sbdsp.c revision 1.70 1 /* $NetBSD: sbdsp.c,v 1.70 1997/08/29 21:41:36 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <vm/vm.h>
56
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59 #include <machine/bus.h>
60
61 #include <sys/audioio.h>
62 #include <dev/audio_if.h>
63 #include <dev/mulaw.h>
64 #include <dev/auconv.h>
65
66 #include <dev/isa/isavar.h>
67 #include <dev/isa/isadmavar.h>
68
69 #include <dev/isa/sbreg.h>
70 #include <dev/isa/sbdspvar.h>
71
72 #ifdef AUDIO_DEBUG
73 #define DPRINTF(x) if (sbdspdebug) printf x
74 int sbdspdebug = 0;
75 #else
76 #define DPRINTF(x)
77 #endif
78
79 #ifndef SBDSP_NPOLL
80 #define SBDSP_NPOLL 3000
81 #endif
82
83 struct {
84 int wdsp;
85 int rdsp;
86 int wmidi;
87 } sberr;
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 /* XXX Should we round the tc?
115 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
116 */
117 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
118 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
119
120 struct sbmode {
121 short model;
122 u_char channels;
123 u_char precision;
124 u_short lowrate, highrate;
125 u_char cmd;
126 u_char cmdchan;
127 };
128 static struct sbmode sbpmodes[] = {
129 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
130 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
131 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
132 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
133 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
134 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
135 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
136 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
137 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
138 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
139 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
140 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
141 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
142 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
143 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
144 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
145 #define PLAY16 15 /* must be the index of the next entry in the table */
146 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
147 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
148 { -1 }
149 };
150 static struct sbmode sbrmodes[] = {
151 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
152 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
153 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
154 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
155 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
156 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
157 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
158 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
159 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
160 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
161 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
162 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
163 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
164 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
165 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
166 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
167 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
168 { -1 }
169 };
170
171 void sbversion __P((struct sbdsp_softc *));
172 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
173 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
174 void sbdsp_to __P((void *));
175 void sbdsp_pause __P((struct sbdsp_softc *));
176 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
177 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
178 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
179 void sbdsp_set_ifilter __P((void *, int));
180 int sbdsp_get_ifilter __P((void *));
181
182 static int sbdsp_dma_setup_input __P((struct sbdsp_softc *sc));
183 static int sbdsp_dma_setup_output __P((struct sbdsp_softc *sc));
184 static int sbdsp_adjust __P((int, int));
185
186 #ifdef AUDIO_DEBUG
187 void sb_printsc __P((struct sbdsp_softc *));
188
189 void
190 sb_printsc(sc)
191 struct sbdsp_softc *sc;
192 {
193 int i;
194
195 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
196 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
197 sc->sc_drq8, sc->sc_drq16,
198 sc->sc_iobase, sc->sc_irq);
199 printf("irate %d itc %x orate %d otc %x\n",
200 sc->sc_i.rate, sc->sc_i.tc,
201 sc->sc_o.rate, sc->sc_o.tc);
202 printf("outport %u inport %u spkron %u nintr %lu\n",
203 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
204 printf("intr8 %p arg8 %p\n",
205 sc->sc_intr8, sc->sc_arg16);
206 printf("intr16 %p arg16 %p\n",
207 sc->sc_intr8, sc->sc_arg16);
208 printf("gain:");
209 for (i = 0; i < SB_NDEVS; i++)
210 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
211 printf("\n");
212 }
213 #endif /* AUDIO_DEBUG */
214
215 /*
216 * Probe / attach routines.
217 */
218
219 /*
220 * Probe for the soundblaster hardware.
221 */
222 int
223 sbdsp_probe(sc)
224 struct sbdsp_softc *sc;
225 {
226
227 if (sbdsp_reset(sc) < 0) {
228 DPRINTF(("sbdsp: couldn't reset card\n"));
229 return 0;
230 }
231 /* if flags set, go and probe the jazz16 stuff */
232 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
233 sbdsp_jazz16_probe(sc);
234 else
235 sbversion(sc);
236 if (sc->sc_model == SB_UNK) {
237 /* Unknown SB model found. */
238 DPRINTF(("sbdsp: unknown SB model found\n"));
239 return 0;
240 }
241 return 1;
242 }
243
244 /*
245 * Try add-on stuff for Jazz16.
246 */
247 void
248 sbdsp_jazz16_probe(sc)
249 struct sbdsp_softc *sc;
250 {
251 static u_char jazz16_irq_conf[16] = {
252 -1, -1, 0x02, 0x03,
253 -1, 0x01, -1, 0x04,
254 -1, 0x02, 0x05, -1,
255 -1, -1, -1, 0x06};
256 static u_char jazz16_drq_conf[8] = {
257 -1, 0x01, -1, 0x02,
258 -1, 0x03, -1, 0x04};
259
260 bus_space_tag_t iot = sc->sc_iot;
261 bus_space_handle_t ioh;
262
263 sbversion(sc);
264
265 DPRINTF(("jazz16 probe\n"));
266
267 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
268 DPRINTF(("bus map failed\n"));
269 return;
270 }
271
272 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
273 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
274 DPRINTF(("drq/irq check failed\n"));
275 goto done; /* give up, we can't do it. */
276 }
277
278 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
279 delay(10000); /* delay 10 ms */
280 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
281 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
282
283 if (sbdsp_reset(sc) < 0) {
284 DPRINTF(("sbdsp_reset check failed\n"));
285 goto done; /* XXX? what else could we do? */
286 }
287
288 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
289 DPRINTF(("read16 setup failed\n"));
290 goto done;
291 }
292
293 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
294 DPRINTF(("read16 failed\n"));
295 goto done;
296 }
297
298 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
299 sc->sc_drq16 = sc->sc_drq8;
300 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
301 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
302 jazz16_drq_conf[sc->sc_drq8]) ||
303 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
304 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
305 } else {
306 DPRINTF(("jazz16 detected!\n"));
307 sc->sc_model = SB_JAZZ;
308 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
309 }
310
311 done:
312 bus_space_unmap(iot, ioh, 1);
313 }
314
315 /*
316 * Attach hardware to driver, attach hardware driver to audio
317 * pseudo-device driver .
318 */
319 void
320 sbdsp_attach(sc)
321 struct sbdsp_softc *sc;
322 {
323 struct audio_params pparams, rparams;
324 int i;
325 u_int v;
326
327 /*
328 * Create our DMA maps.
329 */
330 if (sc->sc_drq8 != -1) {
331 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8,
332 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
333 printf("%s: can't create map for drq %d\n",
334 sc->sc_dev.dv_xname, sc->sc_drq8);
335 return;
336 }
337 }
338 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
339 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16,
340 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
341 printf("%s: can't create map for drq %d\n",
342 sc->sc_dev.dv_xname, sc->sc_drq16);
343 return;
344 }
345 }
346
347 pparams = audio_default;
348 rparams = audio_default;
349 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
350
351 sbdsp_set_in_port(sc, SB_MIC_VOL);
352 sbdsp_set_out_port(sc, SB_MASTER_VOL);
353
354 if (sc->sc_mixer_model != SBM_NONE) {
355 /* Reset the mixer.*/
356 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
357 /* And set our own default values */
358 for (i = 0; i < SB_NDEVS; i++) {
359 switch(i) {
360 case SB_MIC_VOL:
361 case SB_LINE_IN_VOL:
362 v = 0;
363 break;
364 case SB_BASS:
365 case SB_TREBLE:
366 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
367 break;
368 case SB_CD_IN_MUTE:
369 case SB_MIC_IN_MUTE:
370 case SB_LINE_IN_MUTE:
371 case SB_MIDI_IN_MUTE:
372 case SB_CD_SWAP:
373 case SB_MIC_SWAP:
374 case SB_LINE_SWAP:
375 case SB_MIDI_SWAP:
376 case SB_CD_OUT_MUTE:
377 case SB_MIC_OUT_MUTE:
378 case SB_LINE_OUT_MUTE:
379 v = 0;
380 break;
381 default:
382 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
383 break;
384 }
385 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
386 sbdsp_set_mixer_gain(sc, i);
387 }
388 sc->in_filter = 0; /* no filters turned on, please */
389 }
390
391 DPRINTF((" drq16 %d", sc->sc_drq16));
392 printf(": dsp v%d.%02d%s\n",
393 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
394 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
395
396 sc->sc_fullduplex = ISSB16CLASS(sc) &&
397 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
398 sc->sc_drq8 != sc->sc_drq16;
399 }
400
401 void
402 sbdsp_mix_write(sc, mixerport, val)
403 struct sbdsp_softc *sc;
404 int mixerport;
405 int val;
406 {
407 bus_space_tag_t iot = sc->sc_iot;
408 bus_space_handle_t ioh = sc->sc_ioh;
409 int s;
410
411 s = splaudio();
412 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
413 delay(20);
414 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
415 delay(30);
416 splx(s);
417 }
418
419 int
420 sbdsp_mix_read(sc, mixerport)
421 struct sbdsp_softc *sc;
422 int mixerport;
423 {
424 bus_space_tag_t iot = sc->sc_iot;
425 bus_space_handle_t ioh = sc->sc_ioh;
426 int val;
427 int s;
428
429 s = splaudio();
430 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
431 delay(20);
432 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
433 delay(30);
434 splx(s);
435 return val;
436 }
437
438 /*
439 * Various routines to interface to higher level audio driver
440 */
441
442 int
443 sbdsp_query_encoding(addr, fp)
444 void *addr;
445 struct audio_encoding *fp;
446 {
447 struct sbdsp_softc *sc = addr;
448 int emul;
449
450 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
451
452 switch (fp->index) {
453 case 0:
454 strcpy(fp->name, AudioEulinear);
455 fp->encoding = AUDIO_ENCODING_ULINEAR;
456 fp->precision = 8;
457 fp->flags = 0;
458 return 0;
459 case 1:
460 strcpy(fp->name, AudioEmulaw);
461 fp->encoding = AUDIO_ENCODING_ULAW;
462 fp->precision = 8;
463 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
464 return 0;
465 case 2:
466 strcpy(fp->name, AudioEalaw);
467 fp->encoding = AUDIO_ENCODING_ALAW;
468 fp->precision = 8;
469 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
470 return 0;
471 case 3:
472 strcpy(fp->name, AudioElinear);
473 fp->encoding = AUDIO_ENCODING_SLINEAR;
474 fp->precision = 8;
475 fp->flags = emul;
476 return 0;
477 }
478 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
479 return EINVAL;
480
481 switch(fp->index) {
482 case 4:
483 strcpy(fp->name, AudioElinear_le);
484 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
485 fp->precision = 16;
486 fp->flags = 0;
487 return 0;
488 case 5:
489 strcpy(fp->name, AudioEulinear_le);
490 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
491 fp->precision = 16;
492 fp->flags = emul;
493 return 0;
494 case 6:
495 strcpy(fp->name, AudioElinear_be);
496 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
497 fp->precision = 16;
498 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
499 return 0;
500 case 7:
501 strcpy(fp->name, AudioEulinear_be);
502 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
503 fp->precision = 16;
504 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
505 return 0;
506 default:
507 return EINVAL;
508 }
509 return 0;
510 }
511
512 int
513 sbdsp_set_params(addr, setmode, usemode, play, rec)
514 void *addr;
515 int setmode, usemode;
516 struct audio_params *play, *rec;
517 {
518 struct sbdsp_softc *sc = addr;
519 struct sbmode *m;
520 u_int rate, tc, bmode;
521 void (*swcode) __P((void *, u_char *buf, int cnt));
522 int factor;
523 int model;
524 int chan;
525 struct audio_params *p;
526 int mode;
527
528 model = sc->sc_model;
529 if (model > SB_16)
530 model = SB_16; /* later models work like SB16 */
531
532 /* Set first record info, then play info */
533 for(mode = AUMODE_RECORD; mode != -1;
534 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
535 if ((setmode & mode) == 0)
536 continue;
537
538 p = mode == AUMODE_PLAY ? play : rec;
539 /* Locate proper commands */
540 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
541 m->model != -1; m++) {
542 if (model == m->model &&
543 p->channels == m->channels &&
544 p->precision == m->precision &&
545 p->sample_rate >= m->lowrate &&
546 p->sample_rate < m->highrate)
547 break;
548 }
549 if (m->model == -1)
550 return EINVAL;
551 rate = p->sample_rate;
552 swcode = 0;
553 factor = 1;
554 tc = 1;
555 bmode = -1;
556 if (model == SB_16) {
557 switch (p->encoding) {
558 case AUDIO_ENCODING_SLINEAR_BE:
559 if (p->precision == 16)
560 swcode = swap_bytes;
561 /* fall into */
562 case AUDIO_ENCODING_SLINEAR_LE:
563 bmode = SB_BMODE_SIGNED;
564 break;
565 case AUDIO_ENCODING_ULINEAR_BE:
566 if (p->precision == 16)
567 swcode = swap_bytes;
568 /* fall into */
569 case AUDIO_ENCODING_ULINEAR_LE:
570 bmode = SB_BMODE_UNSIGNED;
571 break;
572 case AUDIO_ENCODING_ULAW:
573 if (mode == AUMODE_PLAY) {
574 swcode = mulaw_to_ulinear16;
575 factor = 2;
576 m = &sbpmodes[PLAY16];
577 } else
578 swcode = ulinear8_to_mulaw;
579 bmode = SB_BMODE_UNSIGNED;
580 break;
581 case AUDIO_ENCODING_ALAW:
582 if (mode == AUMODE_PLAY) {
583 swcode = alaw_to_ulinear16;
584 factor = 2;
585 m = &sbpmodes[PLAY16];
586 } else
587 swcode = ulinear8_to_alaw;
588 bmode = SB_BMODE_UNSIGNED;
589 break;
590 default:
591 return EINVAL;
592 }
593 if (p->channels == 2)
594 bmode |= SB_BMODE_STEREO;
595 } else if (m->model == SB_JAZZ && m->precision == 16) {
596 switch (p->encoding) {
597 case AUDIO_ENCODING_SLINEAR_LE:
598 break;
599 case AUDIO_ENCODING_ULINEAR_LE:
600 swcode = change_sign16;
601 break;
602 case AUDIO_ENCODING_SLINEAR_BE:
603 swcode = swap_bytes;
604 break;
605 case AUDIO_ENCODING_ULINEAR_BE:
606 swcode = mode == AUMODE_PLAY ?
607 swap_bytes_change_sign16 : change_sign16_swap_bytes;
608 break;
609 case AUDIO_ENCODING_ULAW:
610 swcode = mode == AUMODE_PLAY ?
611 mulaw_to_ulinear8 : ulinear8_to_mulaw;
612 break;
613 case AUDIO_ENCODING_ALAW:
614 swcode = mode == AUMODE_PLAY ?
615 alaw_to_ulinear8 : ulinear8_to_alaw;
616 break;
617 default:
618 return EINVAL;
619 }
620 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
621 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
622 } else {
623 switch (p->encoding) {
624 case AUDIO_ENCODING_SLINEAR_BE:
625 case AUDIO_ENCODING_SLINEAR_LE:
626 swcode = change_sign8;
627 break;
628 case AUDIO_ENCODING_ULINEAR_BE:
629 case AUDIO_ENCODING_ULINEAR_LE:
630 break;
631 case AUDIO_ENCODING_ULAW:
632 swcode = mode == AUMODE_PLAY ?
633 mulaw_to_ulinear8 : ulinear8_to_mulaw;
634 break;
635 case AUDIO_ENCODING_ALAW:
636 swcode = mode == AUMODE_PLAY ?
637 alaw_to_ulinear8 : ulinear8_to_alaw;
638 break;
639 default:
640 return EINVAL;
641 }
642 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
643 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
644 }
645
646 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
647 if (mode == AUMODE_PLAY) {
648 sc->sc_o.rate = rate;
649 sc->sc_o.tc = tc;
650 sc->sc_o.modep = m;
651 sc->sc_o.bmode = bmode;
652 sc->sc_o.dmachan = chan;
653 } else {
654 sc->sc_i.rate = rate;
655 sc->sc_i.tc = tc;
656 sc->sc_i.modep = m;
657 sc->sc_i.bmode = bmode;
658 sc->sc_i.dmachan = chan;
659 }
660
661 p->sw_code = swcode;
662 p->factor = factor;
663 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
664 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
665 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
666
667 }
668 /*
669 * XXX
670 * Should wait for chip to be idle.
671 */
672 sc->sc_i.run = SB_NOTRUNNING;
673 sc->sc_o.run = SB_NOTRUNNING;
674
675 if (sc->sc_fullduplex &&
676 (usemode & (AUMODE_PLAY | AUMODE_RECORD)) == (AUMODE_PLAY | AUMODE_RECORD) &&
677 sc->sc_i.dmachan == sc->sc_o.dmachan) {
678 DPRINTF(("sbdsp_commit: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
679 if (sc->sc_o.dmachan == sc->sc_drq8) {
680 /* Use 16 bit DMA for playing by expanding the samples. */
681 play->sw_code = linear8_to_linear16;
682 play->factor = 2;
683 sc->sc_o.modep = &sbpmodes[PLAY16];
684 sc->sc_o.dmachan = sc->sc_drq16;
685 } else {
686 return EINVAL;
687 }
688 }
689 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n", sc->sc_i.dmachan, sc->sc_o.dmachan));
690
691 return 0;
692 }
693
694 void
695 sbdsp_set_ifilter(addr, which)
696 void *addr;
697 int which;
698 {
699 struct sbdsp_softc *sc = addr;
700 int mixval;
701
702 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
703 switch (which) {
704 case 0:
705 mixval |= SBP_FILTER_OFF;
706 break;
707 case SB_TREBLE:
708 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
709 break;
710 case SB_BASS:
711 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
712 break;
713 default:
714 return;
715 }
716 sc->in_filter = mixval & SBP_IFILTER_MASK;
717 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
718 }
719
720 int
721 sbdsp_get_ifilter(addr)
722 void *addr;
723 {
724 struct sbdsp_softc *sc = addr;
725
726 sc->in_filter =
727 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
728 switch (sc->in_filter) {
729 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
730 return SB_TREBLE;
731 case SBP_FILTER_ON|SBP_IFILTER_LOW:
732 return SB_BASS;
733 default:
734 return 0;
735 }
736 }
737
738 int
739 sbdsp_set_out_port(addr, port)
740 void *addr;
741 int port;
742 {
743 struct sbdsp_softc *sc = addr;
744
745 sc->out_port = port; /* Just record it */
746
747 return 0;
748 }
749
750 int
751 sbdsp_get_out_port(addr)
752 void *addr;
753 {
754 struct sbdsp_softc *sc = addr;
755
756 return sc->out_port;
757 }
758
759
760 int
761 sbdsp_set_in_port(addr, port)
762 void *addr;
763 int port;
764 {
765 return sbdsp_set_in_ports(addr, 1 << port);
766 }
767
768 int
769 sbdsp_set_in_ports(sc, mask)
770 struct sbdsp_softc *sc;
771 int mask;
772 {
773 int bitsl, bitsr;
774 int sbport;
775 int i;
776
777 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
778 sc->sc_mixer_model, mask));
779
780 switch(sc->sc_mixer_model) {
781 case SBM_NONE:
782 return EINVAL;
783 case SBM_CT1335:
784 if (mask != (1 << SB_MIC_VOL))
785 return EINVAL;
786 break;
787 case SBM_CT1345:
788 switch (mask) {
789 case 1 << SB_MIC_VOL:
790 sbport = SBP_FROM_MIC;
791 break;
792 case 1 << SB_LINE_IN_VOL:
793 sbport = SBP_FROM_LINE;
794 break;
795 case 1 << SB_CD_VOL:
796 sbport = SBP_FROM_CD;
797 break;
798 default:
799 return (EINVAL);
800 }
801 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
802 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
803 break;
804 case SBM_CT1XX5:
805 case SBM_CT1745:
806 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
807 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
808 return EINVAL;
809 bitsr = 0;
810 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
811 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
812 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
813 bitsl = SB_SRC_R_TO_L(bitsr);
814 if (mask & (1<<SB_MIC_VOL)) {
815 bitsl |= SBP_MIC_SRC;
816 bitsr |= SBP_MIC_SRC;
817 }
818 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
819 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
820 break;
821 }
822
823 sc->in_mask = mask;
824
825 /* XXX
826 * We have to fake a single port since the upper layer
827 * expects one.
828 */
829 for(i = 0; i < SB_NPORT; i++) {
830 if (mask & (1 << i)) {
831 sc->in_port = i;
832 break;
833 }
834 }
835 return 0;
836 }
837
838 int
839 sbdsp_get_in_port(addr)
840 void *addr;
841 {
842 struct sbdsp_softc *sc = addr;
843
844 return sc->in_port;
845 }
846
847
848 int
849 sbdsp_speaker_ctl(addr, newstate)
850 void *addr;
851 int newstate;
852 {
853 struct sbdsp_softc *sc = addr;
854
855 if ((newstate == SPKR_ON) &&
856 (sc->spkr_state == SPKR_OFF)) {
857 sbdsp_spkron(sc);
858 sc->spkr_state = SPKR_ON;
859 }
860 if ((newstate == SPKR_OFF) &&
861 (sc->spkr_state == SPKR_ON)) {
862 sbdsp_spkroff(sc);
863 sc->spkr_state = SPKR_OFF;
864 }
865 return 0;
866 }
867
868 int
869 sbdsp_round_blocksize(addr, blk)
870 void *addr;
871 int blk;
872 {
873 blk &= -4; /* round to biggest sample size */
874 return blk;
875 }
876
877 int
878 sbdsp_open(addr, flags)
879 void *addr;
880 int flags;
881 {
882 struct sbdsp_softc *sc = addr;
883
884 DPRINTF(("sbdsp_open: sc=%p\n", sc));
885
886 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
887 return ENXIO;
888
889 sc->sc_open = 1;
890 sc->sc_openflags = flags;
891 sc->sc_mintr = 0;
892 if (ISSBPRO(sc) &&
893 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
894 DPRINTF(("sbdsp_open: can't set mono mode\n"));
895 /* we'll readjust when it's time for DMA. */
896 }
897
898 /*
899 * Leave most things as they were; users must change things if
900 * the previous process didn't leave it they way they wanted.
901 * Looked at another way, it's easy to set up a configuration
902 * in one program and leave it for another to inherit.
903 */
904 DPRINTF(("sbdsp_open: opened\n"));
905
906 return 0;
907 }
908
909 void
910 sbdsp_close(addr)
911 void *addr;
912 {
913 struct sbdsp_softc *sc = addr;
914
915 DPRINTF(("sbdsp_close: sc=%p\n", sc));
916
917 sc->sc_open = 0;
918 sbdsp_spkroff(sc);
919 sc->spkr_state = SPKR_OFF;
920 sc->sc_intr8 = 0;
921 sc->sc_intr16 = 0;
922 sc->sc_mintr = 0;
923 sbdsp_haltdma(sc);
924
925 DPRINTF(("sbdsp_close: closed\n"));
926 }
927
928 /*
929 * Lower-level routines
930 */
931
932 /*
933 * Reset the card.
934 * Return non-zero if the card isn't detected.
935 */
936 int
937 sbdsp_reset(sc)
938 struct sbdsp_softc *sc;
939 {
940 bus_space_tag_t iot = sc->sc_iot;
941 bus_space_handle_t ioh = sc->sc_ioh;
942
943 sc->sc_intr8 = 0;
944 sc->sc_intr16 = 0;
945 if (sc->sc_i.run != SB_NOTRUNNING) {
946 isa_dmaabort(sc->sc_isa, sc->sc_i.dmachan);
947 sc->sc_i.run = SB_NOTRUNNING;
948 }
949 if (sc->sc_o.run != SB_NOTRUNNING) {
950 isa_dmaabort(sc->sc_isa, sc->sc_o.dmachan);
951 sc->sc_o.run = SB_NOTRUNNING;
952 }
953
954 /*
955 * See SBK, section 11.3.
956 * We pulse a reset signal into the card.
957 * Gee, what a brilliant hardware design.
958 */
959 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
960 delay(10);
961 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
962 delay(30);
963 if (sbdsp_rdsp(sc) != SB_MAGIC)
964 return -1;
965
966 return 0;
967 }
968
969 /*
970 * Write a byte to the dsp.
971 * We are at the mercy of the card as we use a
972 * polling loop and wait until it can take the byte.
973 */
974 int
975 sbdsp_wdsp(sc, v)
976 struct sbdsp_softc *sc;
977 int v;
978 {
979 bus_space_tag_t iot = sc->sc_iot;
980 bus_space_handle_t ioh = sc->sc_ioh;
981 int i;
982 u_char x;
983
984 for (i = SBDSP_NPOLL; --i >= 0; ) {
985 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
986 delay(10);
987 if ((x & SB_DSP_BUSY) == 0) {
988 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
989 delay(10);
990 return 0;
991 }
992 }
993 ++sberr.wdsp;
994 return -1;
995 }
996
997 /*
998 * Read a byte from the DSP, using polling.
999 */
1000 int
1001 sbdsp_rdsp(sc)
1002 struct sbdsp_softc *sc;
1003 {
1004 bus_space_tag_t iot = sc->sc_iot;
1005 bus_space_handle_t ioh = sc->sc_ioh;
1006 int i;
1007 u_char x;
1008
1009 for (i = SBDSP_NPOLL; --i >= 0; ) {
1010 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1011 delay(10);
1012 if (x & SB_DSP_READY) {
1013 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1014 delay(10);
1015 return x;
1016 }
1017 }
1018 ++sberr.rdsp;
1019 return -1;
1020 }
1021
1022 /*
1023 * Doing certain things (like toggling the speaker) make
1024 * the SB hardware go away for a while, so pause a little.
1025 */
1026 void
1027 sbdsp_to(arg)
1028 void *arg;
1029 {
1030 wakeup(arg);
1031 }
1032
1033 void
1034 sbdsp_pause(sc)
1035 struct sbdsp_softc *sc;
1036 {
1037 extern int hz;
1038
1039 timeout(sbdsp_to, sbdsp_to, hz/8);
1040 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1041 }
1042
1043 /*
1044 * Turn on the speaker. The SBK documention says this operation
1045 * can take up to 1/10 of a second. Higher level layers should
1046 * probably let the task sleep for this amount of time after
1047 * calling here. Otherwise, things might not work (because
1048 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1049 *
1050 * These engineers had their heads up their ass when
1051 * they designed this card.
1052 */
1053 void
1054 sbdsp_spkron(sc)
1055 struct sbdsp_softc *sc;
1056 {
1057 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1058 sbdsp_pause(sc);
1059 }
1060
1061 /*
1062 * Turn off the speaker; see comment above.
1063 */
1064 void
1065 sbdsp_spkroff(sc)
1066 struct sbdsp_softc *sc;
1067 {
1068 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1069 sbdsp_pause(sc);
1070 }
1071
1072 /*
1073 * Read the version number out of the card.
1074 * Store version information in the softc.
1075 */
1076 void
1077 sbversion(sc)
1078 struct sbdsp_softc *sc;
1079 {
1080 int v;
1081
1082 sc->sc_model = SB_UNK;
1083 sc->sc_version = 0;
1084 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1085 return;
1086 v = sbdsp_rdsp(sc) << 8;
1087 v |= sbdsp_rdsp(sc);
1088 if (v < 0)
1089 return;
1090 sc->sc_version = v;
1091 switch(SBVER_MAJOR(v)) {
1092 case 1:
1093 sc->sc_mixer_model = SBM_NONE;
1094 sc->sc_model = SB_1;
1095 break;
1096 case 2:
1097 /* Some SB2 have a mixer, some don't. */
1098 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1099 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1100 /* Check if we can read back the mixer values. */
1101 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1102 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1103 sc->sc_mixer_model = SBM_CT1335;
1104 else
1105 sc->sc_mixer_model = SBM_NONE;
1106 if (SBVER_MINOR(v) == 0)
1107 sc->sc_model = SB_20;
1108 else
1109 sc->sc_model = SB_2x;
1110 break;
1111 case 3:
1112 sc->sc_mixer_model = SBM_CT1345;
1113 sc->sc_model = SB_PRO;
1114 break;
1115 case 4:
1116 #if 0
1117 /* XXX This does not work */
1118 /* Most SB16 have a tone controls, but some don't. */
1119 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1120 /* Check if we can read back the mixer value. */
1121 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1122 sc->sc_mixer_model = SBM_CT1745;
1123 else
1124 sc->sc_mixer_model = SBM_CT1XX5;
1125 #else
1126 sc->sc_mixer_model = SBM_CT1745;
1127 #endif
1128 /* XXX what about SB_32 */
1129 if (SBVER_MINOR(v) == 16)
1130 sc->sc_model = SB_64;
1131 else
1132 sc->sc_model = SB_16;
1133 break;
1134 }
1135 }
1136
1137 /*
1138 * Halt a DMA in progress. A low-speed transfer can be
1139 * resumed with sbdsp_contdma().
1140 */
1141 int
1142 sbdsp_haltdma(addr)
1143 void *addr;
1144 {
1145 struct sbdsp_softc *sc = addr;
1146
1147 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1148
1149 sbdsp_reset(sc);
1150 return 0;
1151 }
1152
1153 int
1154 sbdsp_contdma(addr)
1155 void *addr;
1156 {
1157 struct sbdsp_softc *sc = addr;
1158
1159 DPRINTF(("sbdsp_contdma: sc=%p\n", sc));
1160
1161 /* XXX how do we reinitialize the DMA controller state? do we care? */
1162 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
1163 return 0;
1164 }
1165
1166 int
1167 sbdsp_set_timeconst(sc, tc)
1168 struct sbdsp_softc *sc;
1169 int tc;
1170 {
1171 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1172
1173 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1174 sbdsp_wdsp(sc, tc) < 0)
1175 return EIO;
1176
1177 return 0;
1178 }
1179
1180 int
1181 sbdsp16_set_rate(sc, cmd, rate)
1182 struct sbdsp_softc *sc;
1183 int cmd, rate;
1184 {
1185 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1186
1187 if (sbdsp_wdsp(sc, cmd) < 0 ||
1188 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1189 sbdsp_wdsp(sc, rate) < 0)
1190 return EIO;
1191 return 0;
1192 }
1193
1194 int
1195 sbdsp_dma_init_input(addr, buf, cc)
1196 void *addr;
1197 void *buf;
1198 int cc;
1199 {
1200 struct sbdsp_softc *sc = addr;
1201
1202 if (sc->sc_model == SB_1)
1203 return 0;
1204 sc->sc_i.run = SB_DMARUNNING;
1205 DPRINTF(("sbdsp: dma start loop input addr=%p cc=%d chan=%d\n",
1206 buf, cc, sc->sc_i.dmachan));
1207 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, buf,
1208 cc, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1209 return 0;
1210 }
1211
1212 static int
1213 sbdsp_dma_setup_input(sc)
1214 struct sbdsp_softc *sc;
1215 {
1216 int stereo = sc->sc_i.modep->channels == 2;
1217 int filter;
1218
1219 /* Initialize the PCM */
1220 if (ISSBPRO(sc)) {
1221 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1222 return 0;
1223 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1224 sbdsp_mix_write(sc, SBP_INFILTER,
1225 (sbdsp_mix_read(sc, SBP_INFILTER) &
1226 ~SBP_IFILTER_MASK) | filter);
1227 }
1228
1229 if (ISSB16CLASS(sc)) {
1230 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE,
1231 sc->sc_i.rate)) {
1232 DPRINTF(("sbdsp_dma_setup_input: rate=%d set failed\n",
1233 sc->sc_i.rate));
1234 return 0;
1235 }
1236 } else {
1237 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1238 DPRINTF(("sbdsp_dma_setup_input: tc=%d set failed\n",
1239 sc->sc_i.rate));
1240 return 0;
1241 }
1242 }
1243 return 1;
1244 }
1245
1246 int
1247 sbdsp_dma_input(addr, p, cc, intr, arg)
1248 void *addr;
1249 void *p;
1250 int cc;
1251 void (*intr) __P((void *));
1252 void *arg;
1253 {
1254 struct sbdsp_softc *sc = addr;
1255
1256 #ifdef AUDIO_DEBUG
1257 if (sbdspdebug > 1)
1258 printf("sbdsp_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
1259 addr, p, cc, intr, arg);
1260 #endif
1261 #ifdef DIAGNOSTIC
1262 if (sc->sc_i.modep->channels == 2 && (cc & 1)) {
1263 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1264 return EIO;
1265 }
1266 #endif
1267
1268 if (sc->sc_i.dmachan == sc->sc_drq8) {
1269 sc->sc_intr8 = intr;
1270 sc->sc_arg8 = arg;
1271 } else {
1272 #ifdef DIAGNOSTIC
1273 if (sc->sc_i.dmachan != sc->sc_drq16) {
1274 printf("sbdsp_dma_input: bad chan %d\n", sc->sc_i.dmachan);
1275 return EIO;
1276 }
1277 #endif
1278 sc->sc_intr16 = intr;
1279 sc->sc_arg16 = arg;
1280 }
1281
1282 switch(sc->sc_i.run) {
1283 case SB_NOTRUNNING:
1284 /* Non-looping mode, not initialized */
1285 sc->sc_i.run = SB_RUNNING;
1286 if (!sbdsp_dma_setup_input(sc))
1287 goto giveup;
1288 /* fall into */
1289 case SB_RUNNING:
1290 /* Non-looping mode, start DMA */
1291 #ifdef AUDIO_DEBUG
1292 if (sbdspdebug > 2)
1293 printf("sbdsp_dma_input: dmastart buf=%p cc=%d chan=%d\n",
1294 p, cc, sc->sc_i.dmachan);
1295 #endif
1296 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, p,
1297 cc, NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
1298
1299 /* Start PCM in non-looping mode */
1300 if ((sc->sc_model == SB_JAZZ && sc->sc_i.dmachan > 3) ||
1301 (sc->sc_model != SB_JAZZ && sc->sc_i.modep->precision == 16))
1302 cc >>= 1;
1303 --cc;
1304 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1305 sbdsp_wdsp(sc, cc) < 0 ||
1306 sbdsp_wdsp(sc, cc >> 8) < 0) {
1307 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1308 goto giveup;
1309 }
1310 break;
1311 case SB_DMARUNNING:
1312 /* Looping mode, not initialized */
1313 sc->sc_i.run = SB_PCMRUNNING;
1314 if (!sbdsp_dma_setup_input(sc))
1315 goto giveup;
1316 if ((sc->sc_model == SB_JAZZ && sc->sc_i.dmachan > 3) ||
1317 (sc->sc_model != SB_JAZZ && sc->sc_i.modep->precision == 16))
1318 cc >>= 1;
1319 --cc;
1320 /* Initialize looping PCM */
1321 if (ISSB16CLASS(sc)) {
1322 #ifdef AUDIO_DEBUG
1323 if (sbdspdebug > 2)
1324 printf("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1325 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc);
1326 #endif
1327 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1328 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1329 sbdsp_wdsp(sc, cc) < 0 ||
1330 sbdsp_wdsp(sc, cc >> 8) < 0) {
1331 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1332 DPRINTF(("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1333 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1334 goto giveup;
1335 }
1336 } else {
1337 DPRINTF(("sbdsp_dma_input: set blocksize=%d\n", cc));
1338 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1339 sbdsp_wdsp(sc, cc) < 0 ||
1340 sbdsp_wdsp(sc, cc >> 8) < 0) {
1341 DPRINTF(("sbdsp_dma_input: SB2 DMA blocksize failed\n"));
1342 goto giveup;
1343 }
1344 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1345 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1346 goto giveup;
1347 }
1348 }
1349 break;
1350 case SB_PCMRUNNING:
1351 /* Looping mode, nothing to do */
1352 break;
1353 }
1354 return 0;
1355
1356 giveup:
1357 sbdsp_reset(sc);
1358 return EIO;
1359 }
1360
1361 int
1362 sbdsp_dma_init_output(addr, buf, cc)
1363 void *addr;
1364 void *buf;
1365 int cc;
1366 {
1367 struct sbdsp_softc *sc = addr;
1368
1369 if (sc->sc_model == SB_1)
1370 return 0;
1371 sc->sc_o.run = SB_DMARUNNING;
1372 DPRINTF(("sbdsp: dma start loop output buf=%p cc=%d chan=%d\n",
1373 buf, cc, sc->sc_o.dmachan));
1374 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, buf,
1375 cc, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1376 return 0;
1377 }
1378
1379 static int
1380 sbdsp_dma_setup_output(sc)
1381 struct sbdsp_softc *sc;
1382 {
1383 int stereo = sc->sc_o.modep->channels == 2;
1384 int cmd;
1385
1386 if (ISSBPRO(sc)) {
1387 /* make sure we re-set stereo mixer bit when we start output. */
1388 sbdsp_mix_write(sc, SBP_STEREO,
1389 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1390 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1391 cmd = sc->sc_o.modep->cmdchan;
1392 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1393 return 0;
1394 }
1395
1396 if (ISSB16CLASS(sc)) {
1397 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE,
1398 sc->sc_o.rate)) {
1399 DPRINTF(("sbdsp_dma_setup_output: rate=%d set failed\n",
1400 sc->sc_o.rate));
1401 return 0;
1402 }
1403 } else {
1404 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1405 DPRINTF(("sbdsp_dma_setup_output: tc=%d set failed\n",
1406 sc->sc_o.rate));
1407 return 0;
1408 }
1409 }
1410 return 1;
1411 }
1412
1413 int
1414 sbdsp_dma_output(addr, p, cc, intr, arg)
1415 void *addr;
1416 void *p;
1417 int cc;
1418 void (*intr) __P((void *));
1419 void *arg;
1420 {
1421 struct sbdsp_softc *sc = addr;
1422
1423 #ifdef AUDIO_DEBUG
1424 if (sbdspdebug > 1)
1425 printf("sbdsp_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n", addr, p, cc, intr, arg);
1426 #endif
1427 #ifdef DIAGNOSTIC
1428 if (sc->sc_o.modep->channels == 2 && (cc & 1)) {
1429 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1430 return EIO;
1431 }
1432 #endif
1433
1434 if (sc->sc_o.dmachan == sc->sc_drq8) {
1435 sc->sc_intr8 = intr;
1436 sc->sc_arg8 = arg;
1437 } else {
1438 #ifdef DIAGNOSTIC
1439 if (sc->sc_o.dmachan != sc->sc_drq16) {
1440 printf("sbdsp_dma_output: bad chan %d\n", sc->sc_i.dmachan);
1441 return EIO;
1442 }
1443 #endif
1444 sc->sc_intr16 = intr;
1445 sc->sc_arg16 = arg;
1446 }
1447
1448 switch(sc->sc_o.run) {
1449 case SB_NOTRUNNING:
1450 /* Non-looping mode, not initialized */
1451 sc->sc_o.run = SB_RUNNING;
1452 if (!sbdsp_dma_setup_output(sc))
1453 goto giveup;
1454 /* fall into */
1455 case SB_RUNNING:
1456 /* Non-looping mode, initialized. Start DMA and PCM */
1457 #ifdef AUDIO_DEBUG
1458 if (sbdspdebug > 2)
1459 printf("sbdsp: start dma out addr=%p, cc=%d, chan=%d\n",
1460 p, cc, sc->sc_o.dmachan);
1461 #endif
1462 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, p,
1463 cc, NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
1464 if ((sc->sc_model == SB_JAZZ && sc->sc_o.dmachan > 3) ||
1465 (sc->sc_model != SB_JAZZ && sc->sc_o.modep->precision == 16))
1466 cc >>= 1;
1467 --cc;
1468 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1469 sbdsp_wdsp(sc, cc) < 0 ||
1470 sbdsp_wdsp(sc, cc >> 8) < 0) {
1471 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1472 goto giveup;
1473 }
1474 break;
1475 case SB_DMARUNNING:
1476 /* Looping mode, not initialized */
1477 sc->sc_o.run = SB_PCMRUNNING;
1478 if (!sbdsp_dma_setup_output(sc))
1479 goto giveup;
1480 if ((sc->sc_model == SB_JAZZ && sc->sc_o.dmachan > 3) ||
1481 (sc->sc_model != SB_JAZZ && sc->sc_o.modep->precision == 16))
1482 cc >>= 1;
1483 --cc;
1484 /* Initialize looping PCM */
1485 if (ISSB16CLASS(sc)) {
1486 DPRINTF(("sbdsp_dma_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1487 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1488 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1489 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1490 sbdsp_wdsp(sc, cc) < 0 ||
1491 sbdsp_wdsp(sc, cc >> 8) < 0) {
1492 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1493 goto giveup;
1494 }
1495 } else {
1496 DPRINTF(("sbdsp_dma_output: set blocksize=%d\n", cc));
1497 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1498 sbdsp_wdsp(sc, cc) < 0 ||
1499 sbdsp_wdsp(sc, cc >> 8) < 0) {
1500 DPRINTF(("sbdsp_dma_output: SB2 DMA blocksize failed\n"));
1501 goto giveup;
1502 }
1503 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1504 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1505 goto giveup;
1506 }
1507 }
1508 break;
1509 case SB_PCMRUNNING:
1510 /* Looping mode, nothing to do */
1511 break;
1512 }
1513 return 0;
1514
1515 giveup:
1516 sbdsp_reset(sc);
1517 return EIO;
1518 }
1519
1520 /*
1521 * Only the DSP unit on the sound blaster generates interrupts.
1522 * There are three cases of interrupt: reception of a midi byte
1523 * (when mode is enabled), completion of dma transmission, or
1524 * completion of a dma reception.
1525 *
1526 * If there is interrupt sharing or a spurious interrupt occurs
1527 * there is no way to distinguish this on an SB2. So if you have
1528 * an SB2 and experience problems, buy an SB16 (it's only $40).
1529 */
1530 int
1531 sbdsp_intr(arg)
1532 void *arg;
1533 {
1534 struct sbdsp_softc *sc = arg;
1535 int loop = sc->sc_model != SB_1;
1536 u_char irq;
1537
1538 #ifdef AUDIO_DEBUG
1539 if (sbdspdebug > 1)
1540 printf("sbdsp_intr: intr8=%p, intr16=%p\n",
1541 sc->sc_intr8, sc->sc_intr16);
1542 #endif
1543 if (ISSB16CLASS(sc)) {
1544 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1545 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16)) == 0) {
1546 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1547 return 0;
1548 }
1549 } else {
1550 if (!loop && !isa_dmafinished(sc->sc_isa, sc->sc_drq8))
1551 return 0;
1552 irq = SBP_IRQ_DMA8;
1553 }
1554 sc->sc_interrupts++;
1555 delay(10); /* XXX why? */
1556 #if 0
1557 if (sc->sc_mintr != 0) {
1558 x = sbdsp_rdsp(sc);
1559 (*sc->sc_mintr)(sc->sc_arg, x);
1560 } else
1561 #endif
1562 if (sc->sc_intr8 == 0 && sc->sc_intr16 == 0) {
1563 DPRINTF(("sbdsp_intr: Unexpected interrupt 0x%x\n", irq));
1564 /* XXX return 0;*/ /* Did not expect an interrupt */
1565 }
1566
1567 /* clear interrupt */
1568 if (irq & SBP_IRQ_DMA8) {
1569 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1570 if (!loop)
1571 isa_dmadone(sc->sc_isa, sc->sc_drq8);
1572 if (sc->sc_intr8)
1573 (*sc->sc_intr8)(sc->sc_arg8);
1574 }
1575 if (irq & SBP_IRQ_DMA16) {
1576 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1577 if (sc->sc_intr16)
1578 (*sc->sc_intr16)(sc->sc_arg16);
1579 }
1580 return 1;
1581 }
1582
1583 #if 0
1584 /*
1585 * Enter midi uart mode and arrange for read interrupts
1586 * to vector to `intr'. This puts the card in a mode
1587 * which allows only midi I/O; the card must be reset
1588 * to leave this mode. Unfortunately, the card does not
1589 * use transmit interrupts, so bytes must be output
1590 * using polling. To keep the polling overhead to a
1591 * minimum, output should be driven off a timer.
1592 * This is a little tricky since only 320us separate
1593 * consecutive midi bytes.
1594 */
1595 void
1596 sbdsp_set_midi_mode(sc, intr, arg)
1597 struct sbdsp_softc *sc;
1598 void (*intr)();
1599 void *arg;
1600 {
1601
1602 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1603 sc->sc_mintr = intr;
1604 sc->sc_intr = 0;
1605 sc->sc_arg = arg;
1606 }
1607
1608 /*
1609 * Write a byte to the midi port, when in midi uart mode.
1610 */
1611 void
1612 sbdsp_midi_output(sc, v)
1613 struct sbdsp_softc *sc;
1614 int v;
1615 {
1616
1617 if (sbdsp_wdsp(sc, v) < 0)
1618 ++sberr.wmidi;
1619 }
1620 #endif
1621
1622 /* Mask a value 0-255, but round it first */
1623 #define MAXVAL 256
1624 static int
1625 sbdsp_adjust(val, mask)
1626 int val, mask;
1627 {
1628 val += (MAXVAL - mask) >> 1;
1629 if (val >= MAXVAL)
1630 val = MAXVAL-1;
1631 return val & mask;
1632 }
1633
1634 void
1635 sbdsp_set_mixer_gain(sc, port)
1636 struct sbdsp_softc *sc;
1637 int port;
1638 {
1639 int src, gain;
1640
1641 switch(sc->sc_mixer_model) {
1642 case SBM_NONE:
1643 return;
1644 case SBM_CT1335:
1645 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1646 switch(port) {
1647 case SB_MASTER_VOL:
1648 src = SBP_1335_MASTER_VOL;
1649 break;
1650 case SB_MIDI_VOL:
1651 src = SBP_1335_MIDI_VOL;
1652 break;
1653 case SB_CD_VOL:
1654 src = SBP_1335_CD_VOL;
1655 break;
1656 case SB_VOICE_VOL:
1657 src = SBP_1335_VOICE_VOL;
1658 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1659 break;
1660 default:
1661 return;
1662 }
1663 sbdsp_mix_write(sc, src, gain);
1664 break;
1665 case SBM_CT1345:
1666 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1667 sc->gain[port][SB_RIGHT]);
1668 switch (port) {
1669 case SB_MIC_VOL:
1670 src = SBP_MIC_VOL;
1671 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1672 break;
1673 case SB_MASTER_VOL:
1674 src = SBP_MASTER_VOL;
1675 break;
1676 case SB_LINE_IN_VOL:
1677 src = SBP_LINE_VOL;
1678 break;
1679 case SB_VOICE_VOL:
1680 src = SBP_VOICE_VOL;
1681 break;
1682 case SB_MIDI_VOL:
1683 src = SBP_MIDI_VOL;
1684 break;
1685 case SB_CD_VOL:
1686 src = SBP_CD_VOL;
1687 break;
1688 default:
1689 return;
1690 }
1691 sbdsp_mix_write(sc, src, gain);
1692 break;
1693 case SBM_CT1XX5:
1694 case SBM_CT1745:
1695 switch (port) {
1696 case SB_MIC_VOL:
1697 src = SB16P_MIC_L;
1698 break;
1699 case SB_MASTER_VOL:
1700 src = SB16P_MASTER_L;
1701 break;
1702 case SB_LINE_IN_VOL:
1703 src = SB16P_LINE_L;
1704 break;
1705 case SB_VOICE_VOL:
1706 src = SB16P_VOICE_L;
1707 break;
1708 case SB_MIDI_VOL:
1709 src = SB16P_MIDI_L;
1710 break;
1711 case SB_CD_VOL:
1712 src = SB16P_CD_L;
1713 break;
1714 case SB_INPUT_GAIN:
1715 src = SB16P_INPUT_GAIN_L;
1716 break;
1717 case SB_OUTPUT_GAIN:
1718 src = SB16P_OUTPUT_GAIN_L;
1719 break;
1720 case SB_TREBLE:
1721 src = SB16P_TREBLE_L;
1722 break;
1723 case SB_BASS:
1724 src = SB16P_BASS_L;
1725 break;
1726 case SB_PCSPEAKER:
1727 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1728 return;
1729 default:
1730 return;
1731 }
1732 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1733 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1734 break;
1735 }
1736 }
1737
1738 int
1739 sbdsp_mixer_set_port(addr, cp)
1740 void *addr;
1741 mixer_ctrl_t *cp;
1742 {
1743 struct sbdsp_softc *sc = addr;
1744 int lgain, rgain;
1745 int mask, bits;
1746 int lmask, rmask, lbits, rbits;
1747 int mute, swap;
1748
1749 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1750 cp->un.value.num_channels));
1751
1752 if (sc->sc_mixer_model == SBM_NONE)
1753 return EINVAL;
1754
1755 switch (cp->dev) {
1756 case SB_TREBLE:
1757 case SB_BASS:
1758 if (sc->sc_mixer_model == SBM_CT1345 ||
1759 sc->sc_mixer_model == SBM_CT1XX5) {
1760 if (cp->type != AUDIO_MIXER_ENUM)
1761 return EINVAL;
1762 switch (cp->dev) {
1763 case SB_TREBLE:
1764 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1765 return 0;
1766 case SB_BASS:
1767 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1768 return 0;
1769 }
1770 }
1771 case SB_PCSPEAKER:
1772 case SB_INPUT_GAIN:
1773 case SB_OUTPUT_GAIN:
1774 if (!ISSBM1745(sc))
1775 return EINVAL;
1776 case SB_MIC_VOL:
1777 case SB_LINE_IN_VOL:
1778 if (sc->sc_mixer_model == SBM_CT1335)
1779 return EINVAL;
1780 case SB_VOICE_VOL:
1781 case SB_MIDI_VOL:
1782 case SB_CD_VOL:
1783 case SB_MASTER_VOL:
1784 if (cp->type != AUDIO_MIXER_VALUE)
1785 return EINVAL;
1786
1787 /*
1788 * All the mixer ports are stereo except for the microphone.
1789 * If we get a single-channel gain value passed in, then we
1790 * duplicate it to both left and right channels.
1791 */
1792
1793 switch (cp->dev) {
1794 case SB_MIC_VOL:
1795 if (cp->un.value.num_channels != 1)
1796 return EINVAL;
1797
1798 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1799 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1800 break;
1801 case SB_PCSPEAKER:
1802 if (cp->un.value.num_channels != 1)
1803 return EINVAL;
1804 /* fall into */
1805 case SB_INPUT_GAIN:
1806 case SB_OUTPUT_GAIN:
1807 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1808 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1809 break;
1810 default:
1811 switch (cp->un.value.num_channels) {
1812 case 1:
1813 lgain = rgain = SB_ADJUST_GAIN(sc,
1814 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1815 break;
1816 case 2:
1817 if (sc->sc_mixer_model == SBM_CT1335)
1818 return EINVAL;
1819 lgain = SB_ADJUST_GAIN(sc,
1820 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1821 rgain = SB_ADJUST_GAIN(sc,
1822 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1823 break;
1824 default:
1825 return EINVAL;
1826 }
1827 break;
1828 }
1829 sc->gain[cp->dev][SB_LEFT] = lgain;
1830 sc->gain[cp->dev][SB_RIGHT] = rgain;
1831
1832 sbdsp_set_mixer_gain(sc, cp->dev);
1833 break;
1834
1835 case SB_RECORD_SOURCE:
1836 if (ISSBM1745(sc)) {
1837 if (cp->type != AUDIO_MIXER_SET)
1838 return EINVAL;
1839 return sbdsp_set_in_ports(sc, cp->un.mask);
1840 } else {
1841 if (cp->type != AUDIO_MIXER_ENUM)
1842 return EINVAL;
1843 return sbdsp_set_in_port(sc, cp->un.ord);
1844 }
1845 break;
1846
1847 case SB_AGC:
1848 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1849 return EINVAL;
1850 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1851 break;
1852
1853 case SB_CD_OUT_MUTE:
1854 mask = SB16P_SW_CD;
1855 goto omute;
1856 case SB_MIC_OUT_MUTE:
1857 mask = SB16P_SW_MIC;
1858 goto omute;
1859 case SB_LINE_OUT_MUTE:
1860 mask = SB16P_SW_LINE;
1861 omute:
1862 if (cp->type != AUDIO_MIXER_ENUM)
1863 return EINVAL;
1864 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1865 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1866 if (cp->un.ord)
1867 bits = bits & ~mask;
1868 else
1869 bits = bits | mask;
1870 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1871 break;
1872
1873 case SB_MIC_IN_MUTE:
1874 case SB_MIC_SWAP:
1875 lmask = rmask = SB16P_SW_MIC;
1876 goto imute;
1877 case SB_CD_IN_MUTE:
1878 case SB_CD_SWAP:
1879 lmask = SB16P_SW_CD_L;
1880 rmask = SB16P_SW_CD_R;
1881 goto imute;
1882 case SB_LINE_IN_MUTE:
1883 case SB_LINE_SWAP:
1884 lmask = SB16P_SW_LINE_L;
1885 rmask = SB16P_SW_LINE_R;
1886 goto imute;
1887 case SB_MIDI_IN_MUTE:
1888 case SB_MIDI_SWAP:
1889 lmask = SB16P_SW_MIDI_L;
1890 rmask = SB16P_SW_MIDI_R;
1891 imute:
1892 if (cp->type != AUDIO_MIXER_ENUM)
1893 return EINVAL;
1894 mask = lmask | rmask;
1895 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1896 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1897 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1898 if (SB_IS_IN_MUTE(cp->dev)) {
1899 mute = cp->dev;
1900 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1901 } else {
1902 swap = cp->dev;
1903 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1904 }
1905 if (sc->gain[swap][SB_LR]) {
1906 mask = lmask;
1907 lmask = rmask;
1908 rmask = mask;
1909 }
1910 if (!sc->gain[mute][SB_LR]) {
1911 lbits = lbits | lmask;
1912 rbits = rbits | rmask;
1913 }
1914 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1915 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1916 break;
1917
1918 default:
1919 return EINVAL;
1920 }
1921
1922 return 0;
1923 }
1924
1925 int
1926 sbdsp_mixer_get_port(addr, cp)
1927 void *addr;
1928 mixer_ctrl_t *cp;
1929 {
1930 struct sbdsp_softc *sc = addr;
1931
1932 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1933
1934 if (sc->sc_mixer_model == SBM_NONE)
1935 return EINVAL;
1936
1937 switch (cp->dev) {
1938 case SB_TREBLE:
1939 case SB_BASS:
1940 if (sc->sc_mixer_model == SBM_CT1345 ||
1941 sc->sc_mixer_model == SBM_CT1XX5) {
1942 switch (cp->dev) {
1943 case SB_TREBLE:
1944 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1945 return 0;
1946 case SB_BASS:
1947 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1948 return 0;
1949 }
1950 }
1951 case SB_PCSPEAKER:
1952 case SB_INPUT_GAIN:
1953 case SB_OUTPUT_GAIN:
1954 if (!ISSBM1745(sc))
1955 return EINVAL;
1956 case SB_MIC_VOL:
1957 case SB_LINE_IN_VOL:
1958 if (sc->sc_mixer_model == SBM_CT1335)
1959 return EINVAL;
1960 case SB_VOICE_VOL:
1961 case SB_MIDI_VOL:
1962 case SB_CD_VOL:
1963 case SB_MASTER_VOL:
1964 switch (cp->dev) {
1965 case SB_MIC_VOL:
1966 case SB_PCSPEAKER:
1967 if (cp->un.value.num_channels != 1)
1968 return EINVAL;
1969 /* fall into */
1970 default:
1971 switch (cp->un.value.num_channels) {
1972 case 1:
1973 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1974 sc->gain[cp->dev][SB_LEFT];
1975 break;
1976 case 2:
1977 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1978 sc->gain[cp->dev][SB_LEFT];
1979 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1980 sc->gain[cp->dev][SB_RIGHT];
1981 break;
1982 default:
1983 return EINVAL;
1984 }
1985 break;
1986 }
1987 break;
1988
1989 case SB_RECORD_SOURCE:
1990 if (ISSBM1745(sc))
1991 cp->un.mask = sc->in_mask;
1992 else
1993 cp->un.ord = sc->in_port;
1994 break;
1995
1996 case SB_AGC:
1997 if (!ISSBM1745(sc))
1998 return EINVAL;
1999 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
2000 break;
2001
2002 case SB_CD_IN_MUTE:
2003 case SB_MIC_IN_MUTE:
2004 case SB_LINE_IN_MUTE:
2005 case SB_MIDI_IN_MUTE:
2006 case SB_CD_SWAP:
2007 case SB_MIC_SWAP:
2008 case SB_LINE_SWAP:
2009 case SB_MIDI_SWAP:
2010 case SB_CD_OUT_MUTE:
2011 case SB_MIC_OUT_MUTE:
2012 case SB_LINE_OUT_MUTE:
2013 cp->un.ord = sc->gain[cp->dev][SB_LR];
2014 break;
2015
2016 default:
2017 return EINVAL;
2018 }
2019
2020 return 0;
2021 }
2022
2023 int
2024 sbdsp_mixer_query_devinfo(addr, dip)
2025 void *addr;
2026 mixer_devinfo_t *dip;
2027 {
2028 struct sbdsp_softc *sc = addr;
2029 int chan, class, is1745;
2030
2031 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
2032 sc->sc_mixer_model, dip->index));
2033
2034 if (sc->sc_mixer_model == SBM_NONE)
2035 return ENXIO;
2036
2037 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2038 is1745 = ISSBM1745(sc);
2039 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2040
2041 switch (dip->index) {
2042 case SB_MASTER_VOL:
2043 dip->type = AUDIO_MIXER_VALUE;
2044 dip->mixer_class = SB_OUTPUT_CLASS;
2045 dip->prev = dip->next = AUDIO_MIXER_LAST;
2046 strcpy(dip->label.name, AudioNmaster);
2047 dip->un.v.num_channels = chan;
2048 strcpy(dip->un.v.units.name, AudioNvolume);
2049 return 0;
2050 case SB_MIDI_VOL:
2051 dip->type = AUDIO_MIXER_VALUE;
2052 dip->mixer_class = class;
2053 dip->prev = AUDIO_MIXER_LAST;
2054 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2055 strcpy(dip->label.name, AudioNfmsynth);
2056 dip->un.v.num_channels = chan;
2057 strcpy(dip->un.v.units.name, AudioNvolume);
2058 return 0;
2059 case SB_CD_VOL:
2060 dip->type = AUDIO_MIXER_VALUE;
2061 dip->mixer_class = class;
2062 dip->prev = AUDIO_MIXER_LAST;
2063 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2064 strcpy(dip->label.name, AudioNcd);
2065 dip->un.v.num_channels = chan;
2066 strcpy(dip->un.v.units.name, AudioNvolume);
2067 return 0;
2068 case SB_VOICE_VOL:
2069 dip->type = AUDIO_MIXER_VALUE;
2070 dip->mixer_class = class;
2071 dip->prev = AUDIO_MIXER_LAST;
2072 dip->next = AUDIO_MIXER_LAST;
2073 strcpy(dip->label.name, AudioNdac);
2074 dip->un.v.num_channels = chan;
2075 strcpy(dip->un.v.units.name, AudioNvolume);
2076 return 0;
2077 case SB_OUTPUT_CLASS:
2078 dip->type = AUDIO_MIXER_CLASS;
2079 dip->mixer_class = SB_OUTPUT_CLASS;
2080 dip->next = dip->prev = AUDIO_MIXER_LAST;
2081 strcpy(dip->label.name, AudioCOutputs);
2082 return 0;
2083 }
2084
2085 if (sc->sc_mixer_model == SBM_CT1335)
2086 return ENXIO;
2087
2088 switch (dip->index) {
2089 case SB_MIC_VOL:
2090 dip->type = AUDIO_MIXER_VALUE;
2091 dip->mixer_class = class;
2092 dip->prev = AUDIO_MIXER_LAST;
2093 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2094 strcpy(dip->label.name, AudioNmicrophone);
2095 dip->un.v.num_channels = 1;
2096 strcpy(dip->un.v.units.name, AudioNvolume);
2097 return 0;
2098
2099 case SB_LINE_IN_VOL:
2100 dip->type = AUDIO_MIXER_VALUE;
2101 dip->mixer_class = class;
2102 dip->prev = AUDIO_MIXER_LAST;
2103 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2104 strcpy(dip->label.name, AudioNline);
2105 dip->un.v.num_channels = 2;
2106 strcpy(dip->un.v.units.name, AudioNvolume);
2107 return 0;
2108
2109 case SB_RECORD_SOURCE:
2110 dip->mixer_class = SB_RECORD_CLASS;
2111 dip->prev = dip->next = AUDIO_MIXER_LAST;
2112 strcpy(dip->label.name, AudioNsource);
2113 if (ISSBM1745(sc)) {
2114 dip->type = AUDIO_MIXER_SET;
2115 dip->un.s.num_mem = 4;
2116 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2117 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2118 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2119 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2120 strcpy(dip->un.s.member[2].label.name, AudioNline);
2121 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2122 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2123 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2124 } else {
2125 dip->type = AUDIO_MIXER_ENUM;
2126 dip->un.e.num_mem = 3;
2127 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2128 dip->un.e.member[0].ord = SB_MIC_VOL;
2129 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2130 dip->un.e.member[1].ord = SB_CD_VOL;
2131 strcpy(dip->un.e.member[2].label.name, AudioNline);
2132 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2133 }
2134 return 0;
2135
2136 case SB_BASS:
2137 dip->prev = dip->next = AUDIO_MIXER_LAST;
2138 strcpy(dip->label.name, AudioNbass);
2139 if (sc->sc_mixer_model == SBM_CT1745) {
2140 dip->type = AUDIO_MIXER_VALUE;
2141 dip->mixer_class = SB_EQUALIZATION_CLASS;
2142 dip->un.v.num_channels = 2;
2143 strcpy(dip->un.v.units.name, AudioNbass);
2144 } else {
2145 dip->type = AUDIO_MIXER_ENUM;
2146 dip->mixer_class = SB_INPUT_CLASS;
2147 dip->un.e.num_mem = 2;
2148 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2149 dip->un.e.member[0].ord = 0;
2150 strcpy(dip->un.e.member[1].label.name, AudioNon);
2151 dip->un.e.member[1].ord = 1;
2152 }
2153 return 0;
2154
2155 case SB_TREBLE:
2156 dip->prev = dip->next = AUDIO_MIXER_LAST;
2157 strcpy(dip->label.name, AudioNtreble);
2158 if (sc->sc_mixer_model == SBM_CT1745) {
2159 dip->type = AUDIO_MIXER_VALUE;
2160 dip->mixer_class = SB_EQUALIZATION_CLASS;
2161 dip->un.v.num_channels = 2;
2162 strcpy(dip->un.v.units.name, AudioNtreble);
2163 } else {
2164 dip->type = AUDIO_MIXER_ENUM;
2165 dip->mixer_class = SB_INPUT_CLASS;
2166 dip->un.e.num_mem = 2;
2167 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2168 dip->un.e.member[0].ord = 0;
2169 strcpy(dip->un.e.member[1].label.name, AudioNon);
2170 dip->un.e.member[1].ord = 1;
2171 }
2172 return 0;
2173
2174 case SB_RECORD_CLASS: /* record source class */
2175 dip->type = AUDIO_MIXER_CLASS;
2176 dip->mixer_class = SB_RECORD_CLASS;
2177 dip->next = dip->prev = AUDIO_MIXER_LAST;
2178 strcpy(dip->label.name, AudioCRecord);
2179 return 0;
2180
2181 }
2182
2183 if (sc->sc_mixer_model == SBM_CT1345)
2184 return ENXIO;
2185
2186 switch(dip->index) {
2187 case SB_PCSPEAKER:
2188 dip->type = AUDIO_MIXER_VALUE;
2189 dip->mixer_class = SB_INPUT_CLASS;
2190 dip->prev = dip->next = AUDIO_MIXER_LAST;
2191 strcpy(dip->label.name, "pc_speaker");
2192 dip->un.v.num_channels = 1;
2193 strcpy(dip->un.v.units.name, AudioNvolume);
2194 return 0;
2195
2196 case SB_INPUT_GAIN:
2197 dip->type = AUDIO_MIXER_VALUE;
2198 dip->mixer_class = SB_INPUT_CLASS;
2199 dip->prev = dip->next = AUDIO_MIXER_LAST;
2200 strcpy(dip->label.name, AudioNinput);
2201 dip->un.v.num_channels = 2;
2202 strcpy(dip->un.v.units.name, AudioNvolume);
2203 return 0;
2204
2205 case SB_OUTPUT_GAIN:
2206 dip->type = AUDIO_MIXER_VALUE;
2207 dip->mixer_class = SB_OUTPUT_CLASS;
2208 dip->prev = dip->next = AUDIO_MIXER_LAST;
2209 strcpy(dip->label.name, AudioNoutput);
2210 dip->un.v.num_channels = 2;
2211 strcpy(dip->un.v.units.name, AudioNvolume);
2212 return 0;
2213
2214 case SB_AGC:
2215 dip->type = AUDIO_MIXER_ENUM;
2216 dip->mixer_class = SB_INPUT_CLASS;
2217 dip->prev = dip->next = AUDIO_MIXER_LAST;
2218 strcpy(dip->label.name, "AGC");
2219 dip->un.e.num_mem = 2;
2220 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2221 dip->un.e.member[0].ord = 0;
2222 strcpy(dip->un.e.member[1].label.name, AudioNon);
2223 dip->un.e.member[1].ord = 1;
2224 return 0;
2225
2226 case SB_INPUT_CLASS:
2227 dip->type = AUDIO_MIXER_CLASS;
2228 dip->mixer_class = SB_INPUT_CLASS;
2229 dip->next = dip->prev = AUDIO_MIXER_LAST;
2230 strcpy(dip->label.name, AudioCInputs);
2231 return 0;
2232
2233 case SB_EQUALIZATION_CLASS:
2234 dip->type = AUDIO_MIXER_CLASS;
2235 dip->mixer_class = SB_EQUALIZATION_CLASS;
2236 dip->next = dip->prev = AUDIO_MIXER_LAST;
2237 strcpy(dip->label.name, AudioCEqualization);
2238 return 0;
2239
2240 case SB_CD_IN_MUTE:
2241 dip->prev = SB_CD_VOL;
2242 dip->next = SB_CD_SWAP;
2243 dip->mixer_class = SB_INPUT_CLASS;
2244 goto mute;
2245
2246 case SB_MIC_IN_MUTE:
2247 dip->prev = SB_MIC_VOL;
2248 dip->next = SB_MIC_SWAP;
2249 dip->mixer_class = SB_INPUT_CLASS;
2250 goto mute;
2251
2252 case SB_LINE_IN_MUTE:
2253 dip->prev = SB_LINE_IN_VOL;
2254 dip->next = SB_LINE_SWAP;
2255 dip->mixer_class = SB_INPUT_CLASS;
2256 goto mute;
2257
2258 case SB_MIDI_IN_MUTE:
2259 dip->prev = SB_MIDI_VOL;
2260 dip->next = SB_MIDI_SWAP;
2261 dip->mixer_class = SB_INPUT_CLASS;
2262 goto mute;
2263
2264 case SB_CD_SWAP:
2265 dip->prev = SB_CD_IN_MUTE;
2266 dip->next = SB_CD_OUT_MUTE;
2267 goto swap;
2268
2269 case SB_MIC_SWAP:
2270 dip->prev = SB_MIC_IN_MUTE;
2271 dip->next = SB_MIC_OUT_MUTE;
2272 goto swap;
2273
2274 case SB_LINE_SWAP:
2275 dip->prev = SB_LINE_IN_MUTE;
2276 dip->next = SB_LINE_OUT_MUTE;
2277 goto swap;
2278
2279 case SB_MIDI_SWAP:
2280 dip->prev = SB_MIDI_IN_MUTE;
2281 dip->next = AUDIO_MIXER_LAST;
2282 swap:
2283 dip->mixer_class = SB_INPUT_CLASS;
2284 strcpy(dip->label.name, AudioNswap);
2285 goto mute1;
2286
2287 case SB_CD_OUT_MUTE:
2288 dip->prev = SB_CD_SWAP;
2289 dip->next = AUDIO_MIXER_LAST;
2290 dip->mixer_class = SB_OUTPUT_CLASS;
2291 goto mute;
2292
2293 case SB_MIC_OUT_MUTE:
2294 dip->prev = SB_MIC_SWAP;
2295 dip->next = AUDIO_MIXER_LAST;
2296 dip->mixer_class = SB_OUTPUT_CLASS;
2297 goto mute;
2298
2299 case SB_LINE_OUT_MUTE:
2300 dip->prev = SB_LINE_SWAP;
2301 dip->next = AUDIO_MIXER_LAST;
2302 dip->mixer_class = SB_OUTPUT_CLASS;
2303 mute:
2304 strcpy(dip->label.name, AudioNmute);
2305 mute1:
2306 dip->type = AUDIO_MIXER_ENUM;
2307 dip->un.e.num_mem = 2;
2308 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2309 dip->un.e.member[0].ord = 0;
2310 strcpy(dip->un.e.member[1].label.name, AudioNon);
2311 dip->un.e.member[1].ord = 1;
2312 return 0;
2313
2314 }
2315
2316 return ENXIO;
2317 }
2318
2319 void *
2320 sb_malloc(addr, size, pool, flags)
2321 void *addr;
2322 unsigned long size;
2323 int pool;
2324 int flags;
2325 {
2326 struct sbdsp_softc *sc = addr;
2327
2328 return isa_malloc(sc->sc_isa, 4, size, pool, flags);
2329 }
2330
2331 void
2332 sb_free(addr, ptr, pool)
2333 void *addr;
2334 void *ptr;
2335 int pool;
2336 {
2337 isa_free(ptr, pool);
2338 }
2339
2340 unsigned long
2341 sb_round(addr, size)
2342 void *addr;
2343 unsigned long size;
2344 {
2345 if (size > MAX_ISADMA)
2346 size = MAX_ISADMA;
2347 return size;
2348 }
2349
2350 int
2351 sb_mappage(addr, mem, off, prot)
2352 void *addr;
2353 void *mem;
2354 int off;
2355 int prot;
2356 {
2357 return isa_mappage(mem, off, prot);
2358 }
2359
2360 int
2361 sbdsp_get_props(addr)
2362 void *addr;
2363 {
2364 struct sbdsp_softc *sc = addr;
2365 return AUDIO_PROP_MMAP |
2366 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2367 }
2368