sbdsp.c revision 1.65 1 /* $NetBSD: sbdsp.c,v 1.65 1997/08/04 09:29:56 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <vm/vm.h>
56
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59 #include <machine/bus.h>
60
61 #include <sys/audioio.h>
62 #include <dev/audio_if.h>
63 #include <dev/mulaw.h>
64 #include <dev/auconv.h>
65
66 #include <dev/isa/isavar.h>
67 #include <dev/isa/isadmavar.h>
68
69 #include <dev/isa/sbreg.h>
70 #include <dev/isa/sbdspvar.h>
71
72 #ifdef AUDIO_DEBUG
73 #define DPRINTF(x) if (sbdspdebug) printf x
74 int sbdspdebug = 0;
75 #else
76 #define DPRINTF(x)
77 #endif
78
79 #ifndef SBDSP_NPOLL
80 #define SBDSP_NPOLL 3000
81 #endif
82
83 struct {
84 int wdsp;
85 int rdsp;
86 int wmidi;
87 } sberr;
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 /* XXX Should we round the tc?
115 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
116 */
117 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
118 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
119
120 struct sbmode {
121 short model;
122 u_char channels;
123 u_char precision;
124 u_short lowrate, highrate;
125 u_char cmd;
126 u_char cmdchan;
127 };
128 static struct sbmode sbpmodes[] = {
129 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
130 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
131 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
132 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
133 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
134 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
135 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
136 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
137 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
138 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
139 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
140 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
141 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
142 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
143 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
144 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
145 #define PLAY16 15 /* must be the index of the next entry in the table */
146 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
147 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
148 { -1 }
149 };
150 static struct sbmode sbrmodes[] = {
151 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
152 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
153 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
154 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
155 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
156 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
157 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
158 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
159 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
160 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
161 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
162 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
163 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
164 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
165 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
166 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
167 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
168 { -1 }
169 };
170
171 void sbversion __P((struct sbdsp_softc *));
172 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
173 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
174 int sbdsp16_wait __P((struct sbdsp_softc *));
175 void sbdsp_to __P((void *));
176 void sbdsp_pause __P((struct sbdsp_softc *));
177 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
178 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
179 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
180 void sbdsp_set_ifilter __P((void *, int));
181 int sbdsp_get_ifilter __P((void *));
182
183 #ifdef AUDIO_DEBUG
184 void sb_printsc __P((struct sbdsp_softc *));
185
186 void
187 sb_printsc(sc)
188 struct sbdsp_softc *sc;
189 {
190 int i;
191
192 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
193 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
194 sc->sc_iobase, sc->sc_irq);
195 printf("irate %d itc %x orate %d otc %x\n",
196 sc->sc_irate, sc->sc_itc,
197 sc->sc_orate, sc->sc_otc);
198 printf("outport %u inport %u spkron %u nintr %lu\n",
199 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
200 printf("intr %p arg %p\n",
201 sc->sc_intr, sc->sc_arg);
202 printf("gain:");
203 for (i = 0; i < SB_NDEVS; i++)
204 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
205 printf("\n");
206 }
207 #endif /* AUDIO_DEBUG */
208
209 /*
210 * Probe / attach routines.
211 */
212
213 /*
214 * Probe for the soundblaster hardware.
215 */
216 int
217 sbdsp_probe(sc)
218 struct sbdsp_softc *sc;
219 {
220
221 if (sbdsp_reset(sc) < 0) {
222 DPRINTF(("sbdsp: couldn't reset card\n"));
223 return 0;
224 }
225 /* if flags set, go and probe the jazz16 stuff */
226 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
227 sbdsp_jazz16_probe(sc);
228 else
229 sbversion(sc);
230 if (sc->sc_model == SB_UNK) {
231 /* Unknown SB model found. */
232 DPRINTF(("sbdsp: unknown SB model found\n"));
233 return 0;
234 }
235 return 1;
236 }
237
238 /*
239 * Try add-on stuff for Jazz16.
240 */
241 void
242 sbdsp_jazz16_probe(sc)
243 struct sbdsp_softc *sc;
244 {
245 static u_char jazz16_irq_conf[16] = {
246 -1, -1, 0x02, 0x03,
247 -1, 0x01, -1, 0x04,
248 -1, 0x02, 0x05, -1,
249 -1, -1, -1, 0x06};
250 static u_char jazz16_drq_conf[8] = {
251 -1, 0x01, -1, 0x02,
252 -1, 0x03, -1, 0x04};
253
254 bus_space_tag_t iot = sc->sc_iot;
255 bus_space_handle_t ioh;
256
257 sbversion(sc);
258
259 DPRINTF(("jazz16 probe\n"));
260
261 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
262 DPRINTF(("bus map failed\n"));
263 return;
264 }
265
266 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
267 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
268 DPRINTF(("drq/irq check failed\n"));
269 goto done; /* give up, we can't do it. */
270 }
271
272 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
273 delay(10000); /* delay 10 ms */
274 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
275 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
276
277 if (sbdsp_reset(sc) < 0) {
278 DPRINTF(("sbdsp_reset check failed\n"));
279 goto done; /* XXX? what else could we do? */
280 }
281
282 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
283 DPRINTF(("read16 setup failed\n"));
284 goto done;
285 }
286
287 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
288 DPRINTF(("read16 failed\n"));
289 goto done;
290 }
291
292 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
293 sc->sc_drq16 = sc->sc_drq8;
294 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
295 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
296 jazz16_drq_conf[sc->sc_drq8]) ||
297 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
298 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
299 } else {
300 DPRINTF(("jazz16 detected!\n"));
301 sc->sc_model = SB_JAZZ;
302 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
303 }
304
305 done:
306 bus_space_unmap(iot, ioh, 1);
307 }
308
309 /*
310 * Attach hardware to driver, attach hardware driver to audio
311 * pseudo-device driver .
312 */
313 void
314 sbdsp_attach(sc)
315 struct sbdsp_softc *sc;
316 {
317 struct audio_params xparams;
318 int i;
319 u_int v;
320
321 /*
322 * Create our DMA maps.
323 */
324 if (sc->sc_drq8 != -1) {
325 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8,
326 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
327 printf("%s: can't create map for drq %d\n",
328 sc->sc_dev.dv_xname, sc->sc_drq8);
329 return;
330 }
331 }
332 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
333 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16,
334 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
335 printf("%s: can't create map for drq %d\n",
336 sc->sc_dev.dv_xname, sc->sc_drq16);
337 return;
338 }
339 }
340
341 sbdsp_set_params(sc, AUMODE_RECORD, &audio_default, &xparams);
342 sbdsp_set_params(sc, AUMODE_PLAY, &audio_default, &xparams);
343
344 sbdsp_set_in_port(sc, SB_MIC_VOL);
345 sbdsp_set_out_port(sc, SB_MASTER_VOL);
346
347 if (sc->sc_mixer_model != SBM_NONE) {
348 /* Reset the mixer.*/
349 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
350 /* And set our own default values */
351 for (i = 0; i < SB_NDEVS; i++) {
352 switch(i) {
353 case SB_MIC_VOL:
354 case SB_LINE_IN_VOL:
355 v = 0;
356 break;
357 case SB_BASS:
358 case SB_TREBLE:
359 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
360 break;
361 default:
362 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
363 break;
364 }
365 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
366 sbdsp_set_mixer_gain(sc, i);
367 }
368 sc->in_filter = 0; /* no filters turned on, please */
369 }
370
371 DPRINTF((" drq16 %d", sc->sc_drq16));
372 printf(": dsp v%d.%02d%s\n",
373 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
374 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
375 }
376
377 void
378 sbdsp_mix_write(sc, mixerport, val)
379 struct sbdsp_softc *sc;
380 int mixerport;
381 int val;
382 {
383 bus_space_tag_t iot = sc->sc_iot;
384 bus_space_handle_t ioh = sc->sc_ioh;
385 int s;
386
387 s = splaudio();
388 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
389 delay(20);
390 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
391 delay(30);
392 splx(s);
393 }
394
395 int
396 sbdsp_mix_read(sc, mixerport)
397 struct sbdsp_softc *sc;
398 int mixerport;
399 {
400 bus_space_tag_t iot = sc->sc_iot;
401 bus_space_handle_t ioh = sc->sc_ioh;
402 int val;
403 int s;
404
405 s = splaudio();
406 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
407 delay(20);
408 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
409 delay(30);
410 splx(s);
411 return val;
412 }
413
414 /*
415 * Various routines to interface to higher level audio driver
416 */
417
418 int
419 sbdsp_query_encoding(addr, fp)
420 void *addr;
421 struct audio_encoding *fp;
422 {
423 struct sbdsp_softc *sc = addr;
424 int emul;
425
426 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
427
428 switch (fp->index) {
429 case 0:
430 strcpy(fp->name, AudioEulinear);
431 fp->encoding = AUDIO_ENCODING_ULINEAR;
432 fp->precision = 8;
433 fp->flags = 0;
434 return 0;
435 case 1:
436 strcpy(fp->name, AudioEmulaw);
437 fp->encoding = AUDIO_ENCODING_ULAW;
438 fp->precision = 8;
439 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
440 return 0;
441 case 2:
442 strcpy(fp->name, AudioEalaw);
443 fp->encoding = AUDIO_ENCODING_ALAW;
444 fp->precision = 8;
445 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
446 return 0;
447 case 3:
448 strcpy(fp->name, AudioElinear);
449 fp->encoding = AUDIO_ENCODING_SLINEAR;
450 fp->precision = 8;
451 fp->flags = emul;
452 return 0;
453 }
454 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
455 return EINVAL;
456
457 switch(fp->index) {
458 case 4:
459 strcpy(fp->name, AudioElinear_le);
460 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
461 fp->precision = 16;
462 fp->flags = 0;
463 return 0;
464 case 5:
465 strcpy(fp->name, AudioEulinear_le);
466 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
467 fp->precision = 16;
468 fp->flags = emul;
469 return 0;
470 case 6:
471 strcpy(fp->name, AudioElinear_be);
472 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
473 fp->precision = 16;
474 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
475 return 0;
476 case 7:
477 strcpy(fp->name, AudioEulinear_be);
478 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
479 fp->precision = 16;
480 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
481 return 0;
482 default:
483 return EINVAL;
484 }
485 return 0;
486 }
487
488 int
489 sbdsp_set_params(addr, mode, p, q)
490 void *addr;
491 int mode;
492 struct audio_params *p, *q;
493 {
494 struct sbdsp_softc *sc = addr;
495 struct sbmode *m;
496 u_int rate, tc = 1, bmode = -1;
497 void (*swcode) __P((void *, u_char *buf, int cnt));
498 int factor = 1;
499 int model;
500
501 model = sc->sc_model;
502 if (model > SB_16)
503 model = SB_16; /* later models work like SB16 */
504 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
505 m->model != -1; m++) {
506 if (model == m->model &&
507 p->channels == m->channels &&
508 p->precision == m->precision &&
509 p->sample_rate >= m->lowrate &&
510 p->sample_rate < m->highrate)
511 break;
512 }
513 if (m->model == -1)
514 return EINVAL;
515 rate = p->sample_rate;
516 swcode = 0;
517 if (model == SB_16) {
518 switch (p->encoding) {
519 case AUDIO_ENCODING_SLINEAR_BE:
520 if (p->precision == 16)
521 swcode = swap_bytes;
522 /* fall into */
523 case AUDIO_ENCODING_SLINEAR_LE:
524 bmode = SB_BMODE_SIGNED;
525 break;
526 case AUDIO_ENCODING_ULINEAR_BE:
527 if (p->precision == 16)
528 swcode = swap_bytes;
529 /* fall into */
530 case AUDIO_ENCODING_ULINEAR_LE:
531 bmode = SB_BMODE_UNSIGNED;
532 break;
533 case AUDIO_ENCODING_ULAW:
534 if (mode == AUMODE_PLAY) {
535 swcode = mulaw_to_ulinear16;
536 factor = 2;
537 m = &sbpmodes[PLAY16];
538 } else
539 swcode = ulinear8_to_mulaw;
540 bmode = SB_BMODE_UNSIGNED;
541 break;
542 case AUDIO_ENCODING_ALAW:
543 if (mode == AUMODE_PLAY) {
544 swcode = alaw_to_ulinear16;
545 factor = 2;
546 m = &sbpmodes[PLAY16];
547 } else
548 swcode = ulinear8_to_alaw;
549 bmode = SB_BMODE_UNSIGNED;
550 break;
551 default:
552 return EINVAL;
553 }
554 if (p->channels == 2)
555 bmode |= SB_BMODE_STEREO;
556 } else if (m->model == SB_JAZZ && m->precision == 16) {
557 switch (p->encoding) {
558 case AUDIO_ENCODING_SLINEAR_LE:
559 break;
560 case AUDIO_ENCODING_ULINEAR_LE:
561 swcode = change_sign16;
562 break;
563 case AUDIO_ENCODING_SLINEAR_BE:
564 swcode = swap_bytes;
565 break;
566 case AUDIO_ENCODING_ULINEAR_BE:
567 swcode = mode == AUMODE_PLAY ?
568 swap_bytes_change_sign16 : change_sign16_swap_bytes;
569 break;
570 case AUDIO_ENCODING_ULAW:
571 swcode = mode == AUMODE_PLAY ?
572 mulaw_to_ulinear8 : ulinear8_to_mulaw;
573 break;
574 case AUDIO_ENCODING_ALAW:
575 swcode = mode == AUMODE_PLAY ?
576 alaw_to_ulinear8 : ulinear8_to_alaw;
577 break;
578 default:
579 return EINVAL;
580 }
581 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
582 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
583 } else {
584 switch (p->encoding) {
585 case AUDIO_ENCODING_SLINEAR_BE:
586 case AUDIO_ENCODING_SLINEAR_LE:
587 swcode = change_sign8;
588 break;
589 case AUDIO_ENCODING_ULINEAR_BE:
590 case AUDIO_ENCODING_ULINEAR_LE:
591 break;
592 case AUDIO_ENCODING_ULAW:
593 swcode = mode == AUMODE_PLAY ?
594 mulaw_to_ulinear8 : ulinear8_to_mulaw;
595 break;
596 case AUDIO_ENCODING_ALAW:
597 swcode = mode == AUMODE_PLAY ?
598 alaw_to_ulinear8 : ulinear8_to_alaw;
599 break;
600 default:
601 return EINVAL;
602 }
603 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
604 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
605 }
606
607 if (mode == AUMODE_PLAY) {
608 sc->sc_orate = rate;
609 sc->sc_otc = tc;
610 sc->sc_omodep = m;
611 sc->sc_obmode = bmode;
612 } else {
613 sc->sc_irate = rate;
614 sc->sc_itc = tc;
615 sc->sc_imodep = m;
616 sc->sc_ibmode = bmode;
617 }
618
619 p->sw_code = swcode;
620 p->factor = factor;
621
622 /* Update setting for the other mode. */
623 q->encoding = p->encoding;
624 q->channels = p->channels;
625 q->precision = p->precision;
626
627 /*
628 * XXX
629 * Should wait for chip to be idle.
630 */
631 sc->sc_dmadir = SB_DMA_NONE;
632
633 DPRINTF(("set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
634 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
635 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
636
637 return 0;
638 }
639
640 void
641 sbdsp_set_ifilter(addr, which)
642 void *addr;
643 int which;
644 {
645 struct sbdsp_softc *sc = addr;
646 int mixval;
647
648 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
649 switch (which) {
650 case 0:
651 mixval |= SBP_FILTER_OFF;
652 break;
653 case SB_TREBLE:
654 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
655 break;
656 case SB_BASS:
657 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
658 break;
659 default:
660 return;
661 }
662 sc->in_filter = mixval & SBP_IFILTER_MASK;
663 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
664 }
665
666 int
667 sbdsp_get_ifilter(addr)
668 void *addr;
669 {
670 struct sbdsp_softc *sc = addr;
671
672 sc->in_filter =
673 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
674 switch (sc->in_filter) {
675 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
676 return SB_TREBLE;
677 case SBP_FILTER_ON|SBP_IFILTER_LOW:
678 return SB_BASS;
679 default:
680 return 0;
681 }
682 }
683
684 int
685 sbdsp_set_out_port(addr, port)
686 void *addr;
687 int port;
688 {
689 struct sbdsp_softc *sc = addr;
690
691 sc->out_port = port; /* Just record it */
692
693 return 0;
694 }
695
696 int
697 sbdsp_get_out_port(addr)
698 void *addr;
699 {
700 struct sbdsp_softc *sc = addr;
701
702 return sc->out_port;
703 }
704
705
706 int
707 sbdsp_set_in_port(addr, port)
708 void *addr;
709 int port;
710 {
711 return sbdsp_set_in_ports(addr, 1 << port);
712 }
713
714 int
715 sbdsp_set_in_ports(sc, mask)
716 struct sbdsp_softc *sc;
717 int mask;
718 {
719 int bitsl, bitsr;
720 int sbport;
721 int i;
722
723 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
724 sc->sc_mixer_model, mask));
725
726 switch(sc->sc_mixer_model) {
727 case SBM_NONE:
728 return EINVAL;
729 case SBM_CT1335:
730 if (mask != (1 << SB_MIC_VOL))
731 return EINVAL;
732 break;
733 case SBM_CT1345:
734 switch (mask) {
735 case 1 << SB_MIC_VOL:
736 sbport = SBP_FROM_MIC;
737 break;
738 case 1 << SB_LINE_IN_VOL:
739 sbport = SBP_FROM_LINE;
740 break;
741 case 1 << SB_CD_VOL:
742 sbport = SBP_FROM_CD;
743 break;
744 default:
745 return (EINVAL);
746 }
747 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
748 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
749 break;
750 case SBM_CT1XX5:
751 case SBM_CT1745:
752 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
753 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
754 return EINVAL;
755 bitsr = 0;
756 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
757 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
758 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
759 bitsl = SB_SRC_R_TO_L(bitsr);
760 if (mask & (1<<SB_MIC_VOL)) {
761 bitsl |= SBP_MIC_SRC;
762 bitsr |= SBP_MIC_SRC;
763 }
764 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
765 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
766 break;
767 }
768
769 sc->in_mask = mask;
770
771 /* XXX
772 * We have to fake a single port since the upper layer
773 * expects one.
774 */
775 for(i = 0; i < SB_NPORT; i++) {
776 if (mask & (1 << i)) {
777 sc->in_port = i;
778 break;
779 }
780 }
781 return 0;
782 }
783
784 int
785 sbdsp_get_in_port(addr)
786 void *addr;
787 {
788 struct sbdsp_softc *sc = addr;
789
790 return sc->in_port;
791 }
792
793
794 int
795 sbdsp_speaker_ctl(addr, newstate)
796 void *addr;
797 int newstate;
798 {
799 struct sbdsp_softc *sc = addr;
800
801 if ((newstate == SPKR_ON) &&
802 (sc->spkr_state == SPKR_OFF)) {
803 sbdsp_spkron(sc);
804 sc->spkr_state = SPKR_ON;
805 }
806 if ((newstate == SPKR_OFF) &&
807 (sc->spkr_state == SPKR_ON)) {
808 sbdsp_spkroff(sc);
809 sc->spkr_state = SPKR_OFF;
810 }
811 return 0;
812 }
813
814 int
815 sbdsp_round_blocksize(addr, blk)
816 void *addr;
817 int blk;
818 {
819 blk &= -4; /* round to biggest sample size */
820 return blk;
821 }
822
823 int
824 sbdsp_open(addr, flags)
825 void *addr;
826 int flags;
827 {
828 struct sbdsp_softc *sc = addr;
829
830 DPRINTF(("sbdsp_open: sc=%p\n", sc));
831
832 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
833 return ENXIO;
834
835 sc->sc_open = 1;
836 sc->sc_mintr = 0;
837 if (ISSBPRO(sc) &&
838 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
839 DPRINTF(("sbdsp_open: can't set mono mode\n"));
840 /* we'll readjust when it's time for DMA. */
841 }
842
843 /*
844 * Leave most things as they were; users must change things if
845 * the previous process didn't leave it they way they wanted.
846 * Looked at another way, it's easy to set up a configuration
847 * in one program and leave it for another to inherit.
848 */
849 DPRINTF(("sbdsp_open: opened\n"));
850
851 return 0;
852 }
853
854 void
855 sbdsp_close(addr)
856 void *addr;
857 {
858 struct sbdsp_softc *sc = addr;
859
860 DPRINTF(("sbdsp_close: sc=%p\n", sc));
861
862 sc->sc_open = 0;
863 sbdsp_spkroff(sc);
864 sc->spkr_state = SPKR_OFF;
865 sc->sc_intr = 0;
866 sc->sc_mintr = 0;
867 sbdsp_haltdma(sc);
868
869 DPRINTF(("sbdsp_close: closed\n"));
870 }
871
872 /*
873 * Lower-level routines
874 */
875
876 /*
877 * Reset the card.
878 * Return non-zero if the card isn't detected.
879 */
880 int
881 sbdsp_reset(sc)
882 struct sbdsp_softc *sc;
883 {
884 bus_space_tag_t iot = sc->sc_iot;
885 bus_space_handle_t ioh = sc->sc_ioh;
886
887 sc->sc_intr = 0;
888 if (sc->sc_dmadir != SB_DMA_NONE) {
889 isa_dmaabort(sc->sc_isa, sc->dmachan);
890 sc->sc_dmadir = SB_DMA_NONE;
891 }
892
893 /*
894 * See SBK, section 11.3.
895 * We pulse a reset signal into the card.
896 * Gee, what a brilliant hardware design.
897 */
898 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
899 delay(10);
900 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
901 delay(30);
902 if (sbdsp_rdsp(sc) != SB_MAGIC)
903 return -1;
904
905 return 0;
906 }
907
908 int
909 sbdsp16_wait(sc)
910 struct sbdsp_softc *sc;
911 {
912 bus_space_tag_t iot = sc->sc_iot;
913 bus_space_handle_t ioh = sc->sc_ioh;
914 int i;
915 u_char x;
916
917 for (i = SBDSP_NPOLL; --i >= 0; ) {
918 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
919 delay(10);
920 if ((x & SB_DSP_BUSY) == 0)
921 continue;
922 return 0;
923 }
924 ++sberr.wdsp;
925 return -1;
926 }
927
928 /*
929 * Write a byte to the dsp.
930 * XXX We are at the mercy of the card as we use a
931 * polling loop and wait until it can take the byte.
932 */
933 int
934 sbdsp_wdsp(sc, v)
935 struct sbdsp_softc *sc;
936 int v;
937 {
938 bus_space_tag_t iot = sc->sc_iot;
939 bus_space_handle_t ioh = sc->sc_ioh;
940 int i;
941 u_char x;
942
943 for (i = SBDSP_NPOLL; --i >= 0; ) {
944 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
945 delay(10);
946 if ((x & SB_DSP_BUSY) != 0)
947 continue;
948 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
949 delay(10);
950 return 0;
951 }
952 ++sberr.wdsp;
953 return -1;
954 }
955
956 /*
957 * Read a byte from the DSP, using polling.
958 */
959 int
960 sbdsp_rdsp(sc)
961 struct sbdsp_softc *sc;
962 {
963 bus_space_tag_t iot = sc->sc_iot;
964 bus_space_handle_t ioh = sc->sc_ioh;
965 int i;
966 u_char x;
967
968 for (i = SBDSP_NPOLL; --i >= 0; ) {
969 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
970 delay(10);
971 if ((x & SB_DSP_READY) == 0)
972 continue;
973 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
974 delay(10);
975 return x;
976 }
977 ++sberr.rdsp;
978 return -1;
979 }
980
981 /*
982 * Doing certain things (like toggling the speaker) make
983 * the SB hardware go away for a while, so pause a little.
984 */
985 void
986 sbdsp_to(arg)
987 void *arg;
988 {
989 wakeup(arg);
990 }
991
992 void
993 sbdsp_pause(sc)
994 struct sbdsp_softc *sc;
995 {
996 extern int hz;
997
998 timeout(sbdsp_to, sbdsp_to, hz/8);
999 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1000 }
1001
1002 /*
1003 * Turn on the speaker. The SBK documention says this operation
1004 * can take up to 1/10 of a second. Higher level layers should
1005 * probably let the task sleep for this amount of time after
1006 * calling here. Otherwise, things might not work (because
1007 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1008 *
1009 * These engineers had their heads up their ass when
1010 * they designed this card.
1011 */
1012 void
1013 sbdsp_spkron(sc)
1014 struct sbdsp_softc *sc;
1015 {
1016 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1017 sbdsp_pause(sc);
1018 }
1019
1020 /*
1021 * Turn off the speaker; see comment above.
1022 */
1023 void
1024 sbdsp_spkroff(sc)
1025 struct sbdsp_softc *sc;
1026 {
1027 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1028 sbdsp_pause(sc);
1029 }
1030
1031 /*
1032 * Read the version number out of the card.
1033 * Store version information in the softc.
1034 */
1035 void
1036 sbversion(sc)
1037 struct sbdsp_softc *sc;
1038 {
1039 int v;
1040
1041 sc->sc_model = SB_UNK;
1042 sc->sc_version = 0;
1043 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1044 return;
1045 v = sbdsp_rdsp(sc) << 8;
1046 v |= sbdsp_rdsp(sc);
1047 if (v < 0)
1048 return;
1049 sc->sc_version = v;
1050 switch(SBVER_MAJOR(v)) {
1051 case 1:
1052 sc->sc_mixer_model = SBM_NONE;
1053 sc->sc_model = SB_1;
1054 break;
1055 case 2:
1056 /* Some SB2 have a mixer, some don't. */
1057 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1058 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1059 /* Check if we can read back the mixer values. */
1060 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1061 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1062 sc->sc_mixer_model = SBM_CT1335;
1063 else
1064 sc->sc_mixer_model = SBM_NONE;
1065 if (SBVER_MINOR(v) == 0)
1066 sc->sc_model = SB_20;
1067 else
1068 sc->sc_model = SB_2x;
1069 break;
1070 case 3:
1071 sc->sc_mixer_model = SBM_CT1345;
1072 sc->sc_model = SB_PRO;
1073 break;
1074 case 4:
1075 #if 0
1076 /* XXX This does not work */
1077 /* Most SB16 have a tone controls, but some don't. */
1078 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1079 /* Check if we can read back the mixer value. */
1080 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1081 sc->sc_mixer_model = SBM_CT1745;
1082 else
1083 sc->sc_mixer_model = SBM_CT1XX5;
1084 #else
1085 sc->sc_mixer_model = SBM_CT1745;
1086 #endif
1087 /* XXX what about SB_32 */
1088 if (SBVER_MINOR(v) == 16)
1089 sc->sc_model = SB_64;
1090 else
1091 sc->sc_model = SB_16;
1092 break;
1093 }
1094 }
1095
1096 /*
1097 * Halt a DMA in progress. A low-speed transfer can be
1098 * resumed with sbdsp_contdma().
1099 */
1100 int
1101 sbdsp_haltdma(addr)
1102 void *addr;
1103 {
1104 struct sbdsp_softc *sc = addr;
1105
1106 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1107
1108 sbdsp_reset(sc);
1109 return 0;
1110 }
1111
1112 int
1113 sbdsp_contdma(addr)
1114 void *addr;
1115 {
1116 struct sbdsp_softc *sc = addr;
1117
1118 DPRINTF(("sbdsp_contdma: sc=%p\n", sc));
1119
1120 /* XXX how do we reinitialize the DMA controller state? do we care? */
1121 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
1122 return 0;
1123 }
1124
1125 int
1126 sbdsp_set_timeconst(sc, tc)
1127 struct sbdsp_softc *sc;
1128 int tc;
1129 {
1130 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1131
1132 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1133 sbdsp_wdsp(sc, tc) < 0)
1134 return EIO;
1135
1136 return 0;
1137 }
1138
1139 int
1140 sbdsp16_set_rate(sc, cmd, rate)
1141 struct sbdsp_softc *sc;
1142 int cmd, rate;
1143 {
1144 DPRINTF(("sbdsp16_set_rate: sc=%p rate=%d\n", sc, rate));
1145
1146 if (sbdsp_wdsp(sc, cmd) < 0 ||
1147 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1148 sbdsp_wdsp(sc, rate) < 0)
1149 return EIO;
1150 return 0;
1151 }
1152
1153 int
1154 sbdsp_dma_init_input(addr, buf, cc)
1155 void *addr;
1156 void *buf;
1157 int cc;
1158 {
1159 struct sbdsp_softc *sc = addr;
1160
1161 if (sc->sc_model == SB_1)
1162 return 0;
1163 sc->dmaflags = DMAMODE_READ | DMAMODE_LOOP;
1164 sc->dmaaddr = buf;
1165 sc->dmacnt = cc;
1166 sc->dmachan = sc->sc_imodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1167 DPRINTF(("sbdsp: dma start loop input addr=%p cc=%d chan=%d\n",
1168 buf, cc, sc->dmachan));
1169 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1170 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1171 return 0;
1172 }
1173
1174 int
1175 sbdsp_dma_input(addr, p, cc, intr, arg)
1176 void *addr;
1177 void *p;
1178 int cc;
1179 void (*intr) __P((void *));
1180 void *arg;
1181 {
1182 struct sbdsp_softc *sc = addr;
1183 int loop = sc->sc_model != SB_1;
1184 int stereo = sc->sc_imodep->channels == 2;
1185 int filter;
1186
1187 #ifdef AUDIO_DEBUG
1188 if (sbdspdebug > 1)
1189 printf("sbdsp_dma_input: cc=%d %p (%p)\n", cc, intr, arg);
1190 #endif
1191 #ifdef DIAGNOSTIC
1192 if (sc->sc_imodep->channels == 2 && (cc & 1)) {
1193 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1194 return EIO;
1195 }
1196 #endif
1197
1198 if (sc->sc_dmadir != SB_DMA_IN) {
1199 if (ISSBPRO(sc)) {
1200 if (sbdsp_wdsp(sc, sc->sc_imodep->cmdchan) < 0)
1201 goto badmode;
1202 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1203 sbdsp_mix_write(sc, SBP_INFILTER,
1204 (sbdsp_mix_read(sc, SBP_INFILTER) &
1205 ~SBP_IFILTER_MASK) | filter);
1206 }
1207
1208 if (ISSB16CLASS(sc)) {
1209 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE,
1210 sc->sc_irate)) {
1211 DPRINTF(("sbdsp_dma_input: rate=%d set failed\n",
1212 sc->sc_irate));
1213 goto giveup;
1214 }
1215 } else {
1216 if (sbdsp_set_timeconst(sc, sc->sc_itc)) {
1217 DPRINTF(("sbdsp_dma_output: tc=%d set failed\n",
1218 sc->sc_irate));
1219 goto giveup;
1220 }
1221 }
1222
1223 sc->sc_dmadir = SB_DMA_IN;
1224 sc->dmaflags = DMAMODE_READ;
1225 } else {
1226 /* If already started just return. */
1227 if (loop)
1228 return 0;
1229 }
1230
1231 if (!loop) {
1232 sc->dmaaddr = p;
1233 sc->dmacnt = cc;
1234 sc->dmachan = sc->sc_imodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1235 #ifdef AUDIO_DEBUG
1236 if (sbdspdebug > 2)
1237 printf("sbdsp_dma_input: dmastart %x %p %ld %d\n",
1238 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1239 #endif
1240 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1241 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1242 }
1243 sc->sc_intr = intr;
1244 sc->sc_arg = arg;
1245
1246 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1247 (sc->sc_model != SB_JAZZ && sc->sc_imodep->precision == 16))
1248 cc >>= 1;
1249 --cc;
1250 if (ISSB16CLASS(sc)) {
1251 #ifdef AUDIO_DEBUG
1252 if (sbdspdebug > 2)
1253 printf("sbdsp16 input command %02x %02x %d\n",
1254 sc->sc_imodep->cmd, sc->sc_ibmode, cc);
1255 #endif
1256 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1257 sbdsp_wdsp(sc, sc->sc_ibmode) < 0 ||
1258 sbdsp16_wait(sc) ||
1259 sbdsp_wdsp(sc, cc) < 0 ||
1260 sbdsp_wdsp(sc, cc >> 8) < 0) {
1261 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1262 goto giveup;
1263 }
1264 } else {
1265 if (loop) {
1266 DPRINTF(("sbdsp_dma_input: set blocksize=%d\n", cc));
1267 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1268 sbdsp_wdsp(sc, cc) < 0 ||
1269 sbdsp_wdsp(sc, cc >> 8) < 0) {
1270 DPRINTF(("sbdsp_dma_input: SB2 DMA blocksize failed\n"));
1271 goto giveup;
1272 }
1273 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0) {
1274 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1275 goto giveup;
1276 }
1277 } else {
1278 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1279 sbdsp_wdsp(sc, cc) < 0 ||
1280 sbdsp_wdsp(sc, cc >> 8) < 0) {
1281 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1282 goto giveup;
1283 }
1284 }
1285 }
1286 return 0;
1287
1288 giveup:
1289 sbdsp_reset(sc);
1290 return EIO;
1291
1292 badmode:
1293 DPRINTF(("sbdsp_dma_input: can't set mode\n"));
1294 return EIO;
1295 }
1296
1297 int
1298 sbdsp_dma_init_output(addr, buf, cc)
1299 void *addr;
1300 void *buf;
1301 int cc;
1302 {
1303 struct sbdsp_softc *sc = addr;
1304
1305 if (sc->sc_model == SB_1)
1306 return 0;
1307 sc->dmaflags = DMAMODE_WRITE | DMAMODE_LOOP;
1308 sc->dmaaddr = buf;
1309 sc->dmacnt = cc;
1310 sc->dmachan = sc->sc_omodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1311 DPRINTF(("sbdsp: dma start loop output addr=%p cc=%d chan=%d\n",
1312 buf, cc, sc->dmachan));
1313 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1314 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1315 return 0;
1316 }
1317
1318 int
1319 sbdsp_dma_output(addr, p, cc, intr, arg)
1320 void *addr;
1321 void *p;
1322 int cc;
1323 void (*intr) __P((void *));
1324 void *arg;
1325 {
1326 struct sbdsp_softc *sc = addr;
1327 int loop = sc->sc_model != SB_1;
1328 int stereo = sc->sc_omodep->channels == 2;
1329 int cmd;
1330
1331 #ifdef AUDIO_DEBUG
1332 if (sbdspdebug > 1)
1333 printf("sbdsp_dma_output: cc=%d %p (%p)\n", cc, intr, arg);
1334 #endif
1335 #ifdef DIAGNOSTIC
1336 if (stereo && (cc & 1)) {
1337 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1338 return EIO;
1339 }
1340 #endif
1341
1342 if (sc->sc_dmadir != SB_DMA_OUT) {
1343 if (ISSBPRO(sc)) {
1344 /* make sure we re-set stereo mixer bit when we start
1345 output. */
1346 sbdsp_mix_write(sc, SBP_STEREO,
1347 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1348 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1349 cmd = sc->sc_omodep->cmdchan;
1350 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1351 goto badmode;
1352 }
1353
1354 if (ISSB16CLASS(sc)) {
1355 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE,
1356 sc->sc_orate)) {
1357 DPRINTF(("sbdsp_dma_output: rate=%d set failed\n",
1358 sc->sc_orate));
1359 goto giveup;
1360 }
1361 } else {
1362 if (sbdsp_set_timeconst(sc, sc->sc_otc)) {
1363 DPRINTF(("sbdsp_dma_output: tc=%d set failed\n",
1364 sc->sc_orate));
1365 goto giveup;
1366 }
1367 }
1368
1369 sc->sc_dmadir = SB_DMA_OUT;
1370 sc->dmaflags = DMAMODE_WRITE;
1371 } else {
1372 /* If already started just return. */
1373 if (loop)
1374 return 0;
1375 }
1376
1377 if (!loop) {
1378 sc->dmaaddr = p;
1379 sc->dmacnt = cc;
1380 sc->dmachan = sc->sc_omodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1381 #ifdef AUDIO_DEBUG
1382 if (sbdspdebug > 2)
1383 printf("sbdsp: start dma out flags=%x, addr=%p, cnt=%ld, chan=%d\n",
1384 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1385 #endif
1386 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1387 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1388 }
1389 sc->sc_intr = intr;
1390 sc->sc_arg = arg;
1391
1392 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1393 (sc->sc_model != SB_JAZZ && sc->sc_omodep->precision == 16))
1394 cc >>= 1;
1395 --cc;
1396 if (ISSB16CLASS(sc)) {
1397 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1398 sbdsp_wdsp(sc, sc->sc_obmode) < 0 ||
1399 sbdsp16_wait(sc) ||
1400 sbdsp_wdsp(sc, cc) < 0 ||
1401 sbdsp_wdsp(sc, cc >> 8) < 0) {
1402 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1403 goto giveup;
1404 }
1405 } else {
1406 if (loop) {
1407 DPRINTF(("sbdsp_dma_output: set blocksize=%d\n", cc));
1408 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1409 sbdsp_wdsp(sc, cc) < 0 ||
1410 sbdsp_wdsp(sc, cc >> 8) < 0) {
1411 DPRINTF(("sbdsp_dma_output: SB2 DMA blocksize failed\n"));
1412 goto giveup;
1413 }
1414 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0) {
1415 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1416 goto giveup;
1417 }
1418 } else {
1419 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1420 sbdsp_wdsp(sc, cc) < 0 ||
1421 sbdsp_wdsp(sc, cc >> 8) < 0) {
1422 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1423 goto giveup;
1424 }
1425 }
1426 }
1427 return 0;
1428
1429 giveup:
1430 sbdsp_reset(sc);
1431 return EIO;
1432
1433 badmode:
1434 DPRINTF(("sbdsp_dma_output: can't set mode\n"));
1435 return EIO;
1436 }
1437
1438 /*
1439 * Only the DSP unit on the sound blaster generates interrupts.
1440 * There are three cases of interrupt: reception of a midi byte
1441 * (when mode is enabled), completion of dma transmission, or
1442 * completion of a dma reception. The three modes are mutually
1443 * exclusive so we know a priori which event has occurred.
1444 *
1445 * If there is interrupt sharing or a spurious interrupt occurs
1446 * there is no way to distinuish this on an SB2. So if you have
1447 * an SB2 and experience problems, buy an SB16 (it's only $25).
1448 */
1449 int
1450 sbdsp_intr(arg)
1451 void *arg;
1452 {
1453 struct sbdsp_softc *sc = arg;
1454 int loop = sc->sc_model != SB_1;
1455 u_char irq;
1456
1457 #ifdef AUDIO_DEBUG
1458 if (sbdspdebug > 1)
1459 printf("sbdsp_intr: intr=%p\n", sc->sc_intr);
1460 #endif
1461 if (ISSB16CLASS(sc)) {
1462 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1463 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16)) == 0)
1464 return 0;
1465 } else {
1466 if (!loop && !isa_dmafinished(sc->sc_isa, sc->dmachan))
1467 return 0;
1468 irq = SBP_IRQ_DMA8;
1469 }
1470 sc->sc_interrupts++;
1471 delay(10); /* XXX why? */
1472 #if 0
1473 if (sc->sc_mintr != 0) {
1474 x = sbdsp_rdsp(sc);
1475 (*sc->sc_mintr)(sc->sc_arg, x);
1476 } else
1477 #endif
1478 if (sc->sc_intr != 0) {
1479 /* clear interrupt */
1480 if (irq & SBP_IRQ_DMA8)
1481 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1482 if (irq & SBP_IRQ_DMA16)
1483 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1484 if (!loop)
1485 isa_dmadone(sc->sc_isa, sc->dmachan);
1486 (*sc->sc_intr)(sc->sc_arg);
1487 } else {
1488 return 0;
1489 }
1490 return 1;
1491 }
1492
1493 #if 0
1494 /*
1495 * Enter midi uart mode and arrange for read interrupts
1496 * to vector to `intr'. This puts the card in a mode
1497 * which allows only midi I/O; the card must be reset
1498 * to leave this mode. Unfortunately, the card does not
1499 * use transmit interrupts, so bytes must be output
1500 * using polling. To keep the polling overhead to a
1501 * minimum, output should be driven off a timer.
1502 * This is a little tricky since only 320us separate
1503 * consecutive midi bytes.
1504 */
1505 void
1506 sbdsp_set_midi_mode(sc, intr, arg)
1507 struct sbdsp_softc *sc;
1508 void (*intr)();
1509 void *arg;
1510 {
1511
1512 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1513 sc->sc_mintr = intr;
1514 sc->sc_intr = 0;
1515 sc->sc_arg = arg;
1516 }
1517
1518 /*
1519 * Write a byte to the midi port, when in midi uart mode.
1520 */
1521 void
1522 sbdsp_midi_output(sc, v)
1523 struct sbdsp_softc *sc;
1524 int v;
1525 {
1526
1527 if (sbdsp_wdsp(sc, v) < 0)
1528 ++sberr.wmidi;
1529 }
1530 #endif
1531
1532 void
1533 sbdsp_set_mixer_gain(sc, port)
1534 struct sbdsp_softc *sc;
1535 int port;
1536 {
1537 int src, gain;
1538
1539 switch(sc->sc_mixer_model) {
1540 case SBM_NONE:
1541 return;
1542 case SBM_CT1335:
1543 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1544 switch(port) {
1545 case SB_MASTER_VOL:
1546 src = SBP_1335_MASTER_VOL;
1547 break;
1548 case SB_MIDI_VOL:
1549 src = SBP_1335_MIDI_VOL;
1550 break;
1551 case SB_CD_VOL:
1552 src = SBP_1335_CD_VOL;
1553 break;
1554 case SB_VOICE_VOL:
1555 src = SBP_1335_VOICE_VOL;
1556 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1557 break;
1558 default:
1559 return;
1560 }
1561 sbdsp_mix_write(sc, src, gain);
1562 break;
1563 case SBM_CT1345:
1564 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1565 sc->gain[port][SB_RIGHT]);
1566 switch (port) {
1567 case SB_MIC_VOL:
1568 src = SBP_MIC_VOL;
1569 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1570 break;
1571 case SB_MASTER_VOL:
1572 src = SBP_MASTER_VOL;
1573 break;
1574 case SB_LINE_IN_VOL:
1575 src = SBP_LINE_VOL;
1576 break;
1577 case SB_VOICE_VOL:
1578 src = SBP_VOICE_VOL;
1579 break;
1580 case SB_MIDI_VOL:
1581 src = SBP_MIDI_VOL;
1582 break;
1583 case SB_CD_VOL:
1584 src = SBP_CD_VOL;
1585 break;
1586 default:
1587 return;
1588 }
1589 sbdsp_mix_write(sc, src, gain);
1590 break;
1591 case SBM_CT1XX5:
1592 case SBM_CT1745:
1593 switch (port) {
1594 case SB_MIC_VOL:
1595 src = SB16P_MIC_L;
1596 break;
1597 case SB_MASTER_VOL:
1598 src = SB16P_MASTER_L;
1599 break;
1600 case SB_LINE_IN_VOL:
1601 src = SB16P_LINE_L;
1602 break;
1603 case SB_VOICE_VOL:
1604 src = SB16P_VOICE_L;
1605 break;
1606 case SB_MIDI_VOL:
1607 src = SB16P_MIDI_L;
1608 break;
1609 case SB_CD_VOL:
1610 src = SB16P_CD_L;
1611 break;
1612 case SB_INPUT_GAIN:
1613 src = SB16P_INPUT_GAIN_L;
1614 break;
1615 case SB_OUTPUT_GAIN:
1616 src = SB16P_OUTPUT_GAIN_L;
1617 break;
1618 case SB_TREBLE:
1619 src = SB16P_TREBLE_L;
1620 break;
1621 case SB_BASS:
1622 src = SB16P_BASS_L;
1623 break;
1624 case SB_PCSPEAKER:
1625 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1626 return;
1627 default:
1628 return;
1629 }
1630 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1631 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1632 break;
1633 }
1634 }
1635
1636 int
1637 sbdsp_mixer_set_port(addr, cp)
1638 void *addr;
1639 mixer_ctrl_t *cp;
1640 {
1641 struct sbdsp_softc *sc = addr;
1642 int lgain, rgain;
1643
1644 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1645 cp->un.value.num_channels));
1646
1647 if (sc->sc_mixer_model == SBM_NONE)
1648 return EINVAL;
1649
1650 switch (cp->dev) {
1651 case SB_TREBLE:
1652 case SB_BASS:
1653 if (sc->sc_mixer_model == SBM_CT1345 ||
1654 sc->sc_mixer_model == SBM_CT1XX5) {
1655 if (cp->type != AUDIO_MIXER_ENUM)
1656 return EINVAL;
1657 switch (cp->dev) {
1658 case SB_TREBLE:
1659 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1660 return 0;
1661 case SB_BASS:
1662 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1663 return 0;
1664 }
1665 }
1666 case SB_PCSPEAKER:
1667 case SB_INPUT_GAIN:
1668 case SB_OUTPUT_GAIN:
1669 if (!ISSBM1745(sc))
1670 return EINVAL;
1671 case SB_MIC_VOL:
1672 case SB_LINE_IN_VOL:
1673 if (sc->sc_mixer_model == SBM_CT1335)
1674 return EINVAL;
1675 case SB_VOICE_VOL:
1676 case SB_MIDI_VOL:
1677 case SB_CD_VOL:
1678 case SB_MASTER_VOL:
1679 if (cp->type != AUDIO_MIXER_VALUE)
1680 return EINVAL;
1681
1682 /*
1683 * All the mixer ports are stereo except for the microphone.
1684 * If we get a single-channel gain value passed in, then we
1685 * duplicate it to both left and right channels.
1686 */
1687
1688 switch (cp->dev) {
1689 case SB_MIC_VOL:
1690 if (cp->un.value.num_channels != 1)
1691 return EINVAL;
1692
1693 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1694 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1695 break;
1696 case SB_PCSPEAKER:
1697 if (cp->un.value.num_channels != 1)
1698 return EINVAL;
1699 /* fall into */
1700 case SB_INPUT_GAIN:
1701 case SB_OUTPUT_GAIN:
1702 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1703 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1704 break;
1705 default:
1706 switch (cp->un.value.num_channels) {
1707 case 1:
1708 lgain = rgain = SB_ADJUST_GAIN(sc,
1709 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1710 break;
1711 case 2:
1712 if (sc->sc_mixer_model == SBM_CT1335)
1713 return EINVAL;
1714 lgain = SB_ADJUST_GAIN(sc,
1715 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1716 rgain = SB_ADJUST_GAIN(sc,
1717 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1718 break;
1719 default:
1720 return EINVAL;
1721 }
1722 break;
1723 }
1724 sc->gain[cp->dev][SB_LEFT] = lgain;
1725 sc->gain[cp->dev][SB_RIGHT] = rgain;
1726
1727 sbdsp_set_mixer_gain(sc, cp->dev);
1728 break;
1729
1730 case SB_RECORD_SOURCE:
1731 if (ISSBM1745(sc)) {
1732 if (cp->type != AUDIO_MIXER_SET)
1733 return EINVAL;
1734 return sbdsp_set_in_ports(sc, cp->un.mask);
1735 } else {
1736 if (cp->type != AUDIO_MIXER_ENUM)
1737 return EINVAL;
1738 return sbdsp_set_in_port(sc, cp->un.ord);
1739 }
1740 break;
1741
1742 case SB_AGC:
1743 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1744 return EINVAL;
1745 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1746 break;
1747
1748 default:
1749 return EINVAL;
1750 }
1751
1752 return 0;
1753 }
1754
1755 int
1756 sbdsp_mixer_get_port(addr, cp)
1757 void *addr;
1758 mixer_ctrl_t *cp;
1759 {
1760 struct sbdsp_softc *sc = addr;
1761
1762 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1763
1764 if (sc->sc_mixer_model == SBM_NONE)
1765 return EINVAL;
1766
1767 switch (cp->dev) {
1768 case SB_TREBLE:
1769 case SB_BASS:
1770 if (sc->sc_mixer_model == SBM_CT1345 ||
1771 sc->sc_mixer_model == SBM_CT1XX5) {
1772 switch (cp->dev) {
1773 case SB_TREBLE:
1774 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1775 return 0;
1776 case SB_BASS:
1777 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1778 return 0;
1779 }
1780 }
1781 case SB_PCSPEAKER:
1782 case SB_INPUT_GAIN:
1783 case SB_OUTPUT_GAIN:
1784 if (!ISSBM1745(sc))
1785 return EINVAL;
1786 case SB_MIC_VOL:
1787 case SB_LINE_IN_VOL:
1788 if (sc->sc_mixer_model == SBM_CT1335)
1789 return EINVAL;
1790 case SB_VOICE_VOL:
1791 case SB_MIDI_VOL:
1792 case SB_CD_VOL:
1793 case SB_MASTER_VOL:
1794 switch (cp->dev) {
1795 case SB_MIC_VOL:
1796 case SB_PCSPEAKER:
1797 if (cp->un.value.num_channels != 1)
1798 return EINVAL;
1799 /* fall into */
1800 default:
1801 switch (cp->un.value.num_channels) {
1802 case 1:
1803 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1804 sc->gain[cp->dev][SB_LEFT];
1805 break;
1806 case 2:
1807 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1808 sc->gain[cp->dev][SB_LEFT];
1809 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1810 sc->gain[cp->dev][SB_RIGHT];
1811 break;
1812 default:
1813 return EINVAL;
1814 }
1815 break;
1816 }
1817 break;
1818
1819 case SB_RECORD_SOURCE:
1820 if (ISSBM1745(sc))
1821 cp->un.mask = sc->in_mask;
1822 else
1823 cp->un.ord = sc->in_port;
1824 break;
1825
1826 case SB_AGC:
1827 if (!ISSBM1745(sc))
1828 return EINVAL;
1829 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1830 break;
1831
1832 default:
1833 return EINVAL;
1834 }
1835
1836 return 0;
1837 }
1838
1839 int
1840 sbdsp_mixer_query_devinfo(addr, dip)
1841 void *addr;
1842 mixer_devinfo_t *dip;
1843 {
1844 struct sbdsp_softc *sc = addr;
1845 int chan, class;
1846
1847 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1848 sc->sc_mixer_model, dip->index));
1849
1850 if (sc->sc_mixer_model == SBM_NONE)
1851 return ENXIO;
1852
1853 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1854 class = ISSBM1745(sc) ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1855
1856 switch (dip->index) {
1857 case SB_MASTER_VOL:
1858 dip->type = AUDIO_MIXER_VALUE;
1859 dip->mixer_class = SB_OUTPUT_CLASS;
1860 dip->prev = dip->next = AUDIO_MIXER_LAST;
1861 strcpy(dip->label.name, AudioNmaster);
1862 dip->un.v.num_channels = chan;
1863 strcpy(dip->un.v.units.name, AudioNvolume);
1864 return 0;
1865 case SB_MIDI_VOL:
1866 dip->type = AUDIO_MIXER_VALUE;
1867 dip->mixer_class = class;
1868 dip->prev = AUDIO_MIXER_LAST;
1869 dip->next = AUDIO_MIXER_LAST;
1870 strcpy(dip->label.name, AudioNfmsynth);
1871 dip->un.v.num_channels = chan;
1872 strcpy(dip->un.v.units.name, AudioNvolume);
1873 return 0;
1874 case SB_CD_VOL:
1875 dip->type = AUDIO_MIXER_VALUE;
1876 dip->mixer_class = class;
1877 dip->prev = AUDIO_MIXER_LAST;
1878 dip->next = AUDIO_MIXER_LAST;
1879 strcpy(dip->label.name, AudioNcd);
1880 dip->un.v.num_channels = chan;
1881 strcpy(dip->un.v.units.name, AudioNvolume);
1882 return 0;
1883 case SB_VOICE_VOL:
1884 dip->type = AUDIO_MIXER_VALUE;
1885 dip->mixer_class = class;
1886 dip->prev = AUDIO_MIXER_LAST;
1887 dip->next = AUDIO_MIXER_LAST;
1888 strcpy(dip->label.name, AudioNdac);
1889 dip->un.v.num_channels = chan;
1890 strcpy(dip->un.v.units.name, AudioNvolume);
1891 return 0;
1892 case SB_OUTPUT_CLASS:
1893 dip->type = AUDIO_MIXER_CLASS;
1894 dip->mixer_class = SB_OUTPUT_CLASS;
1895 dip->next = dip->prev = AUDIO_MIXER_LAST;
1896 strcpy(dip->label.name, AudioCOutputs);
1897 return 0;
1898 }
1899
1900 if (sc->sc_mixer_model == SBM_CT1335)
1901 return ENXIO;
1902
1903 switch (dip->index) {
1904 case SB_MIC_VOL:
1905 dip->type = AUDIO_MIXER_VALUE;
1906 dip->mixer_class = class;
1907 dip->prev = AUDIO_MIXER_LAST;
1908 dip->next = AUDIO_MIXER_LAST;
1909 strcpy(dip->label.name, AudioNmicrophone);
1910 dip->un.v.num_channels = 1;
1911 strcpy(dip->un.v.units.name, AudioNvolume);
1912 return 0;
1913
1914 case SB_LINE_IN_VOL:
1915 dip->type = AUDIO_MIXER_VALUE;
1916 dip->mixer_class = class;
1917 dip->prev = AUDIO_MIXER_LAST;
1918 dip->next = AUDIO_MIXER_LAST;
1919 strcpy(dip->label.name, AudioNline);
1920 dip->un.v.num_channels = 2;
1921 strcpy(dip->un.v.units.name, AudioNvolume);
1922 return 0;
1923
1924 case SB_RECORD_SOURCE:
1925 dip->mixer_class = SB_RECORD_CLASS;
1926 dip->prev = dip->next = AUDIO_MIXER_LAST;
1927 strcpy(dip->label.name, AudioNsource);
1928 if (ISSBM1745(sc)) {
1929 dip->type = AUDIO_MIXER_SET;
1930 dip->un.s.num_mem = 4;
1931 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1932 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
1933 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1934 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
1935 strcpy(dip->un.s.member[2].label.name, AudioNline);
1936 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
1937 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1938 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
1939 } else {
1940 dip->type = AUDIO_MIXER_ENUM;
1941 dip->un.e.num_mem = 3;
1942 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1943 dip->un.e.member[0].ord = SB_MIC_VOL;
1944 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1945 dip->un.e.member[1].ord = SB_CD_VOL;
1946 strcpy(dip->un.e.member[2].label.name, AudioNline);
1947 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
1948 }
1949 return 0;
1950
1951 case SB_BASS:
1952 dip->prev = dip->next = AUDIO_MIXER_LAST;
1953 strcpy(dip->label.name, AudioNbass);
1954 if (sc->sc_mixer_model == SBM_CT1745) {
1955 dip->type = AUDIO_MIXER_VALUE;
1956 dip->mixer_class = SB_EQUALIZATION_CLASS;
1957 dip->un.v.num_channels = 2;
1958 strcpy(dip->un.v.units.name, AudioNbass);
1959 } else {
1960 dip->type = AUDIO_MIXER_ENUM;
1961 dip->mixer_class = SB_INPUT_CLASS;
1962 dip->un.e.num_mem = 2;
1963 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1964 dip->un.e.member[0].ord = 0;
1965 strcpy(dip->un.e.member[1].label.name, AudioNon);
1966 dip->un.e.member[1].ord = 1;
1967 }
1968 return 0;
1969
1970 case SB_TREBLE:
1971 dip->prev = dip->next = AUDIO_MIXER_LAST;
1972 strcpy(dip->label.name, AudioNtreble);
1973 if (sc->sc_mixer_model == SBM_CT1745) {
1974 dip->type = AUDIO_MIXER_VALUE;
1975 dip->mixer_class = SB_EQUALIZATION_CLASS;
1976 dip->un.v.num_channels = 2;
1977 strcpy(dip->un.v.units.name, AudioNtreble);
1978 } else {
1979 dip->type = AUDIO_MIXER_ENUM;
1980 dip->mixer_class = SB_INPUT_CLASS;
1981 dip->un.e.num_mem = 2;
1982 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1983 dip->un.e.member[0].ord = 0;
1984 strcpy(dip->un.e.member[1].label.name, AudioNon);
1985 dip->un.e.member[1].ord = 1;
1986 }
1987 return 0;
1988
1989 case SB_RECORD_CLASS: /* record source class */
1990 dip->type = AUDIO_MIXER_CLASS;
1991 dip->mixer_class = SB_RECORD_CLASS;
1992 dip->next = dip->prev = AUDIO_MIXER_LAST;
1993 strcpy(dip->label.name, AudioCRecord);
1994 return 0;
1995
1996 }
1997
1998 if (sc->sc_mixer_model == SBM_CT1345)
1999 return ENXIO;
2000
2001 switch(dip->index) {
2002 case SB_PCSPEAKER:
2003 dip->type = AUDIO_MIXER_VALUE;
2004 dip->mixer_class = SB_INPUT_CLASS;
2005 dip->prev = dip->next = AUDIO_MIXER_LAST;
2006 strcpy(dip->label.name, "pc_speaker");
2007 dip->un.v.num_channels = 1;
2008 strcpy(dip->un.v.units.name, AudioNvolume);
2009 return 0;
2010
2011 case SB_INPUT_GAIN:
2012 dip->type = AUDIO_MIXER_VALUE;
2013 dip->mixer_class = SB_INPUT_CLASS;
2014 dip->prev = dip->next = AUDIO_MIXER_LAST;
2015 strcpy(dip->label.name, AudioNinput);
2016 dip->un.v.num_channels = 2;
2017 strcpy(dip->un.v.units.name, AudioNvolume);
2018 return 0;
2019
2020 case SB_OUTPUT_GAIN:
2021 dip->type = AUDIO_MIXER_VALUE;
2022 dip->mixer_class = SB_OUTPUT_CLASS;
2023 dip->prev = dip->next = AUDIO_MIXER_LAST;
2024 strcpy(dip->label.name, AudioNoutput);
2025 dip->un.v.num_channels = 2;
2026 strcpy(dip->un.v.units.name, AudioNvolume);
2027 return 0;
2028
2029 case SB_AGC:
2030 dip->type = AUDIO_MIXER_ENUM;
2031 dip->mixer_class = SB_INPUT_CLASS;
2032 dip->prev = dip->next = AUDIO_MIXER_LAST;
2033 strcpy(dip->label.name, "AGC");
2034 dip->un.e.num_mem = 2;
2035 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2036 dip->un.e.member[0].ord = 0;
2037 strcpy(dip->un.e.member[1].label.name, AudioNon);
2038 dip->un.e.member[1].ord = 1;
2039 return 0;
2040
2041 case SB_INPUT_CLASS:
2042 dip->type = AUDIO_MIXER_CLASS;
2043 dip->mixer_class = SB_INPUT_CLASS;
2044 dip->next = dip->prev = AUDIO_MIXER_LAST;
2045 strcpy(dip->label.name, AudioCInputs);
2046 return 0;
2047
2048 case SB_EQUALIZATION_CLASS:
2049 dip->type = AUDIO_MIXER_CLASS;
2050 dip->mixer_class = SB_EQUALIZATION_CLASS;
2051 dip->next = dip->prev = AUDIO_MIXER_LAST;
2052 strcpy(dip->label.name, AudioCEqualization);
2053 return 0;
2054 }
2055
2056 return ENXIO;
2057 }
2058
2059 void *
2060 sb_malloc(addr, size, pool, flags)
2061 void *addr;
2062 unsigned long size;
2063 int pool;
2064 int flags;
2065 {
2066 struct sbdsp_softc *sc = addr;
2067
2068 return isa_malloc(sc->sc_isa, 4, size, pool, flags);
2069 }
2070
2071 void
2072 sb_free(addr, ptr, pool)
2073 void *addr;
2074 void *ptr;
2075 int pool;
2076 {
2077 isa_free(ptr, pool);
2078 }
2079
2080 unsigned long
2081 sb_round(addr, size)
2082 void *addr;
2083 unsigned long size;
2084 {
2085 if (size > MAX_ISADMA)
2086 size = MAX_ISADMA;
2087 return size;
2088 }
2089
2090 int
2091 sb_mappage(addr, mem, off, prot)
2092 void *addr;
2093 void *mem;
2094 int off;
2095 int prot;
2096 {
2097 return isa_mappage(mem, off, prot);
2098 }
2099
2100 int
2101 sbdsp_get_props(addr)
2102 void *addr;
2103 {
2104 return AUDIO_PROP_MMAP;
2105 }
2106