUDIO_MIXER_LAST;
1862 dip->next = AUDIO_MIXER_LAST;
1863 strcpy(dip->label.name, AudioNcd);
1864 dip->un.v.num_channels = chan;
1865 strcpy(dip->un.v.units.name, AudioNvolume);
1866 return 0;
1867 case SB_VOICE_VOL:
1868 dip->type = AUDIO_MIXER_VALUE;
1869 dip->mixer_class = class;
1870 dip->prev = AUDIO_MIXER_LAST;
1871 dip->next = AUDIO_MIXER_LAST;
1872 strcpy(dip->label.name, AudioNdac);
1873 dip->un.v.num_channels = chan;
1874 strcpy(dip->un.v.units.name, AudioNvolume);
1875 return 0;
1876 case SB_OUTPUT_CLASS:
1877 dip->type = AUDIO_MIXER_CLASS;
1878 dip->mixer_class = SB_OUTPUT_CLASS;
1879 dip->next = dip->prev = AUDIO_MIXER_LAST;
1880 strcpy(dip->label.name, AudioCOutputs);
1881 return 0;
1882 }
1883
1884 if (sc->sc_mixer_model == SBM_CT1335)
1885 return ENXIO;
1886
1887 switch (dip->index) {
1888 case SB_MIC_VOL:
1889 dip->type = AUDIO_MIXER_VALUE;
1890 dip->mixer_class = class;
1891 dip->prev = AUDIO_MIXER_LAST;
1892 dip->next = AUDIO_MIXER_LAST;
1893 strcpy(dip->label.name, AudioNmicrophone);
1894 dip->un.v.num_channels = 1;
1895 strcpy(dip->un.v.units.name, AudioNvolume);
1896 return 0;
1897
1898 case SB_LINE_IN_VOL:
1899 dip->type = AUDIO_MIXER_VALUE;
1900 dip->mixer_class = class;
1901 dip->prev = AUDIO_MIXER_LAST;
1902 dip->next = AUDIO_MIXER_LAST;
1903 strcpy(dip->label.name, AudioNline);
1904 dip->un.v.num_channels = 2;
1905 strcpy(dip->un.v.units.name, AudioNvolume);
1906 return 0;
1907
1908 case SB_RECORD_SOURCE:
1909 dip->mixer_class = SB_RECORD_CLASS;
1910 dip->prev = dip->next = AUDIO_MIXER_LAST;
1911 strcpy(dip->label.name, AudioNsource);
1912 if (sc->sc_mixer_model == SBM_CT1745) {
1913 dip->type = AUDIO_MIXER_SET;
1914 dip->un.s.num_mem = 4;
1915 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1916 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
1917 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1918 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
1919 strcpy(dip->un.s.member[2].label.name, AudioNline);
1920 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
1921 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1922 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
1923 } else {
1924 dip->type = AUDIO_MIXER_ENUM;
1925 dip->un.e.num_mem = 3;
1926 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1927 dip->un.e.member[0].ord = SB_MIC_VOL;
1928 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1929 dip->un.e.member[1].ord = SB_CD_VOL;
1930 strcpy(dip->un.e.member[2].label.name, AudioNline);
1931 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
1932 }
1933 return 0;
1934
1935 case SB_BASS:
1936 dip->prev = dip->next = AUDIO_MIXER_LAST;
1937 strcpy(dip->label.name, AudioNbass);
1938 if (sc->sc_mixer_model == SBM_CT1745) {
1939 dip->type = AUDIO_MIXER_VALUE;
1940 dip->mixer_class = SB_EQUALIZATION_CLASS;
1941 dip->un.v.num_channels = 2;
1942 strcpy(dip->un.v.units.name, AudioNbass);
1943 } else {
1944 dip->type = AUDIO_MIXER_ENUM;
1945 dip->mixer_class = SB_INPUT_CLASS;
1946 dip->un.e.num_mem = 2;
1947 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1948 dip->un.e.member[0].ord = 0;
1949 strcpy(dip->un.e.member[1].label.name, AudioNon);
1950 dip->un.e.member[1].ord = 1;
1951 }
1952 return 0;
1953
1954 case SB_TREBLE:
1955 dip->prev = dip->next = AUDIO_MIXER_LAST;
1956 strcpy(dip->label.name, AudioNtreble);
1957 if (sc->sc_mixer_model == SBM_CT1745) {
1958 dip->type = AUDIO_MIXER_VALUE;
1959 dip->mixer_class = SB_EQUALIZATION_CLASS;
1960 dip->un.v.num_channels = 2;
1961 strcpy(dip->un.v.units.name, AudioNtreble);
1962 } else {
1963 dip->type = AUDIO_MIXER_ENUM;
1964 dip->mixer_class = SB_INPUT_CLASS;
1965 dip->un.e.num_mem = 2;
1966 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1967 dip->un.e.member[0].ord = 0;
1968 strcpy(dip->un.e.member[1].label.name, AudioNon);
1969 dip->un.e.member[1].ord = 1;
1970 }
1971 return 0;
1972
1973 case SB_RECORD_CLASS: /* record source class */
1974 dip->type = AUDIO_MIXER_CLASS;
1975 dip->mixer_class = SB_RECORD_CLASS;
1976 dip->next = dip->prev = AUDIO_MIXER_LAST;
1977 strcpy(dip->label.name, AudioCRecord);
1978 return 0;
1979
1980 }
1981
1982 if (sc->sc_mixer_model == SBM_CT1345)
1983 return ENXIO;
1984
1985 switch(dip->index) {
1986 case SB_PCSPEAKER:
1987 dip->type = AUDIO_MIXER_VALUE;
1988 dip->mixer_class = SB_INPUT_CLASS;
1989 dip->prev = dip->next = AUDIO_MIXER_LAST;
1990 strcpy(dip->label.name, "pc_speaker");
1991 dip->un.v.num_channels = 1;
1992 strcpy(dip->un.v.units.name, AudioNvolume);
1993 return 0;
1994
1995 case SB_INPUT_GAIN:
1996 dip->type = AUDIO_MIXER_VALUE;
1997 dip->mixer_class = SB_INPUT_CLASS;
1998 dip->prev = dip->next = AUDIO_MIXER_LAST;
1999 strcpy(dip->label.name, AudioNinput);
2000 dip->un.v.num_channels = 2;
2001 strcpy(dip->un.v.units.name, AudioNvolume);
2002 return 0;
2003
2004 case SB_OUTPUT_GAIN:
2005 dip->type = AUDIO_MIXER_VALUE;
2006 dip->mixer_class = SB_OUTPUT_CLASS;
2007 dip->prev = dip->next = AUDIO_MIXER_LAST;
2008 strcpy(dip->label.name, AudioNoutput);
2009 dip->un.v.num_channels = 2;
2010 strcpy(dip->un.v.units.name, AudioNvolume);
2011 return 0;
2012
2013 case SB_AGC:
2014 dip->type = AUDIO_MIXER_ENUM;
2015 dip->mixer_class = SB_INPUT_CLASS;
2016 dip->prev = dip->next = AUDIO_MIXER_LAST;
2017 strcpy(dip->label.name, "AGC");
2018 dip->un.e.num_mem = 2;
2019 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2020 dip->un.e.member[0].ord = 0;
2021 strcpy(dip->un.e.member[1].label.name, AudioNon);
2022 dip->un.e.member[1].ord = 1;
2023 return 0;
2024
2025 case SB_INPUT_CLASS:
2026 dip->type = AUDIO_MIXER_CLASS;
2027 dip->mixer_class = SB_INPUT_CLASS;
2028 dip->next = dip->prev = AUDIO_MIXER_LAST;
2029 strcpy(dip->label.name, AudioCInputs);
2030 return 0;
2031
2032 case SB_EQUALIZATION_CLASS:
2033 dip->type = AUDIO_MIXER_CLASS;
2034 dip->mixer_class = SB_EQUALIZATION_CLASS;
2035 dip->next = dip->prev = AUDIO_MIXER_LAST;
2036 strcpy(dip->label.name, AudioCEqualization);
2037 return 0;
2038 }
2039
2040 return ENXIO;
2041 }
2042
2043 void *
2044 sb_malloc(addr, size, pool, flags)
2045 void *addr;
2046 unsigned long size;
2047 int pool;
2048 int flags;
2049 {
2050 struct sbdsp_softc *sc = addr;
2051
2052 return isa_malloc(sc->sc_isa, 4, size, pool, flags);
2053 }
2054
2055 void
2056 sb_free(addr, ptr, pool)
2057 void *addr;
2058 void *ptr;
2059 int pool;
2060 {
2061 isa_free(ptr, pool);
2062 }
2063
2064 unsigned long
2065 sb_round(addr, size)
2066 void *addr;
2067 unsigned long size;
2068 {
2069 if (size > MAX_ISADMA)
2070 size = MAX_ISADMA;
2071 return size;
2072 }
2073