sbdsp.c revision 1.93 1 /* $NetBSD: sbdsp.c,v 1.93 1999/02/18 07:08:35 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1991-1993 Regents of the University of California.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the Computer Systems
18 * Engineering Group at Lawrence Berkeley Laboratory.
19 * 4. Neither the name of the University nor of the Laboratory may be used
20 * to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 */
36
37 /*
38 * SoundBlaster Pro code provided by John Kohl, based on lots of
39 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
40 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
41 * <sachs (at) meibm15.cen.uiuc.edu>.
42 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
43 * with information from SB "Hardware Programming Guide" and the
44 * Linux drivers.
45 */
46
47 #include "midi.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/ioctl.h>
53 #include <sys/syslog.h>
54 #include <sys/device.h>
55 #include <sys/proc.h>
56 #include <sys/buf.h>
57 #include <vm/vm.h>
58
59 #include <machine/cpu.h>
60 #include <machine/intr.h>
61 #include <machine/bus.h>
62
63 #include <sys/audioio.h>
64 #include <dev/audio_if.h>
65 #include <dev/midi_if.h>
66 #include <dev/mulaw.h>
67 #include <dev/auconv.h>
68
69 #include <dev/isa/isavar.h>
70 #include <dev/isa/isadmavar.h>
71
72 #include <dev/isa/sbreg.h>
73 #include <dev/isa/sbdspvar.h>
74
75
76 #ifdef AUDIO_DEBUG
77 #define DPRINTF(x) if (sbdspdebug) printf x
78 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
79 int sbdspdebug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n,x)
83 #endif
84
85 #ifndef SBDSP_NPOLL
86 #define SBDSP_NPOLL 3000
87 #endif
88
89 struct {
90 int wdsp;
91 int rdsp;
92 int wmidi;
93 } sberr;
94
95 /*
96 * Time constant routines follow. See SBK, section 12.
97 * Although they don't come out and say it (in the docs),
98 * the card clearly uses a 1MHz countdown timer, as the
99 * low-speed formula (p. 12-4) is:
100 * tc = 256 - 10^6 / sr
101 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
102 * and a 256MHz clock is used:
103 * tc = 65536 - 256 * 10^ 6 / sr
104 * Since we can only use the upper byte of the HS TC, the two formulae
105 * are equivalent. (Why didn't they say so?) E.g.,
106 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
107 *
108 * The crossover point (from low- to high-speed modes) is different
109 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
110 *
111 * SBPRO SB20
112 * ----- --------
113 * input ls min 4 KHz 4 KHz
114 * input ls max 23 KHz 13 KHz
115 * input hs max 44.1 KHz 15 KHz
116 * output ls min 4 KHz 4 KHz
117 * output ls max 23 KHz 23 KHz
118 * output hs max 44.1 KHz 44.1 KHz
119 */
120 /* XXX Should we round the tc?
121 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
122 */
123 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
124 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
125
126 struct sbmode {
127 short model;
128 u_char channels;
129 u_char precision;
130 u_short lowrate, highrate;
131 u_char cmd;
132 u_char halt, cont;
133 u_char cmdchan;
134 };
135 static struct sbmode sbpmodes[] = {
136 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
137 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
138 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
139 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
140 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
141 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
142 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
143 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
144 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
145 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
146 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
147 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
148 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
149 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
150 { SB_16, 1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
151 { SB_16, 2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
152 #define PLAY16 15 /* must be the index of the next entry in the table */
153 { SB_16, 1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
154 { SB_16, 2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
155 { -1 }
156 };
157 static struct sbmode sbrmodes[] = {
158 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
159 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
160 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
161 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
162 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
163 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
164 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
165 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
166 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
167 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
168 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
169 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
170 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
171 { SB_16, 1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
172 { SB_16, 2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
173 { SB_16, 1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
174 { SB_16, 2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
175 { -1 }
176 };
177
178 void sbversion __P((struct sbdsp_softc *));
179 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
180 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
181 void sbdsp_to __P((void *));
182 void sbdsp_pause __P((struct sbdsp_softc *));
183 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
184 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
185 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
186 void sbdsp_set_ifilter __P((void *, int));
187 int sbdsp_get_ifilter __P((void *));
188
189 int sbdsp_block_output __P((void *));
190 int sbdsp_block_input __P((void *));
191 static int sbdsp_adjust __P((int, int));
192
193 int sbdsp_midi_intr __P((void *));
194
195 #ifdef AUDIO_DEBUG
196 void sb_printsc __P((struct sbdsp_softc *));
197
198 void
199 sb_printsc(sc)
200 struct sbdsp_softc *sc;
201 {
202 int i;
203
204 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
205 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
206 sc->sc_drq8, sc->sc_drq16,
207 sc->sc_iobase, sc->sc_irq);
208 printf("irate %d itc %x orate %d otc %x\n",
209 sc->sc_i.rate, sc->sc_i.tc,
210 sc->sc_o.rate, sc->sc_o.tc);
211 printf("spkron %u nintr %lu\n",
212 sc->spkr_state, sc->sc_interrupts);
213 printf("intr8 %p arg8 %p\n",
214 sc->sc_intr8, sc->sc_arg16);
215 printf("intr16 %p arg16 %p\n",
216 sc->sc_intr8, sc->sc_arg16);
217 printf("gain:");
218 for (i = 0; i < SB_NDEVS; i++)
219 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
220 printf("\n");
221 }
222 #endif /* AUDIO_DEBUG */
223
224 /*
225 * Probe / attach routines.
226 */
227
228 /*
229 * Probe for the soundblaster hardware.
230 */
231 int
232 sbdsp_probe(sc)
233 struct sbdsp_softc *sc;
234 {
235
236 if (sbdsp_reset(sc) < 0) {
237 DPRINTF(("sbdsp: couldn't reset card\n"));
238 return 0;
239 }
240 /* if flags set, go and probe the jazz16 stuff */
241 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
242 sbdsp_jazz16_probe(sc);
243 else
244 sbversion(sc);
245 if (sc->sc_model == SB_UNK) {
246 /* Unknown SB model found. */
247 DPRINTF(("sbdsp: unknown SB model found\n"));
248 return 0;
249 }
250 return 1;
251 }
252
253 /*
254 * Try add-on stuff for Jazz16.
255 */
256 void
257 sbdsp_jazz16_probe(sc)
258 struct sbdsp_softc *sc;
259 {
260 static u_char jazz16_irq_conf[16] = {
261 -1, -1, 0x02, 0x03,
262 -1, 0x01, -1, 0x04,
263 -1, 0x02, 0x05, -1,
264 -1, -1, -1, 0x06};
265 static u_char jazz16_drq_conf[8] = {
266 -1, 0x01, -1, 0x02,
267 -1, 0x03, -1, 0x04};
268
269 bus_space_tag_t iot = sc->sc_iot;
270 bus_space_handle_t ioh;
271
272 sbversion(sc);
273
274 DPRINTF(("jazz16 probe\n"));
275
276 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
277 DPRINTF(("bus map failed\n"));
278 return;
279 }
280
281 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
282 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
283 DPRINTF(("drq/irq check failed\n"));
284 goto done; /* give up, we can't do it. */
285 }
286
287 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
288 delay(10000); /* delay 10 ms */
289 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
290 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
291
292 if (sbdsp_reset(sc) < 0) {
293 DPRINTF(("sbdsp_reset check failed\n"));
294 goto done; /* XXX? what else could we do? */
295 }
296
297 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
298 DPRINTF(("read16 setup failed\n"));
299 goto done;
300 }
301
302 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
303 DPRINTF(("read16 failed\n"));
304 goto done;
305 }
306
307 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
308 sc->sc_drq16 = sc->sc_drq8;
309 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
310 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
311 jazz16_drq_conf[sc->sc_drq8]) ||
312 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
313 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
314 } else {
315 DPRINTF(("jazz16 detected!\n"));
316 sc->sc_model = SB_JAZZ;
317 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
318 }
319
320 done:
321 bus_space_unmap(iot, ioh, 1);
322 }
323
324 /*
325 * Attach hardware to driver, attach hardware driver to audio
326 * pseudo-device driver .
327 */
328 void
329 sbdsp_attach(sc)
330 struct sbdsp_softc *sc;
331 {
332 struct audio_params pparams, rparams;
333 int i;
334 u_int v;
335
336 /*
337 * Create our DMA maps.
338 */
339 if (sc->sc_drq8 != -1) {
340 if (isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
341 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
342 printf("%s: can't create map for drq %d\n",
343 sc->sc_dev.dv_xname, sc->sc_drq8);
344 return;
345 }
346 }
347 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
348 if (isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
349 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
350 printf("%s: can't create map for drq %d\n",
351 sc->sc_dev.dv_xname, sc->sc_drq16);
352 return;
353 }
354 }
355
356 pparams = audio_default;
357 rparams = audio_default;
358 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
359
360 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
361
362 if (sc->sc_mixer_model != SBM_NONE) {
363 /* Reset the mixer.*/
364 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
365 /* And set our own default values */
366 for (i = 0; i < SB_NDEVS; i++) {
367 switch(i) {
368 case SB_MIC_VOL:
369 case SB_LINE_IN_VOL:
370 v = 0;
371 break;
372 case SB_BASS:
373 case SB_TREBLE:
374 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN/2);
375 break;
376 case SB_CD_IN_MUTE:
377 case SB_MIC_IN_MUTE:
378 case SB_LINE_IN_MUTE:
379 case SB_MIDI_IN_MUTE:
380 case SB_CD_SWAP:
381 case SB_MIC_SWAP:
382 case SB_LINE_SWAP:
383 case SB_MIDI_SWAP:
384 case SB_CD_OUT_MUTE:
385 case SB_MIC_OUT_MUTE:
386 case SB_LINE_OUT_MUTE:
387 v = 0;
388 break;
389 default:
390 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
391 break;
392 }
393 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
394 sbdsp_set_mixer_gain(sc, i);
395 }
396 sc->in_filter = 0; /* no filters turned on, please */
397 }
398
399 printf(": dsp v%d.%02d%s\n",
400 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
401 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
402
403 sc->sc_fullduplex = ISSB16CLASS(sc) &&
404 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
405 sc->sc_drq8 != sc->sc_drq16;
406 }
407
408 void
409 sbdsp_mix_write(sc, mixerport, val)
410 struct sbdsp_softc *sc;
411 int mixerport;
412 int val;
413 {
414 bus_space_tag_t iot = sc->sc_iot;
415 bus_space_handle_t ioh = sc->sc_ioh;
416 int s;
417
418 s = splaudio();
419 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
420 delay(20);
421 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
422 delay(30);
423 splx(s);
424 }
425
426 int
427 sbdsp_mix_read(sc, mixerport)
428 struct sbdsp_softc *sc;
429 int mixerport;
430 {
431 bus_space_tag_t iot = sc->sc_iot;
432 bus_space_handle_t ioh = sc->sc_ioh;
433 int val;
434 int s;
435
436 s = splaudio();
437 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
438 delay(20);
439 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
440 delay(30);
441 splx(s);
442 return val;
443 }
444
445 /*
446 * Various routines to interface to higher level audio driver
447 */
448
449 int
450 sbdsp_query_encoding(addr, fp)
451 void *addr;
452 struct audio_encoding *fp;
453 {
454 struct sbdsp_softc *sc = addr;
455 int emul;
456
457 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
458
459 switch (fp->index) {
460 case 0:
461 strcpy(fp->name, AudioEulinear);
462 fp->encoding = AUDIO_ENCODING_ULINEAR;
463 fp->precision = 8;
464 fp->flags = 0;
465 return 0;
466 case 1:
467 strcpy(fp->name, AudioEmulaw);
468 fp->encoding = AUDIO_ENCODING_ULAW;
469 fp->precision = 8;
470 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
471 return 0;
472 case 2:
473 strcpy(fp->name, AudioEalaw);
474 fp->encoding = AUDIO_ENCODING_ALAW;
475 fp->precision = 8;
476 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
477 return 0;
478 case 3:
479 strcpy(fp->name, AudioEslinear);
480 fp->encoding = AUDIO_ENCODING_SLINEAR;
481 fp->precision = 8;
482 fp->flags = emul;
483 return 0;
484 }
485 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
486 return EINVAL;
487
488 switch(fp->index) {
489 case 4:
490 strcpy(fp->name, AudioEslinear_le);
491 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
492 fp->precision = 16;
493 fp->flags = 0;
494 return 0;
495 case 5:
496 strcpy(fp->name, AudioEulinear_le);
497 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
498 fp->precision = 16;
499 fp->flags = emul;
500 return 0;
501 case 6:
502 strcpy(fp->name, AudioEslinear_be);
503 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
504 fp->precision = 16;
505 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
506 return 0;
507 case 7:
508 strcpy(fp->name, AudioEulinear_be);
509 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
510 fp->precision = 16;
511 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
512 return 0;
513 default:
514 return EINVAL;
515 }
516 return 0;
517 }
518
519 int
520 sbdsp_set_params(addr, setmode, usemode, play, rec)
521 void *addr;
522 int setmode, usemode;
523 struct audio_params *play, *rec;
524 {
525 struct sbdsp_softc *sc = addr;
526 struct sbmode *m;
527 u_int rate, tc, bmode;
528 void (*swcode) __P((void *, u_char *buf, int cnt));
529 int factor;
530 int model;
531 int chan;
532 struct audio_params *p;
533 int mode;
534
535 if (sc->sc_open == SB_OPEN_MIDI)
536 return EBUSY;
537
538 model = sc->sc_model;
539 if (model > SB_16)
540 model = SB_16; /* later models work like SB16 */
541
542 /*
543 * Prior to the SB16, we have only one clock, so make the sample
544 * rates match.
545 */
546 if (!ISSB16CLASS(sc) &&
547 play->sample_rate != rec->sample_rate &&
548 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
549 if (setmode == AUMODE_PLAY) {
550 rec->sample_rate = play->sample_rate;
551 setmode |= AUMODE_RECORD;
552 } else if (setmode == AUMODE_RECORD) {
553 play->sample_rate = rec->sample_rate;
554 setmode |= AUMODE_PLAY;
555 } else
556 return (EINVAL);
557 }
558
559 /* Set first record info, then play info */
560 for (mode = AUMODE_RECORD; mode != -1;
561 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
562 if ((setmode & mode) == 0)
563 continue;
564
565 p = mode == AUMODE_PLAY ? play : rec;
566 /* Locate proper commands */
567 for(m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
568 m->model != -1; m++) {
569 if (model == m->model &&
570 p->channels == m->channels &&
571 p->precision == m->precision &&
572 p->sample_rate >= m->lowrate &&
573 p->sample_rate < m->highrate)
574 break;
575 }
576 if (m->model == -1)
577 return EINVAL;
578 rate = p->sample_rate;
579 swcode = 0;
580 factor = 1;
581 tc = 1;
582 bmode = -1;
583 if (model == SB_16) {
584 switch (p->encoding) {
585 case AUDIO_ENCODING_SLINEAR_BE:
586 if (p->precision == 16)
587 swcode = swap_bytes;
588 /* fall into */
589 case AUDIO_ENCODING_SLINEAR_LE:
590 bmode = SB_BMODE_SIGNED;
591 break;
592 case AUDIO_ENCODING_ULINEAR_BE:
593 if (p->precision == 16)
594 swcode = swap_bytes;
595 /* fall into */
596 case AUDIO_ENCODING_ULINEAR_LE:
597 bmode = SB_BMODE_UNSIGNED;
598 break;
599 case AUDIO_ENCODING_ULAW:
600 if (mode == AUMODE_PLAY) {
601 swcode = mulaw_to_ulinear16;
602 factor = 2;
603 m = &sbpmodes[PLAY16];
604 } else
605 swcode = ulinear8_to_mulaw;
606 bmode = SB_BMODE_UNSIGNED;
607 break;
608 case AUDIO_ENCODING_ALAW:
609 if (mode == AUMODE_PLAY) {
610 swcode = alaw_to_ulinear16;
611 factor = 2;
612 m = &sbpmodes[PLAY16];
613 } else
614 swcode = ulinear8_to_alaw;
615 bmode = SB_BMODE_UNSIGNED;
616 break;
617 default:
618 return EINVAL;
619 }
620 if (p->channels == 2)
621 bmode |= SB_BMODE_STEREO;
622 } else if (m->model == SB_JAZZ && m->precision == 16) {
623 switch (p->encoding) {
624 case AUDIO_ENCODING_SLINEAR_LE:
625 break;
626 case AUDIO_ENCODING_ULINEAR_LE:
627 swcode = change_sign16;
628 break;
629 case AUDIO_ENCODING_SLINEAR_BE:
630 swcode = swap_bytes;
631 break;
632 case AUDIO_ENCODING_ULINEAR_BE:
633 swcode = mode == AUMODE_PLAY ?
634 swap_bytes_change_sign16 : change_sign16_swap_bytes;
635 break;
636 case AUDIO_ENCODING_ULAW:
637 swcode = mode == AUMODE_PLAY ?
638 mulaw_to_ulinear8 : ulinear8_to_mulaw;
639 break;
640 case AUDIO_ENCODING_ALAW:
641 swcode = mode == AUMODE_PLAY ?
642 alaw_to_ulinear8 : ulinear8_to_alaw;
643 break;
644 default:
645 return EINVAL;
646 }
647 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
648 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
649 } else {
650 switch (p->encoding) {
651 case AUDIO_ENCODING_SLINEAR_BE:
652 case AUDIO_ENCODING_SLINEAR_LE:
653 swcode = change_sign8;
654 break;
655 case AUDIO_ENCODING_ULINEAR_BE:
656 case AUDIO_ENCODING_ULINEAR_LE:
657 break;
658 case AUDIO_ENCODING_ULAW:
659 swcode = mode == AUMODE_PLAY ?
660 mulaw_to_ulinear8 : ulinear8_to_mulaw;
661 break;
662 case AUDIO_ENCODING_ALAW:
663 swcode = mode == AUMODE_PLAY ?
664 alaw_to_ulinear8 : ulinear8_to_alaw;
665 break;
666 default:
667 return EINVAL;
668 }
669 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
670 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
671 }
672
673 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
674 if (mode == AUMODE_PLAY) {
675 sc->sc_o.rate = rate;
676 sc->sc_o.tc = tc;
677 sc->sc_o.modep = m;
678 sc->sc_o.bmode = bmode;
679 sc->sc_o.dmachan = chan;
680 } else {
681 sc->sc_i.rate = rate;
682 sc->sc_i.tc = tc;
683 sc->sc_i.modep = m;
684 sc->sc_i.bmode = bmode;
685 sc->sc_i.dmachan = chan;
686 }
687
688 p->sw_code = swcode;
689 p->factor = factor;
690 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
691 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
692 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
693
694 }
695
696 if (sc->sc_fullduplex &&
697 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
698 sc->sc_i.dmachan == sc->sc_o.dmachan) {
699 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
700 if (sc->sc_o.dmachan == sc->sc_drq8) {
701 /* Use 16 bit DMA for playing by expanding the samples. */
702 play->sw_code = linear8_to_linear16;
703 play->factor = 2;
704 sc->sc_o.modep = &sbpmodes[PLAY16];
705 sc->sc_o.dmachan = sc->sc_drq16;
706 } else {
707 return EINVAL;
708 }
709 }
710 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
711 sc->sc_i.dmachan, sc->sc_o.dmachan));
712
713 return (0);
714 }
715
716 void
717 sbdsp_set_ifilter(addr, which)
718 void *addr;
719 int which;
720 {
721 struct sbdsp_softc *sc = addr;
722 int mixval;
723
724 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
725 switch (which) {
726 case 0:
727 mixval |= SBP_FILTER_OFF;
728 break;
729 case SB_TREBLE:
730 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
731 break;
732 case SB_BASS:
733 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
734 break;
735 default:
736 return;
737 }
738 sc->in_filter = mixval & SBP_IFILTER_MASK;
739 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
740 }
741
742 int
743 sbdsp_get_ifilter(addr)
744 void *addr;
745 {
746 struct sbdsp_softc *sc = addr;
747
748 sc->in_filter =
749 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
750 switch (sc->in_filter) {
751 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
752 return SB_TREBLE;
753 case SBP_FILTER_ON|SBP_IFILTER_LOW:
754 return SB_BASS;
755 default:
756 return 0;
757 }
758 }
759
760 int
761 sbdsp_set_in_ports(sc, mask)
762 struct sbdsp_softc *sc;
763 int mask;
764 {
765 int bitsl, bitsr;
766 int sbport;
767
768 if (sc->sc_open == SB_OPEN_MIDI)
769 return EBUSY;
770
771 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
772 sc->sc_mixer_model, mask));
773
774 switch(sc->sc_mixer_model) {
775 case SBM_NONE:
776 return EINVAL;
777 case SBM_CT1335:
778 if (mask != (1 << SB_MIC_VOL))
779 return EINVAL;
780 break;
781 case SBM_CT1345:
782 switch (mask) {
783 case 1 << SB_MIC_VOL:
784 sbport = SBP_FROM_MIC;
785 break;
786 case 1 << SB_LINE_IN_VOL:
787 sbport = SBP_FROM_LINE;
788 break;
789 case 1 << SB_CD_VOL:
790 sbport = SBP_FROM_CD;
791 break;
792 default:
793 return (EINVAL);
794 }
795 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
796 break;
797 case SBM_CT1XX5:
798 case SBM_CT1745:
799 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
800 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
801 return EINVAL;
802 bitsr = 0;
803 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
804 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
805 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
806 bitsl = SB_SRC_R_TO_L(bitsr);
807 if (mask & (1<<SB_MIC_VOL)) {
808 bitsl |= SBP_MIC_SRC;
809 bitsr |= SBP_MIC_SRC;
810 }
811 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
812 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
813 break;
814 }
815 sc->in_mask = mask;
816
817 return 0;
818 }
819
820 int
821 sbdsp_speaker_ctl(addr, newstate)
822 void *addr;
823 int newstate;
824 {
825 struct sbdsp_softc *sc = addr;
826
827 if (sc->sc_open == SB_OPEN_MIDI)
828 return EBUSY;
829
830 if ((newstate == SPKR_ON) &&
831 (sc->spkr_state == SPKR_OFF)) {
832 sbdsp_spkron(sc);
833 sc->spkr_state = SPKR_ON;
834 }
835 if ((newstate == SPKR_OFF) &&
836 (sc->spkr_state == SPKR_ON)) {
837 sbdsp_spkroff(sc);
838 sc->spkr_state = SPKR_OFF;
839 }
840 return 0;
841 }
842
843 int
844 sbdsp_round_blocksize(addr, blk)
845 void *addr;
846 int blk;
847 {
848 return blk & -4; /* round to biggest sample size */
849 }
850
851 int
852 sbdsp_open(addr, flags)
853 void *addr;
854 int flags;
855 {
856 struct sbdsp_softc *sc = addr;
857
858 DPRINTF(("sbdsp_open: sc=%p\n", sc));
859
860 if (sc->sc_open != SB_CLOSED)
861 return EBUSY;
862 if (sbdsp_reset(sc) != 0)
863 return EIO;
864
865 sc->sc_open = SB_OPEN_AUDIO;
866 sc->sc_openflags = flags;
867 sc->sc_intrm = 0;
868 if (ISSBPRO(sc) &&
869 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
870 DPRINTF(("sbdsp_open: can't set mono mode\n"));
871 /* we'll readjust when it's time for DMA. */
872 }
873
874 /*
875 * Leave most things as they were; users must change things if
876 * the previous process didn't leave it they way they wanted.
877 * Looked at another way, it's easy to set up a configuration
878 * in one program and leave it for another to inherit.
879 */
880 DPRINTF(("sbdsp_open: opened\n"));
881
882 return 0;
883 }
884
885 void
886 sbdsp_close(addr)
887 void *addr;
888 {
889 struct sbdsp_softc *sc = addr;
890
891 DPRINTF(("sbdsp_close: sc=%p\n", sc));
892
893 sbdsp_spkroff(sc);
894 sc->spkr_state = SPKR_OFF;
895
896 sbdsp_halt_output(sc);
897 sbdsp_halt_input(sc);
898
899 sc->sc_intr8 = 0;
900 sc->sc_intr16 = 0;
901 sc->sc_open = SB_CLOSED;
902
903 DPRINTF(("sbdsp_close: closed\n"));
904 }
905
906 /*
907 * Lower-level routines
908 */
909
910 /*
911 * Reset the card.
912 * Return non-zero if the card isn't detected.
913 */
914 int
915 sbdsp_reset(sc)
916 struct sbdsp_softc *sc;
917 {
918 bus_space_tag_t iot = sc->sc_iot;
919 bus_space_handle_t ioh = sc->sc_ioh;
920
921 sc->sc_intr8 = 0;
922 sc->sc_intr16 = 0;
923 sc->sc_intrm = 0;
924
925 /*
926 * See SBK, section 11.3.
927 * We pulse a reset signal into the card.
928 * Gee, what a brilliant hardware design.
929 */
930 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
931 delay(10);
932 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
933 delay(30);
934 if (sbdsp_rdsp(sc) != SB_MAGIC)
935 return -1;
936
937 return 0;
938 }
939
940 /*
941 * Write a byte to the dsp.
942 * We are at the mercy of the card as we use a
943 * polling loop and wait until it can take the byte.
944 */
945 int
946 sbdsp_wdsp(sc, v)
947 struct sbdsp_softc *sc;
948 int v;
949 {
950 bus_space_tag_t iot = sc->sc_iot;
951 bus_space_handle_t ioh = sc->sc_ioh;
952 int i;
953 u_char x;
954
955 for (i = SBDSP_NPOLL; --i >= 0; ) {
956 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
957 delay(10);
958 if ((x & SB_DSP_BUSY) == 0) {
959 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
960 delay(10);
961 return 0;
962 }
963 }
964 ++sberr.wdsp;
965 return -1;
966 }
967
968 /*
969 * Read a byte from the DSP, using polling.
970 */
971 int
972 sbdsp_rdsp(sc)
973 struct sbdsp_softc *sc;
974 {
975 bus_space_tag_t iot = sc->sc_iot;
976 bus_space_handle_t ioh = sc->sc_ioh;
977 int i;
978 u_char x;
979
980 for (i = SBDSP_NPOLL; --i >= 0; ) {
981 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
982 delay(10);
983 if (x & SB_DSP_READY) {
984 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
985 delay(10);
986 return x;
987 }
988 }
989 ++sberr.rdsp;
990 return -1;
991 }
992
993 /*
994 * Doing certain things (like toggling the speaker) make
995 * the SB hardware go away for a while, so pause a little.
996 */
997 void
998 sbdsp_to(arg)
999 void *arg;
1000 {
1001 wakeup(arg);
1002 }
1003
1004 void
1005 sbdsp_pause(sc)
1006 struct sbdsp_softc *sc;
1007 {
1008 extern int hz;
1009
1010 timeout(sbdsp_to, sbdsp_to, hz/8);
1011 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1012 }
1013
1014 /*
1015 * Turn on the speaker. The SBK documention says this operation
1016 * can take up to 1/10 of a second. Higher level layers should
1017 * probably let the task sleep for this amount of time after
1018 * calling here. Otherwise, things might not work (because
1019 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1020 *
1021 * These engineers had their heads up their ass when
1022 * they designed this card.
1023 */
1024 void
1025 sbdsp_spkron(sc)
1026 struct sbdsp_softc *sc;
1027 {
1028 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1029 sbdsp_pause(sc);
1030 }
1031
1032 /*
1033 * Turn off the speaker; see comment above.
1034 */
1035 void
1036 sbdsp_spkroff(sc)
1037 struct sbdsp_softc *sc;
1038 {
1039 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1040 sbdsp_pause(sc);
1041 }
1042
1043 /*
1044 * Read the version number out of the card.
1045 * Store version information in the softc.
1046 */
1047 void
1048 sbversion(sc)
1049 struct sbdsp_softc *sc;
1050 {
1051 int v;
1052
1053 sc->sc_model = SB_UNK;
1054 sc->sc_version = 0;
1055 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1056 return;
1057 v = sbdsp_rdsp(sc) << 8;
1058 v |= sbdsp_rdsp(sc);
1059 if (v < 0)
1060 return;
1061 sc->sc_version = v;
1062 switch(SBVER_MAJOR(v)) {
1063 case 1:
1064 sc->sc_mixer_model = SBM_NONE;
1065 sc->sc_model = SB_1;
1066 break;
1067 case 2:
1068 /* Some SB2 have a mixer, some don't. */
1069 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1070 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1071 /* Check if we can read back the mixer values. */
1072 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1073 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1074 sc->sc_mixer_model = SBM_CT1335;
1075 else
1076 sc->sc_mixer_model = SBM_NONE;
1077 if (SBVER_MINOR(v) == 0)
1078 sc->sc_model = SB_20;
1079 else
1080 sc->sc_model = SB_2x;
1081 break;
1082 case 3:
1083 sc->sc_mixer_model = SBM_CT1345;
1084 sc->sc_model = SB_PRO;
1085 break;
1086 case 4:
1087 #if 0
1088 /* XXX This does not work */
1089 /* Most SB16 have a tone controls, but some don't. */
1090 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1091 /* Check if we can read back the mixer value. */
1092 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1093 sc->sc_mixer_model = SBM_CT1745;
1094 else
1095 sc->sc_mixer_model = SBM_CT1XX5;
1096 #else
1097 sc->sc_mixer_model = SBM_CT1745;
1098 #endif
1099 #if 0
1100 /* XXX figure out a good way of determining the model */
1101 /* XXX what about SB_32 */
1102 if (SBVER_MINOR(v) == 16)
1103 sc->sc_model = SB_64;
1104 else
1105 #endif
1106 sc->sc_model = SB_16;
1107 break;
1108 }
1109 }
1110
1111 int
1112 sbdsp_set_timeconst(sc, tc)
1113 struct sbdsp_softc *sc;
1114 int tc;
1115 {
1116 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1117
1118 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1119 sbdsp_wdsp(sc, tc) < 0)
1120 return EIO;
1121
1122 return 0;
1123 }
1124
1125 int
1126 sbdsp16_set_rate(sc, cmd, rate)
1127 struct sbdsp_softc *sc;
1128 int cmd, rate;
1129 {
1130 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1131
1132 if (sbdsp_wdsp(sc, cmd) < 0 ||
1133 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1134 sbdsp_wdsp(sc, rate) < 0)
1135 return EIO;
1136 return 0;
1137 }
1138
1139 int
1140 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1141 void *addr;
1142 void *start, *end;
1143 int blksize;
1144 void (*intr) __P((void *));
1145 void *arg;
1146 struct audio_params *param;
1147 {
1148 struct sbdsp_softc *sc = addr;
1149 int stereo = param->channels == 2;
1150 int width = param->precision * param->factor;
1151 int filter;
1152
1153 #ifdef DIAGNOSTIC
1154 if (stereo && (blksize & 1)) {
1155 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1156 return (EIO);
1157 }
1158 if (sc->sc_i.run != SB_NOTRUNNING)
1159 printf("sbdsp_trigger_input: already running\n");
1160 #endif
1161
1162 sc->sc_intrr = intr;
1163 sc->sc_argr = arg;
1164
1165 if (width == 8) {
1166 #ifdef DIAGNOSTIC
1167 if (sc->sc_i.dmachan != sc->sc_drq8) {
1168 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1169 width, sc->sc_i.dmachan);
1170 return (EIO);
1171 }
1172 #endif
1173 sc->sc_intr8 = sbdsp_block_input;
1174 sc->sc_arg8 = addr;
1175 } else {
1176 #ifdef DIAGNOSTIC
1177 if (sc->sc_i.dmachan != sc->sc_drq16) {
1178 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1179 width, sc->sc_i.dmachan);
1180 return (EIO);
1181 }
1182 #endif
1183 sc->sc_intr16 = sbdsp_block_input;
1184 sc->sc_arg16 = addr;
1185 }
1186
1187 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1188 blksize >>= 1;
1189 --blksize;
1190 sc->sc_i.blksize = blksize;
1191
1192 if (ISSBPRO(sc)) {
1193 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1194 return (EIO);
1195 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1196 sbdsp_mix_write(sc, SBP_INFILTER,
1197 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1198 filter);
1199 }
1200
1201 if (ISSB16CLASS(sc)) {
1202 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1203 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1204 sc->sc_i.rate));
1205 return (EIO);
1206 }
1207 } else {
1208 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1209 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1210 sc->sc_i.rate));
1211 return (EIO);
1212 }
1213 }
1214
1215 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1216 start, end, sc->sc_i.dmachan));
1217 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1218 (char *)end - (char *)start, NULL,
1219 DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1220
1221 return sbdsp_block_input(addr);
1222 }
1223
1224 int
1225 sbdsp_block_input(addr)
1226 void *addr;
1227 {
1228 struct sbdsp_softc *sc = addr;
1229 int cc = sc->sc_i.blksize;
1230
1231 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1232
1233 if (sc->sc_i.run != SB_NOTRUNNING)
1234 sc->sc_intrr(sc->sc_argr);
1235
1236 if (sc->sc_model == SB_1) {
1237 /* Non-looping mode, start DMA */
1238 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1239 sbdsp_wdsp(sc, cc) < 0 ||
1240 sbdsp_wdsp(sc, cc >> 8) < 0) {
1241 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1242 return (EIO);
1243 }
1244 sc->sc_i.run = SB_RUNNING;
1245 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1246 /* Initialize looping PCM */
1247 if (ISSB16CLASS(sc)) {
1248 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1249 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1250 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1251 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1252 sbdsp_wdsp(sc, cc) < 0 ||
1253 sbdsp_wdsp(sc, cc >> 8) < 0) {
1254 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1255 return (EIO);
1256 }
1257 } else {
1258 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1259 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1260 sbdsp_wdsp(sc, cc) < 0 ||
1261 sbdsp_wdsp(sc, cc >> 8) < 0) {
1262 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1263 return (EIO);
1264 }
1265 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1266 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1267 return (EIO);
1268 }
1269 }
1270 sc->sc_i.run = SB_LOOPING;
1271 }
1272
1273 return (0);
1274 }
1275
1276 int
1277 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1278 void *addr;
1279 void *start, *end;
1280 int blksize;
1281 void (*intr) __P((void *));
1282 void *arg;
1283 struct audio_params *param;
1284 {
1285 struct sbdsp_softc *sc = addr;
1286 int stereo = param->channels == 2;
1287 int width = param->precision * param->factor;
1288 int cmd;
1289
1290 #ifdef DIAGNOSTIC
1291 if (stereo && (blksize & 1)) {
1292 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1293 return (EIO);
1294 }
1295 if (sc->sc_o.run != SB_NOTRUNNING)
1296 printf("sbdsp_trigger_output: already running\n");
1297 #endif
1298
1299 sc->sc_intrp = intr;
1300 sc->sc_argp = arg;
1301
1302 if (width == 8) {
1303 #ifdef DIAGNOSTIC
1304 if (sc->sc_o.dmachan != sc->sc_drq8) {
1305 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1306 width, sc->sc_o.dmachan);
1307 return (EIO);
1308 }
1309 #endif
1310 sc->sc_intr8 = sbdsp_block_output;
1311 sc->sc_arg8 = addr;
1312 } else {
1313 #ifdef DIAGNOSTIC
1314 if (sc->sc_o.dmachan != sc->sc_drq16) {
1315 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1316 width, sc->sc_o.dmachan);
1317 return (EIO);
1318 }
1319 #endif
1320 sc->sc_intr16 = sbdsp_block_output;
1321 sc->sc_arg16 = addr;
1322 }
1323
1324 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1325 blksize >>= 1;
1326 --blksize;
1327 sc->sc_o.blksize = blksize;
1328
1329 if (ISSBPRO(sc)) {
1330 /* make sure we re-set stereo mixer bit when we start output. */
1331 sbdsp_mix_write(sc, SBP_STEREO,
1332 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1333 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1334 cmd = sc->sc_o.modep->cmdchan;
1335 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1336 return (EIO);
1337 }
1338
1339 if (ISSB16CLASS(sc)) {
1340 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1341 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1342 sc->sc_o.rate));
1343 return (EIO);
1344 }
1345 } else {
1346 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1347 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1348 sc->sc_o.rate));
1349 return (EIO);
1350 }
1351 }
1352
1353 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1354 start, end, sc->sc_o.dmachan));
1355 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1356 (char *)end - (char *)start, NULL,
1357 DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1358
1359 return sbdsp_block_output(addr);
1360 }
1361
1362 int
1363 sbdsp_block_output(addr)
1364 void *addr;
1365 {
1366 struct sbdsp_softc *sc = addr;
1367 int cc = sc->sc_o.blksize;
1368
1369 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1370
1371 if (sc->sc_o.run != SB_NOTRUNNING)
1372 sc->sc_intrp(sc->sc_argp);
1373
1374 if (sc->sc_model == SB_1) {
1375 /* Non-looping mode, initialized. Start DMA and PCM */
1376 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1377 sbdsp_wdsp(sc, cc) < 0 ||
1378 sbdsp_wdsp(sc, cc >> 8) < 0) {
1379 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1380 return (EIO);
1381 }
1382 sc->sc_o.run = SB_RUNNING;
1383 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1384 /* Initialize looping PCM */
1385 if (ISSB16CLASS(sc)) {
1386 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1387 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1388 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1389 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1390 sbdsp_wdsp(sc, cc) < 0 ||
1391 sbdsp_wdsp(sc, cc >> 8) < 0) {
1392 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1393 return (EIO);
1394 }
1395 } else {
1396 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1397 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1398 sbdsp_wdsp(sc, cc) < 0 ||
1399 sbdsp_wdsp(sc, cc >> 8) < 0) {
1400 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1401 return (EIO);
1402 }
1403 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1404 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1405 return (EIO);
1406 }
1407 }
1408 sc->sc_o.run = SB_LOOPING;
1409 }
1410
1411 return (0);
1412 }
1413
1414 int
1415 sbdsp_halt_output(addr)
1416 void *addr;
1417 {
1418 struct sbdsp_softc *sc = addr;
1419
1420 if (sc->sc_o.run != SB_NOTRUNNING) {
1421 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1422 printf("sbdsp_halt_output: failed to halt\n");
1423 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1424 sc->sc_o.run = SB_NOTRUNNING;
1425 }
1426
1427 return (0);
1428 }
1429
1430 int
1431 sbdsp_halt_input(addr)
1432 void *addr;
1433 {
1434 struct sbdsp_softc *sc = addr;
1435
1436 if (sc->sc_i.run != SB_NOTRUNNING) {
1437 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1438 printf("sbdsp_halt_input: failed to halt\n");
1439 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1440 sc->sc_i.run = SB_NOTRUNNING;
1441 }
1442
1443 return (0);
1444 }
1445
1446 /*
1447 * Only the DSP unit on the sound blaster generates interrupts.
1448 * There are three cases of interrupt: reception of a midi byte
1449 * (when mode is enabled), completion of dma transmission, or
1450 * completion of a dma reception.
1451 *
1452 * If there is interrupt sharing or a spurious interrupt occurs
1453 * there is no way to distinguish this on an SB2. So if you have
1454 * an SB2 and experience problems, buy an SB16 (it's only $40).
1455 */
1456 int
1457 sbdsp_intr(arg)
1458 void *arg;
1459 {
1460 struct sbdsp_softc *sc = arg;
1461 u_char irq;
1462
1463 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1464 sc->sc_intr8, sc->sc_intr16));
1465 if (ISSB16CLASS(sc)) {
1466 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1467 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1468 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1469 return 0;
1470 }
1471 } else {
1472 /* XXXX CHECK FOR INTERRUPT */
1473 irq = SBP_IRQ_DMA8;
1474 }
1475
1476 sc->sc_interrupts++;
1477 delay(10); /* XXX why? */
1478
1479 /* clear interrupt */
1480 if (irq & SBP_IRQ_DMA8) {
1481 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1482 if (sc->sc_intr8)
1483 sc->sc_intr8(sc->sc_arg8);
1484 }
1485 if (irq & SBP_IRQ_DMA16) {
1486 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1487 if (sc->sc_intr16)
1488 sc->sc_intr16(sc->sc_arg16);
1489 }
1490 #if NMIDI > 0
1491 if ((irq & SBP_IRQ_MPU401) && sc->sc_hasmpu) {
1492 mpu401_intr(&sc->sc_mpu_sc);
1493 }
1494 #endif
1495 return 1;
1496 }
1497
1498 /* Like val & mask, but make sure the result is correctly rounded. */
1499 #define MAXVAL 256
1500 static int
1501 sbdsp_adjust(val, mask)
1502 int val, mask;
1503 {
1504 val += (MAXVAL - mask) >> 1;
1505 if (val >= MAXVAL)
1506 val = MAXVAL-1;
1507 return val & mask;
1508 }
1509
1510 void
1511 sbdsp_set_mixer_gain(sc, port)
1512 struct sbdsp_softc *sc;
1513 int port;
1514 {
1515 int src, gain;
1516
1517 switch(sc->sc_mixer_model) {
1518 case SBM_NONE:
1519 return;
1520 case SBM_CT1335:
1521 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1522 switch(port) {
1523 case SB_MASTER_VOL:
1524 src = SBP_1335_MASTER_VOL;
1525 break;
1526 case SB_MIDI_VOL:
1527 src = SBP_1335_MIDI_VOL;
1528 break;
1529 case SB_CD_VOL:
1530 src = SBP_1335_CD_VOL;
1531 break;
1532 case SB_VOICE_VOL:
1533 src = SBP_1335_VOICE_VOL;
1534 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1535 break;
1536 default:
1537 return;
1538 }
1539 sbdsp_mix_write(sc, src, gain);
1540 break;
1541 case SBM_CT1345:
1542 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1543 sc->gain[port][SB_RIGHT]);
1544 switch (port) {
1545 case SB_MIC_VOL:
1546 src = SBP_MIC_VOL;
1547 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1548 break;
1549 case SB_MASTER_VOL:
1550 src = SBP_MASTER_VOL;
1551 break;
1552 case SB_LINE_IN_VOL:
1553 src = SBP_LINE_VOL;
1554 break;
1555 case SB_VOICE_VOL:
1556 src = SBP_VOICE_VOL;
1557 break;
1558 case SB_MIDI_VOL:
1559 src = SBP_MIDI_VOL;
1560 break;
1561 case SB_CD_VOL:
1562 src = SBP_CD_VOL;
1563 break;
1564 default:
1565 return;
1566 }
1567 sbdsp_mix_write(sc, src, gain);
1568 break;
1569 case SBM_CT1XX5:
1570 case SBM_CT1745:
1571 switch (port) {
1572 case SB_MIC_VOL:
1573 src = SB16P_MIC_L;
1574 break;
1575 case SB_MASTER_VOL:
1576 src = SB16P_MASTER_L;
1577 break;
1578 case SB_LINE_IN_VOL:
1579 src = SB16P_LINE_L;
1580 break;
1581 case SB_VOICE_VOL:
1582 src = SB16P_VOICE_L;
1583 break;
1584 case SB_MIDI_VOL:
1585 src = SB16P_MIDI_L;
1586 break;
1587 case SB_CD_VOL:
1588 src = SB16P_CD_L;
1589 break;
1590 case SB_INPUT_GAIN:
1591 src = SB16P_INPUT_GAIN_L;
1592 break;
1593 case SB_OUTPUT_GAIN:
1594 src = SB16P_OUTPUT_GAIN_L;
1595 break;
1596 case SB_TREBLE:
1597 src = SB16P_TREBLE_L;
1598 break;
1599 case SB_BASS:
1600 src = SB16P_BASS_L;
1601 break;
1602 case SB_PCSPEAKER:
1603 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1604 return;
1605 default:
1606 return;
1607 }
1608 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1609 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1610 break;
1611 }
1612 }
1613
1614 int
1615 sbdsp_mixer_set_port(addr, cp)
1616 void *addr;
1617 mixer_ctrl_t *cp;
1618 {
1619 struct sbdsp_softc *sc = addr;
1620 int lgain, rgain;
1621 int mask, bits;
1622 int lmask, rmask, lbits, rbits;
1623 int mute, swap;
1624
1625 if (sc->sc_open == SB_OPEN_MIDI)
1626 return EBUSY;
1627
1628 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1629 cp->un.value.num_channels));
1630
1631 if (sc->sc_mixer_model == SBM_NONE)
1632 return EINVAL;
1633
1634 switch (cp->dev) {
1635 case SB_TREBLE:
1636 case SB_BASS:
1637 if (sc->sc_mixer_model == SBM_CT1345 ||
1638 sc->sc_mixer_model == SBM_CT1XX5) {
1639 if (cp->type != AUDIO_MIXER_ENUM)
1640 return EINVAL;
1641 switch (cp->dev) {
1642 case SB_TREBLE:
1643 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1644 return 0;
1645 case SB_BASS:
1646 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1647 return 0;
1648 }
1649 }
1650 case SB_PCSPEAKER:
1651 case SB_INPUT_GAIN:
1652 case SB_OUTPUT_GAIN:
1653 if (!ISSBM1745(sc))
1654 return EINVAL;
1655 case SB_MIC_VOL:
1656 case SB_LINE_IN_VOL:
1657 if (sc->sc_mixer_model == SBM_CT1335)
1658 return EINVAL;
1659 case SB_VOICE_VOL:
1660 case SB_MIDI_VOL:
1661 case SB_CD_VOL:
1662 case SB_MASTER_VOL:
1663 if (cp->type != AUDIO_MIXER_VALUE)
1664 return EINVAL;
1665
1666 /*
1667 * All the mixer ports are stereo except for the microphone.
1668 * If we get a single-channel gain value passed in, then we
1669 * duplicate it to both left and right channels.
1670 */
1671
1672 switch (cp->dev) {
1673 case SB_MIC_VOL:
1674 if (cp->un.value.num_channels != 1)
1675 return EINVAL;
1676
1677 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1678 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1679 break;
1680 case SB_PCSPEAKER:
1681 if (cp->un.value.num_channels != 1)
1682 return EINVAL;
1683 /* fall into */
1684 case SB_INPUT_GAIN:
1685 case SB_OUTPUT_GAIN:
1686 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1687 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1688 break;
1689 default:
1690 switch (cp->un.value.num_channels) {
1691 case 1:
1692 lgain = rgain = SB_ADJUST_GAIN(sc,
1693 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1694 break;
1695 case 2:
1696 if (sc->sc_mixer_model == SBM_CT1335)
1697 return EINVAL;
1698 lgain = SB_ADJUST_GAIN(sc,
1699 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1700 rgain = SB_ADJUST_GAIN(sc,
1701 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1702 break;
1703 default:
1704 return EINVAL;
1705 }
1706 break;
1707 }
1708 sc->gain[cp->dev][SB_LEFT] = lgain;
1709 sc->gain[cp->dev][SB_RIGHT] = rgain;
1710
1711 sbdsp_set_mixer_gain(sc, cp->dev);
1712 break;
1713
1714 case SB_RECORD_SOURCE:
1715 if (ISSBM1745(sc)) {
1716 if (cp->type != AUDIO_MIXER_SET)
1717 return EINVAL;
1718 return sbdsp_set_in_ports(sc, cp->un.mask);
1719 } else {
1720 if (cp->type != AUDIO_MIXER_ENUM)
1721 return EINVAL;
1722 sc->in_port = cp->un.ord;
1723 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1724 }
1725 break;
1726
1727 case SB_AGC:
1728 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1729 return EINVAL;
1730 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1731 break;
1732
1733 case SB_CD_OUT_MUTE:
1734 mask = SB16P_SW_CD;
1735 goto omute;
1736 case SB_MIC_OUT_MUTE:
1737 mask = SB16P_SW_MIC;
1738 goto omute;
1739 case SB_LINE_OUT_MUTE:
1740 mask = SB16P_SW_LINE;
1741 omute:
1742 if (cp->type != AUDIO_MIXER_ENUM)
1743 return EINVAL;
1744 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1745 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1746 if (cp->un.ord)
1747 bits = bits & ~mask;
1748 else
1749 bits = bits | mask;
1750 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1751 break;
1752
1753 case SB_MIC_IN_MUTE:
1754 case SB_MIC_SWAP:
1755 lmask = rmask = SB16P_SW_MIC;
1756 goto imute;
1757 case SB_CD_IN_MUTE:
1758 case SB_CD_SWAP:
1759 lmask = SB16P_SW_CD_L;
1760 rmask = SB16P_SW_CD_R;
1761 goto imute;
1762 case SB_LINE_IN_MUTE:
1763 case SB_LINE_SWAP:
1764 lmask = SB16P_SW_LINE_L;
1765 rmask = SB16P_SW_LINE_R;
1766 goto imute;
1767 case SB_MIDI_IN_MUTE:
1768 case SB_MIDI_SWAP:
1769 lmask = SB16P_SW_MIDI_L;
1770 rmask = SB16P_SW_MIDI_R;
1771 imute:
1772 if (cp->type != AUDIO_MIXER_ENUM)
1773 return EINVAL;
1774 mask = lmask | rmask;
1775 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1776 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1777 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1778 if (SB_IS_IN_MUTE(cp->dev)) {
1779 mute = cp->dev;
1780 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1781 } else {
1782 swap = cp->dev;
1783 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1784 }
1785 if (sc->gain[swap][SB_LR]) {
1786 mask = lmask;
1787 lmask = rmask;
1788 rmask = mask;
1789 }
1790 if (!sc->gain[mute][SB_LR]) {
1791 lbits = lbits | lmask;
1792 rbits = rbits | rmask;
1793 }
1794 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1795 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1796 break;
1797
1798 default:
1799 return EINVAL;
1800 }
1801
1802 return 0;
1803 }
1804
1805 int
1806 sbdsp_mixer_get_port(addr, cp)
1807 void *addr;
1808 mixer_ctrl_t *cp;
1809 {
1810 struct sbdsp_softc *sc = addr;
1811
1812 if (sc->sc_open == SB_OPEN_MIDI)
1813 return EBUSY;
1814
1815 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1816
1817 if (sc->sc_mixer_model == SBM_NONE)
1818 return EINVAL;
1819
1820 switch (cp->dev) {
1821 case SB_TREBLE:
1822 case SB_BASS:
1823 if (sc->sc_mixer_model == SBM_CT1345 ||
1824 sc->sc_mixer_model == SBM_CT1XX5) {
1825 switch (cp->dev) {
1826 case SB_TREBLE:
1827 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1828 return 0;
1829 case SB_BASS:
1830 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1831 return 0;
1832 }
1833 }
1834 case SB_PCSPEAKER:
1835 case SB_INPUT_GAIN:
1836 case SB_OUTPUT_GAIN:
1837 if (!ISSBM1745(sc))
1838 return EINVAL;
1839 case SB_MIC_VOL:
1840 case SB_LINE_IN_VOL:
1841 if (sc->sc_mixer_model == SBM_CT1335)
1842 return EINVAL;
1843 case SB_VOICE_VOL:
1844 case SB_MIDI_VOL:
1845 case SB_CD_VOL:
1846 case SB_MASTER_VOL:
1847 switch (cp->dev) {
1848 case SB_MIC_VOL:
1849 case SB_PCSPEAKER:
1850 if (cp->un.value.num_channels != 1)
1851 return EINVAL;
1852 /* fall into */
1853 default:
1854 switch (cp->un.value.num_channels) {
1855 case 1:
1856 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1857 sc->gain[cp->dev][SB_LEFT];
1858 break;
1859 case 2:
1860 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1861 sc->gain[cp->dev][SB_LEFT];
1862 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1863 sc->gain[cp->dev][SB_RIGHT];
1864 break;
1865 default:
1866 return EINVAL;
1867 }
1868 break;
1869 }
1870 break;
1871
1872 case SB_RECORD_SOURCE:
1873 if (ISSBM1745(sc))
1874 cp->un.mask = sc->in_mask;
1875 else
1876 cp->un.ord = sc->in_port;
1877 break;
1878
1879 case SB_AGC:
1880 if (!ISSBM1745(sc))
1881 return EINVAL;
1882 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1883 break;
1884
1885 case SB_CD_IN_MUTE:
1886 case SB_MIC_IN_MUTE:
1887 case SB_LINE_IN_MUTE:
1888 case SB_MIDI_IN_MUTE:
1889 case SB_CD_SWAP:
1890 case SB_MIC_SWAP:
1891 case SB_LINE_SWAP:
1892 case SB_MIDI_SWAP:
1893 case SB_CD_OUT_MUTE:
1894 case SB_MIC_OUT_MUTE:
1895 case SB_LINE_OUT_MUTE:
1896 cp->un.ord = sc->gain[cp->dev][SB_LR];
1897 break;
1898
1899 default:
1900 return EINVAL;
1901 }
1902
1903 return 0;
1904 }
1905
1906 int
1907 sbdsp_mixer_query_devinfo(addr, dip)
1908 void *addr;
1909 mixer_devinfo_t *dip;
1910 {
1911 struct sbdsp_softc *sc = addr;
1912 int chan, class, is1745;
1913
1914 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1915 sc->sc_mixer_model, dip->index));
1916
1917 if (sc->sc_mixer_model == SBM_NONE)
1918 return ENXIO;
1919
1920 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1921 is1745 = ISSBM1745(sc);
1922 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1923
1924 switch (dip->index) {
1925 case SB_MASTER_VOL:
1926 dip->type = AUDIO_MIXER_VALUE;
1927 dip->mixer_class = SB_OUTPUT_CLASS;
1928 dip->prev = dip->next = AUDIO_MIXER_LAST;
1929 strcpy(dip->label.name, AudioNmaster);
1930 dip->un.v.num_channels = chan;
1931 strcpy(dip->un.v.units.name, AudioNvolume);
1932 return 0;
1933 case SB_MIDI_VOL:
1934 dip->type = AUDIO_MIXER_VALUE;
1935 dip->mixer_class = class;
1936 dip->prev = AUDIO_MIXER_LAST;
1937 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
1938 strcpy(dip->label.name, AudioNfmsynth);
1939 dip->un.v.num_channels = chan;
1940 strcpy(dip->un.v.units.name, AudioNvolume);
1941 return 0;
1942 case SB_CD_VOL:
1943 dip->type = AUDIO_MIXER_VALUE;
1944 dip->mixer_class = class;
1945 dip->prev = AUDIO_MIXER_LAST;
1946 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
1947 strcpy(dip->label.name, AudioNcd);
1948 dip->un.v.num_channels = chan;
1949 strcpy(dip->un.v.units.name, AudioNvolume);
1950 return 0;
1951 case SB_VOICE_VOL:
1952 dip->type = AUDIO_MIXER_VALUE;
1953 dip->mixer_class = class;
1954 dip->prev = AUDIO_MIXER_LAST;
1955 dip->next = AUDIO_MIXER_LAST;
1956 strcpy(dip->label.name, AudioNdac);
1957 dip->un.v.num_channels = chan;
1958 strcpy(dip->un.v.units.name, AudioNvolume);
1959 return 0;
1960 case SB_OUTPUT_CLASS:
1961 dip->type = AUDIO_MIXER_CLASS;
1962 dip->mixer_class = SB_OUTPUT_CLASS;
1963 dip->next = dip->prev = AUDIO_MIXER_LAST;
1964 strcpy(dip->label.name, AudioCoutputs);
1965 return 0;
1966 }
1967
1968 if (sc->sc_mixer_model == SBM_CT1335)
1969 return ENXIO;
1970
1971 switch (dip->index) {
1972 case SB_MIC_VOL:
1973 dip->type = AUDIO_MIXER_VALUE;
1974 dip->mixer_class = class;
1975 dip->prev = AUDIO_MIXER_LAST;
1976 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
1977 strcpy(dip->label.name, AudioNmicrophone);
1978 dip->un.v.num_channels = 1;
1979 strcpy(dip->un.v.units.name, AudioNvolume);
1980 return 0;
1981
1982 case SB_LINE_IN_VOL:
1983 dip->type = AUDIO_MIXER_VALUE;
1984 dip->mixer_class = class;
1985 dip->prev = AUDIO_MIXER_LAST;
1986 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
1987 strcpy(dip->label.name, AudioNline);
1988 dip->un.v.num_channels = 2;
1989 strcpy(dip->un.v.units.name, AudioNvolume);
1990 return 0;
1991
1992 case SB_RECORD_SOURCE:
1993 dip->mixer_class = SB_RECORD_CLASS;
1994 dip->prev = dip->next = AUDIO_MIXER_LAST;
1995 strcpy(dip->label.name, AudioNsource);
1996 if (ISSBM1745(sc)) {
1997 dip->type = AUDIO_MIXER_SET;
1998 dip->un.s.num_mem = 4;
1999 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2000 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2001 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2002 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2003 strcpy(dip->un.s.member[2].label.name, AudioNline);
2004 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2005 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2006 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2007 } else {
2008 dip->type = AUDIO_MIXER_ENUM;
2009 dip->un.e.num_mem = 3;
2010 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2011 dip->un.e.member[0].ord = SB_MIC_VOL;
2012 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2013 dip->un.e.member[1].ord = SB_CD_VOL;
2014 strcpy(dip->un.e.member[2].label.name, AudioNline);
2015 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2016 }
2017 return 0;
2018
2019 case SB_BASS:
2020 dip->prev = dip->next = AUDIO_MIXER_LAST;
2021 strcpy(dip->label.name, AudioNbass);
2022 if (sc->sc_mixer_model == SBM_CT1745) {
2023 dip->type = AUDIO_MIXER_VALUE;
2024 dip->mixer_class = SB_EQUALIZATION_CLASS;
2025 dip->un.v.num_channels = 2;
2026 strcpy(dip->un.v.units.name, AudioNbass);
2027 } else {
2028 dip->type = AUDIO_MIXER_ENUM;
2029 dip->mixer_class = SB_INPUT_CLASS;
2030 dip->un.e.num_mem = 2;
2031 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2032 dip->un.e.member[0].ord = 0;
2033 strcpy(dip->un.e.member[1].label.name, AudioNon);
2034 dip->un.e.member[1].ord = 1;
2035 }
2036 return 0;
2037
2038 case SB_TREBLE:
2039 dip->prev = dip->next = AUDIO_MIXER_LAST;
2040 strcpy(dip->label.name, AudioNtreble);
2041 if (sc->sc_mixer_model == SBM_CT1745) {
2042 dip->type = AUDIO_MIXER_VALUE;
2043 dip->mixer_class = SB_EQUALIZATION_CLASS;
2044 dip->un.v.num_channels = 2;
2045 strcpy(dip->un.v.units.name, AudioNtreble);
2046 } else {
2047 dip->type = AUDIO_MIXER_ENUM;
2048 dip->mixer_class = SB_INPUT_CLASS;
2049 dip->un.e.num_mem = 2;
2050 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2051 dip->un.e.member[0].ord = 0;
2052 strcpy(dip->un.e.member[1].label.name, AudioNon);
2053 dip->un.e.member[1].ord = 1;
2054 }
2055 return 0;
2056
2057 case SB_RECORD_CLASS: /* record source class */
2058 dip->type = AUDIO_MIXER_CLASS;
2059 dip->mixer_class = SB_RECORD_CLASS;
2060 dip->next = dip->prev = AUDIO_MIXER_LAST;
2061 strcpy(dip->label.name, AudioCrecord);
2062 return 0;
2063
2064 case SB_INPUT_CLASS:
2065 dip->type = AUDIO_MIXER_CLASS;
2066 dip->mixer_class = SB_INPUT_CLASS;
2067 dip->next = dip->prev = AUDIO_MIXER_LAST;
2068 strcpy(dip->label.name, AudioCinputs);
2069 return 0;
2070
2071 }
2072
2073 if (sc->sc_mixer_model == SBM_CT1345)
2074 return ENXIO;
2075
2076 switch(dip->index) {
2077 case SB_PCSPEAKER:
2078 dip->type = AUDIO_MIXER_VALUE;
2079 dip->mixer_class = SB_INPUT_CLASS;
2080 dip->prev = dip->next = AUDIO_MIXER_LAST;
2081 strcpy(dip->label.name, "pc_speaker");
2082 dip->un.v.num_channels = 1;
2083 strcpy(dip->un.v.units.name, AudioNvolume);
2084 return 0;
2085
2086 case SB_INPUT_GAIN:
2087 dip->type = AUDIO_MIXER_VALUE;
2088 dip->mixer_class = SB_INPUT_CLASS;
2089 dip->prev = dip->next = AUDIO_MIXER_LAST;
2090 strcpy(dip->label.name, AudioNinput);
2091 dip->un.v.num_channels = 2;
2092 strcpy(dip->un.v.units.name, AudioNvolume);
2093 return 0;
2094
2095 case SB_OUTPUT_GAIN:
2096 dip->type = AUDIO_MIXER_VALUE;
2097 dip->mixer_class = SB_OUTPUT_CLASS;
2098 dip->prev = dip->next = AUDIO_MIXER_LAST;
2099 strcpy(dip->label.name, AudioNoutput);
2100 dip->un.v.num_channels = 2;
2101 strcpy(dip->un.v.units.name, AudioNvolume);
2102 return 0;
2103
2104 case SB_AGC:
2105 dip->type = AUDIO_MIXER_ENUM;
2106 dip->mixer_class = SB_INPUT_CLASS;
2107 dip->prev = dip->next = AUDIO_MIXER_LAST;
2108 strcpy(dip->label.name, "agc");
2109 dip->un.e.num_mem = 2;
2110 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2111 dip->un.e.member[0].ord = 0;
2112 strcpy(dip->un.e.member[1].label.name, AudioNon);
2113 dip->un.e.member[1].ord = 1;
2114 return 0;
2115
2116 case SB_EQUALIZATION_CLASS:
2117 dip->type = AUDIO_MIXER_CLASS;
2118 dip->mixer_class = SB_EQUALIZATION_CLASS;
2119 dip->next = dip->prev = AUDIO_MIXER_LAST;
2120 strcpy(dip->label.name, AudioCequalization);
2121 return 0;
2122
2123 case SB_CD_IN_MUTE:
2124 dip->prev = SB_CD_VOL;
2125 dip->next = SB_CD_SWAP;
2126 dip->mixer_class = SB_INPUT_CLASS;
2127 goto mute;
2128
2129 case SB_MIC_IN_MUTE:
2130 dip->prev = SB_MIC_VOL;
2131 dip->next = SB_MIC_SWAP;
2132 dip->mixer_class = SB_INPUT_CLASS;
2133 goto mute;
2134
2135 case SB_LINE_IN_MUTE:
2136 dip->prev = SB_LINE_IN_VOL;
2137 dip->next = SB_LINE_SWAP;
2138 dip->mixer_class = SB_INPUT_CLASS;
2139 goto mute;
2140
2141 case SB_MIDI_IN_MUTE:
2142 dip->prev = SB_MIDI_VOL;
2143 dip->next = SB_MIDI_SWAP;
2144 dip->mixer_class = SB_INPUT_CLASS;
2145 goto mute;
2146
2147 case SB_CD_SWAP:
2148 dip->prev = SB_CD_IN_MUTE;
2149 dip->next = SB_CD_OUT_MUTE;
2150 goto swap;
2151
2152 case SB_MIC_SWAP:
2153 dip->prev = SB_MIC_IN_MUTE;
2154 dip->next = SB_MIC_OUT_MUTE;
2155 goto swap;
2156
2157 case SB_LINE_SWAP:
2158 dip->prev = SB_LINE_IN_MUTE;
2159 dip->next = SB_LINE_OUT_MUTE;
2160 goto swap;
2161
2162 case SB_MIDI_SWAP:
2163 dip->prev = SB_MIDI_IN_MUTE;
2164 dip->next = AUDIO_MIXER_LAST;
2165 swap:
2166 dip->mixer_class = SB_INPUT_CLASS;
2167 strcpy(dip->label.name, AudioNswap);
2168 goto mute1;
2169
2170 case SB_CD_OUT_MUTE:
2171 dip->prev = SB_CD_SWAP;
2172 dip->next = AUDIO_MIXER_LAST;
2173 dip->mixer_class = SB_OUTPUT_CLASS;
2174 goto mute;
2175
2176 case SB_MIC_OUT_MUTE:
2177 dip->prev = SB_MIC_SWAP;
2178 dip->next = AUDIO_MIXER_LAST;
2179 dip->mixer_class = SB_OUTPUT_CLASS;
2180 goto mute;
2181
2182 case SB_LINE_OUT_MUTE:
2183 dip->prev = SB_LINE_SWAP;
2184 dip->next = AUDIO_MIXER_LAST;
2185 dip->mixer_class = SB_OUTPUT_CLASS;
2186 mute:
2187 strcpy(dip->label.name, AudioNmute);
2188 mute1:
2189 dip->type = AUDIO_MIXER_ENUM;
2190 dip->un.e.num_mem = 2;
2191 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2192 dip->un.e.member[0].ord = 0;
2193 strcpy(dip->un.e.member[1].label.name, AudioNon);
2194 dip->un.e.member[1].ord = 1;
2195 return 0;
2196
2197 }
2198
2199 return ENXIO;
2200 }
2201
2202 void *
2203 sb_malloc(addr, direction, size, pool, flags)
2204 void *addr;
2205 int direction;
2206 size_t size;
2207 int pool, flags;
2208 {
2209 struct sbdsp_softc *sc = addr;
2210 int drq;
2211
2212 if (sc->sc_drq8 != -1)
2213 drq = sc->sc_drq8;
2214 else
2215 drq = sc->sc_drq16;
2216 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2217 }
2218
2219 void
2220 sb_free(addr, ptr, pool)
2221 void *addr;
2222 void *ptr;
2223 int pool;
2224 {
2225 isa_free(ptr, pool);
2226 }
2227
2228 size_t
2229 sb_round_buffersize(addr, direction, size)
2230 void *addr;
2231 int direction;
2232 size_t size;
2233 {
2234 if (size > MAX_ISADMA)
2235 size = MAX_ISADMA;
2236 return (size);
2237 }
2238
2239 int
2240 sb_mappage(addr, mem, off, prot)
2241 void *addr;
2242 void *mem;
2243 int off;
2244 int prot;
2245 {
2246 return isa_mappage(mem, off, prot);
2247 }
2248
2249 int
2250 sbdsp_get_props(addr)
2251 void *addr;
2252 {
2253 struct sbdsp_softc *sc = addr;
2254 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2255 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2256 }
2257
2258 #if NMIDI > 0
2259 /*
2260 * MIDI related routines.
2261 */
2262
2263 int
2264 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2265 void *addr;
2266 int flags;
2267 void (*iintr)__P((void *, int));
2268 void (*ointr)__P((void *));
2269 void *arg;
2270 {
2271 struct sbdsp_softc *sc = addr;
2272
2273 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2274
2275 if (sc->sc_open != SB_CLOSED)
2276 return EBUSY;
2277 if (sbdsp_reset(sc) != 0)
2278 return EIO;
2279
2280 if (sc->sc_model >= SB_20)
2281 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2282 return EIO;
2283 sc->sc_open = SB_OPEN_MIDI;
2284 sc->sc_openflags = flags;
2285 sc->sc_intr8 = sbdsp_midi_intr;
2286 sc->sc_arg8 = addr;
2287 sc->sc_intrm = iintr;
2288 sc->sc_argm = arg;
2289 return 0;
2290 }
2291
2292 void
2293 sbdsp_midi_close(addr)
2294 void *addr;
2295 {
2296 struct sbdsp_softc *sc = addr;
2297
2298 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2299
2300 if (sc->sc_model >= SB_20)
2301 sbdsp_reset(sc); /* exit UART mode */
2302
2303 sc->sc_intrm = 0;
2304 sc->sc_open = SB_CLOSED;
2305 }
2306
2307 int
2308 sbdsp_midi_output(addr, d)
2309 void *addr;
2310 int d;
2311 {
2312 struct sbdsp_softc *sc = addr;
2313
2314 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2315 return EIO;
2316 if (sbdsp_wdsp(sc, d))
2317 return EIO;
2318 return 0;
2319 }
2320
2321 void
2322 sbdsp_midi_getinfo(addr, mi)
2323 void *addr;
2324 struct midi_info *mi;
2325 {
2326 struct sbdsp_softc *sc = addr;
2327
2328 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2329 mi->props = MIDI_PROP_CAN_INPUT;
2330 }
2331
2332 int
2333 sbdsp_midi_intr(addr)
2334 void *addr;
2335 {
2336 struct sbdsp_softc *sc = addr;
2337
2338 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2339 return (0);
2340 }
2341
2342 #endif
2343
2344