sbdsp.c revision 1.68 1 /* $NetBSD: sbdsp.c,v 1.68 1997/08/24 22:31:35 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <vm/vm.h>
56
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59 #include <machine/bus.h>
60
61 #include <sys/audioio.h>
62 #include <dev/audio_if.h>
63 #include <dev/mulaw.h>
64 #include <dev/auconv.h>
65
66 #include <dev/isa/isavar.h>
67 #include <dev/isa/isadmavar.h>
68
69 #include <dev/isa/sbreg.h>
70 #include <dev/isa/sbdspvar.h>
71
72 #ifdef AUDIO_DEBUG
73 #define DPRINTF(x) if (sbdspdebug) printf x
74 int sbdspdebug = 0;
75 #else
76 #define DPRINTF(x)
77 #endif
78
79 #ifndef SBDSP_NPOLL
80 #define SBDSP_NPOLL 3000
81 #endif
82
83 struct {
84 int wdsp;
85 int rdsp;
86 int wmidi;
87 } sberr;
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 /* XXX Should we round the tc?
115 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
116 */
117 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
118 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
119
120 struct sbmode {
121 short model;
122 u_char channels;
123 u_char precision;
124 u_short lowrate, highrate;
125 u_char cmd;
126 u_char cmdchan;
127 };
128 static struct sbmode sbpmodes[] = {
129 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
130 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
131 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
132 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
133 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
134 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
135 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
136 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
137 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
138 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
139 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
140 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
141 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
142 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
143 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
144 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
145 #define PLAY16 15 /* must be the index of the next entry in the table */
146 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
147 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
148 { -1 }
149 };
150 static struct sbmode sbrmodes[] = {
151 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
152 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
153 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
154 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
155 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
156 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
157 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
158 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
159 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
160 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
161 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
162 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
163 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
164 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
165 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
166 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
167 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
168 { -1 }
169 };
170
171 void sbversion __P((struct sbdsp_softc *));
172 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
173 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
174 int sbdsp16_wait __P((struct sbdsp_softc *));
175 void sbdsp_to __P((void *));
176 void sbdsp_pause __P((struct sbdsp_softc *));
177 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
178 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
179 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
180 void sbdsp_set_ifilter __P((void *, int));
181 int sbdsp_get_ifilter __P((void *));
182
183 static int sbdsp_adjust __P((int, int));
184
185 #ifdef AUDIO_DEBUG
186 void sb_printsc __P((struct sbdsp_softc *));
187
188 void
189 sb_printsc(sc)
190 struct sbdsp_softc *sc;
191 {
192 int i;
193
194 printf("open %d dmachan %d/%d/%d iobase 0x%x irq %d\n",
195 (int)sc->sc_open, sc->dmachan, sc->sc_drq8, sc->sc_drq16,
196 sc->sc_iobase, sc->sc_irq);
197 printf("irate %d itc %x orate %d otc %x\n",
198 sc->sc_irate, sc->sc_itc,
199 sc->sc_orate, sc->sc_otc);
200 printf("outport %u inport %u spkron %u nintr %lu\n",
201 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
202 printf("intr %p arg %p\n",
203 sc->sc_intr, sc->sc_arg);
204 printf("gain:");
205 for (i = 0; i < SB_NDEVS; i++)
206 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
207 printf("\n");
208 }
209 #endif /* AUDIO_DEBUG */
210
211 /*
212 * Probe / attach routines.
213 */
214
215 /*
216 * Probe for the soundblaster hardware.
217 */
218 int
219 sbdsp_probe(sc)
220 struct sbdsp_softc *sc;
221 {
222
223 if (sbdsp_reset(sc) < 0) {
224 DPRINTF(("sbdsp: couldn't reset card\n"));
225 return 0;
226 }
227 /* if flags set, go and probe the jazz16 stuff */
228 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
229 sbdsp_jazz16_probe(sc);
230 else
231 sbversion(sc);
232 if (sc->sc_model == SB_UNK) {
233 /* Unknown SB model found. */
234 DPRINTF(("sbdsp: unknown SB model found\n"));
235 return 0;
236 }
237 return 1;
238 }
239
240 /*
241 * Try add-on stuff for Jazz16.
242 */
243 void
244 sbdsp_jazz16_probe(sc)
245 struct sbdsp_softc *sc;
246 {
247 static u_char jazz16_irq_conf[16] = {
248 -1, -1, 0x02, 0x03,
249 -1, 0x01, -1, 0x04,
250 -1, 0x02, 0x05, -1,
251 -1, -1, -1, 0x06};
252 static u_char jazz16_drq_conf[8] = {
253 -1, 0x01, -1, 0x02,
254 -1, 0x03, -1, 0x04};
255
256 bus_space_tag_t iot = sc->sc_iot;
257 bus_space_handle_t ioh;
258
259 sbversion(sc);
260
261 DPRINTF(("jazz16 probe\n"));
262
263 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
264 DPRINTF(("bus map failed\n"));
265 return;
266 }
267
268 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
269 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
270 DPRINTF(("drq/irq check failed\n"));
271 goto done; /* give up, we can't do it. */
272 }
273
274 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
275 delay(10000); /* delay 10 ms */
276 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
277 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
278
279 if (sbdsp_reset(sc) < 0) {
280 DPRINTF(("sbdsp_reset check failed\n"));
281 goto done; /* XXX? what else could we do? */
282 }
283
284 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
285 DPRINTF(("read16 setup failed\n"));
286 goto done;
287 }
288
289 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
290 DPRINTF(("read16 failed\n"));
291 goto done;
292 }
293
294 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
295 sc->sc_drq16 = sc->sc_drq8;
296 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
297 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
298 jazz16_drq_conf[sc->sc_drq8]) ||
299 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
300 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
301 } else {
302 DPRINTF(("jazz16 detected!\n"));
303 sc->sc_model = SB_JAZZ;
304 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
305 }
306
307 done:
308 bus_space_unmap(iot, ioh, 1);
309 }
310
311 /*
312 * Attach hardware to driver, attach hardware driver to audio
313 * pseudo-device driver .
314 */
315 void
316 sbdsp_attach(sc)
317 struct sbdsp_softc *sc;
318 {
319 struct audio_params pparams, rparams;
320 int i;
321 u_int v;
322
323 /*
324 * Create our DMA maps.
325 */
326 if (sc->sc_drq8 != -1) {
327 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8,
328 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
329 printf("%s: can't create map for drq %d\n",
330 sc->sc_dev.dv_xname, sc->sc_drq8);
331 return;
332 }
333 }
334 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
335 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16,
336 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
337 printf("%s: can't create map for drq %d\n",
338 sc->sc_dev.dv_xname, sc->sc_drq16);
339 return;
340 }
341 }
342
343 pparams = audio_default;
344 rparams = audio_default;
345 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
346
347 sbdsp_set_in_port(sc, SB_MIC_VOL);
348 sbdsp_set_out_port(sc, SB_MASTER_VOL);
349
350 if (sc->sc_mixer_model != SBM_NONE) {
351 /* Reset the mixer.*/
352 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
353 /* And set our own default values */
354 for (i = 0; i < SB_NDEVS; i++) {
355 switch(i) {
356 case SB_MIC_VOL:
357 case SB_LINE_IN_VOL:
358 v = 0;
359 break;
360 case SB_BASS:
361 case SB_TREBLE:
362 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
363 break;
364 default:
365 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
366 break;
367 }
368 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
369 sbdsp_set_mixer_gain(sc, i);
370 }
371 sc->in_filter = 0; /* no filters turned on, please */
372 }
373
374 DPRINTF((" drq16 %d", sc->sc_drq16));
375 printf(": dsp v%d.%02d%s\n",
376 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
377 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
378 }
379
380 void
381 sbdsp_mix_write(sc, mixerport, val)
382 struct sbdsp_softc *sc;
383 int mixerport;
384 int val;
385 {
386 bus_space_tag_t iot = sc->sc_iot;
387 bus_space_handle_t ioh = sc->sc_ioh;
388 int s;
389
390 s = splaudio();
391 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
392 delay(20);
393 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
394 delay(30);
395 splx(s);
396 }
397
398 int
399 sbdsp_mix_read(sc, mixerport)
400 struct sbdsp_softc *sc;
401 int mixerport;
402 {
403 bus_space_tag_t iot = sc->sc_iot;
404 bus_space_handle_t ioh = sc->sc_ioh;
405 int val;
406 int s;
407
408 s = splaudio();
409 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
410 delay(20);
411 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
412 delay(30);
413 splx(s);
414 return val;
415 }
416
417 /*
418 * Various routines to interface to higher level audio driver
419 */
420
421 int
422 sbdsp_query_encoding(addr, fp)
423 void *addr;
424 struct audio_encoding *fp;
425 {
426 struct sbdsp_softc *sc = addr;
427 int emul;
428
429 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
430
431 switch (fp->index) {
432 case 0:
433 strcpy(fp->name, AudioEulinear);
434 fp->encoding = AUDIO_ENCODING_ULINEAR;
435 fp->precision = 8;
436 fp->flags = 0;
437 return 0;
438 case 1:
439 strcpy(fp->name, AudioEmulaw);
440 fp->encoding = AUDIO_ENCODING_ULAW;
441 fp->precision = 8;
442 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
443 return 0;
444 case 2:
445 strcpy(fp->name, AudioEalaw);
446 fp->encoding = AUDIO_ENCODING_ALAW;
447 fp->precision = 8;
448 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
449 return 0;
450 case 3:
451 strcpy(fp->name, AudioElinear);
452 fp->encoding = AUDIO_ENCODING_SLINEAR;
453 fp->precision = 8;
454 fp->flags = emul;
455 return 0;
456 }
457 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
458 return EINVAL;
459
460 switch(fp->index) {
461 case 4:
462 strcpy(fp->name, AudioElinear_le);
463 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
464 fp->precision = 16;
465 fp->flags = 0;
466 return 0;
467 case 5:
468 strcpy(fp->name, AudioEulinear_le);
469 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
470 fp->precision = 16;
471 fp->flags = emul;
472 return 0;
473 case 6:
474 strcpy(fp->name, AudioElinear_be);
475 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
476 fp->precision = 16;
477 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
478 return 0;
479 case 7:
480 strcpy(fp->name, AudioEulinear_be);
481 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
482 fp->precision = 16;
483 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
484 return 0;
485 default:
486 return EINVAL;
487 }
488 return 0;
489 }
490
491 int
492 sbdsp_set_params(addr, setmode, usemode, play, rec)
493 void *addr;
494 int setmode, usemode;
495 struct audio_params *play, *rec;
496 {
497 struct sbdsp_softc *sc = addr;
498 struct sbmode *m;
499 u_int rate, tc, bmode;
500 void (*swcode) __P((void *, u_char *buf, int cnt));
501 int factor;
502 int model;
503 struct audio_params *p;
504 int mode;
505
506 model = sc->sc_model;
507 if (model > SB_16)
508 model = SB_16; /* later models work like SB16 */
509
510 /* Set first record info, then play info */
511 for(mode = AUMODE_RECORD; mode != -1;
512 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
513 if ((setmode & mode) == 0)
514 continue;
515
516 p = mode == AUMODE_PLAY ? play : rec;
517 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
518 m->model != -1; m++) {
519 if (model == m->model &&
520 p->channels == m->channels &&
521 p->precision == m->precision &&
522 p->sample_rate >= m->lowrate &&
523 p->sample_rate < m->highrate)
524 break;
525 }
526 if (m->model == -1)
527 return EINVAL;
528 rate = p->sample_rate;
529 swcode = 0;
530 factor = 1;
531 tc = 1;
532 bmode = -1;
533 if (model == SB_16) {
534 switch (p->encoding) {
535 case AUDIO_ENCODING_SLINEAR_BE:
536 if (p->precision == 16)
537 swcode = swap_bytes;
538 /* fall into */
539 case AUDIO_ENCODING_SLINEAR_LE:
540 bmode = SB_BMODE_SIGNED;
541 break;
542 case AUDIO_ENCODING_ULINEAR_BE:
543 if (p->precision == 16)
544 swcode = swap_bytes;
545 /* fall into */
546 case AUDIO_ENCODING_ULINEAR_LE:
547 bmode = SB_BMODE_UNSIGNED;
548 break;
549 case AUDIO_ENCODING_ULAW:
550 if (mode == AUMODE_PLAY) {
551 swcode = mulaw_to_ulinear16;
552 factor = 2;
553 m = &sbpmodes[PLAY16];
554 } else
555 swcode = ulinear8_to_mulaw;
556 bmode = SB_BMODE_UNSIGNED;
557 break;
558 case AUDIO_ENCODING_ALAW:
559 if (mode == AUMODE_PLAY) {
560 swcode = alaw_to_ulinear16;
561 factor = 2;
562 m = &sbpmodes[PLAY16];
563 } else
564 swcode = ulinear8_to_alaw;
565 bmode = SB_BMODE_UNSIGNED;
566 break;
567 default:
568 return EINVAL;
569 }
570 if (p->channels == 2)
571 bmode |= SB_BMODE_STEREO;
572 } else if (m->model == SB_JAZZ && m->precision == 16) {
573 switch (p->encoding) {
574 case AUDIO_ENCODING_SLINEAR_LE:
575 break;
576 case AUDIO_ENCODING_ULINEAR_LE:
577 swcode = change_sign16;
578 break;
579 case AUDIO_ENCODING_SLINEAR_BE:
580 swcode = swap_bytes;
581 break;
582 case AUDIO_ENCODING_ULINEAR_BE:
583 swcode = mode == AUMODE_PLAY ?
584 swap_bytes_change_sign16 : change_sign16_swap_bytes;
585 break;
586 case AUDIO_ENCODING_ULAW:
587 swcode = mode == AUMODE_PLAY ?
588 mulaw_to_ulinear8 : ulinear8_to_mulaw;
589 break;
590 case AUDIO_ENCODING_ALAW:
591 swcode = mode == AUMODE_PLAY ?
592 alaw_to_ulinear8 : ulinear8_to_alaw;
593 break;
594 default:
595 return EINVAL;
596 }
597 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
598 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
599 } else {
600 switch (p->encoding) {
601 case AUDIO_ENCODING_SLINEAR_BE:
602 case AUDIO_ENCODING_SLINEAR_LE:
603 swcode = change_sign8;
604 break;
605 case AUDIO_ENCODING_ULINEAR_BE:
606 case AUDIO_ENCODING_ULINEAR_LE:
607 break;
608 case AUDIO_ENCODING_ULAW:
609 swcode = mode == AUMODE_PLAY ?
610 mulaw_to_ulinear8 : ulinear8_to_mulaw;
611 break;
612 case AUDIO_ENCODING_ALAW:
613 swcode = mode == AUMODE_PLAY ?
614 alaw_to_ulinear8 : ulinear8_to_alaw;
615 break;
616 default:
617 return EINVAL;
618 }
619 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
620 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
621 }
622
623 if (mode == AUMODE_PLAY) {
624 sc->sc_orate = rate;
625 sc->sc_otc = tc;
626 sc->sc_omodep = m;
627 sc->sc_obmode = bmode;
628 } else {
629 sc->sc_irate = rate;
630 sc->sc_itc = tc;
631 sc->sc_imodep = m;
632 sc->sc_ibmode = bmode;
633 }
634
635 p->sw_code = swcode;
636 p->factor = factor;
637 DPRINTF(("set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
638 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
639 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
640 }
641
642 /*
643 * XXX
644 * Should wait for chip to be idle.
645 */
646 sc->sc_dmadir = SB_DMA_NONE;
647
648
649 return 0;
650 }
651
652 void
653 sbdsp_set_ifilter(addr, which)
654 void *addr;
655 int which;
656 {
657 struct sbdsp_softc *sc = addr;
658 int mixval;
659
660 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
661 switch (which) {
662 case 0:
663 mixval |= SBP_FILTER_OFF;
664 break;
665 case SB_TREBLE:
666 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
667 break;
668 case SB_BASS:
669 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
670 break;
671 default:
672 return;
673 }
674 sc->in_filter = mixval & SBP_IFILTER_MASK;
675 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
676 }
677
678 int
679 sbdsp_get_ifilter(addr)
680 void *addr;
681 {
682 struct sbdsp_softc *sc = addr;
683
684 sc->in_filter =
685 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
686 switch (sc->in_filter) {
687 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
688 return SB_TREBLE;
689 case SBP_FILTER_ON|SBP_IFILTER_LOW:
690 return SB_BASS;
691 default:
692 return 0;
693 }
694 }
695
696 int
697 sbdsp_set_out_port(addr, port)
698 void *addr;
699 int port;
700 {
701 struct sbdsp_softc *sc = addr;
702
703 sc->out_port = port; /* Just record it */
704
705 return 0;
706 }
707
708 int
709 sbdsp_get_out_port(addr)
710 void *addr;
711 {
712 struct sbdsp_softc *sc = addr;
713
714 return sc->out_port;
715 }
716
717
718 int
719 sbdsp_set_in_port(addr, port)
720 void *addr;
721 int port;
722 {
723 return sbdsp_set_in_ports(addr, 1 << port);
724 }
725
726 int
727 sbdsp_set_in_ports(sc, mask)
728 struct sbdsp_softc *sc;
729 int mask;
730 {
731 int bitsl, bitsr;
732 int sbport;
733 int i;
734
735 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
736 sc->sc_mixer_model, mask));
737
738 switch(sc->sc_mixer_model) {
739 case SBM_NONE:
740 return EINVAL;
741 case SBM_CT1335:
742 if (mask != (1 << SB_MIC_VOL))
743 return EINVAL;
744 break;
745 case SBM_CT1345:
746 switch (mask) {
747 case 1 << SB_MIC_VOL:
748 sbport = SBP_FROM_MIC;
749 break;
750 case 1 << SB_LINE_IN_VOL:
751 sbport = SBP_FROM_LINE;
752 break;
753 case 1 << SB_CD_VOL:
754 sbport = SBP_FROM_CD;
755 break;
756 default:
757 return (EINVAL);
758 }
759 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
760 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
761 break;
762 case SBM_CT1XX5:
763 case SBM_CT1745:
764 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
765 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
766 return EINVAL;
767 bitsr = 0;
768 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
769 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
770 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
771 bitsl = SB_SRC_R_TO_L(bitsr);
772 if (mask & (1<<SB_MIC_VOL)) {
773 bitsl |= SBP_MIC_SRC;
774 bitsr |= SBP_MIC_SRC;
775 }
776 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
777 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
778 break;
779 }
780
781 sc->in_mask = mask;
782
783 /* XXX
784 * We have to fake a single port since the upper layer
785 * expects one.
786 */
787 for(i = 0; i < SB_NPORT; i++) {
788 if (mask & (1 << i)) {
789 sc->in_port = i;
790 break;
791 }
792 }
793 return 0;
794 }
795
796 int
797 sbdsp_get_in_port(addr)
798 void *addr;
799 {
800 struct sbdsp_softc *sc = addr;
801
802 return sc->in_port;
803 }
804
805
806 int
807 sbdsp_speaker_ctl(addr, newstate)
808 void *addr;
809 int newstate;
810 {
811 struct sbdsp_softc *sc = addr;
812
813 if ((newstate == SPKR_ON) &&
814 (sc->spkr_state == SPKR_OFF)) {
815 sbdsp_spkron(sc);
816 sc->spkr_state = SPKR_ON;
817 }
818 if ((newstate == SPKR_OFF) &&
819 (sc->spkr_state == SPKR_ON)) {
820 sbdsp_spkroff(sc);
821 sc->spkr_state = SPKR_OFF;
822 }
823 return 0;
824 }
825
826 int
827 sbdsp_round_blocksize(addr, blk)
828 void *addr;
829 int blk;
830 {
831 blk &= -4; /* round to biggest sample size */
832 return blk;
833 }
834
835 int
836 sbdsp_open(addr, flags)
837 void *addr;
838 int flags;
839 {
840 struct sbdsp_softc *sc = addr;
841
842 DPRINTF(("sbdsp_open: sc=%p\n", sc));
843
844 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
845 return ENXIO;
846
847 sc->sc_open = 1;
848 sc->sc_mintr = 0;
849 if (ISSBPRO(sc) &&
850 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
851 DPRINTF(("sbdsp_open: can't set mono mode\n"));
852 /* we'll readjust when it's time for DMA. */
853 }
854
855 /*
856 * Leave most things as they were; users must change things if
857 * the previous process didn't leave it they way they wanted.
858 * Looked at another way, it's easy to set up a configuration
859 * in one program and leave it for another to inherit.
860 */
861 DPRINTF(("sbdsp_open: opened\n"));
862
863 return 0;
864 }
865
866 void
867 sbdsp_close(addr)
868 void *addr;
869 {
870 struct sbdsp_softc *sc = addr;
871
872 DPRINTF(("sbdsp_close: sc=%p\n", sc));
873
874 sc->sc_open = 0;
875 sbdsp_spkroff(sc);
876 sc->spkr_state = SPKR_OFF;
877 sc->sc_intr = 0;
878 sc->sc_mintr = 0;
879 sbdsp_haltdma(sc);
880
881 DPRINTF(("sbdsp_close: closed\n"));
882 }
883
884 /*
885 * Lower-level routines
886 */
887
888 /*
889 * Reset the card.
890 * Return non-zero if the card isn't detected.
891 */
892 int
893 sbdsp_reset(sc)
894 struct sbdsp_softc *sc;
895 {
896 bus_space_tag_t iot = sc->sc_iot;
897 bus_space_handle_t ioh = sc->sc_ioh;
898
899 sc->sc_intr = 0;
900 if (sc->sc_dmadir != SB_DMA_NONE) {
901 isa_dmaabort(sc->sc_isa, sc->dmachan);
902 sc->sc_dmadir = SB_DMA_NONE;
903 }
904
905 /*
906 * See SBK, section 11.3.
907 * We pulse a reset signal into the card.
908 * Gee, what a brilliant hardware design.
909 */
910 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
911 delay(10);
912 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
913 delay(30);
914 if (sbdsp_rdsp(sc) != SB_MAGIC)
915 return -1;
916
917 return 0;
918 }
919
920 int
921 sbdsp16_wait(sc)
922 struct sbdsp_softc *sc;
923 {
924 bus_space_tag_t iot = sc->sc_iot;
925 bus_space_handle_t ioh = sc->sc_ioh;
926 int i;
927 u_char x;
928
929 for (i = SBDSP_NPOLL; --i >= 0; ) {
930 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
931 delay(10);
932 if ((x & SB_DSP_BUSY) == 0)
933 continue;
934 return 0;
935 }
936 ++sberr.wdsp;
937 return -1;
938 }
939
940 /*
941 * Write a byte to the dsp.
942 * XXX We are at the mercy of the card as we use a
943 * polling loop and wait until it can take the byte.
944 */
945 int
946 sbdsp_wdsp(sc, v)
947 struct sbdsp_softc *sc;
948 int v;
949 {
950 bus_space_tag_t iot = sc->sc_iot;
951 bus_space_handle_t ioh = sc->sc_ioh;
952 int i;
953 u_char x;
954
955 for (i = SBDSP_NPOLL; --i >= 0; ) {
956 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
957 delay(10);
958 if ((x & SB_DSP_BUSY) != 0)
959 continue;
960 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
961 delay(10);
962 return 0;
963 }
964 ++sberr.wdsp;
965 return -1;
966 }
967
968 /*
969 * Read a byte from the DSP, using polling.
970 */
971 int
972 sbdsp_rdsp(sc)
973 struct sbdsp_softc *sc;
974 {
975 bus_space_tag_t iot = sc->sc_iot;
976 bus_space_handle_t ioh = sc->sc_ioh;
977 int i;
978 u_char x;
979
980 for (i = SBDSP_NPOLL; --i >= 0; ) {
981 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
982 delay(10);
983 if ((x & SB_DSP_READY) == 0)
984 continue;
985 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
986 delay(10);
987 return x;
988 }
989 ++sberr.rdsp;
990 return -1;
991 }
992
993 /*
994 * Doing certain things (like toggling the speaker) make
995 * the SB hardware go away for a while, so pause a little.
996 */
997 void
998 sbdsp_to(arg)
999 void *arg;
1000 {
1001 wakeup(arg);
1002 }
1003
1004 void
1005 sbdsp_pause(sc)
1006 struct sbdsp_softc *sc;
1007 {
1008 extern int hz;
1009
1010 timeout(sbdsp_to, sbdsp_to, hz/8);
1011 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1012 }
1013
1014 /*
1015 * Turn on the speaker. The SBK documention says this operation
1016 * can take up to 1/10 of a second. Higher level layers should
1017 * probably let the task sleep for this amount of time after
1018 * calling here. Otherwise, things might not work (because
1019 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1020 *
1021 * These engineers had their heads up their ass when
1022 * they designed this card.
1023 */
1024 void
1025 sbdsp_spkron(sc)
1026 struct sbdsp_softc *sc;
1027 {
1028 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1029 sbdsp_pause(sc);
1030 }
1031
1032 /*
1033 * Turn off the speaker; see comment above.
1034 */
1035 void
1036 sbdsp_spkroff(sc)
1037 struct sbdsp_softc *sc;
1038 {
1039 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1040 sbdsp_pause(sc);
1041 }
1042
1043 /*
1044 * Read the version number out of the card.
1045 * Store version information in the softc.
1046 */
1047 void
1048 sbversion(sc)
1049 struct sbdsp_softc *sc;
1050 {
1051 int v;
1052
1053 sc->sc_model = SB_UNK;
1054 sc->sc_version = 0;
1055 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1056 return;
1057 v = sbdsp_rdsp(sc) << 8;
1058 v |= sbdsp_rdsp(sc);
1059 if (v < 0)
1060 return;
1061 sc->sc_version = v;
1062 switch(SBVER_MAJOR(v)) {
1063 case 1:
1064 sc->sc_mixer_model = SBM_NONE;
1065 sc->sc_model = SB_1;
1066 break;
1067 case 2:
1068 /* Some SB2 have a mixer, some don't. */
1069 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1070 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1071 /* Check if we can read back the mixer values. */
1072 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1073 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1074 sc->sc_mixer_model = SBM_CT1335;
1075 else
1076 sc->sc_mixer_model = SBM_NONE;
1077 if (SBVER_MINOR(v) == 0)
1078 sc->sc_model = SB_20;
1079 else
1080 sc->sc_model = SB_2x;
1081 break;
1082 case 3:
1083 sc->sc_mixer_model = SBM_CT1345;
1084 sc->sc_model = SB_PRO;
1085 break;
1086 case 4:
1087 #if 0
1088 /* XXX This does not work */
1089 /* Most SB16 have a tone controls, but some don't. */
1090 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1091 /* Check if we can read back the mixer value. */
1092 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1093 sc->sc_mixer_model = SBM_CT1745;
1094 else
1095 sc->sc_mixer_model = SBM_CT1XX5;
1096 #else
1097 sc->sc_mixer_model = SBM_CT1745;
1098 #endif
1099 /* XXX what about SB_32 */
1100 if (SBVER_MINOR(v) == 16)
1101 sc->sc_model = SB_64;
1102 else
1103 sc->sc_model = SB_16;
1104 break;
1105 }
1106 }
1107
1108 /*
1109 * Halt a DMA in progress. A low-speed transfer can be
1110 * resumed with sbdsp_contdma().
1111 */
1112 int
1113 sbdsp_haltdma(addr)
1114 void *addr;
1115 {
1116 struct sbdsp_softc *sc = addr;
1117
1118 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1119
1120 sbdsp_reset(sc);
1121 return 0;
1122 }
1123
1124 int
1125 sbdsp_contdma(addr)
1126 void *addr;
1127 {
1128 struct sbdsp_softc *sc = addr;
1129
1130 DPRINTF(("sbdsp_contdma: sc=%p\n", sc));
1131
1132 /* XXX how do we reinitialize the DMA controller state? do we care? */
1133 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
1134 return 0;
1135 }
1136
1137 int
1138 sbdsp_set_timeconst(sc, tc)
1139 struct sbdsp_softc *sc;
1140 int tc;
1141 {
1142 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1143
1144 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1145 sbdsp_wdsp(sc, tc) < 0)
1146 return EIO;
1147
1148 return 0;
1149 }
1150
1151 int
1152 sbdsp16_set_rate(sc, cmd, rate)
1153 struct sbdsp_softc *sc;
1154 int cmd, rate;
1155 {
1156 DPRINTF(("sbdsp16_set_rate: sc=%p rate=%d\n", sc, rate));
1157
1158 if (sbdsp_wdsp(sc, cmd) < 0 ||
1159 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1160 sbdsp_wdsp(sc, rate) < 0)
1161 return EIO;
1162 return 0;
1163 }
1164
1165 int
1166 sbdsp_dma_init_input(addr, buf, cc)
1167 void *addr;
1168 void *buf;
1169 int cc;
1170 {
1171 struct sbdsp_softc *sc = addr;
1172
1173 if (sc->sc_model == SB_1)
1174 return 0;
1175 sc->dmaflags = DMAMODE_READ | DMAMODE_LOOP;
1176 sc->dmaaddr = buf;
1177 sc->dmacnt = cc;
1178 sc->dmachan = sc->sc_imodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1179 DPRINTF(("sbdsp: dma start loop input addr=%p cc=%d chan=%d\n",
1180 buf, cc, sc->dmachan));
1181 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1182 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1183 return 0;
1184 }
1185
1186 int
1187 sbdsp_dma_input(addr, p, cc, intr, arg)
1188 void *addr;
1189 void *p;
1190 int cc;
1191 void (*intr) __P((void *));
1192 void *arg;
1193 {
1194 struct sbdsp_softc *sc = addr;
1195 int loop = sc->sc_model != SB_1;
1196 int stereo = sc->sc_imodep->channels == 2;
1197 int filter;
1198
1199 #ifdef AUDIO_DEBUG
1200 if (sbdspdebug > 1)
1201 printf("sbdsp_dma_input: cc=%d %p (%p)\n", cc, intr, arg);
1202 #endif
1203 #ifdef DIAGNOSTIC
1204 if (sc->sc_imodep->channels == 2 && (cc & 1)) {
1205 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1206 return EIO;
1207 }
1208 #endif
1209
1210 if (sc->sc_dmadir != SB_DMA_IN) {
1211 if (ISSBPRO(sc)) {
1212 if (sbdsp_wdsp(sc, sc->sc_imodep->cmdchan) < 0)
1213 goto badmode;
1214 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1215 sbdsp_mix_write(sc, SBP_INFILTER,
1216 (sbdsp_mix_read(sc, SBP_INFILTER) &
1217 ~SBP_IFILTER_MASK) | filter);
1218 }
1219
1220 if (ISSB16CLASS(sc)) {
1221 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE,
1222 sc->sc_irate)) {
1223 DPRINTF(("sbdsp_dma_input: rate=%d set failed\n",
1224 sc->sc_irate));
1225 goto giveup;
1226 }
1227 } else {
1228 if (sbdsp_set_timeconst(sc, sc->sc_itc)) {
1229 DPRINTF(("sbdsp_dma_output: tc=%d set failed\n",
1230 sc->sc_irate));
1231 goto giveup;
1232 }
1233 }
1234
1235 sc->sc_dmadir = SB_DMA_IN;
1236 sc->dmaflags = DMAMODE_READ;
1237 } else {
1238 /* If already started just return. */
1239 if (loop)
1240 return 0;
1241 }
1242
1243 if (!loop) {
1244 sc->dmaaddr = p;
1245 sc->dmacnt = cc;
1246 sc->dmachan = sc->sc_imodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1247 #ifdef AUDIO_DEBUG
1248 if (sbdspdebug > 2)
1249 printf("sbdsp_dma_input: dmastart %x %p %ld %d\n",
1250 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1251 #endif
1252 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1253 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1254 }
1255 sc->sc_intr = intr;
1256 sc->sc_arg = arg;
1257
1258 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1259 (sc->sc_model != SB_JAZZ && sc->sc_imodep->precision == 16))
1260 cc >>= 1;
1261 --cc;
1262 if (ISSB16CLASS(sc)) {
1263 #ifdef AUDIO_DEBUG
1264 if (sbdspdebug > 2)
1265 printf("sbdsp16 input command %02x %02x %d\n",
1266 sc->sc_imodep->cmd, sc->sc_ibmode, cc);
1267 #endif
1268 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1269 sbdsp_wdsp(sc, sc->sc_ibmode) < 0 ||
1270 sbdsp16_wait(sc) ||
1271 sbdsp_wdsp(sc, cc) < 0 ||
1272 sbdsp_wdsp(sc, cc >> 8) < 0) {
1273 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1274 goto giveup;
1275 }
1276 } else {
1277 if (loop) {
1278 DPRINTF(("sbdsp_dma_input: set blocksize=%d\n", cc));
1279 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1280 sbdsp_wdsp(sc, cc) < 0 ||
1281 sbdsp_wdsp(sc, cc >> 8) < 0) {
1282 DPRINTF(("sbdsp_dma_input: SB2 DMA blocksize failed\n"));
1283 goto giveup;
1284 }
1285 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0) {
1286 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1287 goto giveup;
1288 }
1289 } else {
1290 if (sbdsp_wdsp(sc, sc->sc_imodep->cmd) < 0 ||
1291 sbdsp_wdsp(sc, cc) < 0 ||
1292 sbdsp_wdsp(sc, cc >> 8) < 0) {
1293 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1294 goto giveup;
1295 }
1296 }
1297 }
1298 return 0;
1299
1300 giveup:
1301 sbdsp_reset(sc);
1302 return EIO;
1303
1304 badmode:
1305 DPRINTF(("sbdsp_dma_input: can't set mode\n"));
1306 return EIO;
1307 }
1308
1309 int
1310 sbdsp_dma_init_output(addr, buf, cc)
1311 void *addr;
1312 void *buf;
1313 int cc;
1314 {
1315 struct sbdsp_softc *sc = addr;
1316
1317 if (sc->sc_model == SB_1)
1318 return 0;
1319 sc->dmaflags = DMAMODE_WRITE | DMAMODE_LOOP;
1320 sc->dmaaddr = buf;
1321 sc->dmacnt = cc;
1322 sc->dmachan = sc->sc_omodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1323 DPRINTF(("sbdsp: dma start loop output addr=%p cc=%d chan=%d\n",
1324 buf, cc, sc->dmachan));
1325 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1326 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1327 return 0;
1328 }
1329
1330 int
1331 sbdsp_dma_output(addr, p, cc, intr, arg)
1332 void *addr;
1333 void *p;
1334 int cc;
1335 void (*intr) __P((void *));
1336 void *arg;
1337 {
1338 struct sbdsp_softc *sc = addr;
1339 int loop = sc->sc_model != SB_1;
1340 int stereo = sc->sc_omodep->channels == 2;
1341 int cmd;
1342
1343 #ifdef AUDIO_DEBUG
1344 if (sbdspdebug > 1)
1345 printf("sbdsp_dma_output: cc=%d %p (%p)\n", cc, intr, arg);
1346 #endif
1347 #ifdef DIAGNOSTIC
1348 if (stereo && (cc & 1)) {
1349 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1350 return EIO;
1351 }
1352 #endif
1353
1354 if (sc->sc_dmadir != SB_DMA_OUT) {
1355 if (ISSBPRO(sc)) {
1356 /* make sure we re-set stereo mixer bit when we start
1357 output. */
1358 sbdsp_mix_write(sc, SBP_STEREO,
1359 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1360 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1361 cmd = sc->sc_omodep->cmdchan;
1362 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1363 goto badmode;
1364 }
1365
1366 if (ISSB16CLASS(sc)) {
1367 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE,
1368 sc->sc_orate)) {
1369 DPRINTF(("sbdsp_dma_output: rate=%d set failed\n",
1370 sc->sc_orate));
1371 goto giveup;
1372 }
1373 } else {
1374 if (sbdsp_set_timeconst(sc, sc->sc_otc)) {
1375 DPRINTF(("sbdsp_dma_output: tc=%d set failed\n",
1376 sc->sc_orate));
1377 goto giveup;
1378 }
1379 }
1380
1381 sc->sc_dmadir = SB_DMA_OUT;
1382 sc->dmaflags = DMAMODE_WRITE;
1383 } else {
1384 /* If already started just return. */
1385 if (loop)
1386 return 0;
1387 }
1388
1389 if (!loop) {
1390 sc->dmaaddr = p;
1391 sc->dmacnt = cc;
1392 sc->dmachan = sc->sc_omodep->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
1393 #ifdef AUDIO_DEBUG
1394 if (sbdspdebug > 2)
1395 printf("sbdsp: start dma out flags=%x, addr=%p, cnt=%ld, chan=%d\n",
1396 sc->dmaflags, sc->dmaaddr, sc->dmacnt, sc->dmachan);
1397 #endif
1398 isa_dmastart(sc->sc_isa, sc->dmachan, sc->dmaaddr,
1399 sc->dmacnt, NULL, sc->dmaflags, BUS_DMA_NOWAIT);
1400 }
1401 sc->sc_intr = intr;
1402 sc->sc_arg = arg;
1403
1404 if ((sc->sc_model == SB_JAZZ && sc->dmachan > 3) ||
1405 (sc->sc_model != SB_JAZZ && sc->sc_omodep->precision == 16))
1406 cc >>= 1;
1407 --cc;
1408 if (ISSB16CLASS(sc)) {
1409 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1410 sbdsp_wdsp(sc, sc->sc_obmode) < 0 ||
1411 sbdsp16_wait(sc) ||
1412 sbdsp_wdsp(sc, cc) < 0 ||
1413 sbdsp_wdsp(sc, cc >> 8) < 0) {
1414 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1415 goto giveup;
1416 }
1417 } else {
1418 if (loop) {
1419 DPRINTF(("sbdsp_dma_output: set blocksize=%d\n", cc));
1420 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1421 sbdsp_wdsp(sc, cc) < 0 ||
1422 sbdsp_wdsp(sc, cc >> 8) < 0) {
1423 DPRINTF(("sbdsp_dma_output: SB2 DMA blocksize failed\n"));
1424 goto giveup;
1425 }
1426 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0) {
1427 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1428 goto giveup;
1429 }
1430 } else {
1431 if (sbdsp_wdsp(sc, sc->sc_omodep->cmd) < 0 ||
1432 sbdsp_wdsp(sc, cc) < 0 ||
1433 sbdsp_wdsp(sc, cc >> 8) < 0) {
1434 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1435 goto giveup;
1436 }
1437 }
1438 }
1439 return 0;
1440
1441 giveup:
1442 sbdsp_reset(sc);
1443 return EIO;
1444
1445 badmode:
1446 DPRINTF(("sbdsp_dma_output: can't set mode\n"));
1447 return EIO;
1448 }
1449
1450 /*
1451 * Only the DSP unit on the sound blaster generates interrupts.
1452 * There are three cases of interrupt: reception of a midi byte
1453 * (when mode is enabled), completion of dma transmission, or
1454 * completion of a dma reception. The three modes are mutually
1455 * exclusive so we know a priori which event has occurred.
1456 *
1457 * If there is interrupt sharing or a spurious interrupt occurs
1458 * there is no way to distinuish this on an SB2. So if you have
1459 * an SB2 and experience problems, buy an SB16 (it's only $25).
1460 */
1461 int
1462 sbdsp_intr(arg)
1463 void *arg;
1464 {
1465 struct sbdsp_softc *sc = arg;
1466 int loop = sc->sc_model != SB_1;
1467 u_char irq;
1468
1469 #ifdef AUDIO_DEBUG
1470 if (sbdspdebug > 1)
1471 printf("sbdsp_intr: intr=%p\n", sc->sc_intr);
1472 #endif
1473 if (ISSB16CLASS(sc)) {
1474 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1475 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16)) == 0)
1476 return 0;
1477 } else {
1478 if (!loop && !isa_dmafinished(sc->sc_isa, sc->dmachan))
1479 return 0;
1480 irq = SBP_IRQ_DMA8;
1481 }
1482 sc->sc_interrupts++;
1483 delay(10); /* XXX why? */
1484 #if 0
1485 if (sc->sc_mintr != 0) {
1486 x = sbdsp_rdsp(sc);
1487 (*sc->sc_mintr)(sc->sc_arg, x);
1488 } else
1489 #endif
1490 if (sc->sc_intr != 0) {
1491 /* clear interrupt */
1492 if (irq & SBP_IRQ_DMA8)
1493 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1494 if (irq & SBP_IRQ_DMA16)
1495 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1496 if (!loop)
1497 isa_dmadone(sc->sc_isa, sc->dmachan);
1498 (*sc->sc_intr)(sc->sc_arg);
1499 } else {
1500 return 0;
1501 }
1502 return 1;
1503 }
1504
1505 #if 0
1506 /*
1507 * Enter midi uart mode and arrange for read interrupts
1508 * to vector to `intr'. This puts the card in a mode
1509 * which allows only midi I/O; the card must be reset
1510 * to leave this mode. Unfortunately, the card does not
1511 * use transmit interrupts, so bytes must be output
1512 * using polling. To keep the polling overhead to a
1513 * minimum, output should be driven off a timer.
1514 * This is a little tricky since only 320us separate
1515 * consecutive midi bytes.
1516 */
1517 void
1518 sbdsp_set_midi_mode(sc, intr, arg)
1519 struct sbdsp_softc *sc;
1520 void (*intr)();
1521 void *arg;
1522 {
1523
1524 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1525 sc->sc_mintr = intr;
1526 sc->sc_intr = 0;
1527 sc->sc_arg = arg;
1528 }
1529
1530 /*
1531 * Write a byte to the midi port, when in midi uart mode.
1532 */
1533 void
1534 sbdsp_midi_output(sc, v)
1535 struct sbdsp_softc *sc;
1536 int v;
1537 {
1538
1539 if (sbdsp_wdsp(sc, v) < 0)
1540 ++sberr.wmidi;
1541 }
1542 #endif
1543
1544 /* Mask a value 0-255, but round it first */
1545 #define MAXVAL 256
1546 static int
1547 sbdsp_adjust(val, mask)
1548 int val, mask;
1549 {
1550 val += (MAXVAL - mask) >> 1;
1551 if (val >= MAXVAL)
1552 val = MAXVAL-1;
1553 return val & mask;
1554 }
1555
1556 void
1557 sbdsp_set_mixer_gain(sc, port)
1558 struct sbdsp_softc *sc;
1559 int port;
1560 {
1561 int src, gain;
1562
1563 switch(sc->sc_mixer_model) {
1564 case SBM_NONE:
1565 return;
1566 case SBM_CT1335:
1567 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1568 switch(port) {
1569 case SB_MASTER_VOL:
1570 src = SBP_1335_MASTER_VOL;
1571 break;
1572 case SB_MIDI_VOL:
1573 src = SBP_1335_MIDI_VOL;
1574 break;
1575 case SB_CD_VOL:
1576 src = SBP_1335_CD_VOL;
1577 break;
1578 case SB_VOICE_VOL:
1579 src = SBP_1335_VOICE_VOL;
1580 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1581 break;
1582 default:
1583 return;
1584 }
1585 sbdsp_mix_write(sc, src, gain);
1586 break;
1587 case SBM_CT1345:
1588 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1589 sc->gain[port][SB_RIGHT]);
1590 switch (port) {
1591 case SB_MIC_VOL:
1592 src = SBP_MIC_VOL;
1593 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1594 break;
1595 case SB_MASTER_VOL:
1596 src = SBP_MASTER_VOL;
1597 break;
1598 case SB_LINE_IN_VOL:
1599 src = SBP_LINE_VOL;
1600 break;
1601 case SB_VOICE_VOL:
1602 src = SBP_VOICE_VOL;
1603 break;
1604 case SB_MIDI_VOL:
1605 src = SBP_MIDI_VOL;
1606 break;
1607 case SB_CD_VOL:
1608 src = SBP_CD_VOL;
1609 break;
1610 default:
1611 return;
1612 }
1613 sbdsp_mix_write(sc, src, gain);
1614 break;
1615 case SBM_CT1XX5:
1616 case SBM_CT1745:
1617 switch (port) {
1618 case SB_MIC_VOL:
1619 src = SB16P_MIC_L;
1620 break;
1621 case SB_MASTER_VOL:
1622 src = SB16P_MASTER_L;
1623 break;
1624 case SB_LINE_IN_VOL:
1625 src = SB16P_LINE_L;
1626 break;
1627 case SB_VOICE_VOL:
1628 src = SB16P_VOICE_L;
1629 break;
1630 case SB_MIDI_VOL:
1631 src = SB16P_MIDI_L;
1632 break;
1633 case SB_CD_VOL:
1634 src = SB16P_CD_L;
1635 break;
1636 case SB_INPUT_GAIN:
1637 src = SB16P_INPUT_GAIN_L;
1638 break;
1639 case SB_OUTPUT_GAIN:
1640 src = SB16P_OUTPUT_GAIN_L;
1641 break;
1642 case SB_TREBLE:
1643 src = SB16P_TREBLE_L;
1644 break;
1645 case SB_BASS:
1646 src = SB16P_BASS_L;
1647 break;
1648 case SB_PCSPEAKER:
1649 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1650 return;
1651 default:
1652 return;
1653 }
1654 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1655 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1656 break;
1657 }
1658 }
1659
1660 int
1661 sbdsp_mixer_set_port(addr, cp)
1662 void *addr;
1663 mixer_ctrl_t *cp;
1664 {
1665 struct sbdsp_softc *sc = addr;
1666 int lgain, rgain;
1667
1668 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1669 cp->un.value.num_channels));
1670
1671 if (sc->sc_mixer_model == SBM_NONE)
1672 return EINVAL;
1673
1674 switch (cp->dev) {
1675 case SB_TREBLE:
1676 case SB_BASS:
1677 if (sc->sc_mixer_model == SBM_CT1345 ||
1678 sc->sc_mixer_model == SBM_CT1XX5) {
1679 if (cp->type != AUDIO_MIXER_ENUM)
1680 return EINVAL;
1681 switch (cp->dev) {
1682 case SB_TREBLE:
1683 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1684 return 0;
1685 case SB_BASS:
1686 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1687 return 0;
1688 }
1689 }
1690 case SB_PCSPEAKER:
1691 case SB_INPUT_GAIN:
1692 case SB_OUTPUT_GAIN:
1693 if (!ISSBM1745(sc))
1694 return EINVAL;
1695 case SB_MIC_VOL:
1696 case SB_LINE_IN_VOL:
1697 if (sc->sc_mixer_model == SBM_CT1335)
1698 return EINVAL;
1699 case SB_VOICE_VOL:
1700 case SB_MIDI_VOL:
1701 case SB_CD_VOL:
1702 case SB_MASTER_VOL:
1703 if (cp->type != AUDIO_MIXER_VALUE)
1704 return EINVAL;
1705
1706 /*
1707 * All the mixer ports are stereo except for the microphone.
1708 * If we get a single-channel gain value passed in, then we
1709 * duplicate it to both left and right channels.
1710 */
1711
1712 switch (cp->dev) {
1713 case SB_MIC_VOL:
1714 if (cp->un.value.num_channels != 1)
1715 return EINVAL;
1716
1717 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1718 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1719 break;
1720 case SB_PCSPEAKER:
1721 if (cp->un.value.num_channels != 1)
1722 return EINVAL;
1723 /* fall into */
1724 case SB_INPUT_GAIN:
1725 case SB_OUTPUT_GAIN:
1726 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1727 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1728 break;
1729 default:
1730 switch (cp->un.value.num_channels) {
1731 case 1:
1732 lgain = rgain = SB_ADJUST_GAIN(sc,
1733 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1734 break;
1735 case 2:
1736 if (sc->sc_mixer_model == SBM_CT1335)
1737 return EINVAL;
1738 lgain = SB_ADJUST_GAIN(sc,
1739 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1740 rgain = SB_ADJUST_GAIN(sc,
1741 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1742 break;
1743 default:
1744 return EINVAL;
1745 }
1746 break;
1747 }
1748 sc->gain[cp->dev][SB_LEFT] = lgain;
1749 sc->gain[cp->dev][SB_RIGHT] = rgain;
1750
1751 sbdsp_set_mixer_gain(sc, cp->dev);
1752 break;
1753
1754 case SB_RECORD_SOURCE:
1755 if (ISSBM1745(sc)) {
1756 if (cp->type != AUDIO_MIXER_SET)
1757 return EINVAL;
1758 return sbdsp_set_in_ports(sc, cp->un.mask);
1759 } else {
1760 if (cp->type != AUDIO_MIXER_ENUM)
1761 return EINVAL;
1762 return sbdsp_set_in_port(sc, cp->un.ord);
1763 }
1764 break;
1765
1766 case SB_AGC:
1767 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1768 return EINVAL;
1769 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1770 break;
1771
1772 default:
1773 return EINVAL;
1774 }
1775
1776 return 0;
1777 }
1778
1779 int
1780 sbdsp_mixer_get_port(addr, cp)
1781 void *addr;
1782 mixer_ctrl_t *cp;
1783 {
1784 struct sbdsp_softc *sc = addr;
1785
1786 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1787
1788 if (sc->sc_mixer_model == SBM_NONE)
1789 return EINVAL;
1790
1791 switch (cp->dev) {
1792 case SB_TREBLE:
1793 case SB_BASS:
1794 if (sc->sc_mixer_model == SBM_CT1345 ||
1795 sc->sc_mixer_model == SBM_CT1XX5) {
1796 switch (cp->dev) {
1797 case SB_TREBLE:
1798 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1799 return 0;
1800 case SB_BASS:
1801 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1802 return 0;
1803 }
1804 }
1805 case SB_PCSPEAKER:
1806 case SB_INPUT_GAIN:
1807 case SB_OUTPUT_GAIN:
1808 if (!ISSBM1745(sc))
1809 return EINVAL;
1810 case SB_MIC_VOL:
1811 case SB_LINE_IN_VOL:
1812 if (sc->sc_mixer_model == SBM_CT1335)
1813 return EINVAL;
1814 case SB_VOICE_VOL:
1815 case SB_MIDI_VOL:
1816 case SB_CD_VOL:
1817 case SB_MASTER_VOL:
1818 switch (cp->dev) {
1819 case SB_MIC_VOL:
1820 case SB_PCSPEAKER:
1821 if (cp->un.value.num_channels != 1)
1822 return EINVAL;
1823 /* fall into */
1824 default:
1825 switch (cp->un.value.num_channels) {
1826 case 1:
1827 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1828 sc->gain[cp->dev][SB_LEFT];
1829 break;
1830 case 2:
1831 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1832 sc->gain[cp->dev][SB_LEFT];
1833 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1834 sc->gain[cp->dev][SB_RIGHT];
1835 break;
1836 default:
1837 return EINVAL;
1838 }
1839 break;
1840 }
1841 break;
1842
1843 case SB_RECORD_SOURCE:
1844 if (ISSBM1745(sc))
1845 cp->un.mask = sc->in_mask;
1846 else
1847 cp->un.ord = sc->in_port;
1848 break;
1849
1850 case SB_AGC:
1851 if (!ISSBM1745(sc))
1852 return EINVAL;
1853 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1854 break;
1855
1856 default:
1857 return EINVAL;
1858 }
1859
1860 return 0;
1861 }
1862
1863 int
1864 sbdsp_mixer_query_devinfo(addr, dip)
1865 void *addr;
1866 mixer_devinfo_t *dip;
1867 {
1868 struct sbdsp_softc *sc = addr;
1869 int chan, class;
1870
1871 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1872 sc->sc_mixer_model, dip->index));
1873
1874 if (sc->sc_mixer_model == SBM_NONE)
1875 return ENXIO;
1876
1877 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1878 class = ISSBM1745(sc) ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1879
1880 switch (dip->index) {
1881 case SB_MASTER_VOL:
1882 dip->type = AUDIO_MIXER_VALUE;
1883 dip->mixer_class = SB_OUTPUT_CLASS;
1884 dip->prev = dip->next = AUDIO_MIXER_LAST;
1885 strcpy(dip->label.name, AudioNmaster);
1886 dip->un.v.num_channels = chan;
1887 strcpy(dip->un.v.units.name, AudioNvolume);
1888 return 0;
1889 case SB_MIDI_VOL:
1890 dip->type = AUDIO_MIXER_VALUE;
1891 dip->mixer_class = class;
1892 dip->prev = AUDIO_MIXER_LAST;
1893 dip->next = AUDIO_MIXER_LAST;
1894 strcpy(dip->label.name, AudioNfmsynth);
1895 dip->un.v.num_channels = chan;
1896 strcpy(dip->un.v.units.name, AudioNvolume);
1897 return 0;
1898 case SB_CD_VOL:
1899 dip->type = AUDIO_MIXER_VALUE;
1900 dip->mixer_class = class;
1901 dip->prev = AUDIO_MIXER_LAST;
1902 dip->next = AUDIO_MIXER_LAST;
1903 strcpy(dip->label.name, AudioNcd);
1904 dip->un.v.num_channels = chan;
1905 strcpy(dip->un.v.units.name, AudioNvolume);
1906 return 0;
1907 case SB_VOICE_VOL:
1908 dip->type = AUDIO_MIXER_VALUE;
1909 dip->mixer_class = class;
1910 dip->prev = AUDIO_MIXER_LAST;
1911 dip->next = AUDIO_MIXER_LAST;
1912 strcpy(dip->label.name, AudioNdac);
1913 dip->un.v.num_channels = chan;
1914 strcpy(dip->un.v.units.name, AudioNvolume);
1915 return 0;
1916 case SB_OUTPUT_CLASS:
1917 dip->type = AUDIO_MIXER_CLASS;
1918 dip->mixer_class = SB_OUTPUT_CLASS;
1919 dip->next = dip->prev = AUDIO_MIXER_LAST;
1920 strcpy(dip->label.name, AudioCOutputs);
1921 return 0;
1922 }
1923
1924 if (sc->sc_mixer_model == SBM_CT1335)
1925 return ENXIO;
1926
1927 switch (dip->index) {
1928 case SB_MIC_VOL:
1929 dip->type = AUDIO_MIXER_VALUE;
1930 dip->mixer_class = class;
1931 dip->prev = AUDIO_MIXER_LAST;
1932 dip->next = AUDIO_MIXER_LAST;
1933 strcpy(dip->label.name, AudioNmicrophone);
1934 dip->un.v.num_channels = 1;
1935 strcpy(dip->un.v.units.name, AudioNvolume);
1936 return 0;
1937
1938 case SB_LINE_IN_VOL:
1939 dip->type = AUDIO_MIXER_VALUE;
1940 dip->mixer_class = class;
1941 dip->prev = AUDIO_MIXER_LAST;
1942 dip->next = AUDIO_MIXER_LAST;
1943 strcpy(dip->label.name, AudioNline);
1944 dip->un.v.num_channels = 2;
1945 strcpy(dip->un.v.units.name, AudioNvolume);
1946 return 0;
1947
1948 case SB_RECORD_SOURCE:
1949 dip->mixer_class = SB_RECORD_CLASS;
1950 dip->prev = dip->next = AUDIO_MIXER_LAST;
1951 strcpy(dip->label.name, AudioNsource);
1952 if (ISSBM1745(sc)) {
1953 dip->type = AUDIO_MIXER_SET;
1954 dip->un.s.num_mem = 4;
1955 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1956 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
1957 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1958 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
1959 strcpy(dip->un.s.member[2].label.name, AudioNline);
1960 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
1961 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1962 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
1963 } else {
1964 dip->type = AUDIO_MIXER_ENUM;
1965 dip->un.e.num_mem = 3;
1966 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1967 dip->un.e.member[0].ord = SB_MIC_VOL;
1968 strcpy(dip->un.e.member[1].label.name, AudioNcd);
1969 dip->un.e.member[1].ord = SB_CD_VOL;
1970 strcpy(dip->un.e.member[2].label.name, AudioNline);
1971 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
1972 }
1973 return 0;
1974
1975 case SB_BASS:
1976 dip->prev = dip->next = AUDIO_MIXER_LAST;
1977 strcpy(dip->label.name, AudioNbass);
1978 if (sc->sc_mixer_model == SBM_CT1745) {
1979 dip->type = AUDIO_MIXER_VALUE;
1980 dip->mixer_class = SB_EQUALIZATION_CLASS;
1981 dip->un.v.num_channels = 2;
1982 strcpy(dip->un.v.units.name, AudioNbass);
1983 } else {
1984 dip->type = AUDIO_MIXER_ENUM;
1985 dip->mixer_class = SB_INPUT_CLASS;
1986 dip->un.e.num_mem = 2;
1987 strcpy(dip->un.e.member[0].label.name, AudioNoff);
1988 dip->un.e.member[0].ord = 0;
1989 strcpy(dip->un.e.member[1].label.name, AudioNon);
1990 dip->un.e.member[1].ord = 1;
1991 }
1992 return 0;
1993
1994 case SB_TREBLE:
1995 dip->prev = dip->next = AUDIO_MIXER_LAST;
1996 strcpy(dip->label.name, AudioNtreble);
1997 if (sc->sc_mixer_model == SBM_CT1745) {
1998 dip->type = AUDIO_MIXER_VALUE;
1999 dip->mixer_class = SB_EQUALIZATION_CLASS;
2000 dip->un.v.num_channels = 2;
2001 strcpy(dip->un.v.units.name, AudioNtreble);
2002 } else {
2003 dip->type = AUDIO_MIXER_ENUM;
2004 dip->mixer_class = SB_INPUT_CLASS;
2005 dip->un.e.num_mem = 2;
2006 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2007 dip->un.e.member[0].ord = 0;
2008 strcpy(dip->un.e.member[1].label.name, AudioNon);
2009 dip->un.e.member[1].ord = 1;
2010 }
2011 return 0;
2012
2013 case SB_RECORD_CLASS: /* record source class */
2014 dip->type = AUDIO_MIXER_CLASS;
2015 dip->mixer_class = SB_RECORD_CLASS;
2016 dip->next = dip->prev = AUDIO_MIXER_LAST;
2017 strcpy(dip->label.name, AudioCRecord);
2018 return 0;
2019
2020 }
2021
2022 if (sc->sc_mixer_model == SBM_CT1345)
2023 return ENXIO;
2024
2025 switch(dip->index) {
2026 case SB_PCSPEAKER:
2027 dip->type = AUDIO_MIXER_VALUE;
2028 dip->mixer_class = SB_INPUT_CLASS;
2029 dip->prev = dip->next = AUDIO_MIXER_LAST;
2030 strcpy(dip->label.name, "pc_speaker");
2031 dip->un.v.num_channels = 1;
2032 strcpy(dip->un.v.units.name, AudioNvolume);
2033 return 0;
2034
2035 case SB_INPUT_GAIN:
2036 dip->type = AUDIO_MIXER_VALUE;
2037 dip->mixer_class = SB_INPUT_CLASS;
2038 dip->prev = dip->next = AUDIO_MIXER_LAST;
2039 strcpy(dip->label.name, AudioNinput);
2040 dip->un.v.num_channels = 2;
2041 strcpy(dip->un.v.units.name, AudioNvolume);
2042 return 0;
2043
2044 case SB_OUTPUT_GAIN:
2045 dip->type = AUDIO_MIXER_VALUE;
2046 dip->mixer_class = SB_OUTPUT_CLASS;
2047 dip->prev = dip->next = AUDIO_MIXER_LAST;
2048 strcpy(dip->label.name, AudioNoutput);
2049 dip->un.v.num_channels = 2;
2050 strcpy(dip->un.v.units.name, AudioNvolume);
2051 return 0;
2052
2053 case SB_AGC:
2054 dip->type = AUDIO_MIXER_ENUM;
2055 dip->mixer_class = SB_INPUT_CLASS;
2056 dip->prev = dip->next = AUDIO_MIXER_LAST;
2057 strcpy(dip->label.name, "AGC");
2058 dip->un.e.num_mem = 2;
2059 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2060 dip->un.e.member[0].ord = 0;
2061 strcpy(dip->un.e.member[1].label.name, AudioNon);
2062 dip->un.e.member[1].ord = 1;
2063 return 0;
2064
2065 case SB_INPUT_CLASS:
2066 dip->type = AUDIO_MIXER_CLASS;
2067 dip->mixer_class = SB_INPUT_CLASS;
2068 dip->next = dip->prev = AUDIO_MIXER_LAST;
2069 strcpy(dip->label.name, AudioCInputs);
2070 return 0;
2071
2072 case SB_EQUALIZATION_CLASS:
2073 dip->type = AUDIO_MIXER_CLASS;
2074 dip->mixer_class = SB_EQUALIZATION_CLASS;
2075 dip->next = dip->prev = AUDIO_MIXER_LAST;
2076 strcpy(dip->label.name, AudioCEqualization);
2077 return 0;
2078 }
2079
2080 return ENXIO;
2081 }
2082
2083 void *
2084 sb_malloc(addr, size, pool, flags)
2085 void *addr;
2086 unsigned long size;
2087 int pool;
2088 int flags;
2089 {
2090 struct sbdsp_softc *sc = addr;
2091
2092 return isa_malloc(sc->sc_isa, 4, size, pool, flags);
2093 }
2094
2095 void
2096 sb_free(addr, ptr, pool)
2097 void *addr;
2098 void *ptr;
2099 int pool;
2100 {
2101 isa_free(ptr, pool);
2102 }
2103
2104 unsigned long
2105 sb_round(addr, size)
2106 void *addr;
2107 unsigned long size;
2108 {
2109 if (size > MAX_ISADMA)
2110 size = MAX_ISADMA;
2111 return size;
2112 }
2113
2114 int
2115 sb_mappage(addr, mem, off, prot)
2116 void *addr;
2117 void *mem;
2118 int off;
2119 int prot;
2120 {
2121 return isa_mappage(mem, off, prot);
2122 }
2123
2124 int
2125 sbdsp_get_props(addr)
2126 void *addr;
2127 {
2128 return AUDIO_PROP_MMAP;
2129 }
2130