sbdsp.c revision 1.64 1 /* $NetBSD: sbdsp.c,v 1.64 1997/07/31 22:33:36 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <vm/vm.h>
56
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59 #include <machine/bus.h>
60
61 #include <sys/audioio.h>
62 #include <dev/audio_if.h>
63 #include <dev/mulaw.h>
64 #include <dev/auconv.h>
65
66 #include <dev/isa/isavar.h>
67 #include <dev/isa/isadmavar.h>
68
69 #include <dev/isa/sbreg.h>
70 #include <dev/isa/sbdspvar.h>
71
72 #ifdef AUDIO_DEBUG
73 #define DPRINTF(x) if (sbdspdebug) printf x
74 int sbdspdebug = 0;
75 #else
76 #define DPRINTF(x)
77 #endif
78
79 #ifndef SBDSP_NPOLL
80 #define SBDSP_NPOLL 3000
81 #endif
82
83 struct {
84 int wdsp;
85 int rdsp;
86 int wmidi;
87 } sberr;
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 /* XXX Should we round the tc?
115 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
116 */
117 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
118 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
119
120 struct sbmode {
121 short model;
122 u_char channels;
123 u_char precision;
124 u_short lowrate, highrate;
125 u_char cmd;
126 u_char cmdchan;
127 };
128 static struct sbmode sbpmodes[] = {
129 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
130 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
131 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
132 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
133 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
134 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
135 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
136 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
137 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
138 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
139 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
140 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
141 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
142 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
143 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
144 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
145 #define PLAY16 15 /* must be the index of the next entry in the table */
146 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
147 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
148 { -1 }
149 };
150 static struct sbmode sbrmodes[] = {
151 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
152 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
153 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
154 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
155 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
156 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
157 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
158 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
159 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
160 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
161 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
162 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
163 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
164 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
165 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
166 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
167 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
168 { -1 }
169 };
170
171 void sbversion __P((struct sbdsp_softc *));
172 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
173 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
174 int sbdsp16_wait __P((struct sbdsp_softc *));
175 void sbdsp_to __P((void *));
176 void sbdsp_pause __P((struct sbdsp_softc *));
177 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
178 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
179 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
180 void sbdsp_set_ifilter __P((void *, int));
181 int sbdsp_get_ifilter __P((void *));
182
183 #ifdef AUDIO_DEBUG
184 void sb_printsc __P((struct sbdsp_softc *));
185
186 void
187 sb_printsc(sc)
188 struct sbdsp_softc *sc;
189 {
190 int i;
191
192 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
193 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
194 sc->sc_iobase, sc->sc_irq);
195 printf("irate %d itc %x orate %d otc %x\n",
196 sc->sc_irate, sc->sc_itc,
197 sc->sc_orate, sc->sc_otc);
198 printf("outport %u inport %u spkron %u nintr %lu\n",
199 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
200 printf("intr %p arg %p\n",
201 sc->sc_intr, sc->sc_arg);
202 printf("gain:");
203 for (i = 0; i < SB_NDEVS; i++)
204 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
205 printf("\n");
206 }
207 #endif /* AUDIO_DEBUG */
208
209 /*
210 * Probe / attach routines.
211 */
212
213 /*
214 * Probe for the soundblaster hardware.
215 */
216 int
217 sbdsp_probe(sc)
218 struct sbdsp_softc *sc;
219 {
220
221 if (sbdsp_reset(sc) < 0) {
222 DPRINTF(("sbdsp: couldn't reset card\n"));
223 return 0;
224 }
225 /* if flags set, go and probe the jazz16 stuff */
226 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
227 sbdsp_jazz16_probe(sc);
228 else
229 sbversion(sc);
230 if (sc->sc_model == SB_UNK) {
231 /* Unknown SB model found. */
232 DPRINTF(("sbdsp: unknown SB model found\n"));
233 return 0;
234 }
235 return 1;
236 }
237
238 /*
239 * Try add-on stuff for Jazz16.
240 */
241 void
242 sbdsp_jazz16_probe(sc)
243 struct sbdsp_softc *sc;
244 {
245 static u_char jazz16_irq_conf[16] = {
246 -1, -1, 0x02, 0x03,
247 -1, 0x01, -1, 0x04,
248 -1, 0x02, 0x05, -1,
249 -1, -1, -1, 0x06};
250 static u_char jazz16_drq_conf[8] = {
251 -1, 0x01, -1, 0x02,
252 -1, 0x03, -1, 0x04};
253
254 bus_space_tag_t iot = sc->sc_iot;
255 bus_space_handle_t ioh;
256
257 sbversion(sc);
258
259 DPRINTF(("jazz16 probe\n"));
260
261 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
262 DPRINTF(("bus map failed\n"));
263 return;
264 }
265
266 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
267 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
268 DPRINTF(("drq/irq check failed\n"));
269 goto done; /* give up, we can't do it. */
270 }
271
272 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
273 delay(10000); /* delay 10 ms */
274 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
275 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
276
277 if (sbdsp_reset(sc) < 0) {
278 DPRINTF(("sbdsp_reset check failed\n"));
279 goto done; /* XXX? what else could we do? */
280 }
281
282 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
283 DPRINTF(("read16 setup failed\n"));
284 goto done;
285 }
286
287 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
288 DPRINTF(("read16 failed\n"));
289 goto done;
290 }
291
292 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
293 sc->sc_drq16 = sc->sc_drq8;
294 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
295 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
296 jazz16_drq_conf[sc->sc_drq8]) ||
297 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
298 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
299 } else {
300 DPRINTF(("jazz16 detected!\n"));
301 sc->sc_model = SB_JAZZ;
302 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
303 }
304
305 done:
306 bus_space_unmap(iot, ioh, 1);
307 }
308
309 /*
310 * Attach hardware to driver, attach hardware driver to audio
311 * pseudo-device driver .
312 */
313 void
314 sbdsp_attach(sc)
315 struct sbdsp_softc *sc;
316 {
317 struct audio_params xparams;
318 int i;
319 u_int v;
320
321 /*
322 * Create our DMA maps.
323 */
324 if (sc->sc_drq8 != -1) {
325 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8,
326 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
327 printf("%s: can't create map for drq %d\n",
328 sc->sc_dev.dv_xname, sc->sc_drq8);
329 return;
330 }
331 }
332 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
333 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16,
334 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
335 printf("%s: can't create map for drq %d\n",
336 sc->sc_dev.dv_xname, sc->sc_drq16);
337 return;
338 }
339 }
340
341 sbdsp_set_params(sc, AUMODE_RECORD, &audio_default, &xparams);
342 sbdsp_set_params(sc, AUMODE_PLAY, &audio_default, &xparams);
343
344 sbdsp_set_in_port(sc, SB_MIC_VOL);
345 sbdsp_set_out_port(sc, SB_MASTER_VOL);
346
347 if (sc->sc_mixer_model != SBM_NONE) {
348 /* Reset the mixer.*/
349 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
350 /* And set our own default values */
351 for (i = 0; i < SB_NDEVS; i++) {
352 switch(i) {
353 case SB_MIC_VOL:
354 case SB_LINE_IN_VOL:
355 v = 0;
356 break;
357 case SB_BASS:
358 case SB_TREBLE:
359 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
360 break;
361 default:
362 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
363 break;
364 }
365 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
366 sbdsp_set_mixer_gain(sc, i);
367 }
368 sc->in_filter = 0; /* no filters turned on, please */
369 }
370
371 DPRINTF((" drq16 %d", sc->sc_drq16));
372 printf(": dsp v%d.%02d%s\n",
373 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
374 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
375 }
376
377 void
378 sbdsp_mix_write(sc, mixerport, val)
379 struct sbdsp_softc *sc;
380 int mixerport;
381 int val;
382 {
383 bus_space_tag_t iot = sc->sc_iot;
384 bus_space_handle_t ioh = sc->sc_ioh;
385 int s;
386
387 s = splaudio();
388 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
389 delay(20);
390 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
391 delay(30);
392 splx(s);
393 }
394
395 int
396 sbdsp_mix_read(sc, mixerport)
397 struct sbdsp_softc *sc;
398 int mixerport;
399 {
400 bus_space_tag_t iot = sc->sc_iot;
401 bus_space_handle_t ioh = sc->sc_ioh;
402 int val;
403 int s;
404
405 s = splaudio();
406 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
407 delay(20);
408 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
409 delay(30);
410 splx(s);
411 return val;
412 }
413
414 /*
415 * Various routines to interface to higher level audio driver
416 */
417
418 int
419 sbdsp_query_encoding(addr, fp)
420 void *addr;
421 struct audio_encoding *fp;
422 {
423 struct sbdsp_softc *sc = addr;
424 int emul;
425
426 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
427
428 switch (fp->index) {
429 case 0:
430 strcpy(fp->name, AudioEulinear);
431 fp->encoding = AUDIO_ENCODING_ULINEAR;
432 fp->precision = 8;
433 fp->flags = 0;
434 return 0;
435 case 1:
436 strcpy(fp->name, AudioEmulaw);
437 fp->encoding = AUDIO_ENCODING_ULAW;
438 fp->precision = 8;
439 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
440 return 0;
441 case 2:
442 strcpy(fp->name, AudioEalaw);
443 fp->encoding = AUDIO_ENCODING_ALAW;
444 fp->precision = 8;
445 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
446 return 0;
447 case 3:
448 strcpy(fp->name, AudioElinear);
449 fp->encoding = AUDIO_ENCODING_SLINEAR;
450 fp->precision = 8;
451 fp->flags = emul;
452 return 0;
453 }
454 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
455 return EINVAL;
456
457 switch(fp->index) {
458 case 4:
459 strcpy(fp->name, AudioElinear_le);
460 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
461 fp->precision = 16;
462 fp->flags = 0;
463 return 0;
464 case 5:
465 strcpy(fp->name, AudioEulinear_le);
466 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
467 fp->precision = 16;
468 fp->flags = emul;
469 return 0;
470 case 6:
471 strcpy(fp->name, AudioElinear_be);
472 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
473 fp->precision = 16;
474 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
475 return 0;
476 case 7:
477 strcpy(fp->name, AudioEulinear_be);
478 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
479 fp->precision = 16;
480 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
481 return 0;
482 default:
483 return EINVAL;
484 }
485 return 0;
486 }
487
488 int
489 sbdsp_set_params(addr, mode, p, q)
490 void *addr;
491 int mode;
492 struct audio_params *p, *q;
493 {
494 struct sbdsp_softc *sc = addr;
495 struct sbmode *m;
496 u_int rate, tc = 1, bmode = -1;
497 void (*swcode) __P((void *, u_char *buf, int cnt));
498 int factor = 1;
499 int model;
500
501 model = sc->sc_model;
502 if (model > SB_16)
503 model = SB_16; /* later models work like SB16 */
504 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
505 m->model != -1; m++) {
506 if (model == m->model &&
507 p->channels == m->channels &&
508 p->precision == m->precision &&
509 p->sample_rate >= m->lowrate &&
510 p->sample_rate < m->highrate)
511 break;
512 }
513 if (m->model == -1)
514 return EINVAL;
515 rate = p->sample_rate;
516 swcode = 0;
517 if (model == SB_16) {
518 switch (p->encoding) {
519 case AUDIO_ENCODING_SLINEAR_BE:
520 if (p->precision == 16)
521 swcode = swap_bytes;
522 /* fall into */
523 case AUDIO_ENCODING_SLINEAR_LE:
524 bmode = SB_BMODE_SIGNED;
525 break;
526 case AUDIO_ENCODING_ULINEAR_BE:
527 if (p->precision == 16)
528 swcode = swap_bytes;
529 /* fall into */
530 case AUDIO_ENCODING_ULINEAR_LE:
531 bmode = SB_BMODE_UNSIGNED;
532 break;
533 case AUDIO_ENCODING_ULAW:
534 if (mode == AUMODE_PLAY) {
535 #if 0
536 swcode = mulaw_to_ulinear16;
537 factor = 2;
538 m = &sbpmodes[PLAY16];
539 #else
540 swcode = mulaw_to_ulinear8;
541 #endif
542 } else
543 swcode = ulinear8_to_mulaw;
544 bmode = SB_BMODE_UNSIGNED;
545 break;
546 case AUDIO_ENCODING_ALAW:
547 if (mode == AUMODE_PLAY) {
548 #if 0
549 swcode = alaw_to_ulinear16;
550 factor = 2;
551 m = &sbpmodes[PLAY16];
552 #else
553 swcode = alaw_to_ulinear8;
554 #endif
555 } else
556 swcode = ulinear8_to_alaw;
557 bmode = SB_BMODE_UNSIGNED;
558 break;
559 default:
560 return EINVAL;
561 }
562 if (p->channels == 2)
563 bmode |= SB_BMODE_STEREO;
564 } else if (m->model == SB_JAZZ && m->precision == 16) {
565 switch (p->encoding) {
566 case AUDIO_ENCODING_SLINEAR_LE:
567 break;
568 case AUDIO_ENCODING_ULINEAR_LE:
569 swcode = change_sign16;
570 break;
571 case AUDIO_ENCODING_SLINEAR_BE:
572 swcode = swap_bytes;
573 break;
574 case AUDIO_ENCODING_ULINEAR_BE:
575 swcode = mode == AUMODE_PLAY ?
576 swap_bytes_change_sign16 : change_sign16_swap_bytes;
577 break;
578 case AUDIO_ENCODING_ULAW:
579 swcode = mode == AUMODE_PLAY ?
580 mulaw_to_ulinear8 : ulinear8_to_mulaw;
581 break;
582 case AUDIO_ENCODING_ALAW:
583 swcode = mode == AUMODE_PLAY ?
584 alaw_to_ulinear8 : ulinear8_to_alaw;
585 break;
586 default:
587 return EINVAL;
588 }
589 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
590 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
591 } else {
592 switch (p->encoding) {
593 case AUDIO_ENCODING_SLINEAR_BE:
594 case AUDIO_ENCODING_SLINEAR_LE:
595 swcode = change_sign8;
596 break;
597 case AUDIO_ENCODING_ULINEAR_BE:
598 case AUDIO_ENCODING_ULINEAR_LE:
599 break;
600 case AUDIO_ENCODING_ULAW:
601 swcode = mode == AUMODE_PLAY ?
602 mulaw_to_ulinear8 : ulinear8_to_mulaw;
603 break;
604 case AUDIO_ENCODING_ALAW:
605 swcode = mode == AUMODE_PLAY ?
606 alaw_to_ulinear8 : ulinear8_to_alaw;
607 break;
608 default:
609 return EINVAL;
610 }
611 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
612 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
613 }
614
615 if (mode == AUMODE_PLAY) {
616 sc->sc_orate = rate;
617 sc->sc_otc = tc;
618 sc->sc_omodep = m;
619 sc->sc_obmode = bmode;
620 } else {
621 sc->sc_irate = rate;
622 sc->sc_itc = tc;
623 sc->sc_imodep = m;
624 sc->sc_ibmode = bmode;
625 }
626
627 p->sw_code = swcode;
628 p->factor = factor;
629
630 /* Update setting for the other mode. */
631 q->encoding = p->encoding;
632 q->channels = p->channels;
633 q->precision = p->precision;
634
635 /*
636 * XXX
637 * Should wait for chip to be idle.
638 */
639 sc->sc_dmadir = SB_DMA_NONE;
640
641 DPRINTF(("set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p\n",
642 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
643 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode));
644
645 return 0;
646 }
647
648 void
649 sbdsp_set_ifilter(addr, which)
650 void *addr;
651 int which;
652 {
653 struct sbdsp_softc *sc = addr;
654 int mixval;
655
656 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
657 switch (which) {
658 case 0:
659 mixval |= SBP_FILTER_OFF;
660 break;
661 case SB_TREBLE:
662 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
663 break;
664 case SB_BASS:
665 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
666 break;
667 default:
668 return;
669 }
670 sc->in_filter = mixval & SBP_IFILTER_MASK;
671 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
672 }
673
674 int
675 sbdsp_get_ifilter(addr)
676 void *addr;
677 {
678 struct sbdsp_softc *sc = addr;
679
680 sc->in_filter =
681 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
682 switch (sc->in_filter) {
683 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
684 return SB_TREBLE;
685 case SBP_FILTER_ON|SBP_IFILTER_LOW:
686 return SB_BASS;
687 default:
688 return 0;
689 }
690 }
691
692 int
693 sbdsp_set_out_port(addr, port)
694 void *addr;
695 int port;
696 {
697 struct sbdsp_softc *sc = addr;
698
699 sc->out_port = port; /* Just record it */
700
701 return 0;
702 }
703
704 int
705 sbdsp_get_out_port(addr)
706 void *addr;
707 {
708 struct sbdsp_softc *sc = addr;
709
710 return sc->out_port;
711 }
712
713
714 int
715 sbdsp_set_in_port(addr, port)
716 void *addr;
717 int port;
718 {
719 return sbdsp_set_in_ports(addr, 1 << port);
720 }
721
722 int
723 sbdsp_set_in_ports(sc, mask)
724 struct sbdsp_softc *sc;
725 int mask;
726 {
727 int bitsl, bitsr;
728 int sbport;
729 int i;
730
731 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
732 sc->sc_mixer_model, mask));
733
734 switch(sc->sc_mixer_model) {
735 case SBM_NONE:
736 return EINVAL;
737 case SBM_CT1335:
738 if (mask != (1 << SB_MIC_VOL))
739 return EINVAL;
740 break;
741 case SBM_CT1345:
742 switch (mask) {
743 case 1 << SB_MIC_VOL:
744 sbport = SBP_FROM_MIC;
745 break;
746 case 1 << SB_LINE_IN_VOL:
747 sbport = SBP_FROM_LINE;
748 break;
749 case 1 << SB_CD_VOL:
750 sbport = SBP_FROM_CD;
751 break;
752 default:
753 return (EINVAL);
754 }
755 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
756 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
757 break;
758 case SBM_CT1745:
759 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
760 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
761 return EINVAL;
762 bitsr = 0;
763 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
764 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
765 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
766 bitsl = SB_SRC_R_TO_L(bitsr);
767 if (mask & (1<<SB_MIC_VOL)) {
768 bitsl |= SBP_MIC_SRC;
769 bitsr |= SBP_MIC_SRC;
770 }
771 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
772 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
773 break;
774 }
775
776 sc->in_mask = mask;
777
778 /* XXX
779 * We have to fake a single port since the upper layer
780 * expects one.
781 */
782 for(i = 0; i < SB_NPORT; i++) {
783 if (mask & (1 << i)) {
784 sc->in_port = i;
785 break;
786 }
787 }
788 return 0;
789 }
790
791 int
792 sbdsp_get_in_port(addr)
793 void *addr;
794 {
795 struct sbdsp_softc *sc = addr;
796
797 return sc->in_port;
798 }
799
800
801 int
802 sbdsp_speaker_ctl(addr, newstate)
803 void *addr;
804 int newstate;
805 {
806 struct sbdsp_softc *sc = addr;
807
808 if ((newstate == SPKR_ON) &&
809 (sc->spkr_state == SPKR_OFF)) {
810 sbdsp_spkron(sc);
811 sc->spkr_state = SPKR_ON;
812 }
813 if ((newstate == SPKR_OFF) &&
814 (sc->spkr_state == SPKR_ON)) {
815 sbdsp_spkroff(sc);
816 sc->spkr_state = SPKR_OFF;
817 }
818 return 0;
819 }
820
821 int
822 sbdsp_round_blocksize(addr, blk)
823 void *addr;
824 int blk;
825 {
826 blk &= -4; /* round to biggest sample size */
827 return blk;
828 }
829
830 int
831 sbdsp_open(addr, flags)
832 void *addr;
833 int flags;
834 {
835 struct sbdsp_softc *sc = addr;
836
837 DPRINTF(("sbdsp_open: sc=%p\n", sc));
838
839 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
840 return ENXIO;
841
842 sc->sc_open = 1;
843 sc->sc_mintr = 0;
844 if (ISSBPRO(sc) &&
845 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
846 DPRINTF(("sbdsp_open: can't set mono mode\n"));
847 /* we'll readjust when it's time for DMA. */
848 }
849
850 /*
851 * Leave most things as they were; users must change things if
852 * the previous process didn't leave it they way they wanted.
853 * Looked at another way, it's easy to set up a configuration
854 * in one program and leave it for another to inherit.
855 */
856 DPRINTF(("sbdsp_open: opened\n"));
857
858 return 0;
859 }
860
861 void
862 sbdsp_close(addr)
863 void *addr;
864 {
865 struct sbdsp_softc *sc = addr;
866
867 DPRINTF(("sbdsp_close: sc=%p\n", sc));
868
869 sc->sc_open = 0;
870 sbdsp_spkroff(sc);
871 sc->spkr_state = SPKR_OFF;
872 sc->sc_intr = 0;
873 sc->sc_mintr = 0;
874 sbdsp_haltdma(sc);
875
876 DPRINTF(("sbdsp_close: closed\n"));
877 }
878
879 /*
880 * Lower-level routines
881 */
882
883 /*
884 * Reset the card.
885 * Return non-zero if the card isn't detected.
886 */
887 int
888 sbdsp_reset(sc)
889 struct sbdsp_softc *sc;
890 {
891 bus_space_tag_t iot = sc->sc_iot;
892 bus_space_handle_t ioh = sc->sc_ioh;
893
894 sc->sc_intr = 0;
895 if (sc->sc_dmadir != SB_DMA_NONE) {
896 isa_dmaabort(sc->sc_isa, sc->dmachan);
897 sc->sc_dmadir = SB_DMA_NONE;
898 }
899
900 /*
901 * See SBK, section 11.3.
902 * We pulse a reset signal into the card.
903 * Gee, what a brilliant hardware design.
904 */
905 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
906 delay(10);
907 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
908 delay(30);
909 if (sbdsp_rdsp(sc) != SB_MAGIC)
910 return -1;
911
912 return 0;
913 }
914
915 int
916 sbdsp16_wait(sc)
917 struct sbdsp_softc *sc;
918 {
919 bus_space_tag_t iot = sc->sc_iot;
920 bus_space_handle_t ioh = sc->sc_ioh;
921 int i;
922 u_char x;
923
924 for (i = SBDSP_NPOLL; --i >= 0; ) {
925 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
926 delay(10);
927 if ((x & SB_DSP_BUSY) == 0)
928 continue;
929 return 0;
930 }
931 ++sberr.wdsp;
932 return -1;
933 }
934
935 /*
936 * Write a byte to the dsp.
937 * XXX We are at the mercy of the card as we use a
938 * polling loop and wait until it can take the byte.
939 */
940 int
941 sbdsp_wdsp(sc, v)
942 struct sbdsp_softc *sc;
943 int v;
944 {
945 bus_space_tag_t iot = sc->sc_iot;
946 bus_space_handle_t ioh = sc->sc_ioh;
947 int i;
948 u_char x;
949
950 for (i = SBDSP_NPOLL; --i >= 0; ) {
951 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
952 delay(10);
953 if ((x & SB_DSP_BUSY) != 0)
954 continue;
955 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
956 delay(10);
957 return 0;
958 }
959 ++sberr.wdsp;
960 return -1;
961 }
962
963 /*
964 * Read a byte from the DSP, using polling.
965 */
966 int
967 sbdsp_rdsp(sc)
968 struct sbdsp_softc *sc;
969 {
970 bus_space_tag_t iot = sc->sc_iot;
971 bus_space_handle_t ioh = sc->sc_ioh;
972 int i;
973 u_char x;
974
975 for (i = SBDSP_NPOLL; --i >= 0; ) {
976 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
977 delay(10);
978 if ((x & SB_DSP_READY) == 0)
979 continue;
980 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
981 delay(10);
982 return x;
983 }
984 ++sberr.rdsp;
985 return -1;
986 }
987
988 /*
989 * Doing certain things (like toggling the speaker) make
990 * the SB hardware go away for a while, so pause a little.
991 */
992 void
993 sbdsp_to(arg)
994 void *arg;
995 {
996 wakeup(arg);
997 }
998
999 void
1000 sbdsp_pause(sc)
1001 struct sbdsp_softc *sc;
1002 {
1003 extern int hz;
1004
1005 timeout(sbdsp_to, sbdsp_to, hz/8);
1006 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1007 }
1008
1009 /*
1010 * Turn on the speaker. The SBK documention says this operation
1011 * can take up to 1/10 of a second. Higher level layers should
1012 * probably let the task sleep for this amount of time after
1013 * calling here. Otherwise, things might not work (because
1014 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1015 *
1016 * These engineers had their heads up their ass when
1017 * they designed this card.
1018 */
1019 void
1020 sbdsp_spkron(sc)
1021 struct sbdsp_softc *sc;
1022 {
1023 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1024 sbdsp_pause(sc);
1025 }
1026
1027 /*
1028 * Turn off the speaker; see comment above.
1029 */
1030 void
1031 sbdsp_spkroff(sc)
1032 struct sbdsp_softc *sc;
1033 {
1034 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1035 sbdsp_pause(sc);
1036 }
1037
1038 /*
1039 * Read the version number out of the card.
1040 * Store version information in the softc.
1041 */
1042 void
1043 sbversion(sc)
1044 struct sbdsp_softc *sc;
1045 {
1046 int v;
1047
1048 sc->sc_model = SB_UNK;
1049 sc->sc_version = 0;
1050 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1051 return;
1052 v = sbdsp_rdsp(sc) << 8;
1053 v |= sbdsp_rdsp(sc);
1054 if (v < 0)
1055 return;
1056 sc->sc_version = v;
1057 switch(SBVER_MAJOR(v)) {
1058 case 1:
1059 sc->sc_mixer_model = SBM_NONE;
1060 sc->sc_model = SB_1;
1061 break;
1062 case 2:
1063 /* Some SB2 have a mixer, some don't. */
1064 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1065 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1066 /* Check if we can read back the mixer values. */
1067 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1068 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1069 sc->sc_mixer_model = SBM_CT1335;
1070 else
1071 sc->sc_mixer_model = SBM_NONE;
1072 if (SBVER_MINOR(v) == 0)
1073 sc->sc_model = SB_20;
1074 else
1075 sc->sc_model = SB_2x;
1076 break;
1077 case 3:
1078 sc->sc_mixer_model = SBM_CT1345;
1079 sc->sc_model = SB_PRO;
1080 break;
1081 case 4:
1082 sc->sc_mixer_model = SBM_CT1745;
1083 /* XXX what about SB_32 */
1084 if (SBVER_MINOR(v) == 16)
1085 sc->sc_model = SB_64;
1086 else
1087 sc->sc_model = SB_16;
1088 break;
1089 }
1090 }
1091
1092 /*
1093 * Halt a DMA in progress. A low-speed transfer can be
1094 * resumed with sbdsp_contdma().
1095 */
1096 int
1097 sbdsp_haltdma(addr)
1098 void *addr;
1099 {
1100 struct sbdsp_softc *sc = addr;
1101
1102 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1103
1104 sbdsp_reset(sc);
1105 return 0;
1106 }
1107
1108 int
1109 sbdsp_contdma(addr)
1110 void *addr;
1111 {
1112 struct sbdsp_softc *sc = addr;
1113
1114 DPRINTF(("sbdsp_contdma: sc=%p\n", sc));
1115
1116 /* XXX how do we reinitialize the DMA controller state? do we care? */
1117 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
1118 return 0;
1119 }
1120
1121 int
1122 sbdsp_set_timeconst(sc, tc)
1123 struct sbdsp_softc *sc;
1124 int tc;
1125 {
1126 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1127
1128 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1129 sbdsp_wdsp(sc, tc) < 0)
1130 return EIO;
1131
1132 return 0;
1133 }
1134
1135 int
1136 sbdsp16_set_rate(sc, cmd, rate)
1137 struct sbdsp_softc *sc;
1138 int cmd, rate;
1139 {
1140 DPRINTF(("sbdsp16_set_rate: sc=%p rate=%d\n", sc, rate));
1141
1142 if (sbdsp_wdsp(sc, cmd) < 0 ||
1143 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1144 sbdsp_wdsp(sc, rate) < 0)
1145 return EIO;
1146 return 0;
1147 }
1148
1149 int
1150 sbdsp_dma_init_input(addr, buf, cc)
1151 void *addr;
1152 void *buf;
1153 int cc;
1154 {
1155 struct sbdsp_softc *sc = addr;
1156
1157 if (sc->sc_model == SB_1)
1158 return 0;
1159 sc->dmaflags = DMAMODE_READ | DMAMODE_LOOP;
1160 sc->dmaaddr = buf;
1161 sc->dmacnt = cc;
1162 sc->dmachan = sc->sc_imodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1163 DPRINTF(("sbdsp: dma start loop input addr=%p cc=%d chan=%d\n",
1164 buf, cc, sc->dmachan));
1165 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1166 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1167 return 0;
1168 }
1169
1170 int
1171 sbdsp_dma_input(addr, p, cc, intr, arg)
1172 void *addr;
1173 void *p;
1174 int cc;
1175 void (*intr) __P((void *));
1176 void *arg;
1177 {
1178 struct sbdsp_softc *sc = addr;
1179 int loop = sc->sc_model != SB_1;
1180 int stereo = sc->sc_imodep->channels == 2;
1181 int filter;
1182
1183 #ifdef AUDIO_DEBUG
1184 if (sbdspdebug > 1)
1185 printf("sbdsp_dma_input: cc=%d %p (%p)\n", cc, intr, arg);
1186 #endif
1187 #ifdef DIAGNOSTIC
1188 if (sc->sc_imodep->channels == 2 && (cc & 1)) {
1189 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1190 return EIO;
1191 }
1192 #endif
1193
1194 if (sc->sc_dmadir != SB_DMA_IN) {
1195 if (ISSBPRO(sc)) {
1196 if (sbdsp_wdsp(sc, sc->sc_imodep->cmdchan) < 0)
1197 goto badmode;
1198 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1199 sbdsp_mix_write(sc, SBP_INFILTER,
1200 (sbdsp_mix_read(sc, SBP_INFILTER) &
1201 ~SBP_IFILTER_MASK) | filter);
1202 }
1203
1204 if (ISSB16CLASS(sc)) {
1205 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE,
1206 sc->sc_irate)) {
1207 DPRINTF(("sbdsp_dma_input: rate=%d set failed\n",
1208 sc->sc_irate));
1209 goto giveup;
1210 }
1211 } else {
1212 if (sbdsp_set_timeconst(sc, sc->sc_itc)) {
1213 DPRINTF(("sbdsp_dma_output: tc=%d set failed\n",
1214 sc->sc_irate));
1215 goto giveup;
1216 }
1217 }
1218
1219 sc->sc_dmadir = SB_DMA_IN;
1220 sc->dmaflags = DMAMODE_READ;
1221 } else {
1222 /* If already started just return. */
1223 if (loop)
1224 return 0;
1225 }
1226
1227 if (!loop) {
1228 sc->dmaaddr = p;
1229 sc->dmacnt = cc;
1230 sc->dmachan = sc->sc_imodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1231 #ifdef AUDIO_DEBUG
1232 if (sbdspdebug > 2)
1233 printf("sbdsp_dma_input: dmastart %x %p %ld %d\n",
1234 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1235 #endif
1236 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1237 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1238 }
1239 sc->sc_intr = intr;
1240 sc->sc_arg = arg;
1241
1242 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1243 (sc->sc_model != SB_JAZZ && sc->sc_imodep->precision == 16))
1244 cc >>= 1;
1245 --cc;
1246 if (ISSB16CLASS(sc)) {
1247 #ifdef AUDIO_DEBUG
1248 if (sbdspdebug > 2)
1249 printf("sbdsp16 input command %02x %02x %d\n",
1250 sc->sc_imodep->cmd, sc->sc_ibmode, cc);
1251 #endif
1252 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1253 sbdsp_wdsp(sc, sc->sc_ibmode) < 0 ||
1254 sbdsp16_wait(sc) ||
1255 sbdsp_wdsp(sc, cc) < 0 ||
1256 sbdsp_wdsp(sc, cc >> 8) < 0) {
1257 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1258 goto giveup;
1259 }
1260 } else {
1261 if (loop) {
1262 DPRINTF(("sbdsp_dma_input: set blocksize=%d\n", cc));
1263 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1264 sbdsp_wdsp(sc, cc) < 0 ||
1265 sbdsp_wdsp(sc, cc >> 8) < 0) {
1266 DPRINTF(("sbdsp_dma_input: SB2 DMA blocksize failed\n"));
1267 goto giveup;
1268 }
1269 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0) {
1270 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1271 goto giveup;
1272 }
1273 } else {
1274 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1275 sbdsp_wdsp(sc, cc) < 0 ||
1276 sbdsp_wdsp(sc, cc >> 8) < 0) {
1277 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1278 goto giveup;
1279 }
1280 }
1281 }
1282 return 0;
1283
1284 giveup:
1285 sbdsp_reset(sc);
1286 return EIO;
1287
1288 badmode:
1289 DPRINTF(("sbdsp_dma_input: can't set mode\n"));
1290 return EIO;
1291 }
1292
1293 int
1294 sbdsp_dma_init_output(addr, buf, cc)
1295 void *addr;
1296 void *buf;
1297 int cc;
1298 {
1299 struct sbdsp_softc *sc = addr;
1300
1301 if (sc->sc_model == SB_1)
1302 return 0;
1303 sc->dmaflags = DMAMODE_WRITE | DMAMODE_LOOP;
1304 sc->dmaaddr = buf;
1305 sc->dmacnt = cc;
1306 sc->dmachan = sc->sc_omodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1307 DPRINTF(("sbdsp: dma start loop output addr=%p cc=%d chan=%d\n",
1308 buf, cc, sc->dmachan));
1309 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1310 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1311 return 0;
1312 }
1313
1314 int
1315 sbdsp_dma_output(addr, p, cc, intr, arg)
1316 void *addr;
1317 void *p;
1318 int cc;
1319 void (*intr) __P((void *));
1320 void *arg;
1321 {
1322 struct sbdsp_softc *sc = addr;
1323 int loop = sc->sc_model != SB_1;
1324 int stereo = sc->sc_omodep->channels == 2;
1325 int cmd;
1326
1327 #ifdef AUDIO_DEBUG
1328 if (sbdspdebug > 1)
1329 printf("sbdsp_dma_output: cc=%d %p (%p)\n", cc, intr, arg);
1330 #endif
1331 #ifdef DIAGNOSTIC
1332 if (stereo && (cc & 1)) {
1333 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1334 return EIO;
1335 }
1336 #endif
1337
1338 if (sc->sc_dmadir != SB_DMA_OUT) {
1339 if (ISSBPRO(sc)) {
1340 /* make sure we re-set stereo mixer bit when we start
1341 output. */
1342 sbdsp_mix_write(sc, SBP_STEREO,
1343 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1344 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1345 cmd = sc->sc_omodep->cmdchan;
1346 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1347 goto badmode;
1348 }
1349
1350 if (ISSB16CLASS(sc)) {
1351 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE,
1352 sc->sc_orate)) {
1353 DPRINTF(("sbdsp_dma_output: rate=%d set failed\n",
1354 sc->sc_orate));
1355 goto giveup;
1356 }
1357 } else {
1358 if (sbdsp_set_timeconst(sc, sc->sc_otc)) {
1359 DPRINTF(("sbdsp_dma_output: tc=%d set failed\n",
1360 sc->sc_orate));
1361 goto giveup;
1362 }
1363 }
1364
1365 sc->sc_dmadir = SB_DMA_OUT;
1366 sc->dmaflags = DMAMODE_WRITE;
1367 } else {
1368 /* If already started just return. */
1369 if (loop)
1370 return 0;
1371 }
1372
1373 if (!loop) {
1374 sc->dmaaddr = p;
1375 sc->dmacnt = cc;
1376 sc->dmachan = sc->sc_omodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1377 #ifdef AUDIO_DEBUG
1378 if (sbdspdebug > 2)
1379 printf("sbdsp: start dma out flags=%x, addr=%p, cnt=%ld, chan=%d\n",
1380 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1381 #endif
1382 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1383 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1384 }
1385 sc->sc_intr = intr;
1386 sc->sc_arg = arg;
1387
1388 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1389 (sc->sc_model != SB_JAZZ && sc->sc_omodep->precision == 16))
1390 cc >>= 1;
1391 --cc;
1392 if (ISSB16CLASS(sc)) {
1393 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1394 sbdsp_wdsp(sc, sc->sc_obmode) < 0 ||
1395 sbdsp16_wait(sc) ||
1396 sbdsp_wdsp(sc, cc) < 0 ||
1397 sbdsp_wdsp(sc, cc >> 8) < 0) {
1398 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1399 goto giveup;
1400 }
1401 } else {
1402 if (loop) {
1403 DPRINTF(("sbdsp_dma_output: set blocksize=%d\n", cc));
1404 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1405 sbdsp_wdsp(sc, cc) < 0 ||
1406 sbdsp_wdsp(sc, cc >> 8) < 0) {
1407 DPRINTF(("sbdsp_dma_output: SB2 DMA blocksize failed\n"));
1408 goto giveup;
1409 }
1410 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0) {
1411 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1412 goto giveup;
1413 }
1414 } else {
1415 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1416 sbdsp_wdsp(sc, cc) < 0 ||
1417 sbdsp_wdsp(sc, cc >> 8) < 0) {
1418 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1419 goto giveup;
1420 }
1421 }
1422 }
1423 return 0;
1424
1425 giveup:
1426 sbdsp_reset(sc);
1427 return EIO;
1428
1429 badmode:
1430 DPRINTF(("sbdsp_dma_output: can't set mode\n"));
1431 return EIO;
1432 }
1433
1434 /*
1435 * Only the DSP unit on the sound blaster generates interrupts.
1436 * There are three cases of interrupt: reception of a midi byte
1437 * (when mode is enabled), completion of dma transmission, or
1438 * completion of a dma reception. The three modes are mutually
1439 * exclusive so we know a priori which event has occurred.
1440 *
1441 * If there is interrupt sharing or a spurious interrupt occurs
1442 * there is no way to distinuish this on an SB2. So if you have
1443 * an SB2 and experience problems, buy an SB16 (it's only $25).
1444 */
1445 int
1446 sbdsp_intr(arg)
1447 void *arg;
1448 {
1449 struct sbdsp_softc *sc = arg;
1450 int loop = sc->sc_model != SB_1;
1451 u_char irq;
1452
1453 #ifdef AUDIO_DEBUG
1454 if (sbdspdebug > 1)
1455 printf("sbdsp_intr: intr=%p\n", sc->sc_intr);
1456 #endif
1457 if (ISSB16CLASS(sc)) {
1458 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1459 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16)) == 0)
1460 return 0;
1461 } else {
1462 if (!loop && !isa_dmafinished(sc->sc_isa, sc->dmachan))
1463 return 0;
1464 irq = SBP_IRQ_DMA8;
1465 }
1466 sc->sc_interrupts++;
1467 delay(10); /* XXX why? */
1468 #if 0
1469 if (sc->sc_mintr != 0) {
1470 x = sbdsp_rdsp(sc);
1471 (*sc->sc_mintr)(sc->sc_arg, x);
1472 } else
1473 #endif
1474 if (sc->sc_intr != 0) {
1475 /* clear interrupt */
1476 if (irq & SBP_IRQ_DMA8)
1477 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1478 if (irq & SBP_IRQ_DMA16)
1479 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1480 if (!loop)
1481 isa_dmadone(sc->sc_isa, sc->dmachan);
1482 (*sc->sc_intr)(sc->sc_arg);
1483 } else {
1484 return 0;
1485 }
1486 return 1;
1487 }
1488
1489 #if 0
1490 /*
1491 * Enter midi uart mode and arrange for read interrupts
1492 * to vector to `intr'. This puts the card in a mode
1493 * which allows only midi I/O; the card must be reset
1494 * to leave this mode. Unfortunately, the card does not
1495 * use transmit interrupts, so bytes must be output
1496 * using polling. To keep the polling overhead to a
1497 * minimum, output should be driven off a timer.
1498 * This is a little tricky since only 320us separate
1499 * consecutive midi bytes.
1500 */
1501 void
1502 sbdsp_set_midi_mode(sc, intr, arg)
1503 struct sbdsp_softc *sc;
1504 void (*intr)();
1505 void *arg;
1506 {
1507
1508 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1509 sc->sc_mintr = intr;
1510 sc->sc_intr = 0;
1511 sc->sc_arg = arg;
1512 }
1513
1514 /*
1515 * Write a byte to the midi port, when in midi uart mode.
1516 */
1517 void
1518 sbdsp_midi_output(sc, v)
1519 struct sbdsp_softc *sc;
1520 int v;
1521 {
1522
1523 if (sbdsp_wdsp(sc, v) < 0)
1524 ++sberr.wmidi;
1525 }
1526 #endif
1527
1528 void
1529 sbdsp_set_mixer_gain(sc, port)
1530 struct sbdsp_softc *sc;
1531 int port;
1532 {
1533 int src, gain;
1534
1535 switch(sc->sc_mixer_model) {
1536 case SBM_NONE:
1537 return;
1538 case SBM_CT1335:
1539 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1540 switch(port) {
1541 case SB_MASTER_VOL:
1542 src = SBP_1335_MASTER_VOL;
1543 break;
1544 case SB_MIDI_VOL:
1545 src = SBP_1335_MIDI_VOL;
1546 break;
1547 case SB_CD_VOL:
1548 src = SBP_1335_CD_VOL;
1549 break;
1550 case SB_VOICE_VOL:
1551 src = SBP_1335_VOICE_VOL;
1552 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1553 break;
1554 default:
1555 return;
1556 }
1557 sbdsp_mix_write(sc, src, gain);
1558 break;
1559 case SBM_CT1345:
1560 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1561 sc->gain[port][SB_RIGHT]);
1562 switch (port) {
1563 case SB_MIC_VOL:
1564 src = SBP_MIC_VOL;
1565 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1566 break;
1567 case SB_MASTER_VOL:
1568 src = SBP_MASTER_VOL;
1569 break;
1570 case SB_LINE_IN_VOL:
1571 src = SBP_LINE_VOL;
1572 break;
1573 case SB_VOICE_VOL:
1574 src = SBP_VOICE_VOL;
1575 break;
1576 case SB_MIDI_VOL:
1577 src = SBP_MIDI_VOL;
1578 break;
1579 case SB_CD_VOL:
1580 src = SBP_CD_VOL;
1581 break;
1582 default:
1583 return;
1584 }
1585 sbdsp_mix_write(sc, src, gain);
1586 break;
1587 case SBM_CT1745:
1588 switch (port) {
1589 case SB_MIC_VOL:
1590 src = SB16P_MIC_L;
1591 break;
1592 case SB_MASTER_VOL:
1593 src = SB16P_MASTER_L;
1594 break;
1595 case SB_LINE_IN_VOL:
1596 src = SB16P_LINE_L;
1597 break;
1598 case SB_VOICE_VOL:
1599 src = SB16P_VOICE_L;
1600 break;
1601 case SB_MIDI_VOL:
1602 src = SB16P_MIDI_L;
1603 break;
1604 case SB_CD_VOL:
1605 src = SB16P_CD_L;
1606 break;
1607 case SB_INPUT_GAIN:
1608 src = SB16P_INPUT_GAIN_L;
1609 break;
1610 case SB_OUTPUT_GAIN:
1611 src = SB16P_OUTPUT_GAIN_L;
1612 break;
1613 case SB_TREBLE:
1614 src = SB16P_TREBLE_L;
1615 break;
1616 case SB_BASS:
1617 src = SB16P_BASS_L;
1618 break;
1619 case SB_PCSPEAKER:
1620 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1621 return;
1622 default:
1623 return;
1624 }
1625 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1626 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1627 break;
1628 }
1629 }
1630
1631 int
1632 sbdsp_mixer_set_port(addr, cp)
1633 void *addr;
1634 mixer_ctrl_t *cp;
1635 {
1636 struct sbdsp_softc *sc = addr;
1637 int lgain, rgain;
1638
1639 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1640 cp->un.value.num_channels));
1641
1642 if (sc->sc_mixer_model == SBM_NONE)
1643 return EINVAL;
1644
1645 switch (cp->dev) {
1646 case SB_TREBLE:
1647 case SB_BASS:
1648 if (sc->sc_mixer_model == SBM_CT1345) {
1649 if (cp->type != AUDIO_MIXER_ENUM)
1650 return EINVAL;
1651 switch (cp->dev) {
1652 case SB_TREBLE:
1653 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1654 return 0;
1655 case SB_BASS:
1656 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1657 return 0;
1658 }
1659 }
1660 case SB_PCSPEAKER:
1661 case SB_INPUT_GAIN:
1662 case SB_OUTPUT_GAIN:
1663 if (sc->sc_mixer_model != SBM_CT1745)
1664 return EINVAL;
1665 case SB_MIC_VOL:
1666 case SB_LINE_IN_VOL:
1667 if (sc->sc_mixer_model == SBM_CT1335)
1668 return EINVAL;
1669 case SB_VOICE_VOL:
1670 case SB_MIDI_VOL:
1671 case SB_CD_VOL:
1672 case SB_MASTER_VOL:
1673 if (cp->type != AUDIO_MIXER_VALUE)
1674 return EINVAL;
1675
1676 /*
1677 * All the mixer ports are stereo except for the microphone.
1678 * If we get a single-channel gain value passed in, then we
1679 * duplicate it to both left and right channels.
1680 */
1681
1682 switch (cp->dev) {
1683 case SB_MIC_VOL:
1684 if (cp->un.value.num_channels != 1)
1685 return EINVAL;
1686
1687 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1688 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1689 break;
1690 case SB_PCSPEAKER:
1691 if (cp->un.value.num_channels != 1)
1692 return EINVAL;
1693 /* fall into */
1694 case SB_INPUT_GAIN:
1695 case SB_OUTPUT_GAIN:
1696 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1697 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1698 break;
1699 default:
1700 switch (cp->un.value.num_channels) {
1701 case 1:
1702 lgain = rgain = SB_ADJUST_GAIN(sc,
1703 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1704 break;
1705 case 2:
1706 if (sc->sc_mixer_model == SBM_CT1335)
1707 return EINVAL;
1708 lgain = SB_ADJUST_GAIN(sc,
1709 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1710 rgain = SB_ADJUST_GAIN(sc,
1711 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1712 break;
1713 default:
1714 return EINVAL;
1715 }
1716 break;
1717 }
1718 sc->gain[cp->dev][SB_LEFT] = lgain;
1719 sc->gain[cp->dev][SB_RIGHT] = rgain;
1720
1721 sbdsp_set_mixer_gain(sc, cp->dev);
1722 break;
1723
1724 case SB_RECORD_SOURCE:
1725 if (sc->sc_mixer_model == SBM_CT1745) {
1726 if (cp->type != AUDIO_MIXER_SET)
1727 return EINVAL;
1728 return sbdsp_set_in_ports(sc, cp->un.mask);
1729 } else {
1730 if (cp->type != AUDIO_MIXER_ENUM)
1731 return EINVAL;
1732 return sbdsp_set_in_port(sc, cp->un.ord);
1733 }
1734 break;
1735
1736 case SB_AGC:
1737 if (sc->sc_mixer_model != SBM_CT1745 || cp->type != AUDIO_MIXER_ENUM)
1738 return EINVAL;
1739 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1740 break;
1741
1742 default:
1743 return EINVAL;
1744 }
1745
1746 return 0;
1747 }
1748
1749 int
1750 sbdsp_mixer_get_port(addr, cp)
1751 void *addr;
1752 mixer_ctrl_t *cp;
1753 {
1754 struct sbdsp_softc *sc = addr;
1755
1756 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1757
1758 if (sc->sc_mixer_model == SBM_NONE)
1759 return EINVAL;
1760
1761 switch (cp->dev) {
1762 case SB_TREBLE:
1763 case SB_BASS:
1764 if (sc->sc_mixer_model == SBM_CT1345) {
1765 switch (cp->dev) {
1766 case SB_TREBLE:
1767 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1768 return 0;
1769 case SB_BASS:
1770 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1771 return 0;
1772 }
1773 }
1774 case SB_PCSPEAKER:
1775 case SB_INPUT_GAIN:
1776 case SB_OUTPUT_GAIN:
1777 if (sc->sc_mixer_model != SBM_CT1745)
1778 return EINVAL;
1779 case SB_MIC_VOL:
1780 case SB_LINE_IN_VOL:
1781 if (sc->sc_mixer_model == SBM_CT1335)
1782 return EINVAL;
1783 case SB_VOICE_VOL:
1784 case SB_MIDI_VOL:
1785 case SB_CD_VOL:
1786 case SB_MASTER_VOL:
1787 switch (cp->dev) {
1788 case SB_MIC_VOL:
1789 case SB_PCSPEAKER:
1790 if (cp->un.value.num_channels != 1)
1791 return EINVAL;
1792 /* fall into */
1793 default:
1794 switch (cp->un.value.num_channels) {
1795 case 1:
1796 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1797 sc->gain[cp->dev][SB_LEFT];
1798 break;
1799 case 2:
1800 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1801 sc->gain[cp->dev][SB_LEFT];
1802 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1803 sc->gain[cp->dev][SB_RIGHT];
1804 break;
1805 default:
1806 return EINVAL;
1807 }
1808 break;
1809 }
1810 break;
1811
1812 case SB_RECORD_SOURCE:
1813 if (sc->sc_mixer_model == SBM_CT1745)
1814 cp->un.mask = sc->in_mask;
1815 else
1816 cp->un.ord = sc->in_port;
1817 break;
1818
1819 case SB_AGC:
1820 if (sc->sc_mixer_model != SBM_CT1745)
1821 return EINVAL;
1822 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1823 break;
1824
1825 default:
1826 return EINVAL;
1827 }
1828
1829 return 0;
1830 }
1831
1832 int
1833 sbdsp_mixer_query_devinfo(addr, dip)
1834 void *addr;
1835 mixer_devinfo_t *dip;
1836 {
1837 struct sbdsp_softc *sc = addr;
1838 int chan, class;
1839
1840 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1841 sc->sc_mixer_model, dip->index));
1842
1843 if (sc->sc_mixer_model == SBM_NONE)
1844 return ENXIO;
1845
1846 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1847 class = sc->sc_mixer_model == SBM_CT1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1848
1849 switch (dip->index) {
1850 case SB_MASTER_VOL:
1851 dip->type = AUDIO_MIXER_VALUE;
1852 dip->mixer_class = SB_OUTPUT_CLASS;
1853 dip->prev = dip->next = AUDIO_MIXER_LAST;
1854 strcpy(dip->label.name, AudioNmaster);
1855 dip->un.v.num_channels = chan;
1856 strcpy(dip->un.v.units.name, AudioNvolume);
1857 return 0;
1858 case SB_MIDI_VOL:
1859 dip->type = AUDIO_MIXER_VALUE;
1860 dip->mixer_class = class;
1861 dip->prev = AUDIO_MIXER_LAST;
1862 dip->next = AUDIO_MIXER_LAST;
1863 strcpy(dip->label.name, AudioNfmsynth);
1864 dip->un.v.num_channels = chan;
1865 strcpy(dip->un.v.units.name, AudioNvolume);
1866 return 0;
1867 case SB_CD_VOL:
1868 dip->type = AUDIO_MIXER_VALUE;
1869 dip->mixer_class = class;
1870 dip->prev = AUDIO_MIXER_LAST;
1871 dip->next = AUDIO_MIXER_LAST;
1872 strcpy(dip->label.name, AudioNcd);
1873 dip->un.v.num_channels = chan;
1874 strcpy(dip->un.v.units.name, AudioNvolume);
1875 return 0;
1876 case SB_VOICE_VOL:
1877 dip->type = AUDIO_MIXER_VALUE;
1878 dip->mixer_class = class;
1879 dip->prev = AUDIO_MIXER_LAST;
1880 dip->next = AUDIO_MIXER_LAST;
1881 strcpy(dip->label.name, AudioNdac);
1882 dip->un.v.num_channels = chan;
1883 strcpy(dip->un.v.units.name, AudioNvolume);
1884 return 0;
1885 case SB_OUTPUT_CLASS:
1886 dip->type = AUDIO_MIXER_CLASS;
1887 dip->mixer_class = SB_OUTPUT_CLASS;
1888 dip->next = dip->prev = AUDIO_MIXER_LAST;
1889 strcpy(dip->label.name, AudioCOutputs);
1890 return 0;
1891 }
1892
1893 if (sc->sc_mixer_model == SBM_CT1335)
1894 return ENXIO;
1895
1896 switch (dip->index) {
1897 case SB_MIC_VOL:
1898 dip->type = AUDIO_MIXER_VALUE;
1899 dip->mixer_class = class;
1900 dip->prev = AUDIO_MIXER_LAST;
1901 dip->next = AUDIO_MIXER_LAST;
1902 strcpy(dip->label.name, AudioNmicrophone);
1903 dip->un.v.num_channels = 1;
1904 strcpy(dip->un.v.units.name, AudioNvolume);
1905 return 0;
1906
1907 case SB_LINE_IN_VOL:
1908 dip->type = AUDIO_MIXER_VALUE;
1909 dip->mixer_class = class;
1910 dip->prev = AUDIO_MIXER_LAST;
1911 dip->next = AUDIO_MIXER_LAST;
1912 strcpy(dip->label.name, AudioNline);
1913 dip->un.v.num_channels = 2;
1914 strcpy(dip->un.v.units.name, AudioNvolume);
1915 return 0;
1916
1917 case SB_RECORD_SOURCE:
1918 dip->mixer_class = SB_RECORD_CLASS;
1919 dip->prev = dip->next = AUDIO_MIXER_LAST;
1920 strcpy(dip->label.name, AudioNsource);
1921 if (sc->sc_mixer_model == SBM_CT1745) {
1922 dip->type = AUDIO_MIXER_SET;
1923 dip->un.s.num_mem = 4;
1924 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1925 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
1926 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1927 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
1928 strcpy(dip->un.s.member[2].label.name, AudioNline);
1929 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
1930 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1931 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
1932 } else {
1933 dip->type = AUDIO_MIXER_ENUM;
1934 dip->un.e.num_mem = 3;
1935 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1936 dip->un.e.member[0].ord = SB_MIC_VOL;
1937 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1938 dip->un.e.member[1].ord = SB_CD_VOL;
1939 strcpy(dip->un.e.member[2].label.name, AudioNline);
1940 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
1941 }
1942 return 0;
1943
1944 case SB_BASS:
1945 dip->prev = dip->next = AUDIO_MIXER_LAST;
1946 strcpy(dip->label.name, AudioNbass);
1947 if (sc->sc_mixer_model == SBM_CT1745) {
1948 dip->type = AUDIO_MIXER_VALUE;
1949 dip->mixer_class = SB_EQUALIZATION_CLASS;
1950 dip->un.v.num_channels = 2;
1951 strcpy(dip->un.v.units.name, AudioNbass);
1952 } else {
1953 dip->type = AUDIO_MIXER_ENUM;
1954 dip->mixer_class = SB_INPUT_CLASS;
1955 dip->un.e.num_mem = 2;
1956 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1957 dip->un.e.member[0].ord = 0;
1958 strcpy(dip->un.e.member[1].label.name, AudioNon);
1959 dip->un.e.member[1].ord = 1;
1960 }
1961 return 0;
1962
1963 case SB_TREBLE:
1964 dip->prev = dip->next = AUDIO_MIXER_LAST;
1965 strcpy(dip->label.name, AudioNtreble);
1966 if (sc->sc_mixer_model == SBM_CT1745) {
1967 dip->type = AUDIO_MIXER_VALUE;
1968 dip->mixer_class = SB_EQUALIZATION_CLASS;
1969 dip->un.v.num_channels = 2;
1970 strcpy(dip->un.v.units.name, AudioNtreble);
1971 } else {
1972 dip->type = AUDIO_MIXER_ENUM;
1973 dip->mixer_class = SB_INPUT_CLASS;
1974 dip->un.e.num_mem = 2;
1975 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1976 dip->un.e.member[0].ord = 0;
1977 strcpy(dip->un.e.member[1].label.name, AudioNon);
1978 dip->un.e.member[1].ord = 1;
1979 }
1980 return 0;
1981
1982 case SB_RECORD_CLASS: /* record source class */
1983 dip->type = AUDIO_MIXER_CLASS;
1984 dip->mixer_class = SB_RECORD_CLASS;
1985 dip->next = dip->prev = AUDIO_MIXER_LAST;
1986 strcpy(dip->label.name, AudioCRecord);
1987 return 0;
1988
1989 }
1990
1991 if (sc->sc_mixer_model == SBM_CT1345)
1992 return ENXIO;
1993
1994 switch(dip->index) {
1995 case SB_PCSPEAKER:
1996 dip->type = AUDIO_MIXER_VALUE;
1997 dip->mixer_class = SB_INPUT_CLASS;
1998 dip->prev = dip->next = AUDIO_MIXER_LAST;
1999 strcpy(dip->label.name, "pc_speaker");
2000 dip->un.v.num_channels = 1;
2001 strcpy(dip->un.v.units.name, AudioNvolume);
2002 return 0;
2003
2004 case SB_INPUT_GAIN:
2005 dip->type = AUDIO_MIXER_VALUE;
2006 dip->mixer_class = SB_INPUT_CLASS;
2007 dip->prev = dip->next = AUDIO_MIXER_LAST;
2008 strcpy(dip->label.name, AudioNinput);
2009 dip->un.v.num_channels = 2;
2010 strcpy(dip->un.v.units.name, AudioNvolume);
2011 return 0;
2012
2013 case SB_OUTPUT_GAIN:
2014 dip->type = AUDIO_MIXER_VALUE;
2015 dip->mixer_class = SB_OUTPUT_CLASS;
2016 dip->prev = dip->next = AUDIO_MIXER_LAST;
2017 strcpy(dip->label.name, AudioNoutput);
2018 dip->un.v.num_channels = 2;
2019 strcpy(dip->un.v.units.name, AudioNvolume);
2020 return 0;
2021
2022 case SB_AGC:
2023 dip->type = AUDIO_MIXER_ENUM;
2024 dip->mixer_class = SB_INPUT_CLASS;
2025 dip->prev = dip->next = AUDIO_MIXER_LAST;
2026 strcpy(dip->label.name, "AGC");
2027 dip->un.e.num_mem = 2;
2028 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2029 dip->un.e.member[0].ord = 0;
2030 strcpy(dip->un.e.member[1].label.name, AudioNon);
2031 dip->un.e.member[1].ord = 1;
2032 return 0;
2033
2034 case SB_INPUT_CLASS:
2035 dip->type = AUDIO_MIXER_CLASS;
2036 dip->mixer_class = SB_INPUT_CLASS;
2037 dip->next = dip->prev = AUDIO_MIXER_LAST;
2038 strcpy(dip->label.name, AudioCInputs);
2039 return 0;
2040
2041 case SB_EQUALIZATION_CLASS:
2042 dip->type = AUDIO_MIXER_CLASS;
2043 dip->mixer_class = SB_EQUALIZATION_CLASS;
2044 dip->next = dip->prev = AUDIO_MIXER_LAST;
2045 strcpy(dip->label.name, AudioCEqualization);
2046 return 0;
2047 }
2048
2049 return ENXIO;
2050 }
2051
2052 void *
2053 sb_malloc(addr, size, pool, flags)
2054 void *addr;
2055 unsigned long size;
2056 int pool;
2057 int flags;
2058 {
2059 struct sbdsp_softc *sc = addr;
2060
2061 return isa_malloc(sc->sc_isa, 4, size, pool, flags);
2062 }
2063
2064 void
2065 sb_free(addr, ptr, pool)
2066 void *addr;
2067 void *ptr;
2068 int pool;
2069 {
2070 isa_free(ptr, pool);
2071 }
2072
2073 unsigned long
2074 sb_round(addr, size)
2075 void *addr;
2076 unsigned long size;
2077 {
2078 if (size > MAX_ISADMA)
2079 size = MAX_ISADMA;
2080 return size;
2081 }
2082
2083 int
2084 sb_mappage(addr, mem, off, prot)
2085 void *addr;
2086 void *mem;
2087 int off;
2088 int prot;
2089 {
2090 return isa_mappage(mem, off, prot);
2091 }
2092
2093 int
2094 sbdsp_get_props(addr)
2095 void *addr;
2096 {
2097 return AUDIO_PROP_MMAP;
2098 }
2099