sbdsp.c revision 1.71 1 /* $NetBSD: sbdsp.c,v 1.71 1997/09/09 00:57:10 augustss Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/device.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <vm/vm.h>
56
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59 #include <machine/bus.h>
60
61 #include <sys/audioio.h>
62 #include <dev/audio_if.h>
63 #include <dev/mulaw.h>
64 #include <dev/auconv.h>
65
66 #include <dev/isa/isavar.h>
67 #include <dev/isa/isadmavar.h>
68
69 #include <dev/isa/sbreg.h>
70 #include <dev/isa/sbdspvar.h>
71
72 #ifdef AUDIO_DEBUG
73 #define DPRINTF(x) if (sbdspdebug) printf x
74 int sbdspdebug = 0;
75 #else
76 #define DPRINTF(x)
77 #endif
78
79 #ifndef SBDSP_NPOLL
80 #define SBDSP_NPOLL 3000
81 #endif
82
83 struct {
84 int wdsp;
85 int rdsp;
86 int wmidi;
87 } sberr;
88
89 /*
90 * Time constant routines follow. See SBK, section 12.
91 * Although they don't come out and say it (in the docs),
92 * the card clearly uses a 1MHz countdown timer, as the
93 * low-speed formula (p. 12-4) is:
94 * tc = 256 - 10^6 / sr
95 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
96 * and a 256MHz clock is used:
97 * tc = 65536 - 256 * 10^ 6 / sr
98 * Since we can only use the upper byte of the HS TC, the two formulae
99 * are equivalent. (Why didn't they say so?) E.g.,
100 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
101 *
102 * The crossover point (from low- to high-speed modes) is different
103 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
104 *
105 * SBPRO SB20
106 * ----- --------
107 * input ls min 4 KHz 4 KHz
108 * input ls max 23 KHz 13 KHz
109 * input hs max 44.1 KHz 15 KHz
110 * output ls min 4 KHz 4 KHz
111 * output ls max 23 KHz 23 KHz
112 * output hs max 44.1 KHz 44.1 KHz
113 */
114 /* XXX Should we round the tc?
115 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
116 */
117 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
118 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
119
120 struct sbmode {
121 short model;
122 u_char channels;
123 u_char precision;
124 u_short lowrate, highrate;
125 u_char cmd;
126 u_char cmdchan;
127 };
128 static struct sbmode sbpmodes[] = {
129 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
130 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
131 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
132 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
133 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
134 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
135 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
136 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
137 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
138 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
139 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
140 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
141 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
142 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
143 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
144 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
145 #define PLAY16 15 /* must be the index of the next entry in the table */
146 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
147 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
148 { -1 }
149 };
150 static struct sbmode sbrmodes[] = {
151 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
152 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
153 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
154 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
155 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
156 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
157 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
158 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
159 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
160 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
161 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
162 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
163 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
164 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
165 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
166 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
167 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
168 { -1 }
169 };
170
171 void sbversion __P((struct sbdsp_softc *));
172 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
173 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
174 void sbdsp_to __P((void *));
175 void sbdsp_pause __P((struct sbdsp_softc *));
176 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
177 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
178 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
179 void sbdsp_set_ifilter __P((void *, int));
180 int sbdsp_get_ifilter __P((void *));
181
182 static int sbdsp_dma_setup_input __P((struct sbdsp_softc *sc));
183 static int sbdsp_dma_setup_output __P((struct sbdsp_softc *sc));
184 static int sbdsp_adjust __P((int, int));
185
186 #ifdef AUDIO_DEBUG
187 void sb_printsc __P((struct sbdsp_softc *));
188
189 void
190 sb_printsc(sc)
191 struct sbdsp_softc *sc;
192 {
193 int i;
194
195 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
196 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
197 sc->sc_drq8, sc->sc_drq16,
198 sc->sc_iobase, sc->sc_irq);
199 printf("irate %d itc %x orate %d otc %x\n",
200 sc->sc_i.rate, sc->sc_i.tc,
201 sc->sc_o.rate, sc->sc_o.tc);
202 printf("outport %u inport %u spkron %u nintr %lu\n",
203 sc->out_port, sc->in_port, sc->spkr_state, sc->sc_interrupts);
204 printf("intr8 %p arg8 %p\n",
205 sc->sc_intr8, sc->sc_arg16);
206 printf("intr16 %p arg16 %p\n",
207 sc->sc_intr8, sc->sc_arg16);
208 printf("gain:");
209 for (i = 0; i < SB_NDEVS; i++)
210 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
211 printf("\n");
212 }
213 #endif /* AUDIO_DEBUG */
214
215 /*
216 * Probe / attach routines.
217 */
218
219 /*
220 * Probe for the soundblaster hardware.
221 */
222 int
223 sbdsp_probe(sc)
224 struct sbdsp_softc *sc;
225 {
226
227 if (sbdsp_reset(sc) < 0) {
228 DPRINTF(("sbdsp: couldn't reset card\n"));
229 return 0;
230 }
231 /* if flags set, go and probe the jazz16 stuff */
232 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
233 sbdsp_jazz16_probe(sc);
234 else
235 sbversion(sc);
236 if (sc->sc_model == SB_UNK) {
237 /* Unknown SB model found. */
238 DPRINTF(("sbdsp: unknown SB model found\n"));
239 return 0;
240 }
241 return 1;
242 }
243
244 /*
245 * Try add-on stuff for Jazz16.
246 */
247 void
248 sbdsp_jazz16_probe(sc)
249 struct sbdsp_softc *sc;
250 {
251 static u_char jazz16_irq_conf[16] = {
252 -1, -1, 0x02, 0x03,
253 -1, 0x01, -1, 0x04,
254 -1, 0x02, 0x05, -1,
255 -1, -1, -1, 0x06};
256 static u_char jazz16_drq_conf[8] = {
257 -1, 0x01, -1, 0x02,
258 -1, 0x03, -1, 0x04};
259
260 bus_space_tag_t iot = sc->sc_iot;
261 bus_space_handle_t ioh;
262
263 sbversion(sc);
264
265 DPRINTF(("jazz16 probe\n"));
266
267 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
268 DPRINTF(("bus map failed\n"));
269 return;
270 }
271
272 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
273 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
274 DPRINTF(("drq/irq check failed\n"));
275 goto done; /* give up, we can't do it. */
276 }
277
278 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
279 delay(10000); /* delay 10 ms */
280 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
281 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
282
283 if (sbdsp_reset(sc) < 0) {
284 DPRINTF(("sbdsp_reset check failed\n"));
285 goto done; /* XXX? what else could we do? */
286 }
287
288 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
289 DPRINTF(("read16 setup failed\n"));
290 goto done;
291 }
292
293 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
294 DPRINTF(("read16 failed\n"));
295 goto done;
296 }
297
298 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
299 sc->sc_drq16 = sc->sc_drq8;
300 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
301 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
302 jazz16_drq_conf[sc->sc_drq8]) ||
303 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
304 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
305 } else {
306 DPRINTF(("jazz16 detected!\n"));
307 sc->sc_model = SB_JAZZ;
308 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
309 }
310
311 done:
312 bus_space_unmap(iot, ioh, 1);
313 }
314
315 /*
316 * Attach hardware to driver, attach hardware driver to audio
317 * pseudo-device driver .
318 */
319 void
320 sbdsp_attach(sc)
321 struct sbdsp_softc *sc;
322 {
323 struct audio_params pparams, rparams;
324 int i;
325 u_int v;
326
327 /*
328 * Create our DMA maps.
329 */
330 if (sc->sc_drq8 != -1) {
331 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq8,
332 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
333 printf("%s: can't create map for drq %d\n",
334 sc->sc_dev.dv_xname, sc->sc_drq8);
335 return;
336 }
337 }
338 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
339 if (isa_dmamap_create(sc->sc_isa, sc->sc_drq16,
340 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
341 printf("%s: can't create map for drq %d\n",
342 sc->sc_dev.dv_xname, sc->sc_drq16);
343 return;
344 }
345 }
346
347 pparams = audio_default;
348 rparams = audio_default;
349 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
350
351 sbdsp_set_in_port(sc, SB_MIC_VOL);
352 sbdsp_set_out_port(sc, SB_MASTER_VOL);
353
354 if (sc->sc_mixer_model != SBM_NONE) {
355 /* Reset the mixer.*/
356 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
357 /* And set our own default values */
358 for (i = 0; i < SB_NDEVS; i++) {
359 switch(i) {
360 case SB_MIC_VOL:
361 case SB_LINE_IN_VOL:
362 v = 0;
363 break;
364 case SB_BASS:
365 case SB_TREBLE:
366 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
367 break;
368 case SB_CD_IN_MUTE:
369 case SB_MIC_IN_MUTE:
370 case SB_LINE_IN_MUTE:
371 case SB_MIDI_IN_MUTE:
372 case SB_CD_SWAP:
373 case SB_MIC_SWAP:
374 case SB_LINE_SWAP:
375 case SB_MIDI_SWAP:
376 case SB_CD_OUT_MUTE:
377 case SB_MIC_OUT_MUTE:
378 case SB_LINE_OUT_MUTE:
379 v = 0;
380 break;
381 default:
382 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN * 3 / 4);
383 break;
384 }
385 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
386 sbdsp_set_mixer_gain(sc, i);
387 }
388 sc->in_filter = 0; /* no filters turned on, please */
389 }
390
391 printf(": dsp v%d.%02d%s\n",
392 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
393 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
394
395 sc->sc_fullduplex = ISSB16CLASS(sc) &&
396 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
397 sc->sc_drq8 != sc->sc_drq16;
398 }
399
400 void
401 sbdsp_mix_write(sc, mixerport, val)
402 struct sbdsp_softc *sc;
403 int mixerport;
404 int val;
405 {
406 bus_space_tag_t iot = sc->sc_iot;
407 bus_space_handle_t ioh = sc->sc_ioh;
408 int s;
409
410 s = splaudio();
411 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
412 delay(20);
413 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
414 delay(30);
415 splx(s);
416 }
417
418 int
419 sbdsp_mix_read(sc, mixerport)
420 struct sbdsp_softc *sc;
421 int mixerport;
422 {
423 bus_space_tag_t iot = sc->sc_iot;
424 bus_space_handle_t ioh = sc->sc_ioh;
425 int val;
426 int s;
427
428 s = splaudio();
429 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
430 delay(20);
431 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
432 delay(30);
433 splx(s);
434 return val;
435 }
436
437 /*
438 * Various routines to interface to higher level audio driver
439 */
440
441 int
442 sbdsp_query_encoding(addr, fp)
443 void *addr;
444 struct audio_encoding *fp;
445 {
446 struct sbdsp_softc *sc = addr;
447 int emul;
448
449 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
450
451 switch (fp->index) {
452 case 0:
453 strcpy(fp->name, AudioEulinear);
454 fp->encoding = AUDIO_ENCODING_ULINEAR;
455 fp->precision = 8;
456 fp->flags = 0;
457 return 0;
458 case 1:
459 strcpy(fp->name, AudioEmulaw);
460 fp->encoding = AUDIO_ENCODING_ULAW;
461 fp->precision = 8;
462 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
463 return 0;
464 case 2:
465 strcpy(fp->name, AudioEalaw);
466 fp->encoding = AUDIO_ENCODING_ALAW;
467 fp->precision = 8;
468 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
469 return 0;
470 case 3:
471 strcpy(fp->name, AudioElinear);
472 fp->encoding = AUDIO_ENCODING_SLINEAR;
473 fp->precision = 8;
474 fp->flags = emul;
475 return 0;
476 }
477 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
478 return EINVAL;
479
480 switch(fp->index) {
481 case 4:
482 strcpy(fp->name, AudioElinear_le);
483 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
484 fp->precision = 16;
485 fp->flags = 0;
486 return 0;
487 case 5:
488 strcpy(fp->name, AudioEulinear_le);
489 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
490 fp->precision = 16;
491 fp->flags = emul;
492 return 0;
493 case 6:
494 strcpy(fp->name, AudioElinear_be);
495 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
496 fp->precision = 16;
497 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
498 return 0;
499 case 7:
500 strcpy(fp->name, AudioEulinear_be);
501 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
502 fp->precision = 16;
503 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
504 return 0;
505 default:
506 return EINVAL;
507 }
508 return 0;
509 }
510
511 int
512 sbdsp_set_params(addr, setmode, usemode, play, rec)
513 void *addr;
514 int setmode, usemode;
515 struct audio_params *play, *rec;
516 {
517 struct sbdsp_softc *sc = addr;
518 struct sbmode *m;
519 u_int rate, tc, bmode;
520 void (*swcode) __P((void *, u_char *buf, int cnt));
521 int factor;
522 int model;
523 int chan;
524 struct audio_params *p;
525 int mode;
526
527 model = sc->sc_model;
528 if (model > SB_16)
529 model = SB_16; /* later models work like SB16 */
530
531 /* Set first record info, then play info */
532 for(mode = AUMODE_RECORD; mode != -1;
533 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
534 if ((setmode & mode) == 0)
535 continue;
536
537 p = mode == AUMODE_PLAY ? play : rec;
538 /* Locate proper commands */
539 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
540 m->model != -1; m++) {
541 if (model == m->model &&
542 p->channels == m->channels &&
543 p->precision == m->precision &&
544 p->sample_rate >= m->lowrate &&
545 p->sample_rate < m->highrate)
546 break;
547 }
548 if (m->model == -1)
549 return EINVAL;
550 rate = p->sample_rate;
551 swcode = 0;
552 factor = 1;
553 tc = 1;
554 bmode = -1;
555 if (model == SB_16) {
556 switch (p->encoding) {
557 case AUDIO_ENCODING_SLINEAR_BE:
558 if (p->precision == 16)
559 swcode = swap_bytes;
560 /* fall into */
561 case AUDIO_ENCODING_SLINEAR_LE:
562 bmode = SB_BMODE_SIGNED;
563 break;
564 case AUDIO_ENCODING_ULINEAR_BE:
565 if (p->precision == 16)
566 swcode = swap_bytes;
567 /* fall into */
568 case AUDIO_ENCODING_ULINEAR_LE:
569 bmode = SB_BMODE_UNSIGNED;
570 break;
571 case AUDIO_ENCODING_ULAW:
572 if (mode == AUMODE_PLAY) {
573 swcode = mulaw_to_ulinear16;
574 factor = 2;
575 m = &sbpmodes[PLAY16];
576 } else
577 swcode = ulinear8_to_mulaw;
578 bmode = SB_BMODE_UNSIGNED;
579 break;
580 case AUDIO_ENCODING_ALAW:
581 if (mode == AUMODE_PLAY) {
582 swcode = alaw_to_ulinear16;
583 factor = 2;
584 m = &sbpmodes[PLAY16];
585 } else
586 swcode = ulinear8_to_alaw;
587 bmode = SB_BMODE_UNSIGNED;
588 break;
589 default:
590 return EINVAL;
591 }
592 if (p->channels == 2)
593 bmode |= SB_BMODE_STEREO;
594 } else if (m->model == SB_JAZZ && m->precision == 16) {
595 switch (p->encoding) {
596 case AUDIO_ENCODING_SLINEAR_LE:
597 break;
598 case AUDIO_ENCODING_ULINEAR_LE:
599 swcode = change_sign16;
600 break;
601 case AUDIO_ENCODING_SLINEAR_BE:
602 swcode = swap_bytes;
603 break;
604 case AUDIO_ENCODING_ULINEAR_BE:
605 swcode = mode == AUMODE_PLAY ?
606 swap_bytes_change_sign16 : change_sign16_swap_bytes;
607 break;
608 case AUDIO_ENCODING_ULAW:
609 swcode = mode == AUMODE_PLAY ?
610 mulaw_to_ulinear8 : ulinear8_to_mulaw;
611 break;
612 case AUDIO_ENCODING_ALAW:
613 swcode = mode == AUMODE_PLAY ?
614 alaw_to_ulinear8 : ulinear8_to_alaw;
615 break;
616 default:
617 return EINVAL;
618 }
619 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
620 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
621 } else {
622 switch (p->encoding) {
623 case AUDIO_ENCODING_SLINEAR_BE:
624 case AUDIO_ENCODING_SLINEAR_LE:
625 swcode = change_sign8;
626 break;
627 case AUDIO_ENCODING_ULINEAR_BE:
628 case AUDIO_ENCODING_ULINEAR_LE:
629 break;
630 case AUDIO_ENCODING_ULAW:
631 swcode = mode == AUMODE_PLAY ?
632 mulaw_to_ulinear8 : ulinear8_to_mulaw;
633 break;
634 case AUDIO_ENCODING_ALAW:
635 swcode = mode == AUMODE_PLAY ?
636 alaw_to_ulinear8 : ulinear8_to_alaw;
637 break;
638 default:
639 return EINVAL;
640 }
641 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
642 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
643 }
644
645 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
646 if (mode == AUMODE_PLAY) {
647 sc->sc_o.rate = rate;
648 sc->sc_o.tc = tc;
649 sc->sc_o.modep = m;
650 sc->sc_o.bmode = bmode;
651 sc->sc_o.dmachan = chan;
652 } else {
653 sc->sc_i.rate = rate;
654 sc->sc_i.tc = tc;
655 sc->sc_i.modep = m;
656 sc->sc_i.bmode = bmode;
657 sc->sc_i.dmachan = chan;
658 }
659
660 p->sw_code = swcode;
661 p->factor = factor;
662 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
663 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
664 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
665
666 }
667 /*
668 * XXX
669 * Should wait for chip to be idle.
670 */
671 sc->sc_i.run = SB_NOTRUNNING;
672 sc->sc_o.run = SB_NOTRUNNING;
673
674 if (sc->sc_fullduplex &&
675 (usemode & (AUMODE_PLAY | AUMODE_RECORD)) == (AUMODE_PLAY | AUMODE_RECORD) &&
676 sc->sc_i.dmachan == sc->sc_o.dmachan) {
677 DPRINTF(("sbdsp_commit: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
678 if (sc->sc_o.dmachan == sc->sc_drq8) {
679 /* Use 16 bit DMA for playing by expanding the samples. */
680 play->sw_code = linear8_to_linear16;
681 play->factor = 2;
682 sc->sc_o.modep = &sbpmodes[PLAY16];
683 sc->sc_o.dmachan = sc->sc_drq16;
684 } else {
685 return EINVAL;
686 }
687 }
688 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n", sc->sc_i.dmachan, sc->sc_o.dmachan));
689
690 return 0;
691 }
692
693 void
694 sbdsp_set_ifilter(addr, which)
695 void *addr;
696 int which;
697 {
698 struct sbdsp_softc *sc = addr;
699 int mixval;
700
701 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
702 switch (which) {
703 case 0:
704 mixval |= SBP_FILTER_OFF;
705 break;
706 case SB_TREBLE:
707 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
708 break;
709 case SB_BASS:
710 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
711 break;
712 default:
713 return;
714 }
715 sc->in_filter = mixval & SBP_IFILTER_MASK;
716 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
717 }
718
719 int
720 sbdsp_get_ifilter(addr)
721 void *addr;
722 {
723 struct sbdsp_softc *sc = addr;
724
725 sc->in_filter =
726 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
727 switch (sc->in_filter) {
728 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
729 return SB_TREBLE;
730 case SBP_FILTER_ON|SBP_IFILTER_LOW:
731 return SB_BASS;
732 default:
733 return 0;
734 }
735 }
736
737 int
738 sbdsp_set_out_port(addr, port)
739 void *addr;
740 int port;
741 {
742 struct sbdsp_softc *sc = addr;
743
744 sc->out_port = port; /* Just record it */
745
746 return 0;
747 }
748
749 int
750 sbdsp_get_out_port(addr)
751 void *addr;
752 {
753 struct sbdsp_softc *sc = addr;
754
755 return sc->out_port;
756 }
757
758
759 int
760 sbdsp_set_in_port(addr, port)
761 void *addr;
762 int port;
763 {
764 return sbdsp_set_in_ports(addr, 1 << port);
765 }
766
767 int
768 sbdsp_set_in_ports(sc, mask)
769 struct sbdsp_softc *sc;
770 int mask;
771 {
772 int bitsl, bitsr;
773 int sbport;
774 int i;
775
776 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
777 sc->sc_mixer_model, mask));
778
779 switch(sc->sc_mixer_model) {
780 case SBM_NONE:
781 return EINVAL;
782 case SBM_CT1335:
783 if (mask != (1 << SB_MIC_VOL))
784 return EINVAL;
785 break;
786 case SBM_CT1345:
787 switch (mask) {
788 case 1 << SB_MIC_VOL:
789 sbport = SBP_FROM_MIC;
790 break;
791 case 1 << SB_LINE_IN_VOL:
792 sbport = SBP_FROM_LINE;
793 break;
794 case 1 << SB_CD_VOL:
795 sbport = SBP_FROM_CD;
796 break;
797 default:
798 return (EINVAL);
799 }
800 sbdsp_mix_write(sc, SBP_RECORD_SOURCE,
801 SBP_RECORD_FROM(sbport, SBP_FILTER_OFF, SBP_IFILTER_HIGH));
802 break;
803 case SBM_CT1XX5:
804 case SBM_CT1745:
805 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
806 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
807 return EINVAL;
808 bitsr = 0;
809 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
810 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
811 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
812 bitsl = SB_SRC_R_TO_L(bitsr);
813 if (mask & (1<<SB_MIC_VOL)) {
814 bitsl |= SBP_MIC_SRC;
815 bitsr |= SBP_MIC_SRC;
816 }
817 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
818 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
819 break;
820 }
821
822 sc->in_mask = mask;
823
824 /* XXX
825 * We have to fake a single port since the upper layer
826 * expects one.
827 */
828 for(i = 0; i < SB_NPORT; i++) {
829 if (mask & (1 << i)) {
830 sc->in_port = i;
831 break;
832 }
833 }
834 return 0;
835 }
836
837 int
838 sbdsp_get_in_port(addr)
839 void *addr;
840 {
841 struct sbdsp_softc *sc = addr;
842
843 return sc->in_port;
844 }
845
846
847 int
848 sbdsp_speaker_ctl(addr, newstate)
849 void *addr;
850 int newstate;
851 {
852 struct sbdsp_softc *sc = addr;
853
854 if ((newstate == SPKR_ON) &&
855 (sc->spkr_state == SPKR_OFF)) {
856 sbdsp_spkron(sc);
857 sc->spkr_state = SPKR_ON;
858 }
859 if ((newstate == SPKR_OFF) &&
860 (sc->spkr_state == SPKR_ON)) {
861 sbdsp_spkroff(sc);
862 sc->spkr_state = SPKR_OFF;
863 }
864 return 0;
865 }
866
867 int
868 sbdsp_round_blocksize(addr, blk)
869 void *addr;
870 int blk;
871 {
872 blk &= -4; /* round to biggest sample size */
873 return blk;
874 }
875
876 int
877 sbdsp_open(addr, flags)
878 void *addr;
879 int flags;
880 {
881 struct sbdsp_softc *sc = addr;
882
883 DPRINTF(("sbdsp_open: sc=%p\n", sc));
884
885 if (sc->sc_open != 0 || sbdsp_reset(sc) != 0)
886 return ENXIO;
887
888 sc->sc_open = 1;
889 sc->sc_openflags = flags;
890 sc->sc_mintr = 0;
891 if (ISSBPRO(sc) &&
892 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
893 DPRINTF(("sbdsp_open: can't set mono mode\n"));
894 /* we'll readjust when it's time for DMA. */
895 }
896
897 /*
898 * Leave most things as they were; users must change things if
899 * the previous process didn't leave it they way they wanted.
900 * Looked at another way, it's easy to set up a configuration
901 * in one program and leave it for another to inherit.
902 */
903 DPRINTF(("sbdsp_open: opened\n"));
904
905 return 0;
906 }
907
908 void
909 sbdsp_close(addr)
910 void *addr;
911 {
912 struct sbdsp_softc *sc = addr;
913
914 DPRINTF(("sbdsp_close: sc=%p\n", sc));
915
916 sc->sc_open = 0;
917 sbdsp_spkroff(sc);
918 sc->spkr_state = SPKR_OFF;
919 sc->sc_intr8 = 0;
920 sc->sc_intr16 = 0;
921 sc->sc_mintr = 0;
922 sbdsp_haltdma(sc);
923
924 DPRINTF(("sbdsp_close: closed\n"));
925 }
926
927 /*
928 * Lower-level routines
929 */
930
931 /*
932 * Reset the card.
933 * Return non-zero if the card isn't detected.
934 */
935 int
936 sbdsp_reset(sc)
937 struct sbdsp_softc *sc;
938 {
939 bus_space_tag_t iot = sc->sc_iot;
940 bus_space_handle_t ioh = sc->sc_ioh;
941
942 sc->sc_intr8 = 0;
943 sc->sc_intr16 = 0;
944 if (sc->sc_i.run != SB_NOTRUNNING) {
945 isa_dmaabort(sc->sc_isa, sc->sc_i.dmachan);
946 sc->sc_i.run = SB_NOTRUNNING;
947 }
948 if (sc->sc_o.run != SB_NOTRUNNING) {
949 isa_dmaabort(sc->sc_isa, sc->sc_o.dmachan);
950 sc->sc_o.run = SB_NOTRUNNING;
951 }
952
953 /*
954 * See SBK, section 11.3.
955 * We pulse a reset signal into the card.
956 * Gee, what a brilliant hardware design.
957 */
958 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
959 delay(10);
960 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
961 delay(30);
962 if (sbdsp_rdsp(sc) != SB_MAGIC)
963 return -1;
964
965 return 0;
966 }
967
968 /*
969 * Write a byte to the dsp.
970 * We are at the mercy of the card as we use a
971 * polling loop and wait until it can take the byte.
972 */
973 int
974 sbdsp_wdsp(sc, v)
975 struct sbdsp_softc *sc;
976 int v;
977 {
978 bus_space_tag_t iot = sc->sc_iot;
979 bus_space_handle_t ioh = sc->sc_ioh;
980 int i;
981 u_char x;
982
983 for (i = SBDSP_NPOLL; --i >= 0; ) {
984 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
985 delay(10);
986 if ((x & SB_DSP_BUSY) == 0) {
987 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
988 delay(10);
989 return 0;
990 }
991 }
992 ++sberr.wdsp;
993 return -1;
994 }
995
996 /*
997 * Read a byte from the DSP, using polling.
998 */
999 int
1000 sbdsp_rdsp(sc)
1001 struct sbdsp_softc *sc;
1002 {
1003 bus_space_tag_t iot = sc->sc_iot;
1004 bus_space_handle_t ioh = sc->sc_ioh;
1005 int i;
1006 u_char x;
1007
1008 for (i = SBDSP_NPOLL; --i >= 0; ) {
1009 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1010 delay(10);
1011 if (x & SB_DSP_READY) {
1012 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1013 delay(10);
1014 return x;
1015 }
1016 }
1017 ++sberr.rdsp;
1018 return -1;
1019 }
1020
1021 /*
1022 * Doing certain things (like toggling the speaker) make
1023 * the SB hardware go away for a while, so pause a little.
1024 */
1025 void
1026 sbdsp_to(arg)
1027 void *arg;
1028 {
1029 wakeup(arg);
1030 }
1031
1032 void
1033 sbdsp_pause(sc)
1034 struct sbdsp_softc *sc;
1035 {
1036 extern int hz;
1037
1038 timeout(sbdsp_to, sbdsp_to, hz/8);
1039 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1040 }
1041
1042 /*
1043 * Turn on the speaker. The SBK documention says this operation
1044 * can take up to 1/10 of a second. Higher level layers should
1045 * probably let the task sleep for this amount of time after
1046 * calling here. Otherwise, things might not work (because
1047 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1048 *
1049 * These engineers had their heads up their ass when
1050 * they designed this card.
1051 */
1052 void
1053 sbdsp_spkron(sc)
1054 struct sbdsp_softc *sc;
1055 {
1056 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1057 sbdsp_pause(sc);
1058 }
1059
1060 /*
1061 * Turn off the speaker; see comment above.
1062 */
1063 void
1064 sbdsp_spkroff(sc)
1065 struct sbdsp_softc *sc;
1066 {
1067 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1068 sbdsp_pause(sc);
1069 }
1070
1071 /*
1072 * Read the version number out of the card.
1073 * Store version information in the softc.
1074 */
1075 void
1076 sbversion(sc)
1077 struct sbdsp_softc *sc;
1078 {
1079 int v;
1080
1081 sc->sc_model = SB_UNK;
1082 sc->sc_version = 0;
1083 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1084 return;
1085 v = sbdsp_rdsp(sc) << 8;
1086 v |= sbdsp_rdsp(sc);
1087 if (v < 0)
1088 return;
1089 sc->sc_version = v;
1090 switch(SBVER_MAJOR(v)) {
1091 case 1:
1092 sc->sc_mixer_model = SBM_NONE;
1093 sc->sc_model = SB_1;
1094 break;
1095 case 2:
1096 /* Some SB2 have a mixer, some don't. */
1097 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1098 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1099 /* Check if we can read back the mixer values. */
1100 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1101 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1102 sc->sc_mixer_model = SBM_CT1335;
1103 else
1104 sc->sc_mixer_model = SBM_NONE;
1105 if (SBVER_MINOR(v) == 0)
1106 sc->sc_model = SB_20;
1107 else
1108 sc->sc_model = SB_2x;
1109 break;
1110 case 3:
1111 sc->sc_mixer_model = SBM_CT1345;
1112 sc->sc_model = SB_PRO;
1113 break;
1114 case 4:
1115 #if 0
1116 /* XXX This does not work */
1117 /* Most SB16 have a tone controls, but some don't. */
1118 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1119 /* Check if we can read back the mixer value. */
1120 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1121 sc->sc_mixer_model = SBM_CT1745;
1122 else
1123 sc->sc_mixer_model = SBM_CT1XX5;
1124 #else
1125 sc->sc_mixer_model = SBM_CT1745;
1126 #endif
1127 /* XXX what about SB_32 */
1128 if (SBVER_MINOR(v) == 16)
1129 sc->sc_model = SB_64;
1130 else
1131 sc->sc_model = SB_16;
1132 break;
1133 }
1134 }
1135
1136 /*
1137 * Halt a DMA in progress. A low-speed transfer can be
1138 * resumed with sbdsp_contdma().
1139 */
1140 int
1141 sbdsp_haltdma(addr)
1142 void *addr;
1143 {
1144 struct sbdsp_softc *sc = addr;
1145
1146 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1147
1148 sbdsp_reset(sc);
1149 return 0;
1150 }
1151
1152 int
1153 sbdsp_contdma(addr)
1154 void *addr;
1155 {
1156 struct sbdsp_softc *sc = addr;
1157
1158 DPRINTF(("sbdsp_contdma: sc=%p\n", sc));
1159
1160 /* XXX how do we reinitialize the DMA controller state? do we care? */
1161 (void)sbdsp_wdsp(sc, SB_DSP_CONT);
1162 return 0;
1163 }
1164
1165 int
1166 sbdsp_set_timeconst(sc, tc)
1167 struct sbdsp_softc *sc;
1168 int tc;
1169 {
1170 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1171
1172 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1173 sbdsp_wdsp(sc, tc) < 0)
1174 return EIO;
1175
1176 return 0;
1177 }
1178
1179 int
1180 sbdsp16_set_rate(sc, cmd, rate)
1181 struct sbdsp_softc *sc;
1182 int cmd, rate;
1183 {
1184 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1185
1186 if (sbdsp_wdsp(sc, cmd) < 0 ||
1187 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1188 sbdsp_wdsp(sc, rate) < 0)
1189 return EIO;
1190 return 0;
1191 }
1192
1193 int
1194 sbdsp_dma_init_input(addr, buf, cc)
1195 void *addr;
1196 void *buf;
1197 int cc;
1198 {
1199 struct sbdsp_softc *sc = addr;
1200
1201 if (sc->sc_model == SB_1)
1202 return 0;
1203 sc->sc_i.run = SB_DMARUNNING;
1204 DPRINTF(("sbdsp: dma start loop input addr=%p cc=%d chan=%d\n",
1205 buf, cc, sc->sc_i.dmachan));
1206 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, buf,
1207 cc, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1208 return 0;
1209 }
1210
1211 static int
1212 sbdsp_dma_setup_input(sc)
1213 struct sbdsp_softc *sc;
1214 {
1215 int stereo = sc->sc_i.modep->channels == 2;
1216 int filter;
1217
1218 /* Initialize the PCM */
1219 if (ISSBPRO(sc)) {
1220 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1221 return 0;
1222 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1223 sbdsp_mix_write(sc, SBP_INFILTER,
1224 (sbdsp_mix_read(sc, SBP_INFILTER) &
1225 ~SBP_IFILTER_MASK) | filter);
1226 }
1227
1228 if (ISSB16CLASS(sc)) {
1229 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE,
1230 sc->sc_i.rate)) {
1231 DPRINTF(("sbdsp_dma_setup_input: rate=%d set failed\n",
1232 sc->sc_i.rate));
1233 return 0;
1234 }
1235 } else {
1236 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1237 DPRINTF(("sbdsp_dma_setup_input: tc=%d set failed\n",
1238 sc->sc_i.rate));
1239 return 0;
1240 }
1241 }
1242 return 1;
1243 }
1244
1245 int
1246 sbdsp_dma_input(addr, p, cc, intr, arg)
1247 void *addr;
1248 void *p;
1249 int cc;
1250 void (*intr) __P((void *));
1251 void *arg;
1252 {
1253 struct sbdsp_softc *sc = addr;
1254
1255 #ifdef AUDIO_DEBUG
1256 if (sbdspdebug > 1)
1257 printf("sbdsp_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
1258 addr, p, cc, intr, arg);
1259 #endif
1260 #ifdef DIAGNOSTIC
1261 if (sc->sc_i.modep->channels == 2 && (cc & 1)) {
1262 DPRINTF(("stereo record odd bytes (%d)\n", cc));
1263 return EIO;
1264 }
1265 #endif
1266
1267 if (sc->sc_i.modep->precision == 8) {
1268 #ifdef DIAGNOSTIC
1269 if (sc->sc_i.dmachan != sc->sc_drq8) {
1270 printf("sbdsp_dma_input: prec=%d bad chan %d\n",
1271 sc->sc_i.modep->precision, sc->sc_i.dmachan);
1272 return EIO;
1273 }
1274 #endif
1275 sc->sc_intr8 = intr;
1276 sc->sc_arg8 = arg;
1277 } else {
1278 #ifdef DIAGNOSTIC
1279 if (sc->sc_i.dmachan != sc->sc_drq16) {
1280 printf("sbdsp_dma_input: prec=%d bad chan %d\n",
1281 sc->sc_i.modep->precision, sc->sc_i.dmachan);
1282 return EIO;
1283 }
1284 #endif
1285 sc->sc_intr16 = intr;
1286 sc->sc_arg16 = arg;
1287 }
1288
1289 switch(sc->sc_i.run) {
1290 case SB_NOTRUNNING:
1291 /* Non-looping mode, not initialized */
1292 sc->sc_i.run = SB_RUNNING;
1293 if (!sbdsp_dma_setup_input(sc))
1294 goto giveup;
1295 /* fall into */
1296 case SB_RUNNING:
1297 /* Non-looping mode, start DMA */
1298 #ifdef AUDIO_DEBUG
1299 if (sbdspdebug > 2)
1300 printf("sbdsp_dma_input: dmastart buf=%p cc=%d chan=%d\n",
1301 p, cc, sc->sc_i.dmachan);
1302 #endif
1303 isa_dmastart(sc->sc_isa, sc->sc_i.dmachan, p,
1304 cc, NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
1305
1306 /* Start PCM in non-looping mode */
1307 if ((sc->sc_model == SB_JAZZ && sc->sc_i.dmachan > 3) ||
1308 (sc->sc_model != SB_JAZZ && sc->sc_i.modep->precision == 16))
1309 cc >>= 1;
1310 --cc;
1311 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1312 sbdsp_wdsp(sc, cc) < 0 ||
1313 sbdsp_wdsp(sc, cc >> 8) < 0) {
1314 DPRINTF(("sbdsp_dma_input: SB1 DMA start failed\n"));
1315 goto giveup;
1316 }
1317 break;
1318 case SB_DMARUNNING:
1319 /* Looping mode, not initialized */
1320 sc->sc_i.run = SB_PCMRUNNING;
1321 if (!sbdsp_dma_setup_input(sc))
1322 goto giveup;
1323 if ((sc->sc_model == SB_JAZZ && sc->sc_i.dmachan > 3) ||
1324 (sc->sc_model != SB_JAZZ && sc->sc_i.modep->precision == 16))
1325 cc >>= 1;
1326 --cc;
1327 /* Initialize looping PCM */
1328 if (ISSB16CLASS(sc)) {
1329 #ifdef AUDIO_DEBUG
1330 if (sbdspdebug > 2)
1331 printf("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1332 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc);
1333 #endif
1334 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1335 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1336 sbdsp_wdsp(sc, cc) < 0 ||
1337 sbdsp_wdsp(sc, cc >> 8) < 0) {
1338 DPRINTF(("sbdsp_dma_input: SB16 DMA start failed\n"));
1339 DPRINTF(("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1340 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1341 goto giveup;
1342 }
1343 } else {
1344 DPRINTF(("sbdsp_dma_input: set blocksize=%d\n", cc));
1345 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1346 sbdsp_wdsp(sc, cc) < 0 ||
1347 sbdsp_wdsp(sc, cc >> 8) < 0) {
1348 DPRINTF(("sbdsp_dma_input: SB2 DMA blocksize failed\n"));
1349 goto giveup;
1350 }
1351 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1352 DPRINTF(("sbdsp_dma_input: SB2 DMA start failed\n"));
1353 goto giveup;
1354 }
1355 }
1356 break;
1357 case SB_PCMRUNNING:
1358 /* Looping mode, nothing to do */
1359 break;
1360 }
1361 return 0;
1362
1363 giveup:
1364 sbdsp_reset(sc);
1365 return EIO;
1366 }
1367
1368 int
1369 sbdsp_dma_init_output(addr, buf, cc)
1370 void *addr;
1371 void *buf;
1372 int cc;
1373 {
1374 struct sbdsp_softc *sc = addr;
1375
1376 if (sc->sc_model == SB_1)
1377 return 0;
1378 sc->sc_o.run = SB_DMARUNNING;
1379 DPRINTF(("sbdsp: dma start loop output buf=%p cc=%d chan=%d\n",
1380 buf, cc, sc->sc_o.dmachan));
1381 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, buf,
1382 cc, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1383 return 0;
1384 }
1385
1386 static int
1387 sbdsp_dma_setup_output(sc)
1388 struct sbdsp_softc *sc;
1389 {
1390 int stereo = sc->sc_o.modep->channels == 2;
1391 int cmd;
1392
1393 if (ISSBPRO(sc)) {
1394 /* make sure we re-set stereo mixer bit when we start output. */
1395 sbdsp_mix_write(sc, SBP_STEREO,
1396 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1397 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1398 cmd = sc->sc_o.modep->cmdchan;
1399 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1400 return 0;
1401 }
1402
1403 if (ISSB16CLASS(sc)) {
1404 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE,
1405 sc->sc_o.rate)) {
1406 DPRINTF(("sbdsp_dma_setup_output: rate=%d set failed\n",
1407 sc->sc_o.rate));
1408 return 0;
1409 }
1410 } else {
1411 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1412 DPRINTF(("sbdsp_dma_setup_output: tc=%d set failed\n",
1413 sc->sc_o.rate));
1414 return 0;
1415 }
1416 }
1417 return 1;
1418 }
1419
1420 int
1421 sbdsp_dma_output(addr, p, cc, intr, arg)
1422 void *addr;
1423 void *p;
1424 int cc;
1425 void (*intr) __P((void *));
1426 void *arg;
1427 {
1428 struct sbdsp_softc *sc = addr;
1429
1430 #ifdef AUDIO_DEBUG
1431 if (sbdspdebug > 1)
1432 printf("sbdsp_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n", addr, p, cc, intr, arg);
1433 #endif
1434 #ifdef DIAGNOSTIC
1435 if (sc->sc_o.modep->channels == 2 && (cc & 1)) {
1436 DPRINTF(("stereo playback odd bytes (%d)\n", cc));
1437 return EIO;
1438 }
1439 #endif
1440
1441 if (sc->sc_o.modep->precision == 8) {
1442 #ifdef DIAGNOSTIC
1443 if (sc->sc_o.dmachan != sc->sc_drq8) {
1444 printf("sbdsp_dma_output: prec=%d bad chan %d\n",
1445 sc->sc_o.modep->precision, sc->sc_o.dmachan);
1446 return EIO;
1447 }
1448 #endif
1449 sc->sc_intr8 = intr;
1450 sc->sc_arg8 = arg;
1451 } else {
1452 #ifdef DIAGNOSTIC
1453 if (sc->sc_o.dmachan != sc->sc_drq16) {
1454 printf("sbdsp_dma_output: prec=%d bad chan %d\n",
1455 sc->sc_o.modep->precision, sc->sc_o.dmachan);
1456 return EIO;
1457 }
1458 #endif
1459 sc->sc_intr16 = intr;
1460 sc->sc_arg16 = arg;
1461 }
1462
1463 switch(sc->sc_o.run) {
1464 case SB_NOTRUNNING:
1465 /* Non-looping mode, not initialized */
1466 sc->sc_o.run = SB_RUNNING;
1467 if (!sbdsp_dma_setup_output(sc))
1468 goto giveup;
1469 /* fall into */
1470 case SB_RUNNING:
1471 /* Non-looping mode, initialized. Start DMA and PCM */
1472 #ifdef AUDIO_DEBUG
1473 if (sbdspdebug > 2)
1474 printf("sbdsp: start dma out addr=%p, cc=%d, chan=%d\n",
1475 p, cc, sc->sc_o.dmachan);
1476 #endif
1477 isa_dmastart(sc->sc_isa, sc->sc_o.dmachan, p,
1478 cc, NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
1479 if ((sc->sc_model == SB_JAZZ && sc->sc_o.dmachan > 3) ||
1480 (sc->sc_model != SB_JAZZ && sc->sc_o.modep->precision == 16))
1481 cc >>= 1;
1482 --cc;
1483 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1484 sbdsp_wdsp(sc, cc) < 0 ||
1485 sbdsp_wdsp(sc, cc >> 8) < 0) {
1486 DPRINTF(("sbdsp_dma_output: SB1 DMA start failed\n"));
1487 goto giveup;
1488 }
1489 break;
1490 case SB_DMARUNNING:
1491 /* Looping mode, not initialized */
1492 sc->sc_o.run = SB_PCMRUNNING;
1493 if (!sbdsp_dma_setup_output(sc))
1494 goto giveup;
1495 if ((sc->sc_model == SB_JAZZ && sc->sc_o.dmachan > 3) ||
1496 (sc->sc_model != SB_JAZZ && sc->sc_o.modep->precision == 16))
1497 cc >>= 1;
1498 --cc;
1499 /* Initialize looping PCM */
1500 if (ISSB16CLASS(sc)) {
1501 DPRINTF(("sbdsp_dma_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1502 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1503 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1504 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1505 sbdsp_wdsp(sc, cc) < 0 ||
1506 sbdsp_wdsp(sc, cc >> 8) < 0) {
1507 DPRINTF(("sbdsp_dma_output: SB16 DMA start failed\n"));
1508 goto giveup;
1509 }
1510 } else {
1511 DPRINTF(("sbdsp_dma_output: set blocksize=%d\n", cc));
1512 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1513 sbdsp_wdsp(sc, cc) < 0 ||
1514 sbdsp_wdsp(sc, cc >> 8) < 0) {
1515 DPRINTF(("sbdsp_dma_output: SB2 DMA blocksize failed\n"));
1516 goto giveup;
1517 }
1518 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1519 DPRINTF(("sbdsp_dma_output: SB2 DMA start failed\n"));
1520 goto giveup;
1521 }
1522 }
1523 break;
1524 case SB_PCMRUNNING:
1525 /* Looping mode, nothing to do */
1526 break;
1527 }
1528 return 0;
1529
1530 giveup:
1531 sbdsp_reset(sc);
1532 return EIO;
1533 }
1534
1535 /*
1536 * Only the DSP unit on the sound blaster generates interrupts.
1537 * There are three cases of interrupt: reception of a midi byte
1538 * (when mode is enabled), completion of dma transmission, or
1539 * completion of a dma reception.
1540 *
1541 * If there is interrupt sharing or a spurious interrupt occurs
1542 * there is no way to distinguish this on an SB2. So if you have
1543 * an SB2 and experience problems, buy an SB16 (it's only $40).
1544 */
1545 int
1546 sbdsp_intr(arg)
1547 void *arg;
1548 {
1549 struct sbdsp_softc *sc = arg;
1550 int loop = sc->sc_model != SB_1;
1551 u_char irq;
1552
1553 #ifdef AUDIO_DEBUG
1554 if (sbdspdebug > 1)
1555 printf("sbdsp_intr: intr8=%p, intr16=%p\n",
1556 sc->sc_intr8, sc->sc_intr16);
1557 #endif
1558 if (ISSB16CLASS(sc)) {
1559 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1560 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16)) == 0) {
1561 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1562 return 0;
1563 }
1564 } else {
1565 if (!loop && !isa_dmafinished(sc->sc_isa, sc->sc_drq8))
1566 return 0;
1567 irq = SBP_IRQ_DMA8;
1568 }
1569 sc->sc_interrupts++;
1570 delay(10); /* XXX why? */
1571 #if 0
1572 if (sc->sc_mintr != 0) {
1573 x = sbdsp_rdsp(sc);
1574 (*sc->sc_mintr)(sc->sc_arg, x);
1575 } else
1576 #endif
1577 if (sc->sc_intr8 == 0 && sc->sc_intr16 == 0) {
1578 DPRINTF(("sbdsp_intr: Unexpected interrupt 0x%x\n", irq));
1579 /* XXX return 0;*/ /* Did not expect an interrupt */
1580 }
1581
1582 /* clear interrupt */
1583 if (irq & SBP_IRQ_DMA8) {
1584 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1585 if (!loop)
1586 isa_dmadone(sc->sc_isa, sc->sc_drq8);
1587 if (sc->sc_intr8)
1588 (*sc->sc_intr8)(sc->sc_arg8);
1589 }
1590 if (irq & SBP_IRQ_DMA16) {
1591 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1592 if (sc->sc_intr16)
1593 (*sc->sc_intr16)(sc->sc_arg16);
1594 }
1595 return 1;
1596 }
1597
1598 #if 0
1599 /*
1600 * Enter midi uart mode and arrange for read interrupts
1601 * to vector to `intr'. This puts the card in a mode
1602 * which allows only midi I/O; the card must be reset
1603 * to leave this mode. Unfortunately, the card does not
1604 * use transmit interrupts, so bytes must be output
1605 * using polling. To keep the polling overhead to a
1606 * minimum, output should be driven off a timer.
1607 * This is a little tricky since only 320us separate
1608 * consecutive midi bytes.
1609 */
1610 void
1611 sbdsp_set_midi_mode(sc, intr, arg)
1612 struct sbdsp_softc *sc;
1613 void (*intr)();
1614 void *arg;
1615 {
1616
1617 sbdsp_wdsp(sc, SB_MIDI_UART_INTR);
1618 sc->sc_mintr = intr;
1619 sc->sc_intr = 0;
1620 sc->sc_arg = arg;
1621 }
1622
1623 /*
1624 * Write a byte to the midi port, when in midi uart mode.
1625 */
1626 void
1627 sbdsp_midi_output(sc, v)
1628 struct sbdsp_softc *sc;
1629 int v;
1630 {
1631
1632 if (sbdsp_wdsp(sc, v) < 0)
1633 ++sberr.wmidi;
1634 }
1635 #endif
1636
1637 /* Mask a value 0-255, but round it first */
1638 #define MAXVAL 256
1639 static int
1640 sbdsp_adjust(val, mask)
1641 int val, mask;
1642 {
1643 val += (MAXVAL - mask) >> 1;
1644 if (val >= MAXVAL)
1645 val = MAXVAL-1;
1646 return val & mask;
1647 }
1648
1649 void
1650 sbdsp_set_mixer_gain(sc, port)
1651 struct sbdsp_softc *sc;
1652 int port;
1653 {
1654 int src, gain;
1655
1656 switch(sc->sc_mixer_model) {
1657 case SBM_NONE:
1658 return;
1659 case SBM_CT1335:
1660 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1661 switch(port) {
1662 case SB_MASTER_VOL:
1663 src = SBP_1335_MASTER_VOL;
1664 break;
1665 case SB_MIDI_VOL:
1666 src = SBP_1335_MIDI_VOL;
1667 break;
1668 case SB_CD_VOL:
1669 src = SBP_1335_CD_VOL;
1670 break;
1671 case SB_VOICE_VOL:
1672 src = SBP_1335_VOICE_VOL;
1673 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1674 break;
1675 default:
1676 return;
1677 }
1678 sbdsp_mix_write(sc, src, gain);
1679 break;
1680 case SBM_CT1345:
1681 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1682 sc->gain[port][SB_RIGHT]);
1683 switch (port) {
1684 case SB_MIC_VOL:
1685 src = SBP_MIC_VOL;
1686 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1687 break;
1688 case SB_MASTER_VOL:
1689 src = SBP_MASTER_VOL;
1690 break;
1691 case SB_LINE_IN_VOL:
1692 src = SBP_LINE_VOL;
1693 break;
1694 case SB_VOICE_VOL:
1695 src = SBP_VOICE_VOL;
1696 break;
1697 case SB_MIDI_VOL:
1698 src = SBP_MIDI_VOL;
1699 break;
1700 case SB_CD_VOL:
1701 src = SBP_CD_VOL;
1702 break;
1703 default:
1704 return;
1705 }
1706 sbdsp_mix_write(sc, src, gain);
1707 break;
1708 case SBM_CT1XX5:
1709 case SBM_CT1745:
1710 switch (port) {
1711 case SB_MIC_VOL:
1712 src = SB16P_MIC_L;
1713 break;
1714 case SB_MASTER_VOL:
1715 src = SB16P_MASTER_L;
1716 break;
1717 case SB_LINE_IN_VOL:
1718 src = SB16P_LINE_L;
1719 break;
1720 case SB_VOICE_VOL:
1721 src = SB16P_VOICE_L;
1722 break;
1723 case SB_MIDI_VOL:
1724 src = SB16P_MIDI_L;
1725 break;
1726 case SB_CD_VOL:
1727 src = SB16P_CD_L;
1728 break;
1729 case SB_INPUT_GAIN:
1730 src = SB16P_INPUT_GAIN_L;
1731 break;
1732 case SB_OUTPUT_GAIN:
1733 src = SB16P_OUTPUT_GAIN_L;
1734 break;
1735 case SB_TREBLE:
1736 src = SB16P_TREBLE_L;
1737 break;
1738 case SB_BASS:
1739 src = SB16P_BASS_L;
1740 break;
1741 case SB_PCSPEAKER:
1742 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1743 return;
1744 default:
1745 return;
1746 }
1747 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1748 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1749 break;
1750 }
1751 }
1752
1753 int
1754 sbdsp_mixer_set_port(addr, cp)
1755 void *addr;
1756 mixer_ctrl_t *cp;
1757 {
1758 struct sbdsp_softc *sc = addr;
1759 int lgain, rgain;
1760 int mask, bits;
1761 int lmask, rmask, lbits, rbits;
1762 int mute, swap;
1763
1764 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1765 cp->un.value.num_channels));
1766
1767 if (sc->sc_mixer_model == SBM_NONE)
1768 return EINVAL;
1769
1770 switch (cp->dev) {
1771 case SB_TREBLE:
1772 case SB_BASS:
1773 if (sc->sc_mixer_model == SBM_CT1345 ||
1774 sc->sc_mixer_model == SBM_CT1XX5) {
1775 if (cp->type != AUDIO_MIXER_ENUM)
1776 return EINVAL;
1777 switch (cp->dev) {
1778 case SB_TREBLE:
1779 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1780 return 0;
1781 case SB_BASS:
1782 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1783 return 0;
1784 }
1785 }
1786 case SB_PCSPEAKER:
1787 case SB_INPUT_GAIN:
1788 case SB_OUTPUT_GAIN:
1789 if (!ISSBM1745(sc))
1790 return EINVAL;
1791 case SB_MIC_VOL:
1792 case SB_LINE_IN_VOL:
1793 if (sc->sc_mixer_model == SBM_CT1335)
1794 return EINVAL;
1795 case SB_VOICE_VOL:
1796 case SB_MIDI_VOL:
1797 case SB_CD_VOL:
1798 case SB_MASTER_VOL:
1799 if (cp->type != AUDIO_MIXER_VALUE)
1800 return EINVAL;
1801
1802 /*
1803 * All the mixer ports are stereo except for the microphone.
1804 * If we get a single-channel gain value passed in, then we
1805 * duplicate it to both left and right channels.
1806 */
1807
1808 switch (cp->dev) {
1809 case SB_MIC_VOL:
1810 if (cp->un.value.num_channels != 1)
1811 return EINVAL;
1812
1813 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1814 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1815 break;
1816 case SB_PCSPEAKER:
1817 if (cp->un.value.num_channels != 1)
1818 return EINVAL;
1819 /* fall into */
1820 case SB_INPUT_GAIN:
1821 case SB_OUTPUT_GAIN:
1822 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1823 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1824 break;
1825 default:
1826 switch (cp->un.value.num_channels) {
1827 case 1:
1828 lgain = rgain = SB_ADJUST_GAIN(sc,
1829 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1830 break;
1831 case 2:
1832 if (sc->sc_mixer_model == SBM_CT1335)
1833 return EINVAL;
1834 lgain = SB_ADJUST_GAIN(sc,
1835 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1836 rgain = SB_ADJUST_GAIN(sc,
1837 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1838 break;
1839 default:
1840 return EINVAL;
1841 }
1842 break;
1843 }
1844 sc->gain[cp->dev][SB_LEFT] = lgain;
1845 sc->gain[cp->dev][SB_RIGHT] = rgain;
1846
1847 sbdsp_set_mixer_gain(sc, cp->dev);
1848 break;
1849
1850 case SB_RECORD_SOURCE:
1851 if (ISSBM1745(sc)) {
1852 if (cp->type != AUDIO_MIXER_SET)
1853 return EINVAL;
1854 return sbdsp_set_in_ports(sc, cp->un.mask);
1855 } else {
1856 if (cp->type != AUDIO_MIXER_ENUM)
1857 return EINVAL;
1858 return sbdsp_set_in_port(sc, cp->un.ord);
1859 }
1860 break;
1861
1862 case SB_AGC:
1863 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1864 return EINVAL;
1865 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1866 break;
1867
1868 case SB_CD_OUT_MUTE:
1869 mask = SB16P_SW_CD;
1870 goto omute;
1871 case SB_MIC_OUT_MUTE:
1872 mask = SB16P_SW_MIC;
1873 goto omute;
1874 case SB_LINE_OUT_MUTE:
1875 mask = SB16P_SW_LINE;
1876 omute:
1877 if (cp->type != AUDIO_MIXER_ENUM)
1878 return EINVAL;
1879 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1880 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1881 if (cp->un.ord)
1882 bits = bits & ~mask;
1883 else
1884 bits = bits | mask;
1885 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1886 break;
1887
1888 case SB_MIC_IN_MUTE:
1889 case SB_MIC_SWAP:
1890 lmask = rmask = SB16P_SW_MIC;
1891 goto imute;
1892 case SB_CD_IN_MUTE:
1893 case SB_CD_SWAP:
1894 lmask = SB16P_SW_CD_L;
1895 rmask = SB16P_SW_CD_R;
1896 goto imute;
1897 case SB_LINE_IN_MUTE:
1898 case SB_LINE_SWAP:
1899 lmask = SB16P_SW_LINE_L;
1900 rmask = SB16P_SW_LINE_R;
1901 goto imute;
1902 case SB_MIDI_IN_MUTE:
1903 case SB_MIDI_SWAP:
1904 lmask = SB16P_SW_MIDI_L;
1905 rmask = SB16P_SW_MIDI_R;
1906 imute:
1907 if (cp->type != AUDIO_MIXER_ENUM)
1908 return EINVAL;
1909 mask = lmask | rmask;
1910 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1911 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1912 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1913 if (SB_IS_IN_MUTE(cp->dev)) {
1914 mute = cp->dev;
1915 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1916 } else {
1917 swap = cp->dev;
1918 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1919 }
1920 if (sc->gain[swap][SB_LR]) {
1921 mask = lmask;
1922 lmask = rmask;
1923 rmask = mask;
1924 }
1925 if (!sc->gain[mute][SB_LR]) {
1926 lbits = lbits | lmask;
1927 rbits = rbits | rmask;
1928 }
1929 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1930 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1931 break;
1932
1933 default:
1934 return EINVAL;
1935 }
1936
1937 return 0;
1938 }
1939
1940 int
1941 sbdsp_mixer_get_port(addr, cp)
1942 void *addr;
1943 mixer_ctrl_t *cp;
1944 {
1945 struct sbdsp_softc *sc = addr;
1946
1947 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1948
1949 if (sc->sc_mixer_model == SBM_NONE)
1950 return EINVAL;
1951
1952 switch (cp->dev) {
1953 case SB_TREBLE:
1954 case SB_BASS:
1955 if (sc->sc_mixer_model == SBM_CT1345 ||
1956 sc->sc_mixer_model == SBM_CT1XX5) {
1957 switch (cp->dev) {
1958 case SB_TREBLE:
1959 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1960 return 0;
1961 case SB_BASS:
1962 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1963 return 0;
1964 }
1965 }
1966 case SB_PCSPEAKER:
1967 case SB_INPUT_GAIN:
1968 case SB_OUTPUT_GAIN:
1969 if (!ISSBM1745(sc))
1970 return EINVAL;
1971 case SB_MIC_VOL:
1972 case SB_LINE_IN_VOL:
1973 if (sc->sc_mixer_model == SBM_CT1335)
1974 return EINVAL;
1975 case SB_VOICE_VOL:
1976 case SB_MIDI_VOL:
1977 case SB_CD_VOL:
1978 case SB_MASTER_VOL:
1979 switch (cp->dev) {
1980 case SB_MIC_VOL:
1981 case SB_PCSPEAKER:
1982 if (cp->un.value.num_channels != 1)
1983 return EINVAL;
1984 /* fall into */
1985 default:
1986 switch (cp->un.value.num_channels) {
1987 case 1:
1988 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1989 sc->gain[cp->dev][SB_LEFT];
1990 break;
1991 case 2:
1992 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1993 sc->gain[cp->dev][SB_LEFT];
1994 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1995 sc->gain[cp->dev][SB_RIGHT];
1996 break;
1997 default:
1998 return EINVAL;
1999 }
2000 break;
2001 }
2002 break;
2003
2004 case SB_RECORD_SOURCE:
2005 if (ISSBM1745(sc))
2006 cp->un.mask = sc->in_mask;
2007 else
2008 cp->un.ord = sc->in_port;
2009 break;
2010
2011 case SB_AGC:
2012 if (!ISSBM1745(sc))
2013 return EINVAL;
2014 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
2015 break;
2016
2017 case SB_CD_IN_MUTE:
2018 case SB_MIC_IN_MUTE:
2019 case SB_LINE_IN_MUTE:
2020 case SB_MIDI_IN_MUTE:
2021 case SB_CD_SWAP:
2022 case SB_MIC_SWAP:
2023 case SB_LINE_SWAP:
2024 case SB_MIDI_SWAP:
2025 case SB_CD_OUT_MUTE:
2026 case SB_MIC_OUT_MUTE:
2027 case SB_LINE_OUT_MUTE:
2028 cp->un.ord = sc->gain[cp->dev][SB_LR];
2029 break;
2030
2031 default:
2032 return EINVAL;
2033 }
2034
2035 return 0;
2036 }
2037
2038 int
2039 sbdsp_mixer_query_devinfo(addr, dip)
2040 void *addr;
2041 mixer_devinfo_t *dip;
2042 {
2043 struct sbdsp_softc *sc = addr;
2044 int chan, class, is1745;
2045
2046 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
2047 sc->sc_mixer_model, dip->index));
2048
2049 if (sc->sc_mixer_model == SBM_NONE)
2050 return ENXIO;
2051
2052 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2053 is1745 = ISSBM1745(sc);
2054 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2055
2056 switch (dip->index) {
2057 case SB_MASTER_VOL:
2058 dip->type = AUDIO_MIXER_VALUE;
2059 dip->mixer_class = SB_OUTPUT_CLASS;
2060 dip->prev = dip->next = AUDIO_MIXER_LAST;
2061 strcpy(dip->label.name, AudioNmaster);
2062 dip->un.v.num_channels = chan;
2063 strcpy(dip->un.v.units.name, AudioNvolume);
2064 return 0;
2065 case SB_MIDI_VOL:
2066 dip->type = AUDIO_MIXER_VALUE;
2067 dip->mixer_class = class;
2068 dip->prev = AUDIO_MIXER_LAST;
2069 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2070 strcpy(dip->label.name, AudioNfmsynth);
2071 dip->un.v.num_channels = chan;
2072 strcpy(dip->un.v.units.name, AudioNvolume);
2073 return 0;
2074 case SB_CD_VOL:
2075 dip->type = AUDIO_MIXER_VALUE;
2076 dip->mixer_class = class;
2077 dip->prev = AUDIO_MIXER_LAST;
2078 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2079 strcpy(dip->label.name, AudioNcd);
2080 dip->un.v.num_channels = chan;
2081 strcpy(dip->un.v.units.name, AudioNvolume);
2082 return 0;
2083 case SB_VOICE_VOL:
2084 dip->type = AUDIO_MIXER_VALUE;
2085 dip->mixer_class = class;
2086 dip->prev = AUDIO_MIXER_LAST;
2087 dip->next = AUDIO_MIXER_LAST;
2088 strcpy(dip->label.name, AudioNdac);
2089 dip->un.v.num_channels = chan;
2090 strcpy(dip->un.v.units.name, AudioNvolume);
2091 return 0;
2092 case SB_OUTPUT_CLASS:
2093 dip->type = AUDIO_MIXER_CLASS;
2094 dip->mixer_class = SB_OUTPUT_CLASS;
2095 dip->next = dip->prev = AUDIO_MIXER_LAST;
2096 strcpy(dip->label.name, AudioCOutputs);
2097 return 0;
2098 }
2099
2100 if (sc->sc_mixer_model == SBM_CT1335)
2101 return ENXIO;
2102
2103 switch (dip->index) {
2104 case SB_MIC_VOL:
2105 dip->type = AUDIO_MIXER_VALUE;
2106 dip->mixer_class = class;
2107 dip->prev = AUDIO_MIXER_LAST;
2108 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2109 strcpy(dip->label.name, AudioNmicrophone);
2110 dip->un.v.num_channels = 1;
2111 strcpy(dip->un.v.units.name, AudioNvolume);
2112 return 0;
2113
2114 case SB_LINE_IN_VOL:
2115 dip->type = AUDIO_MIXER_VALUE;
2116 dip->mixer_class = class;
2117 dip->prev = AUDIO_MIXER_LAST;
2118 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2119 strcpy(dip->label.name, AudioNline);
2120 dip->un.v.num_channels = 2;
2121 strcpy(dip->un.v.units.name, AudioNvolume);
2122 return 0;
2123
2124 case SB_RECORD_SOURCE:
2125 dip->mixer_class = SB_RECORD_CLASS;
2126 dip->prev = dip->next = AUDIO_MIXER_LAST;
2127 strcpy(dip->label.name, AudioNsource);
2128 if (ISSBM1745(sc)) {
2129 dip->type = AUDIO_MIXER_SET;
2130 dip->un.s.num_mem = 4;
2131 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2132 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2133 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2134 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2135 strcpy(dip->un.s.member[2].label.name, AudioNline);
2136 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2137 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2138 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2139 } else {
2140 dip->type = AUDIO_MIXER_ENUM;
2141 dip->un.e.num_mem = 3;
2142 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2143 dip->un.e.member[0].ord = SB_MIC_VOL;
2144 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2145 dip->un.e.member[1].ord = SB_CD_VOL;
2146 strcpy(dip->un.e.member[2].label.name, AudioNline);
2147 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2148 }
2149 return 0;
2150
2151 case SB_BASS:
2152 dip->prev = dip->next = AUDIO_MIXER_LAST;
2153 strcpy(dip->label.name, AudioNbass);
2154 if (sc->sc_mixer_model == SBM_CT1745) {
2155 dip->type = AUDIO_MIXER_VALUE;
2156 dip->mixer_class = SB_EQUALIZATION_CLASS;
2157 dip->un.v.num_channels = 2;
2158 strcpy(dip->un.v.units.name, AudioNbass);
2159 } else {
2160 dip->type = AUDIO_MIXER_ENUM;
2161 dip->mixer_class = SB_INPUT_CLASS;
2162 dip->un.e.num_mem = 2;
2163 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2164 dip->un.e.member[0].ord = 0;
2165 strcpy(dip->un.e.member[1].label.name, AudioNon);
2166 dip->un.e.member[1].ord = 1;
2167 }
2168 return 0;
2169
2170 case SB_TREBLE:
2171 dip->prev = dip->next = AUDIO_MIXER_LAST;
2172 strcpy(dip->label.name, AudioNtreble);
2173 if (sc->sc_mixer_model == SBM_CT1745) {
2174 dip->type = AUDIO_MIXER_VALUE;
2175 dip->mixer_class = SB_EQUALIZATION_CLASS;
2176 dip->un.v.num_channels = 2;
2177 strcpy(dip->un.v.units.name, AudioNtreble);
2178 } else {
2179 dip->type = AUDIO_MIXER_ENUM;
2180 dip->mixer_class = SB_INPUT_CLASS;
2181 dip->un.e.num_mem = 2;
2182 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2183 dip->un.e.member[0].ord = 0;
2184 strcpy(dip->un.e.member[1].label.name, AudioNon);
2185 dip->un.e.member[1].ord = 1;
2186 }
2187 return 0;
2188
2189 case SB_RECORD_CLASS: /* record source class */
2190 dip->type = AUDIO_MIXER_CLASS;
2191 dip->mixer_class = SB_RECORD_CLASS;
2192 dip->next = dip->prev = AUDIO_MIXER_LAST;
2193 strcpy(dip->label.name, AudioCRecord);
2194 return 0;
2195
2196 }
2197
2198 if (sc->sc_mixer_model == SBM_CT1345)
2199 return ENXIO;
2200
2201 switch(dip->index) {
2202 case SB_PCSPEAKER:
2203 dip->type = AUDIO_MIXER_VALUE;
2204 dip->mixer_class = SB_INPUT_CLASS;
2205 dip->prev = dip->next = AUDIO_MIXER_LAST;
2206 strcpy(dip->label.name, "pc_speaker");
2207 dip->un.v.num_channels = 1;
2208 strcpy(dip->un.v.units.name, AudioNvolume);
2209 return 0;
2210
2211 case SB_INPUT_GAIN:
2212 dip->type = AUDIO_MIXER_VALUE;
2213 dip->mixer_class = SB_INPUT_CLASS;
2214 dip->prev = dip->next = AUDIO_MIXER_LAST;
2215 strcpy(dip->label.name, AudioNinput);
2216 dip->un.v.num_channels = 2;
2217 strcpy(dip->un.v.units.name, AudioNvolume);
2218 return 0;
2219
2220 case SB_OUTPUT_GAIN:
2221 dip->type = AUDIO_MIXER_VALUE;
2222 dip->mixer_class = SB_OUTPUT_CLASS;
2223 dip->prev = dip->next = AUDIO_MIXER_LAST;
2224 strcpy(dip->label.name, AudioNoutput);
2225 dip->un.v.num_channels = 2;
2226 strcpy(dip->un.v.units.name, AudioNvolume);
2227 return 0;
2228
2229 case SB_AGC:
2230 dip->type = AUDIO_MIXER_ENUM;
2231 dip->mixer_class = SB_INPUT_CLASS;
2232 dip->prev = dip->next = AUDIO_MIXER_LAST;
2233 strcpy(dip->label.name, "AGC");
2234 dip->un.e.num_mem = 2;
2235 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2236 dip->un.e.member[0].ord = 0;
2237 strcpy(dip->un.e.member[1].label.name, AudioNon);
2238 dip->un.e.member[1].ord = 1;
2239 return 0;
2240
2241 case SB_INPUT_CLASS:
2242 dip->type = AUDIO_MIXER_CLASS;
2243 dip->mixer_class = SB_INPUT_CLASS;
2244 dip->next = dip->prev = AUDIO_MIXER_LAST;
2245 strcpy(dip->label.name, AudioCInputs);
2246 return 0;
2247
2248 case SB_EQUALIZATION_CLASS:
2249 dip->type = AUDIO_MIXER_CLASS;
2250 dip->mixer_class = SB_EQUALIZATION_CLASS;
2251 dip->next = dip->prev = AUDIO_MIXER_LAST;
2252 strcpy(dip->label.name, AudioCEqualization);
2253 return 0;
2254
2255 case SB_CD_IN_MUTE:
2256 dip->prev = SB_CD_VOL;
2257 dip->next = SB_CD_SWAP;
2258 dip->mixer_class = SB_INPUT_CLASS;
2259 goto mute;
2260
2261 case SB_MIC_IN_MUTE:
2262 dip->prev = SB_MIC_VOL;
2263 dip->next = SB_MIC_SWAP;
2264 dip->mixer_class = SB_INPUT_CLASS;
2265 goto mute;
2266
2267 case SB_LINE_IN_MUTE:
2268 dip->prev = SB_LINE_IN_VOL;
2269 dip->next = SB_LINE_SWAP;
2270 dip->mixer_class = SB_INPUT_CLASS;
2271 goto mute;
2272
2273 case SB_MIDI_IN_MUTE:
2274 dip->prev = SB_MIDI_VOL;
2275 dip->next = SB_MIDI_SWAP;
2276 dip->mixer_class = SB_INPUT_CLASS;
2277 goto mute;
2278
2279 case SB_CD_SWAP:
2280 dip->prev = SB_CD_IN_MUTE;
2281 dip->next = SB_CD_OUT_MUTE;
2282 goto swap;
2283
2284 case SB_MIC_SWAP:
2285 dip->prev = SB_MIC_IN_MUTE;
2286 dip->next = SB_MIC_OUT_MUTE;
2287 goto swap;
2288
2289 case SB_LINE_SWAP:
2290 dip->prev = SB_LINE_IN_MUTE;
2291 dip->next = SB_LINE_OUT_MUTE;
2292 goto swap;
2293
2294 case SB_MIDI_SWAP:
2295 dip->prev = SB_MIDI_IN_MUTE;
2296 dip->next = AUDIO_MIXER_LAST;
2297 swap:
2298 dip->mixer_class = SB_INPUT_CLASS;
2299 strcpy(dip->label.name, AudioNswap);
2300 goto mute1;
2301
2302 case SB_CD_OUT_MUTE:
2303 dip->prev = SB_CD_SWAP;
2304 dip->next = AUDIO_MIXER_LAST;
2305 dip->mixer_class = SB_OUTPUT_CLASS;
2306 goto mute;
2307
2308 case SB_MIC_OUT_MUTE:
2309 dip->prev = SB_MIC_SWAP;
2310 dip->next = AUDIO_MIXER_LAST;
2311 dip->mixer_class = SB_OUTPUT_CLASS;
2312 goto mute;
2313
2314 case SB_LINE_OUT_MUTE:
2315 dip->prev = SB_LINE_SWAP;
2316 dip->next = AUDIO_MIXER_LAST;
2317 dip->mixer_class = SB_OUTPUT_CLASS;
2318 mute:
2319 strcpy(dip->label.name, AudioNmute);
2320 mute1:
2321 dip->type = AUDIO_MIXER_ENUM;
2322 dip->un.e.num_mem = 2;
2323 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2324 dip->un.e.member[0].ord = 0;
2325 strcpy(dip->un.e.member[1].label.name, AudioNon);
2326 dip->un.e.member[1].ord = 1;
2327 return 0;
2328
2329 }
2330
2331 return ENXIO;
2332 }
2333
2334 void *
2335 sb_malloc(addr, size, pool, flags)
2336 void *addr;
2337 unsigned long size;
2338 int pool;
2339 int flags;
2340 {
2341 struct sbdsp_softc *sc = addr;
2342
2343 return isa_malloc(sc->sc_isa, 4, size, pool, flags);
2344 }
2345
2346 void
2347 sb_free(addr, ptr, pool)
2348 void *addr;
2349 void *ptr;
2350 int pool;
2351 {
2352 isa_free(ptr, pool);
2353 }
2354
2355 unsigned long
2356 sb_round(addr, size)
2357 void *addr;
2358 unsigned long size;
2359 {
2360 if (size > MAX_ISADMA)
2361 size = MAX_ISADMA;
2362 return size;
2363 }
2364
2365 int
2366 sb_mappage(addr, mem, off, prot)
2367 void *addr;
2368 void *mem;
2369 int off;
2370 int prot;
2371 {
2372 return isa_mappage(mem, off, prot);
2373 }
2374
2375 int
2376 sbdsp_get_props(addr)
2377 void *addr;
2378 {
2379 struct sbdsp_softc *sc = addr;
2380 return AUDIO_PROP_MMAP |
2381 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2382 }
2383