sbdsp.c revision 1.95 1 /* $NetBSD: sbdsp.c,v 1.95 1999/02/18 16:09:01 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include "midi.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/errno.h>
88 #include <sys/ioctl.h>
89 #include <sys/syslog.h>
90 #include <sys/device.h>
91 #include <sys/proc.h>
92 #include <sys/buf.h>
93 #include <vm/vm.h>
94
95 #include <machine/cpu.h>
96 #include <machine/intr.h>
97 #include <machine/bus.h>
98
99 #include <sys/audioio.h>
100 #include <dev/audio_if.h>
101 #include <dev/midi_if.h>
102 #include <dev/mulaw.h>
103 #include <dev/auconv.h>
104
105 #include <dev/isa/isavar.h>
106 #include <dev/isa/isadmavar.h>
107
108 #include <dev/isa/sbreg.h>
109 #include <dev/isa/sbdspvar.h>
110
111
112 #ifdef AUDIO_DEBUG
113 #define DPRINTF(x) if (sbdspdebug) printf x
114 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
115 int sbdspdebug = 0;
116 #else
117 #define DPRINTF(x)
118 #define DPRINTFN(n,x)
119 #endif
120
121 #ifndef SBDSP_NPOLL
122 #define SBDSP_NPOLL 3000
123 #endif
124
125 struct {
126 int wdsp;
127 int rdsp;
128 int wmidi;
129 } sberr;
130
131 /*
132 * Time constant routines follow. See SBK, section 12.
133 * Although they don't come out and say it (in the docs),
134 * the card clearly uses a 1MHz countdown timer, as the
135 * low-speed formula (p. 12-4) is:
136 * tc = 256 - 10^6 / sr
137 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
138 * and a 256MHz clock is used:
139 * tc = 65536 - 256 * 10^ 6 / sr
140 * Since we can only use the upper byte of the HS TC, the two formulae
141 * are equivalent. (Why didn't they say so?) E.g.,
142 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
143 *
144 * The crossover point (from low- to high-speed modes) is different
145 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
146 *
147 * SBPRO SB20
148 * ----- --------
149 * input ls min 4 KHz 4 KHz
150 * input ls max 23 KHz 13 KHz
151 * input hs max 44.1 KHz 15 KHz
152 * output ls min 4 KHz 4 KHz
153 * output ls max 23 KHz 23 KHz
154 * output hs max 44.1 KHz 44.1 KHz
155 */
156 /* XXX Should we round the tc?
157 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
158 */
159 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
160 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
161
162 struct sbmode {
163 short model;
164 u_char channels;
165 u_char precision;
166 u_short lowrate, highrate;
167 u_char cmd;
168 u_char halt, cont;
169 u_char cmdchan;
170 };
171 static struct sbmode sbpmodes[] = {
172 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
173 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
174 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
175 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
176 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
179 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
180 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
181 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
182 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
183 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
184 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
185 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
186 { SB_16, 1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
187 { SB_16, 2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
188 #define PLAY16 15 /* must be the index of the next entry in the table */
189 { SB_16, 1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
190 { SB_16, 2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
191 { -1 }
192 };
193 static struct sbmode sbrmodes[] = {
194 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
195 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
196 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
197 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
198 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
199 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
200 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
201 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
202 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
204 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
205 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
206 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
207 { SB_16, 1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
208 { SB_16, 2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
209 { SB_16, 1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
210 { SB_16, 2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
211 { -1 }
212 };
213
214 void sbversion __P((struct sbdsp_softc *));
215 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
216 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
217 void sbdsp_to __P((void *));
218 void sbdsp_pause __P((struct sbdsp_softc *));
219 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
220 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
221 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
222 void sbdsp_set_ifilter __P((void *, int));
223 int sbdsp_get_ifilter __P((void *));
224
225 int sbdsp_block_output __P((void *));
226 int sbdsp_block_input __P((void *));
227 static int sbdsp_adjust __P((int, int));
228
229 int sbdsp_midi_intr __P((void *));
230
231 #ifdef AUDIO_DEBUG
232 void sb_printsc __P((struct sbdsp_softc *));
233
234 void
235 sb_printsc(sc)
236 struct sbdsp_softc *sc;
237 {
238 int i;
239
240 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
241 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
242 sc->sc_drq8, sc->sc_drq16,
243 sc->sc_iobase, sc->sc_irq);
244 printf("irate %d itc %x orate %d otc %x\n",
245 sc->sc_i.rate, sc->sc_i.tc,
246 sc->sc_o.rate, sc->sc_o.tc);
247 printf("spkron %u nintr %lu\n",
248 sc->spkr_state, sc->sc_interrupts);
249 printf("intr8 %p intr16 %p\n",
250 sc->sc_intr8, sc->sc_intr16);
251 printf("gain:");
252 for (i = 0; i < SB_NDEVS; i++)
253 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
254 printf("\n");
255 }
256 #endif /* AUDIO_DEBUG */
257
258 /*
259 * Probe / attach routines.
260 */
261
262 /*
263 * Probe for the soundblaster hardware.
264 */
265 int
266 sbdsp_probe(sc)
267 struct sbdsp_softc *sc;
268 {
269
270 if (sbdsp_reset(sc) < 0) {
271 DPRINTF(("sbdsp: couldn't reset card\n"));
272 return 0;
273 }
274 /* if flags set, go and probe the jazz16 stuff */
275 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
276 sbdsp_jazz16_probe(sc);
277 else
278 sbversion(sc);
279 if (sc->sc_model == SB_UNK) {
280 /* Unknown SB model found. */
281 DPRINTF(("sbdsp: unknown SB model found\n"));
282 return 0;
283 }
284 return 1;
285 }
286
287 /*
288 * Try add-on stuff for Jazz16.
289 */
290 void
291 sbdsp_jazz16_probe(sc)
292 struct sbdsp_softc *sc;
293 {
294 static u_char jazz16_irq_conf[16] = {
295 -1, -1, 0x02, 0x03,
296 -1, 0x01, -1, 0x04,
297 -1, 0x02, 0x05, -1,
298 -1, -1, -1, 0x06};
299 static u_char jazz16_drq_conf[8] = {
300 -1, 0x01, -1, 0x02,
301 -1, 0x03, -1, 0x04};
302
303 bus_space_tag_t iot = sc->sc_iot;
304 bus_space_handle_t ioh;
305
306 sbversion(sc);
307
308 DPRINTF(("jazz16 probe\n"));
309
310 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
311 DPRINTF(("bus map failed\n"));
312 return;
313 }
314
315 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
316 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
317 DPRINTF(("drq/irq check failed\n"));
318 goto done; /* give up, we can't do it. */
319 }
320
321 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
322 delay(10000); /* delay 10 ms */
323 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
324 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
325
326 if (sbdsp_reset(sc) < 0) {
327 DPRINTF(("sbdsp_reset check failed\n"));
328 goto done; /* XXX? what else could we do? */
329 }
330
331 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
332 DPRINTF(("read16 setup failed\n"));
333 goto done;
334 }
335
336 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
337 DPRINTF(("read16 failed\n"));
338 goto done;
339 }
340
341 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
342 sc->sc_drq16 = sc->sc_drq8;
343 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
344 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
345 jazz16_drq_conf[sc->sc_drq8]) ||
346 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
347 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
348 } else {
349 DPRINTF(("jazz16 detected!\n"));
350 sc->sc_model = SB_JAZZ;
351 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
352 }
353
354 done:
355 bus_space_unmap(iot, ioh, 1);
356 }
357
358 /*
359 * Attach hardware to driver, attach hardware driver to audio
360 * pseudo-device driver .
361 */
362 void
363 sbdsp_attach(sc)
364 struct sbdsp_softc *sc;
365 {
366 struct audio_params pparams, rparams;
367 int i;
368 u_int v;
369
370 /*
371 * Create our DMA maps.
372 */
373 if (sc->sc_drq8 != -1) {
374 if (isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
375 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
376 printf("%s: can't create map for drq %d\n",
377 sc->sc_dev.dv_xname, sc->sc_drq8);
378 return;
379 }
380 }
381 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
382 if (isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
383 MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
384 printf("%s: can't create map for drq %d\n",
385 sc->sc_dev.dv_xname, sc->sc_drq16);
386 return;
387 }
388 }
389
390 pparams = audio_default;
391 rparams = audio_default;
392 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
393
394 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
395
396 if (sc->sc_mixer_model != SBM_NONE) {
397 /* Reset the mixer.*/
398 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
399 /* And set our own default values */
400 for (i = 0; i < SB_NDEVS; i++) {
401 switch(i) {
402 case SB_MIC_VOL:
403 case SB_LINE_IN_VOL:
404 v = 0;
405 break;
406 case SB_BASS:
407 case SB_TREBLE:
408 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
409 break;
410 case SB_CD_IN_MUTE:
411 case SB_MIC_IN_MUTE:
412 case SB_LINE_IN_MUTE:
413 case SB_MIDI_IN_MUTE:
414 case SB_CD_SWAP:
415 case SB_MIC_SWAP:
416 case SB_LINE_SWAP:
417 case SB_MIDI_SWAP:
418 case SB_CD_OUT_MUTE:
419 case SB_MIC_OUT_MUTE:
420 case SB_LINE_OUT_MUTE:
421 v = 0;
422 break;
423 default:
424 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
425 break;
426 }
427 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
428 sbdsp_set_mixer_gain(sc, i);
429 }
430 sc->in_filter = 0; /* no filters turned on, please */
431 }
432
433 printf(": dsp v%d.%02d%s\n",
434 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
435 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
436
437 sc->sc_fullduplex = ISSB16CLASS(sc) &&
438 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
439 sc->sc_drq8 != sc->sc_drq16;
440 }
441
442 void
443 sbdsp_mix_write(sc, mixerport, val)
444 struct sbdsp_softc *sc;
445 int mixerport;
446 int val;
447 {
448 bus_space_tag_t iot = sc->sc_iot;
449 bus_space_handle_t ioh = sc->sc_ioh;
450 int s;
451
452 s = splaudio();
453 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
454 delay(20);
455 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
456 delay(30);
457 splx(s);
458 }
459
460 int
461 sbdsp_mix_read(sc, mixerport)
462 struct sbdsp_softc *sc;
463 int mixerport;
464 {
465 bus_space_tag_t iot = sc->sc_iot;
466 bus_space_handle_t ioh = sc->sc_ioh;
467 int val;
468 int s;
469
470 s = splaudio();
471 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
472 delay(20);
473 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
474 delay(30);
475 splx(s);
476 return val;
477 }
478
479 /*
480 * Various routines to interface to higher level audio driver
481 */
482
483 int
484 sbdsp_query_encoding(addr, fp)
485 void *addr;
486 struct audio_encoding *fp;
487 {
488 struct sbdsp_softc *sc = addr;
489 int emul;
490
491 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
492
493 switch (fp->index) {
494 case 0:
495 strcpy(fp->name, AudioEulinear);
496 fp->encoding = AUDIO_ENCODING_ULINEAR;
497 fp->precision = 8;
498 fp->flags = 0;
499 return 0;
500 case 1:
501 strcpy(fp->name, AudioEmulaw);
502 fp->encoding = AUDIO_ENCODING_ULAW;
503 fp->precision = 8;
504 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
505 return 0;
506 case 2:
507 strcpy(fp->name, AudioEalaw);
508 fp->encoding = AUDIO_ENCODING_ALAW;
509 fp->precision = 8;
510 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
511 return 0;
512 case 3:
513 strcpy(fp->name, AudioEslinear);
514 fp->encoding = AUDIO_ENCODING_SLINEAR;
515 fp->precision = 8;
516 fp->flags = emul;
517 return 0;
518 }
519 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
520 return EINVAL;
521
522 switch(fp->index) {
523 case 4:
524 strcpy(fp->name, AudioEslinear_le);
525 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
526 fp->precision = 16;
527 fp->flags = 0;
528 return 0;
529 case 5:
530 strcpy(fp->name, AudioEulinear_le);
531 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
532 fp->precision = 16;
533 fp->flags = emul;
534 return 0;
535 case 6:
536 strcpy(fp->name, AudioEslinear_be);
537 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
538 fp->precision = 16;
539 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
540 return 0;
541 case 7:
542 strcpy(fp->name, AudioEulinear_be);
543 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
544 fp->precision = 16;
545 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
546 return 0;
547 default:
548 return EINVAL;
549 }
550 return 0;
551 }
552
553 int
554 sbdsp_set_params(addr, setmode, usemode, play, rec)
555 void *addr;
556 int setmode, usemode;
557 struct audio_params *play, *rec;
558 {
559 struct sbdsp_softc *sc = addr;
560 struct sbmode *m;
561 u_int rate, tc, bmode;
562 void (*swcode) __P((void *, u_char *buf, int cnt));
563 int factor;
564 int model;
565 int chan;
566 struct audio_params *p;
567 int mode;
568
569 if (sc->sc_open == SB_OPEN_MIDI)
570 return EBUSY;
571
572 /* Later models work like SB16. */
573 model = min(sc->sc_model, SB_16);
574
575 /*
576 * Prior to the SB16, we have only one clock, so make the sample
577 * rates match.
578 */
579 if (!ISSB16CLASS(sc) &&
580 play->sample_rate != rec->sample_rate &&
581 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
582 if (setmode == AUMODE_PLAY) {
583 rec->sample_rate = play->sample_rate;
584 setmode |= AUMODE_RECORD;
585 } else if (setmode == AUMODE_RECORD) {
586 play->sample_rate = rec->sample_rate;
587 setmode |= AUMODE_PLAY;
588 } else
589 return (EINVAL);
590 }
591
592 /* Set first record info, then play info */
593 for (mode = AUMODE_RECORD; mode != -1;
594 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
595 if ((setmode & mode) == 0)
596 continue;
597
598 p = mode == AUMODE_PLAY ? play : rec;
599 /* Locate proper commands */
600 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
601 m->model != -1; m++) {
602 if (model == m->model &&
603 p->channels == m->channels &&
604 p->precision == m->precision &&
605 p->sample_rate >= m->lowrate &&
606 p->sample_rate < m->highrate)
607 break;
608 }
609 if (m->model == -1)
610 return EINVAL;
611 rate = p->sample_rate;
612 swcode = 0;
613 factor = 1;
614 tc = 1;
615 bmode = -1;
616 if (model == SB_16) {
617 switch (p->encoding) {
618 case AUDIO_ENCODING_SLINEAR_BE:
619 if (p->precision == 16)
620 swcode = swap_bytes;
621 /* fall into */
622 case AUDIO_ENCODING_SLINEAR_LE:
623 bmode = SB_BMODE_SIGNED;
624 break;
625 case AUDIO_ENCODING_ULINEAR_BE:
626 if (p->precision == 16)
627 swcode = swap_bytes;
628 /* fall into */
629 case AUDIO_ENCODING_ULINEAR_LE:
630 bmode = SB_BMODE_UNSIGNED;
631 break;
632 case AUDIO_ENCODING_ULAW:
633 if (mode == AUMODE_PLAY) {
634 swcode = mulaw_to_ulinear16;
635 factor = 2;
636 m = &sbpmodes[PLAY16];
637 } else
638 swcode = ulinear8_to_mulaw;
639 bmode = SB_BMODE_UNSIGNED;
640 break;
641 case AUDIO_ENCODING_ALAW:
642 if (mode == AUMODE_PLAY) {
643 swcode = alaw_to_ulinear16;
644 factor = 2;
645 m = &sbpmodes[PLAY16];
646 } else
647 swcode = ulinear8_to_alaw;
648 bmode = SB_BMODE_UNSIGNED;
649 break;
650 default:
651 return EINVAL;
652 }
653 if (p->channels == 2)
654 bmode |= SB_BMODE_STEREO;
655 } else if (m->model == SB_JAZZ && m->precision == 16) {
656 switch (p->encoding) {
657 case AUDIO_ENCODING_SLINEAR_LE:
658 break;
659 case AUDIO_ENCODING_ULINEAR_LE:
660 swcode = change_sign16;
661 break;
662 case AUDIO_ENCODING_SLINEAR_BE:
663 swcode = swap_bytes;
664 break;
665 case AUDIO_ENCODING_ULINEAR_BE:
666 swcode = mode == AUMODE_PLAY ?
667 swap_bytes_change_sign16 : change_sign16_swap_bytes;
668 break;
669 case AUDIO_ENCODING_ULAW:
670 swcode = mode == AUMODE_PLAY ?
671 mulaw_to_ulinear8 : ulinear8_to_mulaw;
672 break;
673 case AUDIO_ENCODING_ALAW:
674 swcode = mode == AUMODE_PLAY ?
675 alaw_to_ulinear8 : ulinear8_to_alaw;
676 break;
677 default:
678 return EINVAL;
679 }
680 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
681 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
682 } else {
683 switch (p->encoding) {
684 case AUDIO_ENCODING_SLINEAR_BE:
685 case AUDIO_ENCODING_SLINEAR_LE:
686 swcode = change_sign8;
687 break;
688 case AUDIO_ENCODING_ULINEAR_BE:
689 case AUDIO_ENCODING_ULINEAR_LE:
690 break;
691 case AUDIO_ENCODING_ULAW:
692 swcode = mode == AUMODE_PLAY ?
693 mulaw_to_ulinear8 : ulinear8_to_mulaw;
694 break;
695 case AUDIO_ENCODING_ALAW:
696 swcode = mode == AUMODE_PLAY ?
697 alaw_to_ulinear8 : ulinear8_to_alaw;
698 break;
699 default:
700 return EINVAL;
701 }
702 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
703 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
704 }
705
706 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
707 if (mode == AUMODE_PLAY) {
708 sc->sc_o.rate = rate;
709 sc->sc_o.tc = tc;
710 sc->sc_o.modep = m;
711 sc->sc_o.bmode = bmode;
712 sc->sc_o.dmachan = chan;
713 } else {
714 sc->sc_i.rate = rate;
715 sc->sc_i.tc = tc;
716 sc->sc_i.modep = m;
717 sc->sc_i.bmode = bmode;
718 sc->sc_i.dmachan = chan;
719 }
720
721 p->sw_code = swcode;
722 p->factor = factor;
723 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
724 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
725 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
726
727 }
728
729 if (sc->sc_fullduplex &&
730 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
731 sc->sc_i.dmachan == sc->sc_o.dmachan) {
732 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
733 if (sc->sc_o.dmachan == sc->sc_drq8) {
734 /* Use 16 bit DMA for playing by expanding the samples. */
735 play->sw_code = linear8_to_linear16;
736 play->factor = 2;
737 sc->sc_o.modep = &sbpmodes[PLAY16];
738 sc->sc_o.dmachan = sc->sc_drq16;
739 } else {
740 return EINVAL;
741 }
742 }
743 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
744 sc->sc_i.dmachan, sc->sc_o.dmachan));
745
746 return (0);
747 }
748
749 void
750 sbdsp_set_ifilter(addr, which)
751 void *addr;
752 int which;
753 {
754 struct sbdsp_softc *sc = addr;
755 int mixval;
756
757 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
758 switch (which) {
759 case 0:
760 mixval |= SBP_FILTER_OFF;
761 break;
762 case SB_TREBLE:
763 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
764 break;
765 case SB_BASS:
766 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
767 break;
768 default:
769 return;
770 }
771 sc->in_filter = mixval & SBP_IFILTER_MASK;
772 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
773 }
774
775 int
776 sbdsp_get_ifilter(addr)
777 void *addr;
778 {
779 struct sbdsp_softc *sc = addr;
780
781 sc->in_filter =
782 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
783 switch (sc->in_filter) {
784 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
785 return SB_TREBLE;
786 case SBP_FILTER_ON|SBP_IFILTER_LOW:
787 return SB_BASS;
788 default:
789 return 0;
790 }
791 }
792
793 int
794 sbdsp_set_in_ports(sc, mask)
795 struct sbdsp_softc *sc;
796 int mask;
797 {
798 int bitsl, bitsr;
799 int sbport;
800
801 if (sc->sc_open == SB_OPEN_MIDI)
802 return EBUSY;
803
804 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
805 sc->sc_mixer_model, mask));
806
807 switch(sc->sc_mixer_model) {
808 case SBM_NONE:
809 return EINVAL;
810 case SBM_CT1335:
811 if (mask != (1 << SB_MIC_VOL))
812 return EINVAL;
813 break;
814 case SBM_CT1345:
815 switch (mask) {
816 case 1 << SB_MIC_VOL:
817 sbport = SBP_FROM_MIC;
818 break;
819 case 1 << SB_LINE_IN_VOL:
820 sbport = SBP_FROM_LINE;
821 break;
822 case 1 << SB_CD_VOL:
823 sbport = SBP_FROM_CD;
824 break;
825 default:
826 return (EINVAL);
827 }
828 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
829 break;
830 case SBM_CT1XX5:
831 case SBM_CT1745:
832 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
833 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
834 return EINVAL;
835 bitsr = 0;
836 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
837 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
838 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
839 bitsl = SB_SRC_R_TO_L(bitsr);
840 if (mask & (1<<SB_MIC_VOL)) {
841 bitsl |= SBP_MIC_SRC;
842 bitsr |= SBP_MIC_SRC;
843 }
844 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
845 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
846 break;
847 }
848 sc->in_mask = mask;
849
850 return 0;
851 }
852
853 int
854 sbdsp_speaker_ctl(addr, newstate)
855 void *addr;
856 int newstate;
857 {
858 struct sbdsp_softc *sc = addr;
859
860 if (sc->sc_open == SB_OPEN_MIDI)
861 return EBUSY;
862
863 if ((newstate == SPKR_ON) &&
864 (sc->spkr_state == SPKR_OFF)) {
865 sbdsp_spkron(sc);
866 sc->spkr_state = SPKR_ON;
867 }
868 if ((newstate == SPKR_OFF) &&
869 (sc->spkr_state == SPKR_ON)) {
870 sbdsp_spkroff(sc);
871 sc->spkr_state = SPKR_OFF;
872 }
873 return 0;
874 }
875
876 int
877 sbdsp_round_blocksize(addr, blk)
878 void *addr;
879 int blk;
880 {
881 return blk & -4; /* round to biggest sample size */
882 }
883
884 int
885 sbdsp_open(addr, flags)
886 void *addr;
887 int flags;
888 {
889 struct sbdsp_softc *sc = addr;
890
891 DPRINTF(("sbdsp_open: sc=%p\n", sc));
892
893 if (sc->sc_open != SB_CLOSED)
894 return EBUSY;
895 if (sbdsp_reset(sc) != 0)
896 return EIO;
897
898 sc->sc_open = SB_OPEN_AUDIO;
899 sc->sc_openflags = flags;
900
901 if (ISSBPRO(sc) &&
902 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
903 DPRINTF(("sbdsp_open: can't set mono mode\n"));
904 /* we'll readjust when it's time for DMA. */
905 }
906
907 /*
908 * Leave most things as they were; users must change things if
909 * the previous process didn't leave it they way they wanted.
910 * Looked at another way, it's easy to set up a configuration
911 * in one program and leave it for another to inherit.
912 */
913 DPRINTF(("sbdsp_open: opened\n"));
914
915 return 0;
916 }
917
918 void
919 sbdsp_close(addr)
920 void *addr;
921 {
922 struct sbdsp_softc *sc = addr;
923
924 DPRINTF(("sbdsp_close: sc=%p\n", sc));
925
926 sbdsp_spkroff(sc);
927 sc->spkr_state = SPKR_OFF;
928
929 sbdsp_halt_output(sc);
930 sbdsp_halt_input(sc);
931
932 sc->sc_intr8 = 0;
933 sc->sc_intr16 = 0;
934 sc->sc_open = SB_CLOSED;
935
936 DPRINTF(("sbdsp_close: closed\n"));
937 }
938
939 /*
940 * Lower-level routines
941 */
942
943 /*
944 * Reset the card.
945 * Return non-zero if the card isn't detected.
946 */
947 int
948 sbdsp_reset(sc)
949 struct sbdsp_softc *sc;
950 {
951 bus_space_tag_t iot = sc->sc_iot;
952 bus_space_handle_t ioh = sc->sc_ioh;
953
954 sc->sc_intr8 = 0;
955 sc->sc_intr16 = 0;
956 sc->sc_intrm = 0;
957
958 /*
959 * See SBK, section 11.3.
960 * We pulse a reset signal into the card.
961 * Gee, what a brilliant hardware design.
962 */
963 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
964 delay(10);
965 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
966 delay(30);
967 if (sbdsp_rdsp(sc) != SB_MAGIC)
968 return -1;
969
970 return 0;
971 }
972
973 /*
974 * Write a byte to the dsp.
975 * We are at the mercy of the card as we use a
976 * polling loop and wait until it can take the byte.
977 */
978 int
979 sbdsp_wdsp(sc, v)
980 struct sbdsp_softc *sc;
981 int v;
982 {
983 bus_space_tag_t iot = sc->sc_iot;
984 bus_space_handle_t ioh = sc->sc_ioh;
985 int i;
986 u_char x;
987
988 for (i = SBDSP_NPOLL; --i >= 0; ) {
989 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
990 delay(10);
991 if ((x & SB_DSP_BUSY) == 0) {
992 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
993 delay(10);
994 return 0;
995 }
996 }
997 ++sberr.wdsp;
998 return -1;
999 }
1000
1001 /*
1002 * Read a byte from the DSP, using polling.
1003 */
1004 int
1005 sbdsp_rdsp(sc)
1006 struct sbdsp_softc *sc;
1007 {
1008 bus_space_tag_t iot = sc->sc_iot;
1009 bus_space_handle_t ioh = sc->sc_ioh;
1010 int i;
1011 u_char x;
1012
1013 for (i = SBDSP_NPOLL; --i >= 0; ) {
1014 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1015 delay(10);
1016 if (x & SB_DSP_READY) {
1017 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1018 delay(10);
1019 return x;
1020 }
1021 }
1022 ++sberr.rdsp;
1023 return -1;
1024 }
1025
1026 /*
1027 * Doing certain things (like toggling the speaker) make
1028 * the SB hardware go away for a while, so pause a little.
1029 */
1030 void
1031 sbdsp_to(arg)
1032 void *arg;
1033 {
1034 wakeup(arg);
1035 }
1036
1037 void
1038 sbdsp_pause(sc)
1039 struct sbdsp_softc *sc;
1040 {
1041 extern int hz;
1042
1043 timeout(sbdsp_to, sbdsp_to, hz/8);
1044 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1045 }
1046
1047 /*
1048 * Turn on the speaker. The SBK documention says this operation
1049 * can take up to 1/10 of a second. Higher level layers should
1050 * probably let the task sleep for this amount of time after
1051 * calling here. Otherwise, things might not work (because
1052 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1053 *
1054 * These engineers had their heads up their ass when
1055 * they designed this card.
1056 */
1057 void
1058 sbdsp_spkron(sc)
1059 struct sbdsp_softc *sc;
1060 {
1061 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1062 sbdsp_pause(sc);
1063 }
1064
1065 /*
1066 * Turn off the speaker; see comment above.
1067 */
1068 void
1069 sbdsp_spkroff(sc)
1070 struct sbdsp_softc *sc;
1071 {
1072 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1073 sbdsp_pause(sc);
1074 }
1075
1076 /*
1077 * Read the version number out of the card.
1078 * Store version information in the softc.
1079 */
1080 void
1081 sbversion(sc)
1082 struct sbdsp_softc *sc;
1083 {
1084 int v;
1085
1086 sc->sc_model = SB_UNK;
1087 sc->sc_version = 0;
1088 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1089 return;
1090 v = sbdsp_rdsp(sc) << 8;
1091 v |= sbdsp_rdsp(sc);
1092 if (v < 0)
1093 return;
1094 sc->sc_version = v;
1095 switch(SBVER_MAJOR(v)) {
1096 case 1:
1097 sc->sc_mixer_model = SBM_NONE;
1098 sc->sc_model = SB_1;
1099 break;
1100 case 2:
1101 /* Some SB2 have a mixer, some don't. */
1102 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1103 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1104 /* Check if we can read back the mixer values. */
1105 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1106 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1107 sc->sc_mixer_model = SBM_CT1335;
1108 else
1109 sc->sc_mixer_model = SBM_NONE;
1110 if (SBVER_MINOR(v) == 0)
1111 sc->sc_model = SB_20;
1112 else
1113 sc->sc_model = SB_2x;
1114 break;
1115 case 3:
1116 sc->sc_mixer_model = SBM_CT1345;
1117 sc->sc_model = SB_PRO;
1118 break;
1119 case 4:
1120 #if 0
1121 /* XXX This does not work */
1122 /* Most SB16 have a tone controls, but some don't. */
1123 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1124 /* Check if we can read back the mixer value. */
1125 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1126 sc->sc_mixer_model = SBM_CT1745;
1127 else
1128 sc->sc_mixer_model = SBM_CT1XX5;
1129 #else
1130 sc->sc_mixer_model = SBM_CT1745;
1131 #endif
1132 #if 0
1133 /* XXX figure out a good way of determining the model */
1134 /* XXX what about SB_32 */
1135 if (SBVER_MINOR(v) == 16)
1136 sc->sc_model = SB_64;
1137 else
1138 #endif
1139 sc->sc_model = SB_16;
1140 break;
1141 }
1142 }
1143
1144 int
1145 sbdsp_set_timeconst(sc, tc)
1146 struct sbdsp_softc *sc;
1147 int tc;
1148 {
1149 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1150
1151 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1152 sbdsp_wdsp(sc, tc) < 0)
1153 return EIO;
1154
1155 return 0;
1156 }
1157
1158 int
1159 sbdsp16_set_rate(sc, cmd, rate)
1160 struct sbdsp_softc *sc;
1161 int cmd, rate;
1162 {
1163 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1164
1165 if (sbdsp_wdsp(sc, cmd) < 0 ||
1166 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1167 sbdsp_wdsp(sc, rate) < 0)
1168 return EIO;
1169 return 0;
1170 }
1171
1172 int
1173 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1174 void *addr;
1175 void *start, *end;
1176 int blksize;
1177 void (*intr) __P((void *));
1178 void *arg;
1179 struct audio_params *param;
1180 {
1181 struct sbdsp_softc *sc = addr;
1182 int stereo = param->channels == 2;
1183 int width = param->precision * param->factor;
1184 int filter;
1185
1186 #ifdef DIAGNOSTIC
1187 if (stereo && (blksize & 1)) {
1188 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1189 return (EIO);
1190 }
1191 if (sc->sc_i.run != SB_NOTRUNNING)
1192 printf("sbdsp_trigger_input: already running\n");
1193 #endif
1194
1195 sc->sc_intrr = intr;
1196 sc->sc_argr = arg;
1197
1198 if (width == 8) {
1199 #ifdef DIAGNOSTIC
1200 if (sc->sc_i.dmachan != sc->sc_drq8) {
1201 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1202 width, sc->sc_i.dmachan);
1203 return (EIO);
1204 }
1205 #endif
1206 sc->sc_intr8 = sbdsp_block_input;
1207 } else {
1208 #ifdef DIAGNOSTIC
1209 if (sc->sc_i.dmachan != sc->sc_drq16) {
1210 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1211 width, sc->sc_i.dmachan);
1212 return (EIO);
1213 }
1214 #endif
1215 sc->sc_intr16 = sbdsp_block_input;
1216 }
1217
1218 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1219 blksize >>= 1;
1220 --blksize;
1221 sc->sc_i.blksize = blksize;
1222
1223 if (ISSBPRO(sc)) {
1224 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1225 return (EIO);
1226 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1227 sbdsp_mix_write(sc, SBP_INFILTER,
1228 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1229 filter);
1230 }
1231
1232 if (ISSB16CLASS(sc)) {
1233 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1234 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1235 sc->sc_i.rate));
1236 return (EIO);
1237 }
1238 } else {
1239 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1240 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1241 sc->sc_i.rate));
1242 return (EIO);
1243 }
1244 }
1245
1246 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1247 start, end, sc->sc_i.dmachan));
1248 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1249 (char *)end - (char *)start, NULL,
1250 DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1251
1252 return sbdsp_block_input(addr);
1253 }
1254
1255 int
1256 sbdsp_block_input(addr)
1257 void *addr;
1258 {
1259 struct sbdsp_softc *sc = addr;
1260 int cc = sc->sc_i.blksize;
1261
1262 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1263
1264 if (sc->sc_i.run != SB_NOTRUNNING)
1265 sc->sc_intrr(sc->sc_argr);
1266
1267 if (sc->sc_model == SB_1) {
1268 /* Non-looping mode, start DMA */
1269 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1270 sbdsp_wdsp(sc, cc) < 0 ||
1271 sbdsp_wdsp(sc, cc >> 8) < 0) {
1272 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1273 return (EIO);
1274 }
1275 sc->sc_i.run = SB_RUNNING;
1276 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1277 /* Initialize looping PCM */
1278 if (ISSB16CLASS(sc)) {
1279 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1280 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1281 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1282 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1283 sbdsp_wdsp(sc, cc) < 0 ||
1284 sbdsp_wdsp(sc, cc >> 8) < 0) {
1285 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1286 return (EIO);
1287 }
1288 } else {
1289 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1290 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1291 sbdsp_wdsp(sc, cc) < 0 ||
1292 sbdsp_wdsp(sc, cc >> 8) < 0) {
1293 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1294 return (EIO);
1295 }
1296 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1297 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1298 return (EIO);
1299 }
1300 }
1301 sc->sc_i.run = SB_LOOPING;
1302 }
1303
1304 return (0);
1305 }
1306
1307 int
1308 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1309 void *addr;
1310 void *start, *end;
1311 int blksize;
1312 void (*intr) __P((void *));
1313 void *arg;
1314 struct audio_params *param;
1315 {
1316 struct sbdsp_softc *sc = addr;
1317 int stereo = param->channels == 2;
1318 int width = param->precision * param->factor;
1319 int cmd;
1320
1321 #ifdef DIAGNOSTIC
1322 if (stereo && (blksize & 1)) {
1323 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1324 return (EIO);
1325 }
1326 if (sc->sc_o.run != SB_NOTRUNNING)
1327 printf("sbdsp_trigger_output: already running\n");
1328 #endif
1329
1330 sc->sc_intrp = intr;
1331 sc->sc_argp = arg;
1332
1333 if (width == 8) {
1334 #ifdef DIAGNOSTIC
1335 if (sc->sc_o.dmachan != sc->sc_drq8) {
1336 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1337 width, sc->sc_o.dmachan);
1338 return (EIO);
1339 }
1340 #endif
1341 sc->sc_intr8 = sbdsp_block_output;
1342 } else {
1343 #ifdef DIAGNOSTIC
1344 if (sc->sc_o.dmachan != sc->sc_drq16) {
1345 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1346 width, sc->sc_o.dmachan);
1347 return (EIO);
1348 }
1349 #endif
1350 sc->sc_intr16 = sbdsp_block_output;
1351 }
1352
1353 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1354 blksize >>= 1;
1355 --blksize;
1356 sc->sc_o.blksize = blksize;
1357
1358 if (ISSBPRO(sc)) {
1359 /* make sure we re-set stereo mixer bit when we start output. */
1360 sbdsp_mix_write(sc, SBP_STEREO,
1361 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1362 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1363 cmd = sc->sc_o.modep->cmdchan;
1364 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1365 return (EIO);
1366 }
1367
1368 if (ISSB16CLASS(sc)) {
1369 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1370 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1371 sc->sc_o.rate));
1372 return (EIO);
1373 }
1374 } else {
1375 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1376 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1377 sc->sc_o.rate));
1378 return (EIO);
1379 }
1380 }
1381
1382 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1383 start, end, sc->sc_o.dmachan));
1384 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1385 (char *)end - (char *)start, NULL,
1386 DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1387
1388 return sbdsp_block_output(addr);
1389 }
1390
1391 int
1392 sbdsp_block_output(addr)
1393 void *addr;
1394 {
1395 struct sbdsp_softc *sc = addr;
1396 int cc = sc->sc_o.blksize;
1397
1398 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1399
1400 if (sc->sc_o.run != SB_NOTRUNNING)
1401 sc->sc_intrp(sc->sc_argp);
1402
1403 if (sc->sc_model == SB_1) {
1404 /* Non-looping mode, initialized. Start DMA and PCM */
1405 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1406 sbdsp_wdsp(sc, cc) < 0 ||
1407 sbdsp_wdsp(sc, cc >> 8) < 0) {
1408 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1409 return (EIO);
1410 }
1411 sc->sc_o.run = SB_RUNNING;
1412 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1413 /* Initialize looping PCM */
1414 if (ISSB16CLASS(sc)) {
1415 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1416 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1417 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1418 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1419 sbdsp_wdsp(sc, cc) < 0 ||
1420 sbdsp_wdsp(sc, cc >> 8) < 0) {
1421 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1422 return (EIO);
1423 }
1424 } else {
1425 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1426 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1427 sbdsp_wdsp(sc, cc) < 0 ||
1428 sbdsp_wdsp(sc, cc >> 8) < 0) {
1429 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1430 return (EIO);
1431 }
1432 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1433 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1434 return (EIO);
1435 }
1436 }
1437 sc->sc_o.run = SB_LOOPING;
1438 }
1439
1440 return (0);
1441 }
1442
1443 int
1444 sbdsp_halt_output(addr)
1445 void *addr;
1446 {
1447 struct sbdsp_softc *sc = addr;
1448
1449 if (sc->sc_o.run != SB_NOTRUNNING) {
1450 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1451 printf("sbdsp_halt_output: failed to halt\n");
1452 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1453 sc->sc_o.run = SB_NOTRUNNING;
1454 }
1455
1456 return (0);
1457 }
1458
1459 int
1460 sbdsp_halt_input(addr)
1461 void *addr;
1462 {
1463 struct sbdsp_softc *sc = addr;
1464
1465 if (sc->sc_i.run != SB_NOTRUNNING) {
1466 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1467 printf("sbdsp_halt_input: failed to halt\n");
1468 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1469 sc->sc_i.run = SB_NOTRUNNING;
1470 }
1471
1472 return (0);
1473 }
1474
1475 /*
1476 * Only the DSP unit on the sound blaster generates interrupts.
1477 * There are three cases of interrupt: reception of a midi byte
1478 * (when mode is enabled), completion of dma transmission, or
1479 * completion of a dma reception.
1480 *
1481 * If there is interrupt sharing or a spurious interrupt occurs
1482 * there is no way to distinguish this on an SB2. So if you have
1483 * an SB2 and experience problems, buy an SB16 (it's only $40).
1484 */
1485 int
1486 sbdsp_intr(arg)
1487 void *arg;
1488 {
1489 struct sbdsp_softc *sc = arg;
1490 u_char irq;
1491
1492 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1493 sc->sc_intr8, sc->sc_intr16));
1494 if (ISSB16CLASS(sc)) {
1495 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1496 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1497 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1498 return 0;
1499 }
1500 } else {
1501 /* XXXX CHECK FOR INTERRUPT */
1502 irq = SBP_IRQ_DMA8;
1503 }
1504
1505 sc->sc_interrupts++;
1506 delay(10); /* XXX why? */
1507
1508 /* clear interrupt */
1509 if (irq & SBP_IRQ_DMA8) {
1510 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1511 if (sc->sc_intr8)
1512 sc->sc_intr8(arg);
1513 }
1514 if (irq & SBP_IRQ_DMA16) {
1515 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1516 if (sc->sc_intr16)
1517 sc->sc_intr16(arg);
1518 }
1519 #if NMIDI > 0
1520 if ((irq & SBP_IRQ_MPU401) && sc->sc_hasmpu) {
1521 mpu401_intr(&sc->sc_mpu_sc);
1522 }
1523 #endif
1524 return 1;
1525 }
1526
1527 /* Like val & mask, but make sure the result is correctly rounded. */
1528 #define MAXVAL 256
1529 static int
1530 sbdsp_adjust(val, mask)
1531 int val, mask;
1532 {
1533 val += (MAXVAL - mask) >> 1;
1534 if (val >= MAXVAL)
1535 val = MAXVAL-1;
1536 return val & mask;
1537 }
1538
1539 void
1540 sbdsp_set_mixer_gain(sc, port)
1541 struct sbdsp_softc *sc;
1542 int port;
1543 {
1544 int src, gain;
1545
1546 switch(sc->sc_mixer_model) {
1547 case SBM_NONE:
1548 return;
1549 case SBM_CT1335:
1550 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1551 switch(port) {
1552 case SB_MASTER_VOL:
1553 src = SBP_1335_MASTER_VOL;
1554 break;
1555 case SB_MIDI_VOL:
1556 src = SBP_1335_MIDI_VOL;
1557 break;
1558 case SB_CD_VOL:
1559 src = SBP_1335_CD_VOL;
1560 break;
1561 case SB_VOICE_VOL:
1562 src = SBP_1335_VOICE_VOL;
1563 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1564 break;
1565 default:
1566 return;
1567 }
1568 sbdsp_mix_write(sc, src, gain);
1569 break;
1570 case SBM_CT1345:
1571 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1572 sc->gain[port][SB_RIGHT]);
1573 switch (port) {
1574 case SB_MIC_VOL:
1575 src = SBP_MIC_VOL;
1576 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1577 break;
1578 case SB_MASTER_VOL:
1579 src = SBP_MASTER_VOL;
1580 break;
1581 case SB_LINE_IN_VOL:
1582 src = SBP_LINE_VOL;
1583 break;
1584 case SB_VOICE_VOL:
1585 src = SBP_VOICE_VOL;
1586 break;
1587 case SB_MIDI_VOL:
1588 src = SBP_MIDI_VOL;
1589 break;
1590 case SB_CD_VOL:
1591 src = SBP_CD_VOL;
1592 break;
1593 default:
1594 return;
1595 }
1596 sbdsp_mix_write(sc, src, gain);
1597 break;
1598 case SBM_CT1XX5:
1599 case SBM_CT1745:
1600 switch (port) {
1601 case SB_MIC_VOL:
1602 src = SB16P_MIC_L;
1603 break;
1604 case SB_MASTER_VOL:
1605 src = SB16P_MASTER_L;
1606 break;
1607 case SB_LINE_IN_VOL:
1608 src = SB16P_LINE_L;
1609 break;
1610 case SB_VOICE_VOL:
1611 src = SB16P_VOICE_L;
1612 break;
1613 case SB_MIDI_VOL:
1614 src = SB16P_MIDI_L;
1615 break;
1616 case SB_CD_VOL:
1617 src = SB16P_CD_L;
1618 break;
1619 case SB_INPUT_GAIN:
1620 src = SB16P_INPUT_GAIN_L;
1621 break;
1622 case SB_OUTPUT_GAIN:
1623 src = SB16P_OUTPUT_GAIN_L;
1624 break;
1625 case SB_TREBLE:
1626 src = SB16P_TREBLE_L;
1627 break;
1628 case SB_BASS:
1629 src = SB16P_BASS_L;
1630 break;
1631 case SB_PCSPEAKER:
1632 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1633 return;
1634 default:
1635 return;
1636 }
1637 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1638 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1639 break;
1640 }
1641 }
1642
1643 int
1644 sbdsp_mixer_set_port(addr, cp)
1645 void *addr;
1646 mixer_ctrl_t *cp;
1647 {
1648 struct sbdsp_softc *sc = addr;
1649 int lgain, rgain;
1650 int mask, bits;
1651 int lmask, rmask, lbits, rbits;
1652 int mute, swap;
1653
1654 if (sc->sc_open == SB_OPEN_MIDI)
1655 return EBUSY;
1656
1657 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1658 cp->un.value.num_channels));
1659
1660 if (sc->sc_mixer_model == SBM_NONE)
1661 return EINVAL;
1662
1663 switch (cp->dev) {
1664 case SB_TREBLE:
1665 case SB_BASS:
1666 if (sc->sc_mixer_model == SBM_CT1345 ||
1667 sc->sc_mixer_model == SBM_CT1XX5) {
1668 if (cp->type != AUDIO_MIXER_ENUM)
1669 return EINVAL;
1670 switch (cp->dev) {
1671 case SB_TREBLE:
1672 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1673 return 0;
1674 case SB_BASS:
1675 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1676 return 0;
1677 }
1678 }
1679 case SB_PCSPEAKER:
1680 case SB_INPUT_GAIN:
1681 case SB_OUTPUT_GAIN:
1682 if (!ISSBM1745(sc))
1683 return EINVAL;
1684 case SB_MIC_VOL:
1685 case SB_LINE_IN_VOL:
1686 if (sc->sc_mixer_model == SBM_CT1335)
1687 return EINVAL;
1688 case SB_VOICE_VOL:
1689 case SB_MIDI_VOL:
1690 case SB_CD_VOL:
1691 case SB_MASTER_VOL:
1692 if (cp->type != AUDIO_MIXER_VALUE)
1693 return EINVAL;
1694
1695 /*
1696 * All the mixer ports are stereo except for the microphone.
1697 * If we get a single-channel gain value passed in, then we
1698 * duplicate it to both left and right channels.
1699 */
1700
1701 switch (cp->dev) {
1702 case SB_MIC_VOL:
1703 if (cp->un.value.num_channels != 1)
1704 return EINVAL;
1705
1706 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1707 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1708 break;
1709 case SB_PCSPEAKER:
1710 if (cp->un.value.num_channels != 1)
1711 return EINVAL;
1712 /* fall into */
1713 case SB_INPUT_GAIN:
1714 case SB_OUTPUT_GAIN:
1715 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1716 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1717 break;
1718 default:
1719 switch (cp->un.value.num_channels) {
1720 case 1:
1721 lgain = rgain = SB_ADJUST_GAIN(sc,
1722 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1723 break;
1724 case 2:
1725 if (sc->sc_mixer_model == SBM_CT1335)
1726 return EINVAL;
1727 lgain = SB_ADJUST_GAIN(sc,
1728 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1729 rgain = SB_ADJUST_GAIN(sc,
1730 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1731 break;
1732 default:
1733 return EINVAL;
1734 }
1735 break;
1736 }
1737 sc->gain[cp->dev][SB_LEFT] = lgain;
1738 sc->gain[cp->dev][SB_RIGHT] = rgain;
1739
1740 sbdsp_set_mixer_gain(sc, cp->dev);
1741 break;
1742
1743 case SB_RECORD_SOURCE:
1744 if (ISSBM1745(sc)) {
1745 if (cp->type != AUDIO_MIXER_SET)
1746 return EINVAL;
1747 return sbdsp_set_in_ports(sc, cp->un.mask);
1748 } else {
1749 if (cp->type != AUDIO_MIXER_ENUM)
1750 return EINVAL;
1751 sc->in_port = cp->un.ord;
1752 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1753 }
1754 break;
1755
1756 case SB_AGC:
1757 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1758 return EINVAL;
1759 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1760 break;
1761
1762 case SB_CD_OUT_MUTE:
1763 mask = SB16P_SW_CD;
1764 goto omute;
1765 case SB_MIC_OUT_MUTE:
1766 mask = SB16P_SW_MIC;
1767 goto omute;
1768 case SB_LINE_OUT_MUTE:
1769 mask = SB16P_SW_LINE;
1770 omute:
1771 if (cp->type != AUDIO_MIXER_ENUM)
1772 return EINVAL;
1773 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1774 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1775 if (cp->un.ord)
1776 bits = bits & ~mask;
1777 else
1778 bits = bits | mask;
1779 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1780 break;
1781
1782 case SB_MIC_IN_MUTE:
1783 case SB_MIC_SWAP:
1784 lmask = rmask = SB16P_SW_MIC;
1785 goto imute;
1786 case SB_CD_IN_MUTE:
1787 case SB_CD_SWAP:
1788 lmask = SB16P_SW_CD_L;
1789 rmask = SB16P_SW_CD_R;
1790 goto imute;
1791 case SB_LINE_IN_MUTE:
1792 case SB_LINE_SWAP:
1793 lmask = SB16P_SW_LINE_L;
1794 rmask = SB16P_SW_LINE_R;
1795 goto imute;
1796 case SB_MIDI_IN_MUTE:
1797 case SB_MIDI_SWAP:
1798 lmask = SB16P_SW_MIDI_L;
1799 rmask = SB16P_SW_MIDI_R;
1800 imute:
1801 if (cp->type != AUDIO_MIXER_ENUM)
1802 return EINVAL;
1803 mask = lmask | rmask;
1804 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1805 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1806 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1807 if (SB_IS_IN_MUTE(cp->dev)) {
1808 mute = cp->dev;
1809 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1810 } else {
1811 swap = cp->dev;
1812 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1813 }
1814 if (sc->gain[swap][SB_LR]) {
1815 mask = lmask;
1816 lmask = rmask;
1817 rmask = mask;
1818 }
1819 if (!sc->gain[mute][SB_LR]) {
1820 lbits = lbits | lmask;
1821 rbits = rbits | rmask;
1822 }
1823 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1824 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1825 break;
1826
1827 default:
1828 return EINVAL;
1829 }
1830
1831 return 0;
1832 }
1833
1834 int
1835 sbdsp_mixer_get_port(addr, cp)
1836 void *addr;
1837 mixer_ctrl_t *cp;
1838 {
1839 struct sbdsp_softc *sc = addr;
1840
1841 if (sc->sc_open == SB_OPEN_MIDI)
1842 return EBUSY;
1843
1844 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1845
1846 if (sc->sc_mixer_model == SBM_NONE)
1847 return EINVAL;
1848
1849 switch (cp->dev) {
1850 case SB_TREBLE:
1851 case SB_BASS:
1852 if (sc->sc_mixer_model == SBM_CT1345 ||
1853 sc->sc_mixer_model == SBM_CT1XX5) {
1854 switch (cp->dev) {
1855 case SB_TREBLE:
1856 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1857 return 0;
1858 case SB_BASS:
1859 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1860 return 0;
1861 }
1862 }
1863 case SB_PCSPEAKER:
1864 case SB_INPUT_GAIN:
1865 case SB_OUTPUT_GAIN:
1866 if (!ISSBM1745(sc))
1867 return EINVAL;
1868 case SB_MIC_VOL:
1869 case SB_LINE_IN_VOL:
1870 if (sc->sc_mixer_model == SBM_CT1335)
1871 return EINVAL;
1872 case SB_VOICE_VOL:
1873 case SB_MIDI_VOL:
1874 case SB_CD_VOL:
1875 case SB_MASTER_VOL:
1876 switch (cp->dev) {
1877 case SB_MIC_VOL:
1878 case SB_PCSPEAKER:
1879 if (cp->un.value.num_channels != 1)
1880 return EINVAL;
1881 /* fall into */
1882 default:
1883 switch (cp->un.value.num_channels) {
1884 case 1:
1885 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1886 sc->gain[cp->dev][SB_LEFT];
1887 break;
1888 case 2:
1889 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1890 sc->gain[cp->dev][SB_LEFT];
1891 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1892 sc->gain[cp->dev][SB_RIGHT];
1893 break;
1894 default:
1895 return EINVAL;
1896 }
1897 break;
1898 }
1899 break;
1900
1901 case SB_RECORD_SOURCE:
1902 if (ISSBM1745(sc))
1903 cp->un.mask = sc->in_mask;
1904 else
1905 cp->un.ord = sc->in_port;
1906 break;
1907
1908 case SB_AGC:
1909 if (!ISSBM1745(sc))
1910 return EINVAL;
1911 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1912 break;
1913
1914 case SB_CD_IN_MUTE:
1915 case SB_MIC_IN_MUTE:
1916 case SB_LINE_IN_MUTE:
1917 case SB_MIDI_IN_MUTE:
1918 case SB_CD_SWAP:
1919 case SB_MIC_SWAP:
1920 case SB_LINE_SWAP:
1921 case SB_MIDI_SWAP:
1922 case SB_CD_OUT_MUTE:
1923 case SB_MIC_OUT_MUTE:
1924 case SB_LINE_OUT_MUTE:
1925 cp->un.ord = sc->gain[cp->dev][SB_LR];
1926 break;
1927
1928 default:
1929 return EINVAL;
1930 }
1931
1932 return 0;
1933 }
1934
1935 int
1936 sbdsp_mixer_query_devinfo(addr, dip)
1937 void *addr;
1938 mixer_devinfo_t *dip;
1939 {
1940 struct sbdsp_softc *sc = addr;
1941 int chan, class, is1745;
1942
1943 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1944 sc->sc_mixer_model, dip->index));
1945
1946 if (sc->sc_mixer_model == SBM_NONE)
1947 return ENXIO;
1948
1949 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1950 is1745 = ISSBM1745(sc);
1951 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1952
1953 switch (dip->index) {
1954 case SB_MASTER_VOL:
1955 dip->type = AUDIO_MIXER_VALUE;
1956 dip->mixer_class = SB_OUTPUT_CLASS;
1957 dip->prev = dip->next = AUDIO_MIXER_LAST;
1958 strcpy(dip->label.name, AudioNmaster);
1959 dip->un.v.num_channels = chan;
1960 strcpy(dip->un.v.units.name, AudioNvolume);
1961 return 0;
1962 case SB_MIDI_VOL:
1963 dip->type = AUDIO_MIXER_VALUE;
1964 dip->mixer_class = class;
1965 dip->prev = AUDIO_MIXER_LAST;
1966 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
1967 strcpy(dip->label.name, AudioNfmsynth);
1968 dip->un.v.num_channels = chan;
1969 strcpy(dip->un.v.units.name, AudioNvolume);
1970 return 0;
1971 case SB_CD_VOL:
1972 dip->type = AUDIO_MIXER_VALUE;
1973 dip->mixer_class = class;
1974 dip->prev = AUDIO_MIXER_LAST;
1975 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
1976 strcpy(dip->label.name, AudioNcd);
1977 dip->un.v.num_channels = chan;
1978 strcpy(dip->un.v.units.name, AudioNvolume);
1979 return 0;
1980 case SB_VOICE_VOL:
1981 dip->type = AUDIO_MIXER_VALUE;
1982 dip->mixer_class = class;
1983 dip->prev = AUDIO_MIXER_LAST;
1984 dip->next = AUDIO_MIXER_LAST;
1985 strcpy(dip->label.name, AudioNdac);
1986 dip->un.v.num_channels = chan;
1987 strcpy(dip->un.v.units.name, AudioNvolume);
1988 return 0;
1989 case SB_OUTPUT_CLASS:
1990 dip->type = AUDIO_MIXER_CLASS;
1991 dip->mixer_class = SB_OUTPUT_CLASS;
1992 dip->next = dip->prev = AUDIO_MIXER_LAST;
1993 strcpy(dip->label.name, AudioCoutputs);
1994 return 0;
1995 }
1996
1997 if (sc->sc_mixer_model == SBM_CT1335)
1998 return ENXIO;
1999
2000 switch (dip->index) {
2001 case SB_MIC_VOL:
2002 dip->type = AUDIO_MIXER_VALUE;
2003 dip->mixer_class = class;
2004 dip->prev = AUDIO_MIXER_LAST;
2005 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2006 strcpy(dip->label.name, AudioNmicrophone);
2007 dip->un.v.num_channels = 1;
2008 strcpy(dip->un.v.units.name, AudioNvolume);
2009 return 0;
2010
2011 case SB_LINE_IN_VOL:
2012 dip->type = AUDIO_MIXER_VALUE;
2013 dip->mixer_class = class;
2014 dip->prev = AUDIO_MIXER_LAST;
2015 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2016 strcpy(dip->label.name, AudioNline);
2017 dip->un.v.num_channels = 2;
2018 strcpy(dip->un.v.units.name, AudioNvolume);
2019 return 0;
2020
2021 case SB_RECORD_SOURCE:
2022 dip->mixer_class = SB_RECORD_CLASS;
2023 dip->prev = dip->next = AUDIO_MIXER_LAST;
2024 strcpy(dip->label.name, AudioNsource);
2025 if (ISSBM1745(sc)) {
2026 dip->type = AUDIO_MIXER_SET;
2027 dip->un.s.num_mem = 4;
2028 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2029 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2030 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2031 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2032 strcpy(dip->un.s.member[2].label.name, AudioNline);
2033 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2034 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2035 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2036 } else {
2037 dip->type = AUDIO_MIXER_ENUM;
2038 dip->un.e.num_mem = 3;
2039 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2040 dip->un.e.member[0].ord = SB_MIC_VOL;
2041 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2042 dip->un.e.member[1].ord = SB_CD_VOL;
2043 strcpy(dip->un.e.member[2].label.name, AudioNline);
2044 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2045 }
2046 return 0;
2047
2048 case SB_BASS:
2049 dip->prev = dip->next = AUDIO_MIXER_LAST;
2050 strcpy(dip->label.name, AudioNbass);
2051 if (sc->sc_mixer_model == SBM_CT1745) {
2052 dip->type = AUDIO_MIXER_VALUE;
2053 dip->mixer_class = SB_EQUALIZATION_CLASS;
2054 dip->un.v.num_channels = 2;
2055 strcpy(dip->un.v.units.name, AudioNbass);
2056 } else {
2057 dip->type = AUDIO_MIXER_ENUM;
2058 dip->mixer_class = SB_INPUT_CLASS;
2059 dip->un.e.num_mem = 2;
2060 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2061 dip->un.e.member[0].ord = 0;
2062 strcpy(dip->un.e.member[1].label.name, AudioNon);
2063 dip->un.e.member[1].ord = 1;
2064 }
2065 return 0;
2066
2067 case SB_TREBLE:
2068 dip->prev = dip->next = AUDIO_MIXER_LAST;
2069 strcpy(dip->label.name, AudioNtreble);
2070 if (sc->sc_mixer_model == SBM_CT1745) {
2071 dip->type = AUDIO_MIXER_VALUE;
2072 dip->mixer_class = SB_EQUALIZATION_CLASS;
2073 dip->un.v.num_channels = 2;
2074 strcpy(dip->un.v.units.name, AudioNtreble);
2075 } else {
2076 dip->type = AUDIO_MIXER_ENUM;
2077 dip->mixer_class = SB_INPUT_CLASS;
2078 dip->un.e.num_mem = 2;
2079 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2080 dip->un.e.member[0].ord = 0;
2081 strcpy(dip->un.e.member[1].label.name, AudioNon);
2082 dip->un.e.member[1].ord = 1;
2083 }
2084 return 0;
2085
2086 case SB_RECORD_CLASS: /* record source class */
2087 dip->type = AUDIO_MIXER_CLASS;
2088 dip->mixer_class = SB_RECORD_CLASS;
2089 dip->next = dip->prev = AUDIO_MIXER_LAST;
2090 strcpy(dip->label.name, AudioCrecord);
2091 return 0;
2092
2093 case SB_INPUT_CLASS:
2094 dip->type = AUDIO_MIXER_CLASS;
2095 dip->mixer_class = SB_INPUT_CLASS;
2096 dip->next = dip->prev = AUDIO_MIXER_LAST;
2097 strcpy(dip->label.name, AudioCinputs);
2098 return 0;
2099
2100 }
2101
2102 if (sc->sc_mixer_model == SBM_CT1345)
2103 return ENXIO;
2104
2105 switch(dip->index) {
2106 case SB_PCSPEAKER:
2107 dip->type = AUDIO_MIXER_VALUE;
2108 dip->mixer_class = SB_INPUT_CLASS;
2109 dip->prev = dip->next = AUDIO_MIXER_LAST;
2110 strcpy(dip->label.name, "pc_speaker");
2111 dip->un.v.num_channels = 1;
2112 strcpy(dip->un.v.units.name, AudioNvolume);
2113 return 0;
2114
2115 case SB_INPUT_GAIN:
2116 dip->type = AUDIO_MIXER_VALUE;
2117 dip->mixer_class = SB_INPUT_CLASS;
2118 dip->prev = dip->next = AUDIO_MIXER_LAST;
2119 strcpy(dip->label.name, AudioNinput);
2120 dip->un.v.num_channels = 2;
2121 strcpy(dip->un.v.units.name, AudioNvolume);
2122 return 0;
2123
2124 case SB_OUTPUT_GAIN:
2125 dip->type = AUDIO_MIXER_VALUE;
2126 dip->mixer_class = SB_OUTPUT_CLASS;
2127 dip->prev = dip->next = AUDIO_MIXER_LAST;
2128 strcpy(dip->label.name, AudioNoutput);
2129 dip->un.v.num_channels = 2;
2130 strcpy(dip->un.v.units.name, AudioNvolume);
2131 return 0;
2132
2133 case SB_AGC:
2134 dip->type = AUDIO_MIXER_ENUM;
2135 dip->mixer_class = SB_INPUT_CLASS;
2136 dip->prev = dip->next = AUDIO_MIXER_LAST;
2137 strcpy(dip->label.name, "agc");
2138 dip->un.e.num_mem = 2;
2139 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2140 dip->un.e.member[0].ord = 0;
2141 strcpy(dip->un.e.member[1].label.name, AudioNon);
2142 dip->un.e.member[1].ord = 1;
2143 return 0;
2144
2145 case SB_EQUALIZATION_CLASS:
2146 dip->type = AUDIO_MIXER_CLASS;
2147 dip->mixer_class = SB_EQUALIZATION_CLASS;
2148 dip->next = dip->prev = AUDIO_MIXER_LAST;
2149 strcpy(dip->label.name, AudioCequalization);
2150 return 0;
2151
2152 case SB_CD_IN_MUTE:
2153 dip->prev = SB_CD_VOL;
2154 dip->next = SB_CD_SWAP;
2155 dip->mixer_class = SB_INPUT_CLASS;
2156 goto mute;
2157
2158 case SB_MIC_IN_MUTE:
2159 dip->prev = SB_MIC_VOL;
2160 dip->next = SB_MIC_SWAP;
2161 dip->mixer_class = SB_INPUT_CLASS;
2162 goto mute;
2163
2164 case SB_LINE_IN_MUTE:
2165 dip->prev = SB_LINE_IN_VOL;
2166 dip->next = SB_LINE_SWAP;
2167 dip->mixer_class = SB_INPUT_CLASS;
2168 goto mute;
2169
2170 case SB_MIDI_IN_MUTE:
2171 dip->prev = SB_MIDI_VOL;
2172 dip->next = SB_MIDI_SWAP;
2173 dip->mixer_class = SB_INPUT_CLASS;
2174 goto mute;
2175
2176 case SB_CD_SWAP:
2177 dip->prev = SB_CD_IN_MUTE;
2178 dip->next = SB_CD_OUT_MUTE;
2179 goto swap;
2180
2181 case SB_MIC_SWAP:
2182 dip->prev = SB_MIC_IN_MUTE;
2183 dip->next = SB_MIC_OUT_MUTE;
2184 goto swap;
2185
2186 case SB_LINE_SWAP:
2187 dip->prev = SB_LINE_IN_MUTE;
2188 dip->next = SB_LINE_OUT_MUTE;
2189 goto swap;
2190
2191 case SB_MIDI_SWAP:
2192 dip->prev = SB_MIDI_IN_MUTE;
2193 dip->next = AUDIO_MIXER_LAST;
2194 swap:
2195 dip->mixer_class = SB_INPUT_CLASS;
2196 strcpy(dip->label.name, AudioNswap);
2197 goto mute1;
2198
2199 case SB_CD_OUT_MUTE:
2200 dip->prev = SB_CD_SWAP;
2201 dip->next = AUDIO_MIXER_LAST;
2202 dip->mixer_class = SB_OUTPUT_CLASS;
2203 goto mute;
2204
2205 case SB_MIC_OUT_MUTE:
2206 dip->prev = SB_MIC_SWAP;
2207 dip->next = AUDIO_MIXER_LAST;
2208 dip->mixer_class = SB_OUTPUT_CLASS;
2209 goto mute;
2210
2211 case SB_LINE_OUT_MUTE:
2212 dip->prev = SB_LINE_SWAP;
2213 dip->next = AUDIO_MIXER_LAST;
2214 dip->mixer_class = SB_OUTPUT_CLASS;
2215 mute:
2216 strcpy(dip->label.name, AudioNmute);
2217 mute1:
2218 dip->type = AUDIO_MIXER_ENUM;
2219 dip->un.e.num_mem = 2;
2220 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2221 dip->un.e.member[0].ord = 0;
2222 strcpy(dip->un.e.member[1].label.name, AudioNon);
2223 dip->un.e.member[1].ord = 1;
2224 return 0;
2225
2226 }
2227
2228 return ENXIO;
2229 }
2230
2231 void *
2232 sb_malloc(addr, direction, size, pool, flags)
2233 void *addr;
2234 int direction;
2235 size_t size;
2236 int pool, flags;
2237 {
2238 struct sbdsp_softc *sc = addr;
2239 int drq;
2240
2241 if (sc->sc_drq8 != -1)
2242 drq = sc->sc_drq8;
2243 else
2244 drq = sc->sc_drq16;
2245 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2246 }
2247
2248 void
2249 sb_free(addr, ptr, pool)
2250 void *addr;
2251 void *ptr;
2252 int pool;
2253 {
2254 isa_free(ptr, pool);
2255 }
2256
2257 size_t
2258 sb_round_buffersize(addr, direction, size)
2259 void *addr;
2260 int direction;
2261 size_t size;
2262 {
2263 if (size > MAX_ISADMA)
2264 size = MAX_ISADMA;
2265 return (size);
2266 }
2267
2268 int
2269 sb_mappage(addr, mem, off, prot)
2270 void *addr;
2271 void *mem;
2272 int off;
2273 int prot;
2274 {
2275 return isa_mappage(mem, off, prot);
2276 }
2277
2278 int
2279 sbdsp_get_props(addr)
2280 void *addr;
2281 {
2282 struct sbdsp_softc *sc = addr;
2283 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2284 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2285 }
2286
2287 #if NMIDI > 0
2288 /*
2289 * MIDI related routines.
2290 */
2291
2292 int
2293 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2294 void *addr;
2295 int flags;
2296 void (*iintr)__P((void *, int));
2297 void (*ointr)__P((void *));
2298 void *arg;
2299 {
2300 struct sbdsp_softc *sc = addr;
2301
2302 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2303
2304 if (sc->sc_open != SB_CLOSED)
2305 return EBUSY;
2306 if (sbdsp_reset(sc) != 0)
2307 return EIO;
2308
2309 sc->sc_open = SB_OPEN_MIDI;
2310 sc->sc_openflags = flags;
2311
2312 if (sc->sc_model >= SB_20)
2313 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2314 return EIO;
2315
2316 sc->sc_intr8 = sbdsp_midi_intr;
2317 sc->sc_intrm = iintr;
2318 sc->sc_argm = arg;
2319
2320 return 0;
2321 }
2322
2323 void
2324 sbdsp_midi_close(addr)
2325 void *addr;
2326 {
2327 struct sbdsp_softc *sc = addr;
2328
2329 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2330
2331 if (sc->sc_model >= SB_20)
2332 sbdsp_reset(sc); /* exit UART mode */
2333
2334 sc->sc_intrm = 0;
2335 sc->sc_open = SB_CLOSED;
2336 }
2337
2338 int
2339 sbdsp_midi_output(addr, d)
2340 void *addr;
2341 int d;
2342 {
2343 struct sbdsp_softc *sc = addr;
2344
2345 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2346 return EIO;
2347 if (sbdsp_wdsp(sc, d))
2348 return EIO;
2349 return 0;
2350 }
2351
2352 void
2353 sbdsp_midi_getinfo(addr, mi)
2354 void *addr;
2355 struct midi_info *mi;
2356 {
2357 struct sbdsp_softc *sc = addr;
2358
2359 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2360 mi->props = MIDI_PROP_CAN_INPUT;
2361 }
2362
2363 int
2364 sbdsp_midi_intr(addr)
2365 void *addr;
2366 {
2367 struct sbdsp_softc *sc = addr;
2368
2369 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2370 return (0);
2371 }
2372
2373 #endif
2374
2375