sbdsp.c revision 1.97 1 /* $NetBSD: sbdsp.c,v 1.97 1999/03/22 07:37:35 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include "midi.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/errno.h>
88 #include <sys/ioctl.h>
89 #include <sys/syslog.h>
90 #include <sys/device.h>
91 #include <sys/proc.h>
92 #include <sys/buf.h>
93 #include <vm/vm.h>
94
95 #include <machine/cpu.h>
96 #include <machine/intr.h>
97 #include <machine/bus.h>
98
99 #include <sys/audioio.h>
100 #include <dev/audio_if.h>
101 #include <dev/midi_if.h>
102 #include <dev/mulaw.h>
103 #include <dev/auconv.h>
104
105 #include <dev/isa/isavar.h>
106 #include <dev/isa/isadmavar.h>
107
108 #include <dev/isa/sbreg.h>
109 #include <dev/isa/sbdspvar.h>
110
111
112 #ifdef AUDIO_DEBUG
113 #define DPRINTF(x) if (sbdspdebug) printf x
114 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
115 int sbdspdebug = 0;
116 #else
117 #define DPRINTF(x)
118 #define DPRINTFN(n,x)
119 #endif
120
121 #ifndef SBDSP_NPOLL
122 #define SBDSP_NPOLL 3000
123 #endif
124
125 struct {
126 int wdsp;
127 int rdsp;
128 int wmidi;
129 } sberr;
130
131 /*
132 * Time constant routines follow. See SBK, section 12.
133 * Although they don't come out and say it (in the docs),
134 * the card clearly uses a 1MHz countdown timer, as the
135 * low-speed formula (p. 12-4) is:
136 * tc = 256 - 10^6 / sr
137 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
138 * and a 256MHz clock is used:
139 * tc = 65536 - 256 * 10^ 6 / sr
140 * Since we can only use the upper byte of the HS TC, the two formulae
141 * are equivalent. (Why didn't they say so?) E.g.,
142 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
143 *
144 * The crossover point (from low- to high-speed modes) is different
145 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
146 *
147 * SBPRO SB20
148 * ----- --------
149 * input ls min 4 KHz 4 KHz
150 * input ls max 23 KHz 13 KHz
151 * input hs max 44.1 KHz 15 KHz
152 * output ls min 4 KHz 4 KHz
153 * output ls max 23 KHz 23 KHz
154 * output hs max 44.1 KHz 44.1 KHz
155 */
156 /* XXX Should we round the tc?
157 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
158 */
159 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
160 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
161
162 struct sbmode {
163 short model;
164 u_char channels;
165 u_char precision;
166 u_short lowrate, highrate;
167 u_char cmd;
168 u_char halt, cont;
169 u_char cmdchan;
170 };
171 static struct sbmode sbpmodes[] = {
172 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
173 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
174 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
175 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
176 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
179 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
180 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
181 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
182 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
183 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
184 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
185 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
186 { SB_16, 1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
187 { SB_16, 2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
188 #define PLAY16 15 /* must be the index of the next entry in the table */
189 { SB_16, 1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
190 { SB_16, 2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
191 { -1 }
192 };
193 static struct sbmode sbrmodes[] = {
194 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
195 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
196 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
197 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
198 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
199 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
200 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
201 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
202 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
204 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
205 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
206 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
207 { SB_16, 1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
208 { SB_16, 2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
209 { SB_16, 1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
210 { SB_16, 2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
211 { -1 }
212 };
213
214 void sbversion __P((struct sbdsp_softc *));
215 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
216 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
217 void sbdsp_to __P((void *));
218 void sbdsp_pause __P((struct sbdsp_softc *));
219 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
220 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
221 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
222 void sbdsp_set_ifilter __P((void *, int));
223 int sbdsp_get_ifilter __P((void *));
224
225 int sbdsp_block_output __P((void *));
226 int sbdsp_block_input __P((void *));
227 static int sbdsp_adjust __P((int, int));
228
229 int sbdsp_midi_intr __P((void *));
230
231 #ifdef AUDIO_DEBUG
232 void sb_printsc __P((struct sbdsp_softc *));
233
234 void
235 sb_printsc(sc)
236 struct sbdsp_softc *sc;
237 {
238 int i;
239
240 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
241 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
242 sc->sc_drq8, sc->sc_drq16,
243 sc->sc_iobase, sc->sc_irq);
244 printf("irate %d itc %x orate %d otc %x\n",
245 sc->sc_i.rate, sc->sc_i.tc,
246 sc->sc_o.rate, sc->sc_o.tc);
247 printf("spkron %u nintr %lu\n",
248 sc->spkr_state, sc->sc_interrupts);
249 printf("intr8 %p intr16 %p\n",
250 sc->sc_intr8, sc->sc_intr16);
251 printf("gain:");
252 for (i = 0; i < SB_NDEVS; i++)
253 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
254 printf("\n");
255 }
256 #endif /* AUDIO_DEBUG */
257
258 /*
259 * Probe / attach routines.
260 */
261
262 /*
263 * Probe for the soundblaster hardware.
264 */
265 int
266 sbdsp_probe(sc)
267 struct sbdsp_softc *sc;
268 {
269
270 if (sbdsp_reset(sc) < 0) {
271 DPRINTF(("sbdsp: couldn't reset card\n"));
272 return 0;
273 }
274 /* if flags set, go and probe the jazz16 stuff */
275 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
276 sbdsp_jazz16_probe(sc);
277 else
278 sbversion(sc);
279 if (sc->sc_model == SB_UNK) {
280 /* Unknown SB model found. */
281 DPRINTF(("sbdsp: unknown SB model found\n"));
282 return 0;
283 }
284 return 1;
285 }
286
287 /*
288 * Try add-on stuff for Jazz16.
289 */
290 void
291 sbdsp_jazz16_probe(sc)
292 struct sbdsp_softc *sc;
293 {
294 static u_char jazz16_irq_conf[16] = {
295 -1, -1, 0x02, 0x03,
296 -1, 0x01, -1, 0x04,
297 -1, 0x02, 0x05, -1,
298 -1, -1, -1, 0x06};
299 static u_char jazz16_drq_conf[8] = {
300 -1, 0x01, -1, 0x02,
301 -1, 0x03, -1, 0x04};
302
303 bus_space_tag_t iot = sc->sc_iot;
304 bus_space_handle_t ioh;
305
306 sbversion(sc);
307
308 DPRINTF(("jazz16 probe\n"));
309
310 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
311 DPRINTF(("bus map failed\n"));
312 return;
313 }
314
315 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
316 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
317 DPRINTF(("drq/irq check failed\n"));
318 goto done; /* give up, we can't do it. */
319 }
320
321 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
322 delay(10000); /* delay 10 ms */
323 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
324 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
325
326 if (sbdsp_reset(sc) < 0) {
327 DPRINTF(("sbdsp_reset check failed\n"));
328 goto done; /* XXX? what else could we do? */
329 }
330
331 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
332 DPRINTF(("read16 setup failed\n"));
333 goto done;
334 }
335
336 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
337 DPRINTF(("read16 failed\n"));
338 goto done;
339 }
340
341 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
342 sc->sc_drq16 = sc->sc_drq8;
343 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
344 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
345 jazz16_drq_conf[sc->sc_drq8]) ||
346 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
347 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
348 } else {
349 DPRINTF(("jazz16 detected!\n"));
350 sc->sc_model = SB_JAZZ;
351 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
352 }
353
354 done:
355 bus_space_unmap(iot, ioh, 1);
356 }
357
358 /*
359 * Attach hardware to driver, attach hardware driver to audio
360 * pseudo-device driver .
361 */
362 void
363 sbdsp_attach(sc)
364 struct sbdsp_softc *sc;
365 {
366 struct audio_params pparams, rparams;
367 int i;
368 u_int v;
369
370 pparams = audio_default;
371 rparams = audio_default;
372 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
373
374 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
375
376 if (sc->sc_mixer_model != SBM_NONE) {
377 /* Reset the mixer.*/
378 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
379 /* And set our own default values */
380 for (i = 0; i < SB_NDEVS; i++) {
381 switch(i) {
382 case SB_MIC_VOL:
383 case SB_LINE_IN_VOL:
384 v = 0;
385 break;
386 case SB_BASS:
387 case SB_TREBLE:
388 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
389 break;
390 case SB_CD_IN_MUTE:
391 case SB_MIC_IN_MUTE:
392 case SB_LINE_IN_MUTE:
393 case SB_MIDI_IN_MUTE:
394 case SB_CD_SWAP:
395 case SB_MIC_SWAP:
396 case SB_LINE_SWAP:
397 case SB_MIDI_SWAP:
398 case SB_CD_OUT_MUTE:
399 case SB_MIC_OUT_MUTE:
400 case SB_LINE_OUT_MUTE:
401 v = 0;
402 break;
403 default:
404 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
405 break;
406 }
407 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
408 sbdsp_set_mixer_gain(sc, i);
409 }
410 sc->in_filter = 0; /* no filters turned on, please */
411 }
412
413 printf(": dsp v%d.%02d%s\n",
414 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
415 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
416
417 sc->sc_fullduplex = ISSB16CLASS(sc) &&
418 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
419 sc->sc_drq8 != sc->sc_drq16;
420 }
421
422 void
423 sbdsp_mix_write(sc, mixerport, val)
424 struct sbdsp_softc *sc;
425 int mixerport;
426 int val;
427 {
428 bus_space_tag_t iot = sc->sc_iot;
429 bus_space_handle_t ioh = sc->sc_ioh;
430 int s;
431
432 s = splaudio();
433 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
434 delay(20);
435 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
436 delay(30);
437 splx(s);
438 }
439
440 int
441 sbdsp_mix_read(sc, mixerport)
442 struct sbdsp_softc *sc;
443 int mixerport;
444 {
445 bus_space_tag_t iot = sc->sc_iot;
446 bus_space_handle_t ioh = sc->sc_ioh;
447 int val;
448 int s;
449
450 s = splaudio();
451 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
452 delay(20);
453 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
454 delay(30);
455 splx(s);
456 return val;
457 }
458
459 /*
460 * Various routines to interface to higher level audio driver
461 */
462
463 int
464 sbdsp_query_encoding(addr, fp)
465 void *addr;
466 struct audio_encoding *fp;
467 {
468 struct sbdsp_softc *sc = addr;
469 int emul;
470
471 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
472
473 switch (fp->index) {
474 case 0:
475 strcpy(fp->name, AudioEulinear);
476 fp->encoding = AUDIO_ENCODING_ULINEAR;
477 fp->precision = 8;
478 fp->flags = 0;
479 return 0;
480 case 1:
481 strcpy(fp->name, AudioEmulaw);
482 fp->encoding = AUDIO_ENCODING_ULAW;
483 fp->precision = 8;
484 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
485 return 0;
486 case 2:
487 strcpy(fp->name, AudioEalaw);
488 fp->encoding = AUDIO_ENCODING_ALAW;
489 fp->precision = 8;
490 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
491 return 0;
492 case 3:
493 strcpy(fp->name, AudioEslinear);
494 fp->encoding = AUDIO_ENCODING_SLINEAR;
495 fp->precision = 8;
496 fp->flags = emul;
497 return 0;
498 }
499 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
500 return EINVAL;
501
502 switch(fp->index) {
503 case 4:
504 strcpy(fp->name, AudioEslinear_le);
505 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
506 fp->precision = 16;
507 fp->flags = 0;
508 return 0;
509 case 5:
510 strcpy(fp->name, AudioEulinear_le);
511 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
512 fp->precision = 16;
513 fp->flags = emul;
514 return 0;
515 case 6:
516 strcpy(fp->name, AudioEslinear_be);
517 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
518 fp->precision = 16;
519 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
520 return 0;
521 case 7:
522 strcpy(fp->name, AudioEulinear_be);
523 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
524 fp->precision = 16;
525 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
526 return 0;
527 default:
528 return EINVAL;
529 }
530 return 0;
531 }
532
533 int
534 sbdsp_set_params(addr, setmode, usemode, play, rec)
535 void *addr;
536 int setmode, usemode;
537 struct audio_params *play, *rec;
538 {
539 struct sbdsp_softc *sc = addr;
540 struct sbmode *m;
541 u_int rate, tc, bmode;
542 void (*swcode) __P((void *, u_char *buf, int cnt));
543 int factor;
544 int model;
545 int chan;
546 struct audio_params *p;
547 int mode;
548
549 if (sc->sc_open == SB_OPEN_MIDI)
550 return EBUSY;
551
552 /* Later models work like SB16. */
553 model = min(sc->sc_model, SB_16);
554
555 /*
556 * Prior to the SB16, we have only one clock, so make the sample
557 * rates match.
558 */
559 if (!ISSB16CLASS(sc) &&
560 play->sample_rate != rec->sample_rate &&
561 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
562 if (setmode == AUMODE_PLAY) {
563 rec->sample_rate = play->sample_rate;
564 setmode |= AUMODE_RECORD;
565 } else if (setmode == AUMODE_RECORD) {
566 play->sample_rate = rec->sample_rate;
567 setmode |= AUMODE_PLAY;
568 } else
569 return (EINVAL);
570 }
571
572 /* Set first record info, then play info */
573 for (mode = AUMODE_RECORD; mode != -1;
574 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
575 if ((setmode & mode) == 0)
576 continue;
577
578 p = mode == AUMODE_PLAY ? play : rec;
579 /* Locate proper commands */
580 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
581 m->model != -1; m++) {
582 if (model == m->model &&
583 p->channels == m->channels &&
584 p->precision == m->precision &&
585 p->sample_rate >= m->lowrate &&
586 p->sample_rate <= m->highrate)
587 break;
588 }
589 if (m->model == -1)
590 return EINVAL;
591 rate = p->sample_rate;
592 swcode = 0;
593 factor = 1;
594 tc = 1;
595 bmode = -1;
596 if (model == SB_16) {
597 switch (p->encoding) {
598 case AUDIO_ENCODING_SLINEAR_BE:
599 if (p->precision == 16)
600 swcode = swap_bytes;
601 /* fall into */
602 case AUDIO_ENCODING_SLINEAR_LE:
603 bmode = SB_BMODE_SIGNED;
604 break;
605 case AUDIO_ENCODING_ULINEAR_BE:
606 if (p->precision == 16)
607 swcode = swap_bytes;
608 /* fall into */
609 case AUDIO_ENCODING_ULINEAR_LE:
610 bmode = SB_BMODE_UNSIGNED;
611 break;
612 case AUDIO_ENCODING_ULAW:
613 if (mode == AUMODE_PLAY) {
614 swcode = mulaw_to_ulinear16;
615 factor = 2;
616 m = &sbpmodes[PLAY16];
617 } else
618 swcode = ulinear8_to_mulaw;
619 bmode = SB_BMODE_UNSIGNED;
620 break;
621 case AUDIO_ENCODING_ALAW:
622 if (mode == AUMODE_PLAY) {
623 swcode = alaw_to_ulinear16;
624 factor = 2;
625 m = &sbpmodes[PLAY16];
626 } else
627 swcode = ulinear8_to_alaw;
628 bmode = SB_BMODE_UNSIGNED;
629 break;
630 default:
631 return EINVAL;
632 }
633 if (p->channels == 2)
634 bmode |= SB_BMODE_STEREO;
635 } else if (m->model == SB_JAZZ && m->precision == 16) {
636 switch (p->encoding) {
637 case AUDIO_ENCODING_SLINEAR_LE:
638 break;
639 case AUDIO_ENCODING_ULINEAR_LE:
640 swcode = change_sign16;
641 break;
642 case AUDIO_ENCODING_SLINEAR_BE:
643 swcode = swap_bytes;
644 break;
645 case AUDIO_ENCODING_ULINEAR_BE:
646 swcode = mode == AUMODE_PLAY ?
647 swap_bytes_change_sign16 : change_sign16_swap_bytes;
648 break;
649 case AUDIO_ENCODING_ULAW:
650 swcode = mode == AUMODE_PLAY ?
651 mulaw_to_ulinear8 : ulinear8_to_mulaw;
652 break;
653 case AUDIO_ENCODING_ALAW:
654 swcode = mode == AUMODE_PLAY ?
655 alaw_to_ulinear8 : ulinear8_to_alaw;
656 break;
657 default:
658 return EINVAL;
659 }
660 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
661 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
662 } else {
663 switch (p->encoding) {
664 case AUDIO_ENCODING_SLINEAR_BE:
665 case AUDIO_ENCODING_SLINEAR_LE:
666 swcode = change_sign8;
667 break;
668 case AUDIO_ENCODING_ULINEAR_BE:
669 case AUDIO_ENCODING_ULINEAR_LE:
670 break;
671 case AUDIO_ENCODING_ULAW:
672 swcode = mode == AUMODE_PLAY ?
673 mulaw_to_ulinear8 : ulinear8_to_mulaw;
674 break;
675 case AUDIO_ENCODING_ALAW:
676 swcode = mode == AUMODE_PLAY ?
677 alaw_to_ulinear8 : ulinear8_to_alaw;
678 break;
679 default:
680 return EINVAL;
681 }
682 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
683 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
684 }
685
686 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
687 if (mode == AUMODE_PLAY) {
688 sc->sc_o.rate = rate;
689 sc->sc_o.tc = tc;
690 sc->sc_o.modep = m;
691 sc->sc_o.bmode = bmode;
692 sc->sc_o.dmachan = chan;
693 } else {
694 sc->sc_i.rate = rate;
695 sc->sc_i.tc = tc;
696 sc->sc_i.modep = m;
697 sc->sc_i.bmode = bmode;
698 sc->sc_i.dmachan = chan;
699 }
700
701 p->sw_code = swcode;
702 p->factor = factor;
703 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
704 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
705 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
706
707 }
708
709 if (sc->sc_fullduplex &&
710 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
711 sc->sc_i.dmachan == sc->sc_o.dmachan) {
712 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
713 if (sc->sc_o.dmachan == sc->sc_drq8) {
714 /* Use 16 bit DMA for playing by expanding the samples. */
715 play->sw_code = linear8_to_linear16;
716 play->factor = 2;
717 sc->sc_o.modep = &sbpmodes[PLAY16];
718 sc->sc_o.dmachan = sc->sc_drq16;
719 } else {
720 return EINVAL;
721 }
722 }
723 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
724 sc->sc_i.dmachan, sc->sc_o.dmachan));
725
726 return (0);
727 }
728
729 void
730 sbdsp_set_ifilter(addr, which)
731 void *addr;
732 int which;
733 {
734 struct sbdsp_softc *sc = addr;
735 int mixval;
736
737 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
738 switch (which) {
739 case 0:
740 mixval |= SBP_FILTER_OFF;
741 break;
742 case SB_TREBLE:
743 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
744 break;
745 case SB_BASS:
746 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
747 break;
748 default:
749 return;
750 }
751 sc->in_filter = mixval & SBP_IFILTER_MASK;
752 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
753 }
754
755 int
756 sbdsp_get_ifilter(addr)
757 void *addr;
758 {
759 struct sbdsp_softc *sc = addr;
760
761 sc->in_filter =
762 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
763 switch (sc->in_filter) {
764 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
765 return SB_TREBLE;
766 case SBP_FILTER_ON|SBP_IFILTER_LOW:
767 return SB_BASS;
768 default:
769 return 0;
770 }
771 }
772
773 int
774 sbdsp_set_in_ports(sc, mask)
775 struct sbdsp_softc *sc;
776 int mask;
777 {
778 int bitsl, bitsr;
779 int sbport;
780
781 if (sc->sc_open == SB_OPEN_MIDI)
782 return EBUSY;
783
784 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
785 sc->sc_mixer_model, mask));
786
787 switch(sc->sc_mixer_model) {
788 case SBM_NONE:
789 return EINVAL;
790 case SBM_CT1335:
791 if (mask != (1 << SB_MIC_VOL))
792 return EINVAL;
793 break;
794 case SBM_CT1345:
795 switch (mask) {
796 case 1 << SB_MIC_VOL:
797 sbport = SBP_FROM_MIC;
798 break;
799 case 1 << SB_LINE_IN_VOL:
800 sbport = SBP_FROM_LINE;
801 break;
802 case 1 << SB_CD_VOL:
803 sbport = SBP_FROM_CD;
804 break;
805 default:
806 return (EINVAL);
807 }
808 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
809 break;
810 case SBM_CT1XX5:
811 case SBM_CT1745:
812 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
813 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
814 return EINVAL;
815 bitsr = 0;
816 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
817 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
818 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
819 bitsl = SB_SRC_R_TO_L(bitsr);
820 if (mask & (1<<SB_MIC_VOL)) {
821 bitsl |= SBP_MIC_SRC;
822 bitsr |= SBP_MIC_SRC;
823 }
824 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
825 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
826 break;
827 }
828 sc->in_mask = mask;
829
830 return 0;
831 }
832
833 int
834 sbdsp_speaker_ctl(addr, newstate)
835 void *addr;
836 int newstate;
837 {
838 struct sbdsp_softc *sc = addr;
839
840 if (sc->sc_open == SB_OPEN_MIDI)
841 return EBUSY;
842
843 if ((newstate == SPKR_ON) &&
844 (sc->spkr_state == SPKR_OFF)) {
845 sbdsp_spkron(sc);
846 sc->spkr_state = SPKR_ON;
847 }
848 if ((newstate == SPKR_OFF) &&
849 (sc->spkr_state == SPKR_ON)) {
850 sbdsp_spkroff(sc);
851 sc->spkr_state = SPKR_OFF;
852 }
853 return 0;
854 }
855
856 int
857 sbdsp_round_blocksize(addr, blk)
858 void *addr;
859 int blk;
860 {
861 return blk & -4; /* round to biggest sample size */
862 }
863
864 int
865 sbdsp_open(addr, flags)
866 void *addr;
867 int flags;
868 {
869 struct sbdsp_softc *sc = addr;
870 int error;
871
872 DPRINTF(("sbdsp_open: sc=%p\n", sc));
873
874 if (sc->sc_open != SB_CLOSED)
875 return (EBUSY);
876 sc->sc_open = SB_OPEN_AUDIO;
877 sc->sc_openflags = flags;
878
879 if (sc->sc_drq8 != -1) {
880 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
881 MAX_ISADMA, BUS_DMA_NOWAIT);
882 if (error) {
883 printf("%s: can't create map for drq %d\n",
884 sc->sc_dev.dv_xname, sc->sc_drq8);
885 goto bad;
886 }
887 }
888 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
889 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
890 MAX_ISADMA, BUS_DMA_NOWAIT);
891 if (error) {
892 printf("%s: can't create map for drq %d\n",
893 sc->sc_dev.dv_xname, sc->sc_drq16);
894 goto bad;
895 }
896 }
897
898 if (sbdsp_reset(sc) != 0) {
899 error = EIO;
900 goto bad;
901 }
902
903 if (ISSBPRO(sc) &&
904 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
905 DPRINTF(("sbdsp_open: can't set mono mode\n"));
906 /* we'll readjust when it's time for DMA. */
907 }
908
909 /*
910 * Leave most things as they were; users must change things if
911 * the previous process didn't leave it they way they wanted.
912 * Looked at another way, it's easy to set up a configuration
913 * in one program and leave it for another to inherit.
914 */
915 DPRINTF(("sbdsp_open: opened\n"));
916
917 return (0);
918
919 bad:
920 sc->sc_open = SB_CLOSED;
921 return (error);
922 }
923
924 void
925 sbdsp_close(addr)
926 void *addr;
927 {
928 struct sbdsp_softc *sc = addr;
929
930 DPRINTF(("sbdsp_close: sc=%p\n", sc));
931
932 sbdsp_spkroff(sc);
933 sc->spkr_state = SPKR_OFF;
934
935 sbdsp_halt_output(sc);
936 sbdsp_halt_input(sc);
937
938 sc->sc_intr8 = 0;
939 sc->sc_intr16 = 0;
940
941 if (sc->sc_drq8 != -1)
942 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
943 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
944 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
945
946 sc->sc_open = SB_CLOSED;
947 DPRINTF(("sbdsp_close: closed\n"));
948 }
949
950 /*
951 * Lower-level routines
952 */
953
954 /*
955 * Reset the card.
956 * Return non-zero if the card isn't detected.
957 */
958 int
959 sbdsp_reset(sc)
960 struct sbdsp_softc *sc;
961 {
962 bus_space_tag_t iot = sc->sc_iot;
963 bus_space_handle_t ioh = sc->sc_ioh;
964
965 sc->sc_intr8 = 0;
966 sc->sc_intr16 = 0;
967 sc->sc_intrm = 0;
968
969 /*
970 * See SBK, section 11.3.
971 * We pulse a reset signal into the card.
972 * Gee, what a brilliant hardware design.
973 */
974 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
975 delay(10);
976 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
977 delay(30);
978 if (sbdsp_rdsp(sc) != SB_MAGIC)
979 return -1;
980
981 return 0;
982 }
983
984 /*
985 * Write a byte to the dsp.
986 * We are at the mercy of the card as we use a
987 * polling loop and wait until it can take the byte.
988 */
989 int
990 sbdsp_wdsp(sc, v)
991 struct sbdsp_softc *sc;
992 int v;
993 {
994 bus_space_tag_t iot = sc->sc_iot;
995 bus_space_handle_t ioh = sc->sc_ioh;
996 int i;
997 u_char x;
998
999 for (i = SBDSP_NPOLL; --i >= 0; ) {
1000 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1001 delay(10);
1002 if ((x & SB_DSP_BUSY) == 0) {
1003 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1004 delay(10);
1005 return 0;
1006 }
1007 }
1008 ++sberr.wdsp;
1009 return -1;
1010 }
1011
1012 /*
1013 * Read a byte from the DSP, using polling.
1014 */
1015 int
1016 sbdsp_rdsp(sc)
1017 struct sbdsp_softc *sc;
1018 {
1019 bus_space_tag_t iot = sc->sc_iot;
1020 bus_space_handle_t ioh = sc->sc_ioh;
1021 int i;
1022 u_char x;
1023
1024 for (i = SBDSP_NPOLL; --i >= 0; ) {
1025 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1026 delay(10);
1027 if (x & SB_DSP_READY) {
1028 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1029 delay(10);
1030 return x;
1031 }
1032 }
1033 ++sberr.rdsp;
1034 return -1;
1035 }
1036
1037 /*
1038 * Doing certain things (like toggling the speaker) make
1039 * the SB hardware go away for a while, so pause a little.
1040 */
1041 void
1042 sbdsp_to(arg)
1043 void *arg;
1044 {
1045 wakeup(arg);
1046 }
1047
1048 void
1049 sbdsp_pause(sc)
1050 struct sbdsp_softc *sc;
1051 {
1052 extern int hz;
1053
1054 timeout(sbdsp_to, sbdsp_to, hz/8);
1055 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1056 }
1057
1058 /*
1059 * Turn on the speaker. The SBK documention says this operation
1060 * can take up to 1/10 of a second. Higher level layers should
1061 * probably let the task sleep for this amount of time after
1062 * calling here. Otherwise, things might not work (because
1063 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1064 *
1065 * These engineers had their heads up their ass when
1066 * they designed this card.
1067 */
1068 void
1069 sbdsp_spkron(sc)
1070 struct sbdsp_softc *sc;
1071 {
1072 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1073 sbdsp_pause(sc);
1074 }
1075
1076 /*
1077 * Turn off the speaker; see comment above.
1078 */
1079 void
1080 sbdsp_spkroff(sc)
1081 struct sbdsp_softc *sc;
1082 {
1083 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1084 sbdsp_pause(sc);
1085 }
1086
1087 /*
1088 * Read the version number out of the card.
1089 * Store version information in the softc.
1090 */
1091 void
1092 sbversion(sc)
1093 struct sbdsp_softc *sc;
1094 {
1095 int v;
1096
1097 sc->sc_model = SB_UNK;
1098 sc->sc_version = 0;
1099 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1100 return;
1101 v = sbdsp_rdsp(sc) << 8;
1102 v |= sbdsp_rdsp(sc);
1103 if (v < 0)
1104 return;
1105 sc->sc_version = v;
1106 switch(SBVER_MAJOR(v)) {
1107 case 1:
1108 sc->sc_mixer_model = SBM_NONE;
1109 sc->sc_model = SB_1;
1110 break;
1111 case 2:
1112 /* Some SB2 have a mixer, some don't. */
1113 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1114 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1115 /* Check if we can read back the mixer values. */
1116 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1117 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1118 sc->sc_mixer_model = SBM_CT1335;
1119 else
1120 sc->sc_mixer_model = SBM_NONE;
1121 if (SBVER_MINOR(v) == 0)
1122 sc->sc_model = SB_20;
1123 else
1124 sc->sc_model = SB_2x;
1125 break;
1126 case 3:
1127 sc->sc_mixer_model = SBM_CT1345;
1128 sc->sc_model = SB_PRO;
1129 break;
1130 case 4:
1131 #if 0
1132 /* XXX This does not work */
1133 /* Most SB16 have a tone controls, but some don't. */
1134 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1135 /* Check if we can read back the mixer value. */
1136 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1137 sc->sc_mixer_model = SBM_CT1745;
1138 else
1139 sc->sc_mixer_model = SBM_CT1XX5;
1140 #else
1141 sc->sc_mixer_model = SBM_CT1745;
1142 #endif
1143 #if 0
1144 /* XXX figure out a good way of determining the model */
1145 /* XXX what about SB_32 */
1146 if (SBVER_MINOR(v) == 16)
1147 sc->sc_model = SB_64;
1148 else
1149 #endif
1150 sc->sc_model = SB_16;
1151 break;
1152 }
1153 }
1154
1155 int
1156 sbdsp_set_timeconst(sc, tc)
1157 struct sbdsp_softc *sc;
1158 int tc;
1159 {
1160 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1161
1162 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1163 sbdsp_wdsp(sc, tc) < 0)
1164 return EIO;
1165
1166 return 0;
1167 }
1168
1169 int
1170 sbdsp16_set_rate(sc, cmd, rate)
1171 struct sbdsp_softc *sc;
1172 int cmd, rate;
1173 {
1174 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1175
1176 if (sbdsp_wdsp(sc, cmd) < 0 ||
1177 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1178 sbdsp_wdsp(sc, rate) < 0)
1179 return EIO;
1180 return 0;
1181 }
1182
1183 int
1184 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1185 void *addr;
1186 void *start, *end;
1187 int blksize;
1188 void (*intr) __P((void *));
1189 void *arg;
1190 struct audio_params *param;
1191 {
1192 struct sbdsp_softc *sc = addr;
1193 int stereo = param->channels == 2;
1194 int width = param->precision * param->factor;
1195 int filter;
1196
1197 #ifdef DIAGNOSTIC
1198 if (stereo && (blksize & 1)) {
1199 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1200 return (EIO);
1201 }
1202 if (sc->sc_i.run != SB_NOTRUNNING)
1203 printf("sbdsp_trigger_input: already running\n");
1204 #endif
1205
1206 sc->sc_intrr = intr;
1207 sc->sc_argr = arg;
1208
1209 if (width == 8) {
1210 #ifdef DIAGNOSTIC
1211 if (sc->sc_i.dmachan != sc->sc_drq8) {
1212 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1213 width, sc->sc_i.dmachan);
1214 return (EIO);
1215 }
1216 #endif
1217 sc->sc_intr8 = sbdsp_block_input;
1218 } else {
1219 #ifdef DIAGNOSTIC
1220 if (sc->sc_i.dmachan != sc->sc_drq16) {
1221 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1222 width, sc->sc_i.dmachan);
1223 return (EIO);
1224 }
1225 #endif
1226 sc->sc_intr16 = sbdsp_block_input;
1227 }
1228
1229 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1230 blksize >>= 1;
1231 --blksize;
1232 sc->sc_i.blksize = blksize;
1233
1234 if (ISSBPRO(sc)) {
1235 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1236 return (EIO);
1237 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1238 sbdsp_mix_write(sc, SBP_INFILTER,
1239 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1240 filter);
1241 }
1242
1243 if (ISSB16CLASS(sc)) {
1244 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1245 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1246 sc->sc_i.rate));
1247 return (EIO);
1248 }
1249 } else {
1250 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1251 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1252 sc->sc_i.rate));
1253 return (EIO);
1254 }
1255 }
1256
1257 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1258 start, end, sc->sc_i.dmachan));
1259 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1260 (char *)end - (char *)start, NULL,
1261 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1262
1263 return sbdsp_block_input(addr);
1264 }
1265
1266 int
1267 sbdsp_block_input(addr)
1268 void *addr;
1269 {
1270 struct sbdsp_softc *sc = addr;
1271 int cc = sc->sc_i.blksize;
1272
1273 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1274
1275 if (sc->sc_i.run != SB_NOTRUNNING)
1276 sc->sc_intrr(sc->sc_argr);
1277
1278 if (sc->sc_model == SB_1) {
1279 /* Non-looping mode, start DMA */
1280 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1281 sbdsp_wdsp(sc, cc) < 0 ||
1282 sbdsp_wdsp(sc, cc >> 8) < 0) {
1283 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1284 return (EIO);
1285 }
1286 sc->sc_i.run = SB_RUNNING;
1287 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1288 /* Initialize looping PCM */
1289 if (ISSB16CLASS(sc)) {
1290 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1291 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1292 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1293 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1294 sbdsp_wdsp(sc, cc) < 0 ||
1295 sbdsp_wdsp(sc, cc >> 8) < 0) {
1296 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1297 return (EIO);
1298 }
1299 } else {
1300 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1301 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1302 sbdsp_wdsp(sc, cc) < 0 ||
1303 sbdsp_wdsp(sc, cc >> 8) < 0) {
1304 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1305 return (EIO);
1306 }
1307 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1308 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1309 return (EIO);
1310 }
1311 }
1312 sc->sc_i.run = SB_LOOPING;
1313 }
1314
1315 return (0);
1316 }
1317
1318 int
1319 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1320 void *addr;
1321 void *start, *end;
1322 int blksize;
1323 void (*intr) __P((void *));
1324 void *arg;
1325 struct audio_params *param;
1326 {
1327 struct sbdsp_softc *sc = addr;
1328 int stereo = param->channels == 2;
1329 int width = param->precision * param->factor;
1330 int cmd;
1331
1332 #ifdef DIAGNOSTIC
1333 if (stereo && (blksize & 1)) {
1334 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1335 return (EIO);
1336 }
1337 if (sc->sc_o.run != SB_NOTRUNNING)
1338 printf("sbdsp_trigger_output: already running\n");
1339 #endif
1340
1341 sc->sc_intrp = intr;
1342 sc->sc_argp = arg;
1343
1344 if (width == 8) {
1345 #ifdef DIAGNOSTIC
1346 if (sc->sc_o.dmachan != sc->sc_drq8) {
1347 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1348 width, sc->sc_o.dmachan);
1349 return (EIO);
1350 }
1351 #endif
1352 sc->sc_intr8 = sbdsp_block_output;
1353 } else {
1354 #ifdef DIAGNOSTIC
1355 if (sc->sc_o.dmachan != sc->sc_drq16) {
1356 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1357 width, sc->sc_o.dmachan);
1358 return (EIO);
1359 }
1360 #endif
1361 sc->sc_intr16 = sbdsp_block_output;
1362 }
1363
1364 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1365 blksize >>= 1;
1366 --blksize;
1367 sc->sc_o.blksize = blksize;
1368
1369 if (ISSBPRO(sc)) {
1370 /* make sure we re-set stereo mixer bit when we start output. */
1371 sbdsp_mix_write(sc, SBP_STEREO,
1372 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1373 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1374 cmd = sc->sc_o.modep->cmdchan;
1375 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1376 return (EIO);
1377 }
1378
1379 if (ISSB16CLASS(sc)) {
1380 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1381 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1382 sc->sc_o.rate));
1383 return (EIO);
1384 }
1385 } else {
1386 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1387 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1388 sc->sc_o.rate));
1389 return (EIO);
1390 }
1391 }
1392
1393 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1394 start, end, sc->sc_o.dmachan));
1395 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1396 (char *)end - (char *)start, NULL,
1397 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1398
1399 return sbdsp_block_output(addr);
1400 }
1401
1402 int
1403 sbdsp_block_output(addr)
1404 void *addr;
1405 {
1406 struct sbdsp_softc *sc = addr;
1407 int cc = sc->sc_o.blksize;
1408
1409 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1410
1411 if (sc->sc_o.run != SB_NOTRUNNING)
1412 sc->sc_intrp(sc->sc_argp);
1413
1414 if (sc->sc_model == SB_1) {
1415 /* Non-looping mode, initialized. Start DMA and PCM */
1416 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1417 sbdsp_wdsp(sc, cc) < 0 ||
1418 sbdsp_wdsp(sc, cc >> 8) < 0) {
1419 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1420 return (EIO);
1421 }
1422 sc->sc_o.run = SB_RUNNING;
1423 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1424 /* Initialize looping PCM */
1425 if (ISSB16CLASS(sc)) {
1426 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1427 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1428 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1429 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1430 sbdsp_wdsp(sc, cc) < 0 ||
1431 sbdsp_wdsp(sc, cc >> 8) < 0) {
1432 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1433 return (EIO);
1434 }
1435 } else {
1436 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1437 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1438 sbdsp_wdsp(sc, cc) < 0 ||
1439 sbdsp_wdsp(sc, cc >> 8) < 0) {
1440 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1441 return (EIO);
1442 }
1443 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1444 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1445 return (EIO);
1446 }
1447 }
1448 sc->sc_o.run = SB_LOOPING;
1449 }
1450
1451 return (0);
1452 }
1453
1454 int
1455 sbdsp_halt_output(addr)
1456 void *addr;
1457 {
1458 struct sbdsp_softc *sc = addr;
1459
1460 if (sc->sc_o.run != SB_NOTRUNNING) {
1461 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1462 printf("sbdsp_halt_output: failed to halt\n");
1463 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1464 sc->sc_o.run = SB_NOTRUNNING;
1465 }
1466
1467 return (0);
1468 }
1469
1470 int
1471 sbdsp_halt_input(addr)
1472 void *addr;
1473 {
1474 struct sbdsp_softc *sc = addr;
1475
1476 if (sc->sc_i.run != SB_NOTRUNNING) {
1477 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1478 printf("sbdsp_halt_input: failed to halt\n");
1479 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1480 sc->sc_i.run = SB_NOTRUNNING;
1481 }
1482
1483 return (0);
1484 }
1485
1486 /*
1487 * Only the DSP unit on the sound blaster generates interrupts.
1488 * There are three cases of interrupt: reception of a midi byte
1489 * (when mode is enabled), completion of dma transmission, or
1490 * completion of a dma reception.
1491 *
1492 * If there is interrupt sharing or a spurious interrupt occurs
1493 * there is no way to distinguish this on an SB2. So if you have
1494 * an SB2 and experience problems, buy an SB16 (it's only $40).
1495 */
1496 int
1497 sbdsp_intr(arg)
1498 void *arg;
1499 {
1500 struct sbdsp_softc *sc = arg;
1501 u_char irq;
1502
1503 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1504 sc->sc_intr8, sc->sc_intr16));
1505 if (ISSB16CLASS(sc)) {
1506 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1507 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1508 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1509 return 0;
1510 }
1511 } else {
1512 /* XXXX CHECK FOR INTERRUPT */
1513 irq = SBP_IRQ_DMA8;
1514 }
1515
1516 sc->sc_interrupts++;
1517 delay(10); /* XXX why? */
1518
1519 /* clear interrupt */
1520 if (irq & SBP_IRQ_DMA8) {
1521 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1522 if (sc->sc_intr8)
1523 sc->sc_intr8(arg);
1524 }
1525 if (irq & SBP_IRQ_DMA16) {
1526 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1527 if (sc->sc_intr16)
1528 sc->sc_intr16(arg);
1529 }
1530 #if NMIDI > 0
1531 if ((irq & SBP_IRQ_MPU401) && sc->sc_hasmpu) {
1532 mpu_intr(&sc->sc_mpu);
1533 }
1534 #endif
1535 return 1;
1536 }
1537
1538 /* Like val & mask, but make sure the result is correctly rounded. */
1539 #define MAXVAL 256
1540 static int
1541 sbdsp_adjust(val, mask)
1542 int val, mask;
1543 {
1544 val += (MAXVAL - mask) >> 1;
1545 if (val >= MAXVAL)
1546 val = MAXVAL-1;
1547 return val & mask;
1548 }
1549
1550 void
1551 sbdsp_set_mixer_gain(sc, port)
1552 struct sbdsp_softc *sc;
1553 int port;
1554 {
1555 int src, gain;
1556
1557 switch(sc->sc_mixer_model) {
1558 case SBM_NONE:
1559 return;
1560 case SBM_CT1335:
1561 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1562 switch(port) {
1563 case SB_MASTER_VOL:
1564 src = SBP_1335_MASTER_VOL;
1565 break;
1566 case SB_MIDI_VOL:
1567 src = SBP_1335_MIDI_VOL;
1568 break;
1569 case SB_CD_VOL:
1570 src = SBP_1335_CD_VOL;
1571 break;
1572 case SB_VOICE_VOL:
1573 src = SBP_1335_VOICE_VOL;
1574 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1575 break;
1576 default:
1577 return;
1578 }
1579 sbdsp_mix_write(sc, src, gain);
1580 break;
1581 case SBM_CT1345:
1582 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1583 sc->gain[port][SB_RIGHT]);
1584 switch (port) {
1585 case SB_MIC_VOL:
1586 src = SBP_MIC_VOL;
1587 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1588 break;
1589 case SB_MASTER_VOL:
1590 src = SBP_MASTER_VOL;
1591 break;
1592 case SB_LINE_IN_VOL:
1593 src = SBP_LINE_VOL;
1594 break;
1595 case SB_VOICE_VOL:
1596 src = SBP_VOICE_VOL;
1597 break;
1598 case SB_MIDI_VOL:
1599 src = SBP_MIDI_VOL;
1600 break;
1601 case SB_CD_VOL:
1602 src = SBP_CD_VOL;
1603 break;
1604 default:
1605 return;
1606 }
1607 sbdsp_mix_write(sc, src, gain);
1608 break;
1609 case SBM_CT1XX5:
1610 case SBM_CT1745:
1611 switch (port) {
1612 case SB_MIC_VOL:
1613 src = SB16P_MIC_L;
1614 break;
1615 case SB_MASTER_VOL:
1616 src = SB16P_MASTER_L;
1617 break;
1618 case SB_LINE_IN_VOL:
1619 src = SB16P_LINE_L;
1620 break;
1621 case SB_VOICE_VOL:
1622 src = SB16P_VOICE_L;
1623 break;
1624 case SB_MIDI_VOL:
1625 src = SB16P_MIDI_L;
1626 break;
1627 case SB_CD_VOL:
1628 src = SB16P_CD_L;
1629 break;
1630 case SB_INPUT_GAIN:
1631 src = SB16P_INPUT_GAIN_L;
1632 break;
1633 case SB_OUTPUT_GAIN:
1634 src = SB16P_OUTPUT_GAIN_L;
1635 break;
1636 case SB_TREBLE:
1637 src = SB16P_TREBLE_L;
1638 break;
1639 case SB_BASS:
1640 src = SB16P_BASS_L;
1641 break;
1642 case SB_PCSPEAKER:
1643 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1644 return;
1645 default:
1646 return;
1647 }
1648 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1649 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1650 break;
1651 }
1652 }
1653
1654 int
1655 sbdsp_mixer_set_port(addr, cp)
1656 void *addr;
1657 mixer_ctrl_t *cp;
1658 {
1659 struct sbdsp_softc *sc = addr;
1660 int lgain, rgain;
1661 int mask, bits;
1662 int lmask, rmask, lbits, rbits;
1663 int mute, swap;
1664
1665 if (sc->sc_open == SB_OPEN_MIDI)
1666 return EBUSY;
1667
1668 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1669 cp->un.value.num_channels));
1670
1671 if (sc->sc_mixer_model == SBM_NONE)
1672 return EINVAL;
1673
1674 switch (cp->dev) {
1675 case SB_TREBLE:
1676 case SB_BASS:
1677 if (sc->sc_mixer_model == SBM_CT1345 ||
1678 sc->sc_mixer_model == SBM_CT1XX5) {
1679 if (cp->type != AUDIO_MIXER_ENUM)
1680 return EINVAL;
1681 switch (cp->dev) {
1682 case SB_TREBLE:
1683 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1684 return 0;
1685 case SB_BASS:
1686 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1687 return 0;
1688 }
1689 }
1690 case SB_PCSPEAKER:
1691 case SB_INPUT_GAIN:
1692 case SB_OUTPUT_GAIN:
1693 if (!ISSBM1745(sc))
1694 return EINVAL;
1695 case SB_MIC_VOL:
1696 case SB_LINE_IN_VOL:
1697 if (sc->sc_mixer_model == SBM_CT1335)
1698 return EINVAL;
1699 case SB_VOICE_VOL:
1700 case SB_MIDI_VOL:
1701 case SB_CD_VOL:
1702 case SB_MASTER_VOL:
1703 if (cp->type != AUDIO_MIXER_VALUE)
1704 return EINVAL;
1705
1706 /*
1707 * All the mixer ports are stereo except for the microphone.
1708 * If we get a single-channel gain value passed in, then we
1709 * duplicate it to both left and right channels.
1710 */
1711
1712 switch (cp->dev) {
1713 case SB_MIC_VOL:
1714 if (cp->un.value.num_channels != 1)
1715 return EINVAL;
1716
1717 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1718 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1719 break;
1720 case SB_PCSPEAKER:
1721 if (cp->un.value.num_channels != 1)
1722 return EINVAL;
1723 /* fall into */
1724 case SB_INPUT_GAIN:
1725 case SB_OUTPUT_GAIN:
1726 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1727 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1728 break;
1729 default:
1730 switch (cp->un.value.num_channels) {
1731 case 1:
1732 lgain = rgain = SB_ADJUST_GAIN(sc,
1733 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1734 break;
1735 case 2:
1736 if (sc->sc_mixer_model == SBM_CT1335)
1737 return EINVAL;
1738 lgain = SB_ADJUST_GAIN(sc,
1739 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1740 rgain = SB_ADJUST_GAIN(sc,
1741 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1742 break;
1743 default:
1744 return EINVAL;
1745 }
1746 break;
1747 }
1748 sc->gain[cp->dev][SB_LEFT] = lgain;
1749 sc->gain[cp->dev][SB_RIGHT] = rgain;
1750
1751 sbdsp_set_mixer_gain(sc, cp->dev);
1752 break;
1753
1754 case SB_RECORD_SOURCE:
1755 if (ISSBM1745(sc)) {
1756 if (cp->type != AUDIO_MIXER_SET)
1757 return EINVAL;
1758 return sbdsp_set_in_ports(sc, cp->un.mask);
1759 } else {
1760 if (cp->type != AUDIO_MIXER_ENUM)
1761 return EINVAL;
1762 sc->in_port = cp->un.ord;
1763 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1764 }
1765 break;
1766
1767 case SB_AGC:
1768 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1769 return EINVAL;
1770 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1771 break;
1772
1773 case SB_CD_OUT_MUTE:
1774 mask = SB16P_SW_CD;
1775 goto omute;
1776 case SB_MIC_OUT_MUTE:
1777 mask = SB16P_SW_MIC;
1778 goto omute;
1779 case SB_LINE_OUT_MUTE:
1780 mask = SB16P_SW_LINE;
1781 omute:
1782 if (cp->type != AUDIO_MIXER_ENUM)
1783 return EINVAL;
1784 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1785 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1786 if (cp->un.ord)
1787 bits = bits & ~mask;
1788 else
1789 bits = bits | mask;
1790 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1791 break;
1792
1793 case SB_MIC_IN_MUTE:
1794 case SB_MIC_SWAP:
1795 lmask = rmask = SB16P_SW_MIC;
1796 goto imute;
1797 case SB_CD_IN_MUTE:
1798 case SB_CD_SWAP:
1799 lmask = SB16P_SW_CD_L;
1800 rmask = SB16P_SW_CD_R;
1801 goto imute;
1802 case SB_LINE_IN_MUTE:
1803 case SB_LINE_SWAP:
1804 lmask = SB16P_SW_LINE_L;
1805 rmask = SB16P_SW_LINE_R;
1806 goto imute;
1807 case SB_MIDI_IN_MUTE:
1808 case SB_MIDI_SWAP:
1809 lmask = SB16P_SW_MIDI_L;
1810 rmask = SB16P_SW_MIDI_R;
1811 imute:
1812 if (cp->type != AUDIO_MIXER_ENUM)
1813 return EINVAL;
1814 mask = lmask | rmask;
1815 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1816 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1817 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1818 if (SB_IS_IN_MUTE(cp->dev)) {
1819 mute = cp->dev;
1820 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1821 } else {
1822 swap = cp->dev;
1823 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1824 }
1825 if (sc->gain[swap][SB_LR]) {
1826 mask = lmask;
1827 lmask = rmask;
1828 rmask = mask;
1829 }
1830 if (!sc->gain[mute][SB_LR]) {
1831 lbits = lbits | lmask;
1832 rbits = rbits | rmask;
1833 }
1834 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1835 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1836 break;
1837
1838 default:
1839 return EINVAL;
1840 }
1841
1842 return 0;
1843 }
1844
1845 int
1846 sbdsp_mixer_get_port(addr, cp)
1847 void *addr;
1848 mixer_ctrl_t *cp;
1849 {
1850 struct sbdsp_softc *sc = addr;
1851
1852 if (sc->sc_open == SB_OPEN_MIDI)
1853 return EBUSY;
1854
1855 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1856
1857 if (sc->sc_mixer_model == SBM_NONE)
1858 return EINVAL;
1859
1860 switch (cp->dev) {
1861 case SB_TREBLE:
1862 case SB_BASS:
1863 if (sc->sc_mixer_model == SBM_CT1345 ||
1864 sc->sc_mixer_model == SBM_CT1XX5) {
1865 switch (cp->dev) {
1866 case SB_TREBLE:
1867 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1868 return 0;
1869 case SB_BASS:
1870 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1871 return 0;
1872 }
1873 }
1874 case SB_PCSPEAKER:
1875 case SB_INPUT_GAIN:
1876 case SB_OUTPUT_GAIN:
1877 if (!ISSBM1745(sc))
1878 return EINVAL;
1879 case SB_MIC_VOL:
1880 case SB_LINE_IN_VOL:
1881 if (sc->sc_mixer_model == SBM_CT1335)
1882 return EINVAL;
1883 case SB_VOICE_VOL:
1884 case SB_MIDI_VOL:
1885 case SB_CD_VOL:
1886 case SB_MASTER_VOL:
1887 switch (cp->dev) {
1888 case SB_MIC_VOL:
1889 case SB_PCSPEAKER:
1890 if (cp->un.value.num_channels != 1)
1891 return EINVAL;
1892 /* fall into */
1893 default:
1894 switch (cp->un.value.num_channels) {
1895 case 1:
1896 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1897 sc->gain[cp->dev][SB_LEFT];
1898 break;
1899 case 2:
1900 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1901 sc->gain[cp->dev][SB_LEFT];
1902 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1903 sc->gain[cp->dev][SB_RIGHT];
1904 break;
1905 default:
1906 return EINVAL;
1907 }
1908 break;
1909 }
1910 break;
1911
1912 case SB_RECORD_SOURCE:
1913 if (ISSBM1745(sc))
1914 cp->un.mask = sc->in_mask;
1915 else
1916 cp->un.ord = sc->in_port;
1917 break;
1918
1919 case SB_AGC:
1920 if (!ISSBM1745(sc))
1921 return EINVAL;
1922 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1923 break;
1924
1925 case SB_CD_IN_MUTE:
1926 case SB_MIC_IN_MUTE:
1927 case SB_LINE_IN_MUTE:
1928 case SB_MIDI_IN_MUTE:
1929 case SB_CD_SWAP:
1930 case SB_MIC_SWAP:
1931 case SB_LINE_SWAP:
1932 case SB_MIDI_SWAP:
1933 case SB_CD_OUT_MUTE:
1934 case SB_MIC_OUT_MUTE:
1935 case SB_LINE_OUT_MUTE:
1936 cp->un.ord = sc->gain[cp->dev][SB_LR];
1937 break;
1938
1939 default:
1940 return EINVAL;
1941 }
1942
1943 return 0;
1944 }
1945
1946 int
1947 sbdsp_mixer_query_devinfo(addr, dip)
1948 void *addr;
1949 mixer_devinfo_t *dip;
1950 {
1951 struct sbdsp_softc *sc = addr;
1952 int chan, class, is1745;
1953
1954 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1955 sc->sc_mixer_model, dip->index));
1956
1957 if (sc->sc_mixer_model == SBM_NONE)
1958 return ENXIO;
1959
1960 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1961 is1745 = ISSBM1745(sc);
1962 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1963
1964 switch (dip->index) {
1965 case SB_MASTER_VOL:
1966 dip->type = AUDIO_MIXER_VALUE;
1967 dip->mixer_class = SB_OUTPUT_CLASS;
1968 dip->prev = dip->next = AUDIO_MIXER_LAST;
1969 strcpy(dip->label.name, AudioNmaster);
1970 dip->un.v.num_channels = chan;
1971 strcpy(dip->un.v.units.name, AudioNvolume);
1972 return 0;
1973 case SB_MIDI_VOL:
1974 dip->type = AUDIO_MIXER_VALUE;
1975 dip->mixer_class = class;
1976 dip->prev = AUDIO_MIXER_LAST;
1977 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
1978 strcpy(dip->label.name, AudioNfmsynth);
1979 dip->un.v.num_channels = chan;
1980 strcpy(dip->un.v.units.name, AudioNvolume);
1981 return 0;
1982 case SB_CD_VOL:
1983 dip->type = AUDIO_MIXER_VALUE;
1984 dip->mixer_class = class;
1985 dip->prev = AUDIO_MIXER_LAST;
1986 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
1987 strcpy(dip->label.name, AudioNcd);
1988 dip->un.v.num_channels = chan;
1989 strcpy(dip->un.v.units.name, AudioNvolume);
1990 return 0;
1991 case SB_VOICE_VOL:
1992 dip->type = AUDIO_MIXER_VALUE;
1993 dip->mixer_class = class;
1994 dip->prev = AUDIO_MIXER_LAST;
1995 dip->next = AUDIO_MIXER_LAST;
1996 strcpy(dip->label.name, AudioNdac);
1997 dip->un.v.num_channels = chan;
1998 strcpy(dip->un.v.units.name, AudioNvolume);
1999 return 0;
2000 case SB_OUTPUT_CLASS:
2001 dip->type = AUDIO_MIXER_CLASS;
2002 dip->mixer_class = SB_OUTPUT_CLASS;
2003 dip->next = dip->prev = AUDIO_MIXER_LAST;
2004 strcpy(dip->label.name, AudioCoutputs);
2005 return 0;
2006 }
2007
2008 if (sc->sc_mixer_model == SBM_CT1335)
2009 return ENXIO;
2010
2011 switch (dip->index) {
2012 case SB_MIC_VOL:
2013 dip->type = AUDIO_MIXER_VALUE;
2014 dip->mixer_class = class;
2015 dip->prev = AUDIO_MIXER_LAST;
2016 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2017 strcpy(dip->label.name, AudioNmicrophone);
2018 dip->un.v.num_channels = 1;
2019 strcpy(dip->un.v.units.name, AudioNvolume);
2020 return 0;
2021
2022 case SB_LINE_IN_VOL:
2023 dip->type = AUDIO_MIXER_VALUE;
2024 dip->mixer_class = class;
2025 dip->prev = AUDIO_MIXER_LAST;
2026 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2027 strcpy(dip->label.name, AudioNline);
2028 dip->un.v.num_channels = 2;
2029 strcpy(dip->un.v.units.name, AudioNvolume);
2030 return 0;
2031
2032 case SB_RECORD_SOURCE:
2033 dip->mixer_class = SB_RECORD_CLASS;
2034 dip->prev = dip->next = AUDIO_MIXER_LAST;
2035 strcpy(dip->label.name, AudioNsource);
2036 if (ISSBM1745(sc)) {
2037 dip->type = AUDIO_MIXER_SET;
2038 dip->un.s.num_mem = 4;
2039 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2040 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2041 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2042 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2043 strcpy(dip->un.s.member[2].label.name, AudioNline);
2044 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2045 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2046 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2047 } else {
2048 dip->type = AUDIO_MIXER_ENUM;
2049 dip->un.e.num_mem = 3;
2050 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2051 dip->un.e.member[0].ord = SB_MIC_VOL;
2052 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2053 dip->un.e.member[1].ord = SB_CD_VOL;
2054 strcpy(dip->un.e.member[2].label.name, AudioNline);
2055 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2056 }
2057 return 0;
2058
2059 case SB_BASS:
2060 dip->prev = dip->next = AUDIO_MIXER_LAST;
2061 strcpy(dip->label.name, AudioNbass);
2062 if (sc->sc_mixer_model == SBM_CT1745) {
2063 dip->type = AUDIO_MIXER_VALUE;
2064 dip->mixer_class = SB_EQUALIZATION_CLASS;
2065 dip->un.v.num_channels = 2;
2066 strcpy(dip->un.v.units.name, AudioNbass);
2067 } else {
2068 dip->type = AUDIO_MIXER_ENUM;
2069 dip->mixer_class = SB_INPUT_CLASS;
2070 dip->un.e.num_mem = 2;
2071 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2072 dip->un.e.member[0].ord = 0;
2073 strcpy(dip->un.e.member[1].label.name, AudioNon);
2074 dip->un.e.member[1].ord = 1;
2075 }
2076 return 0;
2077
2078 case SB_TREBLE:
2079 dip->prev = dip->next = AUDIO_MIXER_LAST;
2080 strcpy(dip->label.name, AudioNtreble);
2081 if (sc->sc_mixer_model == SBM_CT1745) {
2082 dip->type = AUDIO_MIXER_VALUE;
2083 dip->mixer_class = SB_EQUALIZATION_CLASS;
2084 dip->un.v.num_channels = 2;
2085 strcpy(dip->un.v.units.name, AudioNtreble);
2086 } else {
2087 dip->type = AUDIO_MIXER_ENUM;
2088 dip->mixer_class = SB_INPUT_CLASS;
2089 dip->un.e.num_mem = 2;
2090 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2091 dip->un.e.member[0].ord = 0;
2092 strcpy(dip->un.e.member[1].label.name, AudioNon);
2093 dip->un.e.member[1].ord = 1;
2094 }
2095 return 0;
2096
2097 case SB_RECORD_CLASS: /* record source class */
2098 dip->type = AUDIO_MIXER_CLASS;
2099 dip->mixer_class = SB_RECORD_CLASS;
2100 dip->next = dip->prev = AUDIO_MIXER_LAST;
2101 strcpy(dip->label.name, AudioCrecord);
2102 return 0;
2103
2104 case SB_INPUT_CLASS:
2105 dip->type = AUDIO_MIXER_CLASS;
2106 dip->mixer_class = SB_INPUT_CLASS;
2107 dip->next = dip->prev = AUDIO_MIXER_LAST;
2108 strcpy(dip->label.name, AudioCinputs);
2109 return 0;
2110
2111 }
2112
2113 if (sc->sc_mixer_model == SBM_CT1345)
2114 return ENXIO;
2115
2116 switch(dip->index) {
2117 case SB_PCSPEAKER:
2118 dip->type = AUDIO_MIXER_VALUE;
2119 dip->mixer_class = SB_INPUT_CLASS;
2120 dip->prev = dip->next = AUDIO_MIXER_LAST;
2121 strcpy(dip->label.name, "pc_speaker");
2122 dip->un.v.num_channels = 1;
2123 strcpy(dip->un.v.units.name, AudioNvolume);
2124 return 0;
2125
2126 case SB_INPUT_GAIN:
2127 dip->type = AUDIO_MIXER_VALUE;
2128 dip->mixer_class = SB_INPUT_CLASS;
2129 dip->prev = dip->next = AUDIO_MIXER_LAST;
2130 strcpy(dip->label.name, AudioNinput);
2131 dip->un.v.num_channels = 2;
2132 strcpy(dip->un.v.units.name, AudioNvolume);
2133 return 0;
2134
2135 case SB_OUTPUT_GAIN:
2136 dip->type = AUDIO_MIXER_VALUE;
2137 dip->mixer_class = SB_OUTPUT_CLASS;
2138 dip->prev = dip->next = AUDIO_MIXER_LAST;
2139 strcpy(dip->label.name, AudioNoutput);
2140 dip->un.v.num_channels = 2;
2141 strcpy(dip->un.v.units.name, AudioNvolume);
2142 return 0;
2143
2144 case SB_AGC:
2145 dip->type = AUDIO_MIXER_ENUM;
2146 dip->mixer_class = SB_INPUT_CLASS;
2147 dip->prev = dip->next = AUDIO_MIXER_LAST;
2148 strcpy(dip->label.name, "agc");
2149 dip->un.e.num_mem = 2;
2150 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2151 dip->un.e.member[0].ord = 0;
2152 strcpy(dip->un.e.member[1].label.name, AudioNon);
2153 dip->un.e.member[1].ord = 1;
2154 return 0;
2155
2156 case SB_EQUALIZATION_CLASS:
2157 dip->type = AUDIO_MIXER_CLASS;
2158 dip->mixer_class = SB_EQUALIZATION_CLASS;
2159 dip->next = dip->prev = AUDIO_MIXER_LAST;
2160 strcpy(dip->label.name, AudioCequalization);
2161 return 0;
2162
2163 case SB_CD_IN_MUTE:
2164 dip->prev = SB_CD_VOL;
2165 dip->next = SB_CD_SWAP;
2166 dip->mixer_class = SB_INPUT_CLASS;
2167 goto mute;
2168
2169 case SB_MIC_IN_MUTE:
2170 dip->prev = SB_MIC_VOL;
2171 dip->next = SB_MIC_SWAP;
2172 dip->mixer_class = SB_INPUT_CLASS;
2173 goto mute;
2174
2175 case SB_LINE_IN_MUTE:
2176 dip->prev = SB_LINE_IN_VOL;
2177 dip->next = SB_LINE_SWAP;
2178 dip->mixer_class = SB_INPUT_CLASS;
2179 goto mute;
2180
2181 case SB_MIDI_IN_MUTE:
2182 dip->prev = SB_MIDI_VOL;
2183 dip->next = SB_MIDI_SWAP;
2184 dip->mixer_class = SB_INPUT_CLASS;
2185 goto mute;
2186
2187 case SB_CD_SWAP:
2188 dip->prev = SB_CD_IN_MUTE;
2189 dip->next = SB_CD_OUT_MUTE;
2190 goto swap;
2191
2192 case SB_MIC_SWAP:
2193 dip->prev = SB_MIC_IN_MUTE;
2194 dip->next = SB_MIC_OUT_MUTE;
2195 goto swap;
2196
2197 case SB_LINE_SWAP:
2198 dip->prev = SB_LINE_IN_MUTE;
2199 dip->next = SB_LINE_OUT_MUTE;
2200 goto swap;
2201
2202 case SB_MIDI_SWAP:
2203 dip->prev = SB_MIDI_IN_MUTE;
2204 dip->next = AUDIO_MIXER_LAST;
2205 swap:
2206 dip->mixer_class = SB_INPUT_CLASS;
2207 strcpy(dip->label.name, AudioNswap);
2208 goto mute1;
2209
2210 case SB_CD_OUT_MUTE:
2211 dip->prev = SB_CD_SWAP;
2212 dip->next = AUDIO_MIXER_LAST;
2213 dip->mixer_class = SB_OUTPUT_CLASS;
2214 goto mute;
2215
2216 case SB_MIC_OUT_MUTE:
2217 dip->prev = SB_MIC_SWAP;
2218 dip->next = AUDIO_MIXER_LAST;
2219 dip->mixer_class = SB_OUTPUT_CLASS;
2220 goto mute;
2221
2222 case SB_LINE_OUT_MUTE:
2223 dip->prev = SB_LINE_SWAP;
2224 dip->next = AUDIO_MIXER_LAST;
2225 dip->mixer_class = SB_OUTPUT_CLASS;
2226 mute:
2227 strcpy(dip->label.name, AudioNmute);
2228 mute1:
2229 dip->type = AUDIO_MIXER_ENUM;
2230 dip->un.e.num_mem = 2;
2231 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2232 dip->un.e.member[0].ord = 0;
2233 strcpy(dip->un.e.member[1].label.name, AudioNon);
2234 dip->un.e.member[1].ord = 1;
2235 return 0;
2236
2237 }
2238
2239 return ENXIO;
2240 }
2241
2242 void *
2243 sb_malloc(addr, direction, size, pool, flags)
2244 void *addr;
2245 int direction;
2246 size_t size;
2247 int pool, flags;
2248 {
2249 struct sbdsp_softc *sc = addr;
2250 int drq;
2251
2252 if (sc->sc_drq8 != -1)
2253 drq = sc->sc_drq8;
2254 else
2255 drq = sc->sc_drq16;
2256 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2257 }
2258
2259 void
2260 sb_free(addr, ptr, pool)
2261 void *addr;
2262 void *ptr;
2263 int pool;
2264 {
2265 isa_free(ptr, pool);
2266 }
2267
2268 size_t
2269 sb_round_buffersize(addr, direction, size)
2270 void *addr;
2271 int direction;
2272 size_t size;
2273 {
2274 if (size > MAX_ISADMA)
2275 size = MAX_ISADMA;
2276 return (size);
2277 }
2278
2279 int
2280 sb_mappage(addr, mem, off, prot)
2281 void *addr;
2282 void *mem;
2283 int off;
2284 int prot;
2285 {
2286 return isa_mappage(mem, off, prot);
2287 }
2288
2289 int
2290 sbdsp_get_props(addr)
2291 void *addr;
2292 {
2293 struct sbdsp_softc *sc = addr;
2294 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2295 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2296 }
2297
2298 #if NMIDI > 0
2299 /*
2300 * MIDI related routines.
2301 */
2302
2303 int
2304 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2305 void *addr;
2306 int flags;
2307 void (*iintr)__P((void *, int));
2308 void (*ointr)__P((void *));
2309 void *arg;
2310 {
2311 struct sbdsp_softc *sc = addr;
2312
2313 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2314
2315 if (sc->sc_open != SB_CLOSED)
2316 return EBUSY;
2317 if (sbdsp_reset(sc) != 0)
2318 return EIO;
2319
2320 sc->sc_open = SB_OPEN_MIDI;
2321 sc->sc_openflags = flags;
2322
2323 if (sc->sc_model >= SB_20)
2324 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2325 return EIO;
2326
2327 sc->sc_intr8 = sbdsp_midi_intr;
2328 sc->sc_intrm = iintr;
2329 sc->sc_argm = arg;
2330
2331 return 0;
2332 }
2333
2334 void
2335 sbdsp_midi_close(addr)
2336 void *addr;
2337 {
2338 struct sbdsp_softc *sc = addr;
2339
2340 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2341
2342 if (sc->sc_model >= SB_20)
2343 sbdsp_reset(sc); /* exit UART mode */
2344
2345 sc->sc_intrm = 0;
2346 sc->sc_open = SB_CLOSED;
2347 }
2348
2349 int
2350 sbdsp_midi_output(addr, d)
2351 void *addr;
2352 int d;
2353 {
2354 struct sbdsp_softc *sc = addr;
2355
2356 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2357 return EIO;
2358 if (sbdsp_wdsp(sc, d))
2359 return EIO;
2360 return 0;
2361 }
2362
2363 void
2364 sbdsp_midi_getinfo(addr, mi)
2365 void *addr;
2366 struct midi_info *mi;
2367 {
2368 struct sbdsp_softc *sc = addr;
2369
2370 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2371 mi->props = MIDI_PROP_CAN_INPUT;
2372 }
2373
2374 int
2375 sbdsp_midi_intr(addr)
2376 void *addr;
2377 {
2378 struct sbdsp_softc *sc = addr;
2379
2380 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2381 return (0);
2382 }
2383
2384 #endif
2385
2386