sbdsp.c revision 1.86 1 /* $NetBSD: sbdsp.c,v 1.86 1998/08/10 02:19:18 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47 #include "midi.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/ioctl.h>
53 #include <sys/syslog.h>
54 #include <sys/device.h>
55 #include <sys/proc.h>
56 #include <sys/buf.h>
57 #include <vm/vm.h>
58
59 #include <machine/cpu.h>
60 #include <machine/intr.h>
61 #include <machine/bus.h>
62
63 #include <sys/audioio.h>
64 #include <dev/audio_if.h>
65 #include <dev/mulaw.h>
66 #include <dev/auconv.h>
67
68 #include <dev/isa/isavar.h>
69 #include <dev/isa/isadmavar.h>
70
71 #include <dev/isa/sbreg.h>
72 #include <dev/isa/sbdspvar.h>
73
74
75 #ifdef AUDIO_DEBUG
76 #define DPRINTF(x) if (sbdspdebug) printf x
77 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
78 int sbdspdebug = 0;
79 #else
80 #define DPRINTF(x)
81 #define DPRINTFN(n,x)
82 #endif
83
84 #ifndef SBDSP_NPOLL
85 #define SBDSP_NPOLL 3000
86 #endif
87
88 struct {
89 int wdsp;
90 int rdsp;
91 int wmidi;
92 } sberr;
93
94 /*
95 * Time constant routines follow. See SBK, section 12.
96 * Although they don't come out and say it (in the docs),
97 * the card clearly uses a 1MHz countdown timer, as the
98 * low-speed formula (p. 12-4) is:
99 * tc = 256 - 10^6 / sr
100 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
101 * and a 256MHz clock is used:
102 * tc = 65536 - 256 * 10^ 6 / sr
103 * Since we can only use the upper byte of the HS TC, the two formulae
104 * are equivalent. (Why didn't they say so?) E.g.,
105 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
106 *
107 * The crossover point (from low- to high-speed modes) is different
108 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
109 *
110 * SBPRO SB20
111 * ----- --------
112 * input ls min 4 KHz 4 KHz
113 * input ls max 23 KHz 13 KHz
114 * input hs max 44.1 KHz 15 KHz
115 * output ls min 4 KHz 4 KHz
116 * output ls max 23 KHz 23 KHz
117 * output hs max 44.1 KHz 44.1 KHz
118 */
119 /* XXX Should we round the tc?
120 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
121 */
122 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
123 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
124
125 struct sbmode {
126 short model;
127 u_char channels;
128 u_char precision;
129 u_short lowrate, highrate;
130 u_char cmd;
131 u_char cmdchan;
132 };
133 static struct sbmode sbpmodes[] = {
134 { SB_1, 1, 8, 4000, 22727, SB_DSP_WDMA },
135 { SB_20, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
136 { SB_2x, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
137 { SB_2x, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
138 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP },
139 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT },
140 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT },
141 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
142 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_WDMA_LOOP, SB_DSP_RECORD_MONO },
143 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_MONO },
144 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_OUTPUT, SB_DSP_RECORD_STEREO },
145 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_WDMA_LOOP, JAZZ16_RECORD_MONO },
146 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_MONO },
147 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_OUTPUT, JAZZ16_RECORD_STEREO },
148 { SB_16, 1, 8, 5000, 45000, SB_DSP16_WDMA_8 },
149 { SB_16, 2, 8, 5000, 45000, SB_DSP16_WDMA_8 },
150 #define PLAY16 15 /* must be the index of the next entry in the table */
151 { SB_16, 1, 16, 5000, 45000, SB_DSP16_WDMA_16 },
152 { SB_16, 2, 16, 5000, 45000, SB_DSP16_WDMA_16 },
153 { -1 }
154 };
155 static struct sbmode sbrmodes[] = {
156 { SB_1, 1, 8, 4000, 12987, SB_DSP_RDMA },
157 { SB_20, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
158 { SB_2x, 1, 8, 4000, 12987, SB_DSP_RDMA_LOOP },
159 { SB_2x, 1, 8, 12987, 14925, SB_DSP_HS_INPUT },
160 { SB_PRO, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
161 { SB_PRO, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
162 { SB_PRO, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
163 { SB_JAZZ, 1, 8, 4000, 22727, SB_DSP_RDMA_LOOP, SB_DSP_RECORD_MONO },
164 { SB_JAZZ, 1, 8, 22727, 45454, SB_DSP_HS_INPUT, SB_DSP_RECORD_MONO },
165 { SB_JAZZ, 2, 8, 11025, 22727, SB_DSP_HS_INPUT, SB_DSP_RECORD_STEREO },
166 { SB_JAZZ, 1, 16, 4000, 22727, SB_DSP_RDMA_LOOP, JAZZ16_RECORD_MONO },
167 { SB_JAZZ, 1, 16, 22727, 45454, SB_DSP_HS_INPUT, JAZZ16_RECORD_MONO },
168 { SB_JAZZ, 2, 16, 11025, 22727, SB_DSP_HS_INPUT, JAZZ16_RECORD_STEREO },
169 { SB_16, 1, 8, 5000, 45000, SB_DSP16_RDMA_8 },
170 { SB_16, 2, 8, 5000, 45000, SB_DSP16_RDMA_8 },
171 { SB_16, 1, 16, 5000, 45000, SB_DSP16_RDMA_16 },
172 { SB_16, 2, 16, 5000, 45000, SB_DSP16_RDMA_16 },
173 { -1 }
174 };
175
176 void sbversion __P((struct sbdsp_softc *));
177 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
178 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
179 void sbdsp_to __P((void *));
180 void sbdsp_pause __P((struct sbdsp_softc *));
181 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
182 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
183 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
184 void sbdsp_set_ifilter __P((void *, int));
185 int sbdsp_get_ifilter __P((void *));
186
187 int sbdsp_block_output __P((void *));
188 int sbdsp_block_input __P((void *));
189 static int sbdsp_adjust __P((int, int));
190
191 int sbdsp_midi_intr __P((void *));
192
193 #ifdef AUDIO_DEBUG
194 void sb_printsc __P((struct sbdsp_softc *));
195
196 void
197 sb_printsc(sc)
198 struct sbdsp_softc *sc;
199 {
200 int i;
201
202 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
203 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
204 sc->sc_drq8, sc->sc_drq16,
205 sc->sc_iobase, sc->sc_irq);
206 printf("irate %d itc %x orate %d otc %x\n",
207 sc->sc_i.rate, sc->sc_i.tc,
208 sc->sc_o.rate, sc->sc_o.tc);
209 printf("spkron %u nintr %lu\n",
210 sc->spkr_state, sc->sc_interrupts);
211 printf("intr8 %p arg8 %p\n",
212 sc->sc_intr8, sc->sc_arg16);
213 printf("intr16 %p arg16 %p\n",
214 sc->sc_intr8, sc->sc_arg16);
215 printf("gain:");
216 for (i = 0; i < SB_NDEVS; i++)
217 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
218 printf("\n");
219 }
220 #endif /* AUDIO_DEBUG */
221
222 /*
223 * Probe / attach routines.
224 */
225
226 /*
227 * Probe for the soundblaster hardware.
228 */
229 int
230 sbdsp_probe(sc)
231 struct sbdsp_softc *sc;
232 {
233
234 if (sbdsp_reset(sc) < 0) {
235 DPRINTF(("sbdsp: couldn't reset card\n"));
236 return 0;
237 }
238 /* if flags set, go and probe the jazz16 stuff */
239 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
240 sbdsp_jazz16_probe(sc);
241 else
242 sbversion(sc);
243 if (sc->sc_model == SB_UNK) {
244 /* Unknown SB model found. */
245 DPRINTF(("sbdsp: unknown SB model found\n"));
246 return 0;
247 }
248 return 1;
249 }
250
251 /*
252 * Try add-on stuff for Jazz16.
253 */
254 void
255 sbdsp_jazz16_probe(sc)
256 struct sbdsp_softc *sc;
257 {
258 static u_char jazz16_irq_conf[16] = {
259 -1, -1, 0x02, 0x03,
260 -1, 0x01, -1, 0x04,
261 -1, 0x02, 0x05, -1,
262 -1, -1, -1, 0x06};
263 static u_char jazz16_drq_conf[8] = {
264 -1, 0x01, -1, 0x02,
265 -1, 0x03, -1, 0x04};
266
267 bus_space_tag_t iot = sc->sc_iot;
268 bus_space_handle_t ioh;
269
270 sbversion(sc);
271
272 DPRINTF(("jazz16 probe\n"));
273
274 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
275 DPRINTF(("bus map failed\n"));
276 return;
277 }
278
279 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
280 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
281 DPRINTF(("drq/irq check failed\n"));
282 goto done; /* give up, we can't do it. */
283 }
284
285 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
286 delay(10000); /* delay 10 ms */
287 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
288 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
289
290 if (sbdsp_reset(sc) < 0) {
291 DPRINTF(("sbdsp_reset check failed\n"));
292 goto done; /* XXX? what else could we do? */
293 }
294
295 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
296 DPRINTF(("read16 setup failed\n"));
297 goto done;
298 }
299
300 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
301 DPRINTF(("read16 failed\n"));
302 goto done;
303 }
304
305 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
306 sc->sc_drq16 = sc->sc_drq8;
307 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
308 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
309 jazz16_drq_conf[sc->sc_drq8]) ||
310 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
311 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
312 } else {
313 DPRINTF(("jazz16 detected!\n"));
314 sc->sc_model = SB_JAZZ;
315 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
316 }
317
318 done:
319 bus_space_unmap(iot, ioh, 1);
320 }
321
322 /*
323 * Attach hardware to driver, attach hardware driver to audio
324 * pseudo-device driver .
325 */
326 void
327 sbdsp_attach(sc)
328 struct sbdsp_softc *sc;
329 {
330 struct audio_params pparams, rparams;
331 int i;
332 u_int v;
333
334 /*
335 * Create our DMA maps.
336 */
337 if (sc->sc_drq8 != -1) {
338 if (isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
339 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
340 printf("%s: can't create map for drq %d\n",
341 sc->sc_dev.dv_xname, sc->sc_drq8);
342 return;
343 }
344 }
345 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
346 if (isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
347 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
348 printf("%s: can't create map for drq %d\n",
349 sc->sc_dev.dv_xname, sc->sc_drq16);
350 return;
351 }
352 }
353
354 pparams = audio_default;
355 rparams = audio_default;
356 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
357
358 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
359
360 if (sc->sc_mixer_model != SBM_NONE) {
361 /* Reset the mixer.*/
362 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
363 /* And set our own default values */
364 for (i = 0; i < SB_NDEVS; i++) {
365 switch(i) {
366 case SB_MIC_VOL:
367 case SB_LINE_IN_VOL:
368 v = 0;
369 break;
370 case SB_BASS:
371 case SB_TREBLE:
372 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
373 break;
374 case SB_CD_IN_MUTE:
375 case SB_MIC_IN_MUTE:
376 case SB_LINE_IN_MUTE:
377 case SB_MIDI_IN_MUTE:
378 case SB_CD_SWAP:
379 case SB_MIC_SWAP:
380 case SB_LINE_SWAP:
381 case SB_MIDI_SWAP:
382 case SB_CD_OUT_MUTE:
383 case SB_MIC_OUT_MUTE:
384 case SB_LINE_OUT_MUTE:
385 v = 0;
386 break;
387 default:
388 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
389 break;
390 }
391 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
392 sbdsp_set_mixer_gain(sc, i);
393 }
394 sc->in_filter = 0; /* no filters turned on, please */
395 }
396
397 printf(": dsp v%d.%02d%s\n",
398 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
399 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
400
401 sc->sc_fullduplex = ISSB16CLASS(sc) &&
402 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
403 sc->sc_drq8 != sc->sc_drq16;
404 }
405
406 void
407 sbdsp_mix_write(sc, mixerport, val)
408 struct sbdsp_softc *sc;
409 int mixerport;
410 int val;
411 {
412 bus_space_tag_t iot = sc->sc_iot;
413 bus_space_handle_t ioh = sc->sc_ioh;
414 int s;
415
416 s = splaudio();
417 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
418 delay(20);
419 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
420 delay(30);
421 splx(s);
422 }
423
424 int
425 sbdsp_mix_read(sc, mixerport)
426 struct sbdsp_softc *sc;
427 int mixerport;
428 {
429 bus_space_tag_t iot = sc->sc_iot;
430 bus_space_handle_t ioh = sc->sc_ioh;
431 int val;
432 int s;
433
434 s = splaudio();
435 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
436 delay(20);
437 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
438 delay(30);
439 splx(s);
440 return val;
441 }
442
443 /*
444 * Various routines to interface to higher level audio driver
445 */
446
447 int
448 sbdsp_query_encoding(addr, fp)
449 void *addr;
450 struct audio_encoding *fp;
451 {
452 struct sbdsp_softc *sc = addr;
453 int emul;
454
455 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
456
457 switch (fp->index) {
458 case 0:
459 strcpy(fp->name, AudioEulinear);
460 fp->encoding = AUDIO_ENCODING_ULINEAR;
461 fp->precision = 8;
462 fp->flags = 0;
463 return 0;
464 case 1:
465 strcpy(fp->name, AudioEmulaw);
466 fp->encoding = AUDIO_ENCODING_ULAW;
467 fp->precision = 8;
468 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
469 return 0;
470 case 2:
471 strcpy(fp->name, AudioEalaw);
472 fp->encoding = AUDIO_ENCODING_ALAW;
473 fp->precision = 8;
474 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
475 return 0;
476 case 3:
477 strcpy(fp->name, AudioEslinear);
478 fp->encoding = AUDIO_ENCODING_SLINEAR;
479 fp->precision = 8;
480 fp->flags = emul;
481 return 0;
482 }
483 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
484 return EINVAL;
485
486 switch(fp->index) {
487 case 4:
488 strcpy(fp->name, AudioEslinear_le);
489 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
490 fp->precision = 16;
491 fp->flags = 0;
492 return 0;
493 case 5:
494 strcpy(fp->name, AudioEulinear_le);
495 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
496 fp->precision = 16;
497 fp->flags = emul;
498 return 0;
499 case 6:
500 strcpy(fp->name, AudioEslinear_be);
501 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
502 fp->precision = 16;
503 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
504 return 0;
505 case 7:
506 strcpy(fp->name, AudioEulinear_be);
507 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
508 fp->precision = 16;
509 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
510 return 0;
511 default:
512 return EINVAL;
513 }
514 return 0;
515 }
516
517 int
518 sbdsp_set_params(addr, setmode, usemode, play, rec)
519 void *addr;
520 int setmode, usemode;
521 struct audio_params *play, *rec;
522 {
523 struct sbdsp_softc *sc = addr;
524 struct sbmode *m;
525 u_int rate, tc, bmode;
526 void (*swcode) __P((void *, u_char *buf, int cnt));
527 int factor;
528 int model;
529 int chan;
530 struct audio_params *p;
531 int mode;
532
533 if (sc->sc_open == SB_OPEN_MIDI)
534 return EBUSY;
535
536 model = sc->sc_model;
537 if (model > SB_16)
538 model = SB_16; /* later models work like SB16 */
539
540 /*
541 * Prior to the SB16, we have only one clock, so make the sample
542 * rates match.
543 */
544 if (!ISSB16CLASS(sc) &&
545 play->sample_rate != rec->sample_rate &&
546 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
547 if (setmode == AUMODE_PLAY) {
548 rec->sample_rate = play->sample_rate;
549 setmode |= AUMODE_RECORD;
550 } else if (setmode == AUMODE_RECORD) {
551 play->sample_rate = rec->sample_rate;
552 setmode |= AUMODE_PLAY;
553 } else
554 return (EINVAL);
555 }
556
557 /* Set first record info, then play info */
558 for (mode = AUMODE_RECORD; mode != -1;
559 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
560 if ((setmode & mode) == 0)
561 continue;
562
563 p = mode == AUMODE_PLAY ? play : rec;
564 /* Locate proper commands */
565 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
566 m->model != -1; m++) {
567 if (model == m->model &&
568 p->channels == m->channels &&
569 p->precision == m->precision &&
570 p->sample_rate >= m->lowrate &&
571 p->sample_rate < m->highrate)
572 break;
573 }
574 if (m->model == -1)
575 return EINVAL;
576 rate = p->sample_rate;
577 swcode = 0;
578 factor = 1;
579 tc = 1;
580 bmode = -1;
581 if (model == SB_16) {
582 switch (p->encoding) {
583 case AUDIO_ENCODING_SLINEAR_BE:
584 if (p->precision == 16)
585 swcode = swap_bytes;
586 /* fall into */
587 case AUDIO_ENCODING_SLINEAR_LE:
588 bmode = SB_BMODE_SIGNED;
589 break;
590 case AUDIO_ENCODING_ULINEAR_BE:
591 if (p->precision == 16)
592 swcode = swap_bytes;
593 /* fall into */
594 case AUDIO_ENCODING_ULINEAR_LE:
595 bmode = SB_BMODE_UNSIGNED;
596 break;
597 case AUDIO_ENCODING_ULAW:
598 if (mode == AUMODE_PLAY) {
599 swcode = mulaw_to_ulinear16;
600 factor = 2;
601 m = &sbpmodes[PLAY16];
602 } else
603 swcode = ulinear8_to_mulaw;
604 bmode = SB_BMODE_UNSIGNED;
605 break;
606 case AUDIO_ENCODING_ALAW:
607 if (mode == AUMODE_PLAY) {
608 swcode = alaw_to_ulinear16;
609 factor = 2;
610 m = &sbpmodes[PLAY16];
611 } else
612 swcode = ulinear8_to_alaw;
613 bmode = SB_BMODE_UNSIGNED;
614 break;
615 default:
616 return EINVAL;
617 }
618 if (p->channels == 2)
619 bmode |= SB_BMODE_STEREO;
620 } else if (m->model == SB_JAZZ && m->precision == 16) {
621 switch (p->encoding) {
622 case AUDIO_ENCODING_SLINEAR_LE:
623 break;
624 case AUDIO_ENCODING_ULINEAR_LE:
625 swcode = change_sign16;
626 break;
627 case AUDIO_ENCODING_SLINEAR_BE:
628 swcode = swap_bytes;
629 break;
630 case AUDIO_ENCODING_ULINEAR_BE:
631 swcode = mode == AUMODE_PLAY ?
632 swap_bytes_change_sign16 : change_sign16_swap_bytes;
633 break;
634 case AUDIO_ENCODING_ULAW:
635 swcode = mode == AUMODE_PLAY ?
636 mulaw_to_ulinear8 : ulinear8_to_mulaw;
637 break;
638 case AUDIO_ENCODING_ALAW:
639 swcode = mode == AUMODE_PLAY ?
640 alaw_to_ulinear8 : ulinear8_to_alaw;
641 break;
642 default:
643 return EINVAL;
644 }
645 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
646 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
647 } else {
648 switch (p->encoding) {
649 case AUDIO_ENCODING_SLINEAR_BE:
650 case AUDIO_ENCODING_SLINEAR_LE:
651 swcode = change_sign8;
652 break;
653 case AUDIO_ENCODING_ULINEAR_BE:
654 case AUDIO_ENCODING_ULINEAR_LE:
655 break;
656 case AUDIO_ENCODING_ULAW:
657 swcode = mode == AUMODE_PLAY ?
658 mulaw_to_ulinear8 : ulinear8_to_mulaw;
659 break;
660 case AUDIO_ENCODING_ALAW:
661 swcode = mode == AUMODE_PLAY ?
662 alaw_to_ulinear8 : ulinear8_to_alaw;
663 break;
664 default:
665 return EINVAL;
666 }
667 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
668 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
669 }
670
671 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
672 if (mode == AUMODE_PLAY) {
673 sc->sc_o.rate = rate;
674 sc->sc_o.tc = tc;
675 sc->sc_o.modep = m;
676 sc->sc_o.bmode = bmode;
677 sc->sc_o.dmachan = chan;
678 } else {
679 sc->sc_i.rate = rate;
680 sc->sc_i.tc = tc;
681 sc->sc_i.modep = m;
682 sc->sc_i.bmode = bmode;
683 sc->sc_i.dmachan = chan;
684 }
685
686 p->sw_code = swcode;
687 p->factor = factor;
688 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
689 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
690 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
691
692 }
693
694 /*
695 * XXX
696 * Should wait for chip to be idle.
697 */
698 sc->sc_i.run = SB_NOTRUNNING;
699 sc->sc_o.run = SB_NOTRUNNING;
700
701 if (sc->sc_fullduplex &&
702 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
703 sc->sc_i.dmachan == sc->sc_o.dmachan) {
704 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
705 if (sc->sc_o.dmachan == sc->sc_drq8) {
706 /* Use 16 bit DMA for playing by expanding the samples. */
707 play->sw_code = linear8_to_linear16;
708 play->factor = 2;
709 sc->sc_o.modep = &sbpmodes[PLAY16];
710 sc->sc_o.dmachan = sc->sc_drq16;
711 } else {
712 return EINVAL;
713 }
714 }
715 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
716 sc->sc_i.dmachan, sc->sc_o.dmachan));
717
718 return 0;
719 }
720
721 void
722 sbdsp_set_ifilter(addr, which)
723 void *addr;
724 int which;
725 {
726 struct sbdsp_softc *sc = addr;
727 int mixval;
728
729 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
730 switch (which) {
731 case 0:
732 mixval |= SBP_FILTER_OFF;
733 break;
734 case SB_TREBLE:
735 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
736 break;
737 case SB_BASS:
738 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
739 break;
740 default:
741 return;
742 }
743 sc->in_filter = mixval & SBP_IFILTER_MASK;
744 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
745 }
746
747 int
748 sbdsp_get_ifilter(addr)
749 void *addr;
750 {
751 struct sbdsp_softc *sc = addr;
752
753 sc->in_filter =
754 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
755 switch (sc->in_filter) {
756 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
757 return SB_TREBLE;
758 case SBP_FILTER_ON|SBP_IFILTER_LOW:
759 return SB_BASS;
760 default:
761 return 0;
762 }
763 }
764
765 int
766 sbdsp_set_in_ports(sc, mask)
767 struct sbdsp_softc *sc;
768 int mask;
769 {
770 int bitsl, bitsr;
771 int sbport;
772
773 if (sc->sc_open == SB_OPEN_MIDI)
774 return EBUSY;
775
776 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
777 sc->sc_mixer_model, mask));
778
779 switch(sc->sc_mixer_model) {
780 case SBM_NONE:
781 return EINVAL;
782 case SBM_CT1335:
783 if (mask != (1 << SB_MIC_VOL))
784 return EINVAL;
785 break;
786 case SBM_CT1345:
787 switch (mask) {
788 case 1 << SB_MIC_VOL:
789 sbport = SBP_FROM_MIC;
790 break;
791 case 1 << SB_LINE_IN_VOL:
792 sbport = SBP_FROM_LINE;
793 break;
794 case 1 << SB_CD_VOL:
795 sbport = SBP_FROM_CD;
796 break;
797 default:
798 return (EINVAL);
799 }
800 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
801 break;
802 case SBM_CT1XX5:
803 case SBM_CT1745:
804 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
805 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
806 return EINVAL;
807 bitsr = 0;
808 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
809 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
810 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
811 bitsl = SB_SRC_R_TO_L(bitsr);
812 if (mask & (1<<SB_MIC_VOL)) {
813 bitsl |= SBP_MIC_SRC;
814 bitsr |= SBP_MIC_SRC;
815 }
816 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
817 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
818 break;
819 }
820 sc->in_mask = mask;
821
822 return 0;
823 }
824
825 int
826 sbdsp_speaker_ctl(addr, newstate)
827 void *addr;
828 int newstate;
829 {
830 struct sbdsp_softc *sc = addr;
831
832 if (sc->sc_open == SB_OPEN_MIDI)
833 return EBUSY;
834
835 if ((newstate == SPKR_ON) &&
836 (sc->spkr_state == SPKR_OFF)) {
837 sbdsp_spkron(sc);
838 sc->spkr_state = SPKR_ON;
839 }
840 if ((newstate == SPKR_OFF) &&
841 (sc->spkr_state == SPKR_ON)) {
842 sbdsp_spkroff(sc);
843 sc->spkr_state = SPKR_OFF;
844 }
845 return 0;
846 }
847
848 int
849 sbdsp_round_blocksize(addr, blk)
850 void *addr;
851 int blk;
852 {
853 return blk & -4; /* round to biggest sample size */
854 }
855
856 int
857 sbdsp_open(addr, flags)
858 void *addr;
859 int flags;
860 {
861 struct sbdsp_softc *sc = addr;
862
863 DPRINTF(("sbdsp_open: sc=%p\n", sc));
864
865 if (sc->sc_open != SB_CLOSED)
866 return EBUSY;
867 if (sbdsp_reset(sc) != 0)
868 return EIO;
869
870 sc->sc_open = SB_OPEN_AUDIO;
871 sc->sc_openflags = flags;
872 sc->sc_intrm = 0;
873 if (ISSBPRO(sc) &&
874 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
875 DPRINTF(("sbdsp_open: can't set mono mode\n"));
876 /* we'll readjust when it's time for DMA. */
877 }
878
879 /*
880 * Leave most things as they were; users must change things if
881 * the previous process didn't leave it they way they wanted.
882 * Looked at another way, it's easy to set up a configuration
883 * in one program and leave it for another to inherit.
884 */
885 DPRINTF(("sbdsp_open: opened\n"));
886
887 return 0;
888 }
889
890 void
891 sbdsp_close(addr)
892 void *addr;
893 {
894 struct sbdsp_softc *sc = addr;
895
896 DPRINTF(("sbdsp_close: sc=%p\n", sc));
897
898 sc->sc_open = SB_CLOSED;
899 sbdsp_spkroff(sc);
900 sc->spkr_state = SPKR_OFF;
901 sc->sc_intr8 = 0;
902 sc->sc_intr16 = 0;
903 sc->sc_intrm = 0;
904 sbdsp_haltdma(sc);
905
906 DPRINTF(("sbdsp_close: closed\n"));
907 }
908
909 /*
910 * Lower-level routines
911 */
912
913 /*
914 * Reset the card.
915 * Return non-zero if the card isn't detected.
916 */
917 int
918 sbdsp_reset(sc)
919 struct sbdsp_softc *sc;
920 {
921 bus_space_tag_t iot = sc->sc_iot;
922 bus_space_handle_t ioh = sc->sc_ioh;
923
924 sc->sc_intr8 = 0;
925 sc->sc_intr16 = 0;
926 if (sc->sc_i.run != SB_NOTRUNNING) {
927 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
928 sc->sc_i.run = SB_NOTRUNNING;
929 }
930 if (sc->sc_o.run != SB_NOTRUNNING) {
931 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
932 sc->sc_o.run = SB_NOTRUNNING;
933 }
934
935 /*
936 * See SBK, section 11.3.
937 * We pulse a reset signal into the card.
938 * Gee, what a brilliant hardware design.
939 */
940 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
941 delay(10);
942 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
943 delay(30);
944 if (sbdsp_rdsp(sc) != SB_MAGIC)
945 return -1;
946
947 return 0;
948 }
949
950 /*
951 * Write a byte to the dsp.
952 * We are at the mercy of the card as we use a
953 * polling loop and wait until it can take the byte.
954 */
955 int
956 sbdsp_wdsp(sc, v)
957 struct sbdsp_softc *sc;
958 int v;
959 {
960 bus_space_tag_t iot = sc->sc_iot;
961 bus_space_handle_t ioh = sc->sc_ioh;
962 int i;
963 u_char x;
964
965 for (i = SBDSP_NPOLL; --i >= 0; ) {
966 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
967 delay(10);
968 if ((x & SB_DSP_BUSY) == 0) {
969 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
970 delay(10);
971 return 0;
972 }
973 }
974 ++sberr.wdsp;
975 return -1;
976 }
977
978 /*
979 * Read a byte from the DSP, using polling.
980 */
981 int
982 sbdsp_rdsp(sc)
983 struct sbdsp_softc *sc;
984 {
985 bus_space_tag_t iot = sc->sc_iot;
986 bus_space_handle_t ioh = sc->sc_ioh;
987 int i;
988 u_char x;
989
990 for (i = SBDSP_NPOLL; --i >= 0; ) {
991 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
992 delay(10);
993 if (x & SB_DSP_READY) {
994 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
995 delay(10);
996 return x;
997 }
998 }
999 ++sberr.rdsp;
1000 return -1;
1001 }
1002
1003 /*
1004 * Doing certain things (like toggling the speaker) make
1005 * the SB hardware go away for a while, so pause a little.
1006 */
1007 void
1008 sbdsp_to(arg)
1009 void *arg;
1010 {
1011 wakeup(arg);
1012 }
1013
1014 void
1015 sbdsp_pause(sc)
1016 struct sbdsp_softc *sc;
1017 {
1018 extern int hz;
1019
1020 timeout(sbdsp_to, sbdsp_to, hz/8);
1021 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1022 }
1023
1024 /*
1025 * Turn on the speaker. The SBK documention says this operation
1026 * can take up to 1/10 of a second. Higher level layers should
1027 * probably let the task sleep for this amount of time after
1028 * calling here. Otherwise, things might not work (because
1029 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1030 *
1031 * These engineers had their heads up their ass when
1032 * they designed this card.
1033 */
1034 void
1035 sbdsp_spkron(sc)
1036 struct sbdsp_softc *sc;
1037 {
1038 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1039 sbdsp_pause(sc);
1040 }
1041
1042 /*
1043 * Turn off the speaker; see comment above.
1044 */
1045 void
1046 sbdsp_spkroff(sc)
1047 struct sbdsp_softc *sc;
1048 {
1049 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1050 sbdsp_pause(sc);
1051 }
1052
1053 /*
1054 * Read the version number out of the card.
1055 * Store version information in the softc.
1056 */
1057 void
1058 sbversion(sc)
1059 struct sbdsp_softc *sc;
1060 {
1061 int v;
1062
1063 sc->sc_model = SB_UNK;
1064 sc->sc_version = 0;
1065 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1066 return;
1067 v = sbdsp_rdsp(sc) << 8;
1068 v |= sbdsp_rdsp(sc);
1069 if (v < 0)
1070 return;
1071 sc->sc_version = v;
1072 switch(SBVER_MAJOR(v)) {
1073 case 1:
1074 sc->sc_mixer_model = SBM_NONE;
1075 sc->sc_model = SB_1;
1076 break;
1077 case 2:
1078 /* Some SB2 have a mixer, some don't. */
1079 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1080 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1081 /* Check if we can read back the mixer values. */
1082 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1083 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1084 sc->sc_mixer_model = SBM_CT1335;
1085 else
1086 sc->sc_mixer_model = SBM_NONE;
1087 if (SBVER_MINOR(v) == 0)
1088 sc->sc_model = SB_20;
1089 else
1090 sc->sc_model = SB_2x;
1091 break;
1092 case 3:
1093 sc->sc_mixer_model = SBM_CT1345;
1094 sc->sc_model = SB_PRO;
1095 break;
1096 case 4:
1097 #if 0
1098 /* XXX This does not work */
1099 /* Most SB16 have a tone controls, but some don't. */
1100 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1101 /* Check if we can read back the mixer value. */
1102 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1103 sc->sc_mixer_model = SBM_CT1745;
1104 else
1105 sc->sc_mixer_model = SBM_CT1XX5;
1106 #else
1107 sc->sc_mixer_model = SBM_CT1745;
1108 #endif
1109 #if 0
1110 /* XXX figure out a good way of determining the model */
1111 /* XXX what about SB_32 */
1112 if (SBVER_MINOR(v) == 16)
1113 sc->sc_model = SB_64;
1114 else
1115 #endif
1116 sc->sc_model = SB_16;
1117 break;
1118 }
1119 }
1120
1121 /*
1122 * Halt a DMA in progress.
1123 */
1124 int
1125 sbdsp_haltdma(addr)
1126 void *addr;
1127 {
1128 struct sbdsp_softc *sc = addr;
1129
1130 DPRINTF(("sbdsp_haltdma: sc=%p\n", sc));
1131
1132 sbdsp_reset(sc);
1133 return 0;
1134 }
1135
1136 int
1137 sbdsp_set_timeconst(sc, tc)
1138 struct sbdsp_softc *sc;
1139 int tc;
1140 {
1141 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1142
1143 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1144 sbdsp_wdsp(sc, tc) < 0)
1145 return EIO;
1146
1147 return 0;
1148 }
1149
1150 int
1151 sbdsp16_set_rate(sc, cmd, rate)
1152 struct sbdsp_softc *sc;
1153 int cmd, rate;
1154 {
1155 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1156
1157 if (sbdsp_wdsp(sc, cmd) < 0 ||
1158 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1159 sbdsp_wdsp(sc, rate) < 0)
1160 return EIO;
1161 return 0;
1162 }
1163
1164 int
1165 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1166 void *addr;
1167 void *start, *end;
1168 int blksize;
1169 void (*intr) __P((void *));
1170 void *arg;
1171 struct audio_params *param;
1172 {
1173 struct sbdsp_softc *sc = addr;
1174 int stereo = param->channels == 2;
1175 int width = param->precision * param->factor;
1176 int filter;
1177
1178 #ifdef DIAGNOSTIC
1179 if (stereo && (blksize & 1)) {
1180 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1181 return (EIO);
1182 }
1183 #endif
1184
1185 sc->sc_intrr = intr;
1186 sc->sc_argr = arg;
1187
1188 if (width == 8) {
1189 #ifdef DIAGNOSTIC
1190 if (sc->sc_i.dmachan != sc->sc_drq8) {
1191 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1192 width, sc->sc_i.dmachan);
1193 return (EIO);
1194 }
1195 #endif
1196 sc->sc_intr8 = sbdsp_block_input;
1197 sc->sc_arg8 = addr;
1198 } else {
1199 #ifdef DIAGNOSTIC
1200 if (sc->sc_i.dmachan != sc->sc_drq16) {
1201 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1202 width, sc->sc_i.dmachan);
1203 return (EIO);
1204 }
1205 #endif
1206 sc->sc_intr16 = sbdsp_block_input;
1207 sc->sc_arg16 = addr;
1208 }
1209
1210 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1211 blksize >>= 1;
1212 --blksize;
1213 sc->sc_i.blksize = blksize;
1214
1215 if (ISSBPRO(sc)) {
1216 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1217 return (EIO);
1218 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1219 sbdsp_mix_write(sc, SBP_INFILTER,
1220 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1221 filter);
1222 }
1223
1224 if (ISSB16CLASS(sc)) {
1225 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1226 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1227 sc->sc_i.rate));
1228 return (EIO);
1229 }
1230 } else {
1231 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1232 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1233 sc->sc_i.rate));
1234 return (EIO);
1235 }
1236 }
1237
1238 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1239 start. end, sc->sc_i.dmachan));
1240 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start, end - start, NULL,
1241 DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1242
1243 return sbdsp_block_input(addr);
1244 }
1245
1246 int
1247 sbdsp_block_input(addr)
1248 void *addr;
1249 {
1250 struct sbdsp_softc *sc = addr;
1251 int cc = sc->sc_i.blksize;
1252
1253 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1254
1255 if (sc->sc_i.run != SB_NOTRUNNING)
1256 sc->sc_intrr(sc->sc_argr);
1257
1258 if (sc->sc_model == SB_1) {
1259 /* Non-looping mode, start DMA */
1260 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1261 sbdsp_wdsp(sc, cc) < 0 ||
1262 sbdsp_wdsp(sc, cc >> 8) < 0) {
1263 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1264 return (EIO);
1265 }
1266 sc->sc_i.run = SB_RUNNING;
1267 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1268 /* Initialize looping PCM */
1269 if (ISSB16CLASS(sc)) {
1270 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1271 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1272 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1273 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1274 sbdsp_wdsp(sc, cc) < 0 ||
1275 sbdsp_wdsp(sc, cc >> 8) < 0) {
1276 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1277 return (EIO);
1278 }
1279 } else {
1280 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1281 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1282 sbdsp_wdsp(sc, cc) < 0 ||
1283 sbdsp_wdsp(sc, cc >> 8) < 0) {
1284 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1285 return (EIO);
1286 }
1287 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1288 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1289 return (EIO);
1290 }
1291 }
1292 sc->sc_i.run = SB_LOOPING;
1293 }
1294
1295 return (0);
1296 }
1297
1298 int
1299 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1300 void *addr;
1301 void *start, *end;
1302 int blksize;
1303 void (*intr) __P((void *));
1304 void *arg;
1305 struct audio_params *param;
1306 {
1307 struct sbdsp_softc *sc = addr;
1308 int stereo = param->channels == 2;
1309 int width = param->precision * param->factor;
1310 int cmd;
1311
1312 #ifdef DIAGNOSTIC
1313 if (stereo && (blksize & 1)) {
1314 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1315 return (EIO);
1316 }
1317 #endif
1318
1319 sc->sc_intrp = intr;
1320 sc->sc_argp = arg;
1321
1322 if (width == 8) {
1323 #ifdef DIAGNOSTIC
1324 if (sc->sc_o.dmachan != sc->sc_drq8) {
1325 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1326 width, sc->sc_o.dmachan);
1327 return (EIO);
1328 }
1329 #endif
1330 sc->sc_intr8 = sbdsp_block_output;
1331 sc->sc_arg8 = addr;
1332 } else {
1333 #ifdef DIAGNOSTIC
1334 if (sc->sc_o.dmachan != sc->sc_drq16) {
1335 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1336 width, sc->sc_o.dmachan);
1337 return (EIO);
1338 }
1339 #endif
1340 sc->sc_intr16 = sbdsp_block_output;
1341 sc->sc_arg16 = addr;
1342 }
1343
1344 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1345 blksize >>= 1;
1346 --blksize;
1347 sc->sc_o.blksize = blksize;
1348
1349 if (ISSBPRO(sc)) {
1350 /* make sure we re-set stereo mixer bit when we start output. */
1351 sbdsp_mix_write(sc, SBP_STEREO,
1352 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1353 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1354 cmd = sc->sc_o.modep->cmdchan;
1355 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1356 return (EIO);
1357 }
1358
1359 if (ISSB16CLASS(sc)) {
1360 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1361 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1362 sc->sc_o.rate));
1363 return (EIO);
1364 }
1365 } else {
1366 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1367 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1368 sc->sc_o.rate));
1369 return (EIO);
1370 }
1371 }
1372
1373 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1374 start, end, sc->sc_o.dmachan));
1375 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start, end - start, NULL,
1376 DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1377
1378 return sbdsp_block_output(addr);
1379 }
1380
1381 int
1382 sbdsp_block_output(addr)
1383 void *addr;
1384 {
1385 struct sbdsp_softc *sc = addr;
1386 int cc = sc->sc_o.blksize;
1387
1388 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1389
1390 if (sc->sc_o.run != SB_NOTRUNNING)
1391 sc->sc_intrp(sc->sc_argp);
1392
1393 if (sc->sc_model == SB_1) {
1394 /* Non-looping mode, initialized. Start DMA and PCM */
1395 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1396 sbdsp_wdsp(sc, cc) < 0 ||
1397 sbdsp_wdsp(sc, cc >> 8) < 0) {
1398 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1399 return (EIO);
1400 }
1401 sc->sc_o.run = SB_RUNNING;
1402 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1403 /* Initialize looping PCM */
1404 if (ISSB16CLASS(sc)) {
1405 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1406 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1407 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1408 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1409 sbdsp_wdsp(sc, cc) < 0 ||
1410 sbdsp_wdsp(sc, cc >> 8) < 0) {
1411 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1412 return (EIO);
1413 }
1414 } else {
1415 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1416 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1417 sbdsp_wdsp(sc, cc) < 0 ||
1418 sbdsp_wdsp(sc, cc >> 8) < 0) {
1419 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1420 return (EIO);
1421 }
1422 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1423 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1424 return (EIO);
1425 }
1426 }
1427 sc->sc_o.run = SB_LOOPING;
1428 }
1429
1430 return (0);
1431 }
1432
1433 /*
1434 * Only the DSP unit on the sound blaster generates interrupts.
1435 * There are three cases of interrupt: reception of a midi byte
1436 * (when mode is enabled), completion of dma transmission, or
1437 * completion of a dma reception.
1438 *
1439 * If there is interrupt sharing or a spurious interrupt occurs
1440 * there is no way to distinguish this on an SB2. So if you have
1441 * an SB2 and experience problems, buy an SB16 (it's only $40).
1442 */
1443 int
1444 sbdsp_intr(arg)
1445 void *arg;
1446 {
1447 struct sbdsp_softc *sc = arg;
1448 u_char irq;
1449
1450 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1451 sc->sc_intr8, sc->sc_intr16));
1452 if (ISSB16CLASS(sc)) {
1453 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1454 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1455 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1456 return 0;
1457 }
1458 } else {
1459 /* XXXX CHECK FOR INTERRUPT */
1460 irq = SBP_IRQ_DMA8;
1461 }
1462
1463 sc->sc_interrupts++;
1464 delay(10); /* XXX why? */
1465
1466 /* clear interrupt */
1467 if (irq & SBP_IRQ_DMA8) {
1468 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1469 if (sc->sc_intr8)
1470 sc->sc_intr8(sc->sc_arg8);
1471 }
1472 if (irq & SBP_IRQ_DMA16) {
1473 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1474 if (sc->sc_intr16)
1475 sc->sc_intr16(sc->sc_arg16);
1476 }
1477 #if NMIDI > 0
1478 if ((irq & SBP_IRQ_MPU401) && sc->sc_hasmpu) {
1479 mpu401_intr(&sc->sc_mpu_sc);
1480 }
1481 #endif
1482 return 1;
1483 }
1484
1485 /* Like val & mask, but make sure the result is correctly rounded. */
1486 #define MAXVAL 256
1487 static int
1488 sbdsp_adjust(val, mask)
1489 int val, mask;
1490 {
1491 val += (MAXVAL - mask) >> 1;
1492 if (val >= MAXVAL)
1493 val = MAXVAL-1;
1494 return val & mask;
1495 }
1496
1497 void
1498 sbdsp_set_mixer_gain(sc, port)
1499 struct sbdsp_softc *sc;
1500 int port;
1501 {
1502 int src, gain;
1503
1504 switch(sc->sc_mixer_model) {
1505 case SBM_NONE:
1506 return;
1507 case SBM_CT1335:
1508 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1509 switch(port) {
1510 case SB_MASTER_VOL:
1511 src = SBP_1335_MASTER_VOL;
1512 break;
1513 case SB_MIDI_VOL:
1514 src = SBP_1335_MIDI_VOL;
1515 break;
1516 case SB_CD_VOL:
1517 src = SBP_1335_CD_VOL;
1518 break;
1519 case SB_VOICE_VOL:
1520 src = SBP_1335_VOICE_VOL;
1521 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1522 break;
1523 default:
1524 return;
1525 }
1526 sbdsp_mix_write(sc, src, gain);
1527 break;
1528 case SBM_CT1345:
1529 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1530 sc->gain[port][SB_RIGHT]);
1531 switch (port) {
1532 case SB_MIC_VOL:
1533 src = SBP_MIC_VOL;
1534 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1535 break;
1536 case SB_MASTER_VOL:
1537 src = SBP_MASTER_VOL;
1538 break;
1539 case SB_LINE_IN_VOL:
1540 src = SBP_LINE_VOL;
1541 break;
1542 case SB_VOICE_VOL:
1543 src = SBP_VOICE_VOL;
1544 break;
1545 case SB_MIDI_VOL:
1546 src = SBP_MIDI_VOL;
1547 break;
1548 case SB_CD_VOL:
1549 src = SBP_CD_VOL;
1550 break;
1551 default:
1552 return;
1553 }
1554 sbdsp_mix_write(sc, src, gain);
1555 break;
1556 case SBM_CT1XX5:
1557 case SBM_CT1745:
1558 switch (port) {
1559 case SB_MIC_VOL:
1560 src = SB16P_MIC_L;
1561 break;
1562 case SB_MASTER_VOL:
1563 src = SB16P_MASTER_L;
1564 break;
1565 case SB_LINE_IN_VOL:
1566 src = SB16P_LINE_L;
1567 break;
1568 case SB_VOICE_VOL:
1569 src = SB16P_VOICE_L;
1570 break;
1571 case SB_MIDI_VOL:
1572 src = SB16P_MIDI_L;
1573 break;
1574 case SB_CD_VOL:
1575 src = SB16P_CD_L;
1576 break;
1577 case SB_INPUT_GAIN:
1578 src = SB16P_INPUT_GAIN_L;
1579 break;
1580 case SB_OUTPUT_GAIN:
1581 src = SB16P_OUTPUT_GAIN_L;
1582 break;
1583 case SB_TREBLE:
1584 src = SB16P_TREBLE_L;
1585 break;
1586 case SB_BASS:
1587 src = SB16P_BASS_L;
1588 break;
1589 case SB_PCSPEAKER:
1590 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1591 return;
1592 default:
1593 return;
1594 }
1595 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1596 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1597 break;
1598 }
1599 }
1600
1601 int
1602 sbdsp_mixer_set_port(addr, cp)
1603 void *addr;
1604 mixer_ctrl_t *cp;
1605 {
1606 struct sbdsp_softc *sc = addr;
1607 int lgain, rgain;
1608 int mask, bits;
1609 int lmask, rmask, lbits, rbits;
1610 int mute, swap;
1611
1612 if (sc->sc_open == SB_OPEN_MIDI)
1613 return EBUSY;
1614
1615 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1616 cp->un.value.num_channels));
1617
1618 if (sc->sc_mixer_model == SBM_NONE)
1619 return EINVAL;
1620
1621 switch (cp->dev) {
1622 case SB_TREBLE:
1623 case SB_BASS:
1624 if (sc->sc_mixer_model == SBM_CT1345 ||
1625 sc->sc_mixer_model == SBM_CT1XX5) {
1626 if (cp->type != AUDIO_MIXER_ENUM)
1627 return EINVAL;
1628 switch (cp->dev) {
1629 case SB_TREBLE:
1630 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1631 return 0;
1632 case SB_BASS:
1633 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1634 return 0;
1635 }
1636 }
1637 case SB_PCSPEAKER:
1638 case SB_INPUT_GAIN:
1639 case SB_OUTPUT_GAIN:
1640 if (!ISSBM1745(sc))
1641 return EINVAL;
1642 case SB_MIC_VOL:
1643 case SB_LINE_IN_VOL:
1644 if (sc->sc_mixer_model == SBM_CT1335)
1645 return EINVAL;
1646 case SB_VOICE_VOL:
1647 case SB_MIDI_VOL:
1648 case SB_CD_VOL:
1649 case SB_MASTER_VOL:
1650 if (cp->type != AUDIO_MIXER_VALUE)
1651 return EINVAL;
1652
1653 /*
1654 * All the mixer ports are stereo except for the microphone.
1655 * If we get a single-channel gain value passed in, then we
1656 * duplicate it to both left and right channels.
1657 */
1658
1659 switch (cp->dev) {
1660 case SB_MIC_VOL:
1661 if (cp->un.value.num_channels != 1)
1662 return EINVAL;
1663
1664 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1665 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1666 break;
1667 case SB_PCSPEAKER:
1668 if (cp->un.value.num_channels != 1)
1669 return EINVAL;
1670 /* fall into */
1671 case SB_INPUT_GAIN:
1672 case SB_OUTPUT_GAIN:
1673 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1674 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1675 break;
1676 default:
1677 switch (cp->un.value.num_channels) {
1678 case 1:
1679 lgain = rgain = SB_ADJUST_GAIN(sc,
1680 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1681 break;
1682 case 2:
1683 if (sc->sc_mixer_model == SBM_CT1335)
1684 return EINVAL;
1685 lgain = SB_ADJUST_GAIN(sc,
1686 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1687 rgain = SB_ADJUST_GAIN(sc,
1688 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1689 break;
1690 default:
1691 return EINVAL;
1692 }
1693 break;
1694 }
1695 sc->gain[cp->dev][SB_LEFT] = lgain;
1696 sc->gain[cp->dev][SB_RIGHT] = rgain;
1697
1698 sbdsp_set_mixer_gain(sc, cp->dev);
1699 break;
1700
1701 case SB_RECORD_SOURCE:
1702 if (ISSBM1745(sc)) {
1703 if (cp->type != AUDIO_MIXER_SET)
1704 return EINVAL;
1705 return sbdsp_set_in_ports(sc, cp->un.mask);
1706 } else {
1707 if (cp->type != AUDIO_MIXER_ENUM)
1708 return EINVAL;
1709 sc->in_port = cp->un.ord;
1710 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1711 }
1712 break;
1713
1714 case SB_AGC:
1715 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1716 return EINVAL;
1717 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1718 break;
1719
1720 case SB_CD_OUT_MUTE:
1721 mask = SB16P_SW_CD;
1722 goto omute;
1723 case SB_MIC_OUT_MUTE:
1724 mask = SB16P_SW_MIC;
1725 goto omute;
1726 case SB_LINE_OUT_MUTE:
1727 mask = SB16P_SW_LINE;
1728 omute:
1729 if (cp->type != AUDIO_MIXER_ENUM)
1730 return EINVAL;
1731 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1732 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1733 if (cp->un.ord)
1734 bits = bits & ~mask;
1735 else
1736 bits = bits | mask;
1737 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1738 break;
1739
1740 case SB_MIC_IN_MUTE:
1741 case SB_MIC_SWAP:
1742 lmask = rmask = SB16P_SW_MIC;
1743 goto imute;
1744 case SB_CD_IN_MUTE:
1745 case SB_CD_SWAP:
1746 lmask = SB16P_SW_CD_L;
1747 rmask = SB16P_SW_CD_R;
1748 goto imute;
1749 case SB_LINE_IN_MUTE:
1750 case SB_LINE_SWAP:
1751 lmask = SB16P_SW_LINE_L;
1752 rmask = SB16P_SW_LINE_R;
1753 goto imute;
1754 case SB_MIDI_IN_MUTE:
1755 case SB_MIDI_SWAP:
1756 lmask = SB16P_SW_MIDI_L;
1757 rmask = SB16P_SW_MIDI_R;
1758 imute:
1759 if (cp->type != AUDIO_MIXER_ENUM)
1760 return EINVAL;
1761 mask = lmask | rmask;
1762 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1763 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1764 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1765 if (SB_IS_IN_MUTE(cp->dev)) {
1766 mute = cp->dev;
1767 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1768 } else {
1769 swap = cp->dev;
1770 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1771 }
1772 if (sc->gain[swap][SB_LR]) {
1773 mask = lmask;
1774 lmask = rmask;
1775 rmask = mask;
1776 }
1777 if (!sc->gain[mute][SB_LR]) {
1778 lbits = lbits | lmask;
1779 rbits = rbits | rmask;
1780 }
1781 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1782 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1783 break;
1784
1785 default:
1786 return EINVAL;
1787 }
1788
1789 return 0;
1790 }
1791
1792 int
1793 sbdsp_mixer_get_port(addr, cp)
1794 void *addr;
1795 mixer_ctrl_t *cp;
1796 {
1797 struct sbdsp_softc *sc = addr;
1798
1799 if (sc->sc_open == SB_OPEN_MIDI)
1800 return EBUSY;
1801
1802 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1803
1804 if (sc->sc_mixer_model == SBM_NONE)
1805 return EINVAL;
1806
1807 switch (cp->dev) {
1808 case SB_TREBLE:
1809 case SB_BASS:
1810 if (sc->sc_mixer_model == SBM_CT1345 ||
1811 sc->sc_mixer_model == SBM_CT1XX5) {
1812 switch (cp->dev) {
1813 case SB_TREBLE:
1814 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1815 return 0;
1816 case SB_BASS:
1817 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1818 return 0;
1819 }
1820 }
1821 case SB_PCSPEAKER:
1822 case SB_INPUT_GAIN:
1823 case SB_OUTPUT_GAIN:
1824 if (!ISSBM1745(sc))
1825 return EINVAL;
1826 case SB_MIC_VOL:
1827 case SB_LINE_IN_VOL:
1828 if (sc->sc_mixer_model == SBM_CT1335)
1829 return EINVAL;
1830 case SB_VOICE_VOL:
1831 case SB_MIDI_VOL:
1832 case SB_CD_VOL:
1833 case SB_MASTER_VOL:
1834 switch (cp->dev) {
1835 case SB_MIC_VOL:
1836 case SB_PCSPEAKER:
1837 if (cp->un.value.num_channels != 1)
1838 return EINVAL;
1839 /* fall into */
1840 default:
1841 switch (cp->un.value.num_channels) {
1842 case 1:
1843 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1844 sc->gain[cp->dev][SB_LEFT];
1845 break;
1846 case 2:
1847 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1848 sc->gain[cp->dev][SB_LEFT];
1849 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1850 sc->gain[cp->dev][SB_RIGHT];
1851 break;
1852 default:
1853 return EINVAL;
1854 }
1855 break;
1856 }
1857 break;
1858
1859 case SB_RECORD_SOURCE:
1860 if (ISSBM1745(sc))
1861 cp->un.mask = sc->in_mask;
1862 else
1863 cp->un.ord = sc->in_port;
1864 break;
1865
1866 case SB_AGC:
1867 if (!ISSBM1745(sc))
1868 return EINVAL;
1869 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1870 break;
1871
1872 case SB_CD_IN_MUTE:
1873 case SB_MIC_IN_MUTE:
1874 case SB_LINE_IN_MUTE:
1875 case SB_MIDI_IN_MUTE:
1876 case SB_CD_SWAP:
1877 case SB_MIC_SWAP:
1878 case SB_LINE_SWAP:
1879 case SB_MIDI_SWAP:
1880 case SB_CD_OUT_MUTE:
1881 case SB_MIC_OUT_MUTE:
1882 case SB_LINE_OUT_MUTE:
1883 cp->un.ord = sc->gain[cp->dev][SB_LR];
1884 break;
1885
1886 default:
1887 return EINVAL;
1888 }
1889
1890 return 0;
1891 }
1892
1893 int
1894 sbdsp_mixer_query_devinfo(addr, dip)
1895 void *addr;
1896 mixer_devinfo_t *dip;
1897 {
1898 struct sbdsp_softc *sc = addr;
1899 int chan, class, is1745;
1900
1901 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1902 sc->sc_mixer_model, dip->index));
1903
1904 if (sc->sc_mixer_model == SBM_NONE)
1905 return ENXIO;
1906
1907 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1908 is1745 = ISSBM1745(sc);
1909 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1910
1911 switch (dip->index) {
1912 case SB_MASTER_VOL:
1913 dip->type = AUDIO_MIXER_VALUE;
1914 dip->mixer_class = SB_OUTPUT_CLASS;
1915 dip->prev = dip->next = AUDIO_MIXER_LAST;
1916 strcpy(dip->label.name, AudioNmaster);
1917 dip->un.v.num_channels = chan;
1918 strcpy(dip->un.v.units.name, AudioNvolume);
1919 return 0;
1920 case SB_MIDI_VOL:
1921 dip->type = AUDIO_MIXER_VALUE;
1922 dip->mixer_class = class;
1923 dip->prev = AUDIO_MIXER_LAST;
1924 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
1925 strcpy(dip->label.name, AudioNfmsynth);
1926 dip->un.v.num_channels = chan;
1927 strcpy(dip->un.v.units.name, AudioNvolume);
1928 return 0;
1929 case SB_CD_VOL:
1930 dip->type = AUDIO_MIXER_VALUE;
1931 dip->mixer_class = class;
1932 dip->prev = AUDIO_MIXER_LAST;
1933 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
1934 strcpy(dip->label.name, AudioNcd);
1935 dip->un.v.num_channels = chan;
1936 strcpy(dip->un.v.units.name, AudioNvolume);
1937 return 0;
1938 case SB_VOICE_VOL:
1939 dip->type = AUDIO_MIXER_VALUE;
1940 dip->mixer_class = class;
1941 dip->prev = AUDIO_MIXER_LAST;
1942 dip->next = AUDIO_MIXER_LAST;
1943 strcpy(dip->label.name, AudioNdac);
1944 dip->un.v.num_channels = chan;
1945 strcpy(dip->un.v.units.name, AudioNvolume);
1946 return 0;
1947 case SB_OUTPUT_CLASS:
1948 dip->type = AUDIO_MIXER_CLASS;
1949 dip->mixer_class = SB_OUTPUT_CLASS;
1950 dip->next = dip->prev = AUDIO_MIXER_LAST;
1951 strcpy(dip->label.name, AudioCoutputs);
1952 return 0;
1953 }
1954
1955 if (sc->sc_mixer_model == SBM_CT1335)
1956 return ENXIO;
1957
1958 switch (dip->index) {
1959 case SB_MIC_VOL:
1960 dip->type = AUDIO_MIXER_VALUE;
1961 dip->mixer_class = class;
1962 dip->prev = AUDIO_MIXER_LAST;
1963 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
1964 strcpy(dip->label.name, AudioNmicrophone);
1965 dip->un.v.num_channels = 1;
1966 strcpy(dip->un.v.units.name, AudioNvolume);
1967 return 0;
1968
1969 case SB_LINE_IN_VOL:
1970 dip->type = AUDIO_MIXER_VALUE;
1971 dip->mixer_class = class;
1972 dip->prev = AUDIO_MIXER_LAST;
1973 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
1974 strcpy(dip->label.name, AudioNline);
1975 dip->un.v.num_channels = 2;
1976 strcpy(dip->un.v.units.name, AudioNvolume);
1977 return 0;
1978
1979 case SB_RECORD_SOURCE:
1980 dip->mixer_class = SB_RECORD_CLASS;
1981 dip->prev = dip->next = AUDIO_MIXER_LAST;
1982 strcpy(dip->label.name, AudioNsource);
1983 if (ISSBM1745(sc)) {
1984 dip->type = AUDIO_MIXER_SET;
1985 dip->un.s.num_mem = 4;
1986 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1987 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
1988 strcpy(dip->un.s.member[1].label.name, AudioNcd);
1989 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
1990 strcpy(dip->un.s.member[2].label.name, AudioNline);
1991 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
1992 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1993 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
1994 } else {
1995 dip->type = AUDIO_MIXER_ENUM;
1996 dip->un.e.num_mem = 3;
1997 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
1998 dip->un.e.member[0].ord = SB_MIC_VOL;
1999 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2000 dip->un.e.member[1].ord = SB_CD_VOL;
2001 strcpy(dip->un.e.member[2].label.name, AudioNline);
2002 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2003 }
2004 return 0;
2005
2006 case SB_BASS:
2007 dip->prev = dip->next = AUDIO_MIXER_LAST;
2008 strcpy(dip->label.name, AudioNbass);
2009 if (sc->sc_mixer_model == SBM_CT1745) {
2010 dip->type = AUDIO_MIXER_VALUE;
2011 dip->mixer_class = SB_EQUALIZATION_CLASS;
2012 dip->un.v.num_channels = 2;
2013 strcpy(dip->un.v.units.name, AudioNbass);
2014 } else {
2015 dip->type = AUDIO_MIXER_ENUM;
2016 dip->mixer_class = SB_INPUT_CLASS;
2017 dip->un.e.num_mem = 2;
2018 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2019 dip->un.e.member[0].ord = 0;
2020 strcpy(dip->un.e.member[1].label.name, AudioNon);
2021 dip->un.e.member[1].ord = 1;
2022 }
2023 return 0;
2024
2025 case SB_TREBLE:
2026 dip->prev = dip->next = AUDIO_MIXER_LAST;
2027 strcpy(dip->label.name, AudioNtreble);
2028 if (sc->sc_mixer_model == SBM_CT1745) {
2029 dip->type = AUDIO_MIXER_VALUE;
2030 dip->mixer_class = SB_EQUALIZATION_CLASS;
2031 dip->un.v.num_channels = 2;
2032 strcpy(dip->un.v.units.name, AudioNtreble);
2033 } else {
2034 dip->type = AUDIO_MIXER_ENUM;
2035 dip->mixer_class = SB_INPUT_CLASS;
2036 dip->un.e.num_mem = 2;
2037 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2038 dip->un.e.member[0].ord = 0;
2039 strcpy(dip->un.e.member[1].label.name, AudioNon);
2040 dip->un.e.member[1].ord = 1;
2041 }
2042 return 0;
2043
2044 case SB_RECORD_CLASS: /* record source class */
2045 dip->type = AUDIO_MIXER_CLASS;
2046 dip->mixer_class = SB_RECORD_CLASS;
2047 dip->next = dip->prev = AUDIO_MIXER_LAST;
2048 strcpy(dip->label.name, AudioCrecord);
2049 return 0;
2050
2051 case SB_INPUT_CLASS:
2052 dip->type = AUDIO_MIXER_CLASS;
2053 dip->mixer_class = SB_INPUT_CLASS;
2054 dip->next = dip->prev = AUDIO_MIXER_LAST;
2055 strcpy(dip->label.name, AudioCinputs);
2056 return 0;
2057
2058 }
2059
2060 if (sc->sc_mixer_model == SBM_CT1345)
2061 return ENXIO;
2062
2063 switch(dip->index) {
2064 case SB_PCSPEAKER:
2065 dip->type = AUDIO_MIXER_VALUE;
2066 dip->mixer_class = SB_INPUT_CLASS;
2067 dip->prev = dip->next = AUDIO_MIXER_LAST;
2068 strcpy(dip->label.name, "pc_speaker");
2069 dip->un.v.num_channels = 1;
2070 strcpy(dip->un.v.units.name, AudioNvolume);
2071 return 0;
2072
2073 case SB_INPUT_GAIN:
2074 dip->type = AUDIO_MIXER_VALUE;
2075 dip->mixer_class = SB_INPUT_CLASS;
2076 dip->prev = dip->next = AUDIO_MIXER_LAST;
2077 strcpy(dip->label.name, AudioNinput);
2078 dip->un.v.num_channels = 2;
2079 strcpy(dip->un.v.units.name, AudioNvolume);
2080 return 0;
2081
2082 case SB_OUTPUT_GAIN:
2083 dip->type = AUDIO_MIXER_VALUE;
2084 dip->mixer_class = SB_OUTPUT_CLASS;
2085 dip->prev = dip->next = AUDIO_MIXER_LAST;
2086 strcpy(dip->label.name, AudioNoutput);
2087 dip->un.v.num_channels = 2;
2088 strcpy(dip->un.v.units.name, AudioNvolume);
2089 return 0;
2090
2091 case SB_AGC:
2092 dip->type = AUDIO_MIXER_ENUM;
2093 dip->mixer_class = SB_INPUT_CLASS;
2094 dip->prev = dip->next = AUDIO_MIXER_LAST;
2095 strcpy(dip->label.name, "agc");
2096 dip->un.e.num_mem = 2;
2097 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2098 dip->un.e.member[0].ord = 0;
2099 strcpy(dip->un.e.member[1].label.name, AudioNon);
2100 dip->un.e.member[1].ord = 1;
2101 return 0;
2102
2103 case SB_EQUALIZATION_CLASS:
2104 dip->type = AUDIO_MIXER_CLASS;
2105 dip->mixer_class = SB_EQUALIZATION_CLASS;
2106 dip->next = dip->prev = AUDIO_MIXER_LAST;
2107 strcpy(dip->label.name, AudioCequalization);
2108 return 0;
2109
2110 case SB_CD_IN_MUTE:
2111 dip->prev = SB_CD_VOL;
2112 dip->next = SB_CD_SWAP;
2113 dip->mixer_class = SB_INPUT_CLASS;
2114 goto mute;
2115
2116 case SB_MIC_IN_MUTE:
2117 dip->prev = SB_MIC_VOL;
2118 dip->next = SB_MIC_SWAP;
2119 dip->mixer_class = SB_INPUT_CLASS;
2120 goto mute;
2121
2122 case SB_LINE_IN_MUTE:
2123 dip->prev = SB_LINE_IN_VOL;
2124 dip->next = SB_LINE_SWAP;
2125 dip->mixer_class = SB_INPUT_CLASS;
2126 goto mute;
2127
2128 case SB_MIDI_IN_MUTE:
2129 dip->prev = SB_MIDI_VOL;
2130 dip->next = SB_MIDI_SWAP;
2131 dip->mixer_class = SB_INPUT_CLASS;
2132 goto mute;
2133
2134 case SB_CD_SWAP:
2135 dip->prev = SB_CD_IN_MUTE;
2136 dip->next = SB_CD_OUT_MUTE;
2137 goto swap;
2138
2139 case SB_MIC_SWAP:
2140 dip->prev = SB_MIC_IN_MUTE;
2141 dip->next = SB_MIC_OUT_MUTE;
2142 goto swap;
2143
2144 case SB_LINE_SWAP:
2145 dip->prev = SB_LINE_IN_MUTE;
2146 dip->next = SB_LINE_OUT_MUTE;
2147 goto swap;
2148
2149 case SB_MIDI_SWAP:
2150 dip->prev = SB_MIDI_IN_MUTE;
2151 dip->next = AUDIO_MIXER_LAST;
2152 swap:
2153 dip->mixer_class = SB_INPUT_CLASS;
2154 strcpy(dip->label.name, AudioNswap);
2155 goto mute1;
2156
2157 case SB_CD_OUT_MUTE:
2158 dip->prev = SB_CD_SWAP;
2159 dip->next = AUDIO_MIXER_LAST;
2160 dip->mixer_class = SB_OUTPUT_CLASS;
2161 goto mute;
2162
2163 case SB_MIC_OUT_MUTE:
2164 dip->prev = SB_MIC_SWAP;
2165 dip->next = AUDIO_MIXER_LAST;
2166 dip->mixer_class = SB_OUTPUT_CLASS;
2167 goto mute;
2168
2169 case SB_LINE_OUT_MUTE:
2170 dip->prev = SB_LINE_SWAP;
2171 dip->next = AUDIO_MIXER_LAST;
2172 dip->mixer_class = SB_OUTPUT_CLASS;
2173 mute:
2174 strcpy(dip->label.name, AudioNmute);
2175 mute1:
2176 dip->type = AUDIO_MIXER_ENUM;
2177 dip->un.e.num_mem = 2;
2178 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2179 dip->un.e.member[0].ord = 0;
2180 strcpy(dip->un.e.member[1].label.name, AudioNon);
2181 dip->un.e.member[1].ord = 1;
2182 return 0;
2183
2184 }
2185
2186 return ENXIO;
2187 }
2188
2189 void *
2190 sb_malloc(addr, size, pool, flags)
2191 void *addr;
2192 unsigned long size;
2193 int pool;
2194 int flags;
2195 {
2196 struct sbdsp_softc *sc = addr;
2197
2198 return isa_malloc(sc->sc_ic, 4, size, pool, flags);
2199 }
2200
2201 void
2202 sb_free(addr, ptr, pool)
2203 void *addr;
2204 void *ptr;
2205 int pool;
2206 {
2207 isa_free(ptr, pool);
2208 }
2209
2210 unsigned long
2211 sb_round(addr, size)
2212 void *addr;
2213 unsigned long size;
2214 {
2215 if (size > MAX_ISADMA)
2216 size = MAX_ISADMA;
2217 return size;
2218 }
2219
2220 int
2221 sb_mappage(addr, mem, off, prot)
2222 void *addr;
2223 void *mem;
2224 int off;
2225 int prot;
2226 {
2227 return isa_mappage(mem, off, prot);
2228 }
2229
2230 int
2231 sbdsp_get_props(addr)
2232 void *addr;
2233 {
2234 struct sbdsp_softc *sc = addr;
2235 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2236 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2237 }
2238
2239 #if NMIDI > 0
2240 /*
2241 * MIDI related routines.
2242 */
2243
2244 int
2245 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2246 void *addr;
2247 int flags;
2248 void (*iintr)__P((void *, int));
2249 void (*ointr)__P((void *));
2250 void *arg;
2251 {
2252 struct sbdsp_softc *sc = addr;
2253
2254 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2255
2256 if (sc->sc_open != SB_CLOSED)
2257 return EBUSY;
2258 if (sbdsp_reset(sc) != 0)
2259 return EIO;
2260
2261 if (sc->sc_model >= SB_20)
2262 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2263 return EIO;
2264 sc->sc_open = SB_OPEN_MIDI;
2265 sc->sc_openflags = flags;
2266 sc->sc_intr8 = sbdsp_midi_intr;
2267 sc->sc_arg8 = addr;
2268 sc->sc_intrm = iintr;
2269 sc->sc_argm = arg;
2270 return 0;
2271 }
2272
2273 void
2274 sbdsp_midi_close(addr)
2275 void *addr;
2276 {
2277 struct sbdsp_softc *sc = addr;
2278
2279 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2280
2281 if (sc->sc_model >= SB_20)
2282 sbdsp_reset(sc); /* exit UART mode */
2283 sc->sc_open = SB_CLOSED;
2284 sc->sc_intrm = 0;
2285 }
2286
2287 int
2288 sbdsp_midi_output(addr, d)
2289 void *addr;
2290 int d;
2291 {
2292 struct sbdsp_softc *sc = addr;
2293
2294 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2295 return EIO;
2296 if (sbdsp_wdsp(sc, d))
2297 return EIO;
2298 return 0;
2299 }
2300
2301 void
2302 sbdsp_midi_getinfo(addr, mi)
2303 void *addr;
2304 struct midi_info *mi;
2305 {
2306 struct sbdsp_softc *sc = addr;
2307
2308 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2309 mi->props = MIDI_PROP_CAN_INPUT;
2310 }
2311
2312 int
2313 sbdsp_midi_intr(addr)
2314 void *addr;
2315 {
2316 struct sbdsp_softc *sc = addr;
2317
2318 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2319 return (0);
2320 }
2321
2322 #endif
2323
2324