sbdsp.c revision 1.99 1 /* $NetBSD: sbdsp.c,v 1.99 1999/08/02 17:37:42 augustss Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Charles M. Hannum.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1991-1993 Regents of the University of California.
41 * All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the Computer Systems
54 * Engineering Group at Lawrence Berkeley Laboratory.
55 * 4. Neither the name of the University nor of the Laboratory may be used
56 * to endorse or promote products derived from this software without
57 * specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 */
72
73 /*
74 * SoundBlaster Pro code provided by John Kohl, based on lots of
75 * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77 * <sachs (at) meibm15.cen.uiuc.edu>.
78 * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
79 * with information from SB "Hardware Programming Guide" and the
80 * Linux drivers.
81 */
82
83 #include "midi.h"
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/errno.h>
88 #include <sys/ioctl.h>
89 #include <sys/syslog.h>
90 #include <sys/device.h>
91 #include <sys/proc.h>
92 #include <sys/buf.h>
93 #include <vm/vm.h>
94
95 #include <machine/cpu.h>
96 #include <machine/intr.h>
97 #include <machine/bus.h>
98
99 #include <sys/audioio.h>
100 #include <dev/audio_if.h>
101 #include <dev/midi_if.h>
102 #include <dev/mulaw.h>
103 #include <dev/auconv.h>
104
105 #include <dev/isa/isavar.h>
106 #include <dev/isa/isadmavar.h>
107
108 #include <dev/isa/sbreg.h>
109 #include <dev/isa/sbdspvar.h>
110
111
112 #ifdef AUDIO_DEBUG
113 #define DPRINTF(x) if (sbdspdebug) printf x
114 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x
115 int sbdspdebug = 0;
116 #else
117 #define DPRINTF(x)
118 #define DPRINTFN(n,x)
119 #endif
120
121 #ifndef SBDSP_NPOLL
122 #define SBDSP_NPOLL 3000
123 #endif
124
125 struct {
126 int wdsp;
127 int rdsp;
128 int wmidi;
129 } sberr;
130
131 /*
132 * Time constant routines follow. See SBK, section 12.
133 * Although they don't come out and say it (in the docs),
134 * the card clearly uses a 1MHz countdown timer, as the
135 * low-speed formula (p. 12-4) is:
136 * tc = 256 - 10^6 / sr
137 * In high-speed mode, the constant is the upper byte of a 16-bit counter,
138 * and a 256MHz clock is used:
139 * tc = 65536 - 256 * 10^ 6 / sr
140 * Since we can only use the upper byte of the HS TC, the two formulae
141 * are equivalent. (Why didn't they say so?) E.g.,
142 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
143 *
144 * The crossover point (from low- to high-speed modes) is different
145 * for the SBPRO and SB20. The table on p. 12-5 gives the following data:
146 *
147 * SBPRO SB20
148 * ----- --------
149 * input ls min 4 KHz 4 KHz
150 * input ls max 23 KHz 13 KHz
151 * input hs max 44.1 KHz 15 KHz
152 * output ls min 4 KHz 4 KHz
153 * output ls max 23 KHz 23 KHz
154 * output hs max 44.1 KHz 44.1 KHz
155 */
156 /* XXX Should we round the tc?
157 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
158 */
159 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
160 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
161
162 struct sbmode {
163 short model;
164 u_char channels;
165 u_char precision;
166 u_short lowrate, highrate;
167 u_char cmd;
168 u_char halt, cont;
169 u_char cmdchan;
170 };
171 static struct sbmode sbpmodes[] = {
172 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT },
173 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
174 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
175 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
176 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
177 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
178 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT },
179 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
180 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
181 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
182 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
183 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
184 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
185 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
186 { SB_16, 1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
187 { SB_16, 2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
188 #define PLAY16 15 /* must be the index of the next entry in the table */
189 { SB_16, 1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
190 { SB_16, 2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
191 { -1 }
192 };
193 static struct sbmode sbrmodes[] = {
194 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT },
195 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
196 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT },
197 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT },
198 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
199 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
200 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
201 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
202 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO },
203 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO },
204 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
205 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO },
206 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO },
207 { SB_16, 1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
208 { SB_16, 2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT },
209 { SB_16, 1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
210 { SB_16, 2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
211 { -1 }
212 };
213
214 void sbversion __P((struct sbdsp_softc *));
215 void sbdsp_jazz16_probe __P((struct sbdsp_softc *));
216 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
217 void sbdsp_to __P((void *));
218 void sbdsp_pause __P((struct sbdsp_softc *));
219 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
220 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
221 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
222 void sbdsp_set_ifilter __P((void *, int));
223 int sbdsp_get_ifilter __P((void *));
224
225 int sbdsp_block_output __P((void *));
226 int sbdsp_block_input __P((void *));
227 static int sbdsp_adjust __P((int, int));
228
229 int sbdsp_midi_intr __P((void *));
230
231 #ifdef AUDIO_DEBUG
232 void sb_printsc __P((struct sbdsp_softc *));
233
234 void
235 sb_printsc(sc)
236 struct sbdsp_softc *sc;
237 {
238 int i;
239
240 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
241 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
242 sc->sc_drq8, sc->sc_drq16,
243 sc->sc_iobase, sc->sc_irq);
244 printf("irate %d itc %x orate %d otc %x\n",
245 sc->sc_i.rate, sc->sc_i.tc,
246 sc->sc_o.rate, sc->sc_o.tc);
247 printf("spkron %u nintr %lu\n",
248 sc->spkr_state, sc->sc_interrupts);
249 printf("intr8 %p intr16 %p\n",
250 sc->sc_intr8, sc->sc_intr16);
251 printf("gain:");
252 for (i = 0; i < SB_NDEVS; i++)
253 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
254 printf("\n");
255 }
256 #endif /* AUDIO_DEBUG */
257
258 /*
259 * Probe / attach routines.
260 */
261
262 /*
263 * Probe for the soundblaster hardware.
264 */
265 int
266 sbdsp_probe(sc)
267 struct sbdsp_softc *sc;
268 {
269
270 if (sbdsp_reset(sc) < 0) {
271 DPRINTF(("sbdsp: couldn't reset card\n"));
272 return 0;
273 }
274 /* if flags set, go and probe the jazz16 stuff */
275 if (sc->sc_dev.dv_cfdata->cf_flags & 1)
276 sbdsp_jazz16_probe(sc);
277 else
278 sbversion(sc);
279 if (sc->sc_model == SB_UNK) {
280 /* Unknown SB model found. */
281 DPRINTF(("sbdsp: unknown SB model found\n"));
282 return 0;
283 }
284 return 1;
285 }
286
287 /*
288 * Try add-on stuff for Jazz16.
289 */
290 void
291 sbdsp_jazz16_probe(sc)
292 struct sbdsp_softc *sc;
293 {
294 static u_char jazz16_irq_conf[16] = {
295 -1, -1, 0x02, 0x03,
296 -1, 0x01, -1, 0x04,
297 -1, 0x02, 0x05, -1,
298 -1, -1, -1, 0x06};
299 static u_char jazz16_drq_conf[8] = {
300 -1, 0x01, -1, 0x02,
301 -1, 0x03, -1, 0x04};
302
303 bus_space_tag_t iot = sc->sc_iot;
304 bus_space_handle_t ioh;
305
306 sbversion(sc);
307
308 DPRINTF(("jazz16 probe\n"));
309
310 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
311 DPRINTF(("bus map failed\n"));
312 return;
313 }
314
315 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
316 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
317 DPRINTF(("drq/irq check failed\n"));
318 goto done; /* give up, we can't do it. */
319 }
320
321 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
322 delay(10000); /* delay 10 ms */
323 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
324 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
325
326 if (sbdsp_reset(sc) < 0) {
327 DPRINTF(("sbdsp_reset check failed\n"));
328 goto done; /* XXX? what else could we do? */
329 }
330
331 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
332 DPRINTF(("read16 setup failed\n"));
333 goto done;
334 }
335
336 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
337 DPRINTF(("read16 failed\n"));
338 goto done;
339 }
340
341 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */
342 sc->sc_drq16 = sc->sc_drq8;
343 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
344 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
345 jazz16_drq_conf[sc->sc_drq8]) ||
346 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
347 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
348 } else {
349 DPRINTF(("jazz16 detected!\n"));
350 sc->sc_model = SB_JAZZ;
351 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
352 }
353
354 done:
355 bus_space_unmap(iot, ioh, 1);
356 }
357
358 /*
359 * Attach hardware to driver, attach hardware driver to audio
360 * pseudo-device driver .
361 */
362 void
363 sbdsp_attach(sc)
364 struct sbdsp_softc *sc;
365 {
366 struct audio_params pparams, rparams;
367 int i;
368 u_int v;
369
370 pparams = audio_default;
371 rparams = audio_default;
372 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
373
374 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
375
376 if (sc->sc_mixer_model != SBM_NONE) {
377 /* Reset the mixer.*/
378 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
379 /* And set our own default values */
380 for (i = 0; i < SB_NDEVS; i++) {
381 switch(i) {
382 case SB_MIC_VOL:
383 case SB_LINE_IN_VOL:
384 v = 0;
385 break;
386 case SB_BASS:
387 case SB_TREBLE:
388 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
389 break;
390 case SB_CD_IN_MUTE:
391 case SB_MIC_IN_MUTE:
392 case SB_LINE_IN_MUTE:
393 case SB_MIDI_IN_MUTE:
394 case SB_CD_SWAP:
395 case SB_MIC_SWAP:
396 case SB_LINE_SWAP:
397 case SB_MIDI_SWAP:
398 case SB_CD_OUT_MUTE:
399 case SB_MIC_OUT_MUTE:
400 case SB_LINE_OUT_MUTE:
401 v = 0;
402 break;
403 default:
404 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
405 break;
406 }
407 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
408 sbdsp_set_mixer_gain(sc, i);
409 }
410 sc->in_filter = 0; /* no filters turned on, please */
411 }
412
413 printf(": dsp v%d.%02d%s\n",
414 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
415 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
416
417 sc->sc_fullduplex = ISSB16CLASS(sc) &&
418 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
419 sc->sc_drq8 != sc->sc_drq16;
420 }
421
422 void
423 sbdsp_mix_write(sc, mixerport, val)
424 struct sbdsp_softc *sc;
425 int mixerport;
426 int val;
427 {
428 bus_space_tag_t iot = sc->sc_iot;
429 bus_space_handle_t ioh = sc->sc_ioh;
430 int s;
431
432 s = splaudio();
433 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
434 delay(20);
435 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
436 delay(30);
437 splx(s);
438 }
439
440 int
441 sbdsp_mix_read(sc, mixerport)
442 struct sbdsp_softc *sc;
443 int mixerport;
444 {
445 bus_space_tag_t iot = sc->sc_iot;
446 bus_space_handle_t ioh = sc->sc_ioh;
447 int val;
448 int s;
449
450 s = splaudio();
451 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
452 delay(20);
453 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
454 delay(30);
455 splx(s);
456 return val;
457 }
458
459 /*
460 * Various routines to interface to higher level audio driver
461 */
462
463 int
464 sbdsp_query_encoding(addr, fp)
465 void *addr;
466 struct audio_encoding *fp;
467 {
468 struct sbdsp_softc *sc = addr;
469 int emul;
470
471 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
472
473 switch (fp->index) {
474 case 0:
475 strcpy(fp->name, AudioEulinear);
476 fp->encoding = AUDIO_ENCODING_ULINEAR;
477 fp->precision = 8;
478 fp->flags = 0;
479 return 0;
480 case 1:
481 strcpy(fp->name, AudioEmulaw);
482 fp->encoding = AUDIO_ENCODING_ULAW;
483 fp->precision = 8;
484 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
485 return 0;
486 case 2:
487 strcpy(fp->name, AudioEalaw);
488 fp->encoding = AUDIO_ENCODING_ALAW;
489 fp->precision = 8;
490 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
491 return 0;
492 case 3:
493 strcpy(fp->name, AudioEslinear);
494 fp->encoding = AUDIO_ENCODING_SLINEAR;
495 fp->precision = 8;
496 fp->flags = emul;
497 return 0;
498 }
499 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
500 return EINVAL;
501
502 switch(fp->index) {
503 case 4:
504 strcpy(fp->name, AudioEslinear_le);
505 fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
506 fp->precision = 16;
507 fp->flags = 0;
508 return 0;
509 case 5:
510 strcpy(fp->name, AudioEulinear_le);
511 fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
512 fp->precision = 16;
513 fp->flags = emul;
514 return 0;
515 case 6:
516 strcpy(fp->name, AudioEslinear_be);
517 fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
518 fp->precision = 16;
519 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
520 return 0;
521 case 7:
522 strcpy(fp->name, AudioEulinear_be);
523 fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
524 fp->precision = 16;
525 fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
526 return 0;
527 default:
528 return EINVAL;
529 }
530 return 0;
531 }
532
533 int
534 sbdsp_set_params(addr, setmode, usemode, play, rec)
535 void *addr;
536 int setmode, usemode;
537 struct audio_params *play, *rec;
538 {
539 struct sbdsp_softc *sc = addr;
540 struct sbmode *m;
541 u_int rate, tc, bmode;
542 void (*swcode) __P((void *, u_char *buf, int cnt));
543 int factor;
544 int model;
545 int chan;
546 struct audio_params *p;
547 int mode;
548
549 if (sc->sc_open == SB_OPEN_MIDI)
550 return EBUSY;
551
552 /* Later models work like SB16. */
553 model = min(sc->sc_model, SB_16);
554
555 /*
556 * Prior to the SB16, we have only one clock, so make the sample
557 * rates match.
558 */
559 if (!ISSB16CLASS(sc) &&
560 play->sample_rate != rec->sample_rate &&
561 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
562 if (setmode == AUMODE_PLAY) {
563 rec->sample_rate = play->sample_rate;
564 setmode |= AUMODE_RECORD;
565 } else if (setmode == AUMODE_RECORD) {
566 play->sample_rate = rec->sample_rate;
567 setmode |= AUMODE_PLAY;
568 } else
569 return (EINVAL);
570 }
571
572 /* Set first record info, then play info */
573 for (mode = AUMODE_RECORD; mode != -1;
574 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
575 if ((setmode & mode) == 0)
576 continue;
577
578 p = mode == AUMODE_PLAY ? play : rec;
579 /* Locate proper commands */
580 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
581 m->model != -1; m++) {
582 if (model == m->model &&
583 p->channels == m->channels &&
584 p->precision == m->precision &&
585 p->sample_rate >= m->lowrate &&
586 p->sample_rate <= m->highrate)
587 break;
588 }
589 if (m->model == -1)
590 return EINVAL;
591 rate = p->sample_rate;
592 swcode = 0;
593 factor = 1;
594 tc = 1;
595 bmode = -1;
596 if (model == SB_16) {
597 switch (p->encoding) {
598 case AUDIO_ENCODING_SLINEAR_BE:
599 if (p->precision == 16)
600 swcode = swap_bytes;
601 /* fall into */
602 case AUDIO_ENCODING_SLINEAR_LE:
603 bmode = SB_BMODE_SIGNED;
604 break;
605 case AUDIO_ENCODING_ULINEAR_BE:
606 if (p->precision == 16)
607 swcode = swap_bytes;
608 /* fall into */
609 case AUDIO_ENCODING_ULINEAR_LE:
610 bmode = SB_BMODE_UNSIGNED;
611 break;
612 case AUDIO_ENCODING_ULAW:
613 if (mode == AUMODE_PLAY) {
614 swcode = mulaw_to_ulinear16;
615 factor = 2;
616 m = &sbpmodes[PLAY16];
617 } else
618 swcode = ulinear8_to_mulaw;
619 bmode = SB_BMODE_UNSIGNED;
620 break;
621 case AUDIO_ENCODING_ALAW:
622 if (mode == AUMODE_PLAY) {
623 swcode = alaw_to_ulinear16;
624 factor = 2;
625 m = &sbpmodes[PLAY16];
626 } else
627 swcode = ulinear8_to_alaw;
628 bmode = SB_BMODE_UNSIGNED;
629 break;
630 default:
631 return EINVAL;
632 }
633 if (p->channels == 2)
634 bmode |= SB_BMODE_STEREO;
635 } else if (m->model == SB_JAZZ && m->precision == 16) {
636 switch (p->encoding) {
637 case AUDIO_ENCODING_SLINEAR_LE:
638 break;
639 case AUDIO_ENCODING_ULINEAR_LE:
640 swcode = change_sign16;
641 break;
642 case AUDIO_ENCODING_SLINEAR_BE:
643 swcode = swap_bytes;
644 break;
645 case AUDIO_ENCODING_ULINEAR_BE:
646 swcode = mode == AUMODE_PLAY ?
647 swap_bytes_change_sign16 : change_sign16_swap_bytes;
648 break;
649 case AUDIO_ENCODING_ULAW:
650 swcode = mode == AUMODE_PLAY ?
651 mulaw_to_ulinear8 : ulinear8_to_mulaw;
652 break;
653 case AUDIO_ENCODING_ALAW:
654 swcode = mode == AUMODE_PLAY ?
655 alaw_to_ulinear8 : ulinear8_to_alaw;
656 break;
657 default:
658 return EINVAL;
659 }
660 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
661 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
662 } else {
663 switch (p->encoding) {
664 case AUDIO_ENCODING_SLINEAR_BE:
665 case AUDIO_ENCODING_SLINEAR_LE:
666 swcode = change_sign8;
667 break;
668 case AUDIO_ENCODING_ULINEAR_BE:
669 case AUDIO_ENCODING_ULINEAR_LE:
670 break;
671 case AUDIO_ENCODING_ULAW:
672 swcode = mode == AUMODE_PLAY ?
673 mulaw_to_ulinear8 : ulinear8_to_mulaw;
674 break;
675 case AUDIO_ENCODING_ALAW:
676 swcode = mode == AUMODE_PLAY ?
677 alaw_to_ulinear8 : ulinear8_to_alaw;
678 break;
679 default:
680 return EINVAL;
681 }
682 tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
683 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
684 }
685
686 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
687 if (mode == AUMODE_PLAY) {
688 sc->sc_o.rate = rate;
689 sc->sc_o.tc = tc;
690 sc->sc_o.modep = m;
691 sc->sc_o.bmode = bmode;
692 sc->sc_o.dmachan = chan;
693 } else {
694 sc->sc_i.rate = rate;
695 sc->sc_i.tc = tc;
696 sc->sc_i.modep = m;
697 sc->sc_i.bmode = bmode;
698 sc->sc_i.dmachan = chan;
699 }
700
701 p->sw_code = swcode;
702 p->factor = factor;
703 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
704 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
705 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
706
707 }
708
709 if (sc->sc_fullduplex &&
710 usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
711 sc->sc_i.dmachan == sc->sc_o.dmachan) {
712 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
713 if (sc->sc_o.dmachan == sc->sc_drq8) {
714 /* Use 16 bit DMA for playing by expanding the samples. */
715 play->sw_code = linear8_to_linear16;
716 play->factor = 2;
717 sc->sc_o.modep = &sbpmodes[PLAY16];
718 sc->sc_o.dmachan = sc->sc_drq16;
719 } else {
720 return EINVAL;
721 }
722 }
723 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
724 sc->sc_i.dmachan, sc->sc_o.dmachan));
725
726 return (0);
727 }
728
729 void
730 sbdsp_set_ifilter(addr, which)
731 void *addr;
732 int which;
733 {
734 struct sbdsp_softc *sc = addr;
735 int mixval;
736
737 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
738 switch (which) {
739 case 0:
740 mixval |= SBP_FILTER_OFF;
741 break;
742 case SB_TREBLE:
743 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
744 break;
745 case SB_BASS:
746 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
747 break;
748 default:
749 return;
750 }
751 sc->in_filter = mixval & SBP_IFILTER_MASK;
752 sbdsp_mix_write(sc, SBP_INFILTER, mixval);
753 }
754
755 int
756 sbdsp_get_ifilter(addr)
757 void *addr;
758 {
759 struct sbdsp_softc *sc = addr;
760
761 sc->in_filter =
762 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
763 switch (sc->in_filter) {
764 case SBP_FILTER_ON|SBP_IFILTER_HIGH:
765 return SB_TREBLE;
766 case SBP_FILTER_ON|SBP_IFILTER_LOW:
767 return SB_BASS;
768 default:
769 return 0;
770 }
771 }
772
773 int
774 sbdsp_set_in_ports(sc, mask)
775 struct sbdsp_softc *sc;
776 int mask;
777 {
778 int bitsl, bitsr;
779 int sbport;
780
781 if (sc->sc_open == SB_OPEN_MIDI)
782 return EBUSY;
783
784 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
785 sc->sc_mixer_model, mask));
786
787 switch(sc->sc_mixer_model) {
788 case SBM_NONE:
789 return EINVAL;
790 case SBM_CT1335:
791 if (mask != (1 << SB_MIC_VOL))
792 return EINVAL;
793 break;
794 case SBM_CT1345:
795 switch (mask) {
796 case 1 << SB_MIC_VOL:
797 sbport = SBP_FROM_MIC;
798 break;
799 case 1 << SB_LINE_IN_VOL:
800 sbport = SBP_FROM_LINE;
801 break;
802 case 1 << SB_CD_VOL:
803 sbport = SBP_FROM_CD;
804 break;
805 default:
806 return (EINVAL);
807 }
808 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
809 break;
810 case SBM_CT1XX5:
811 case SBM_CT1745:
812 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
813 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
814 return EINVAL;
815 bitsr = 0;
816 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R;
817 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
818 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R;
819 bitsl = SB_SRC_R_TO_L(bitsr);
820 if (mask & (1<<SB_MIC_VOL)) {
821 bitsl |= SBP_MIC_SRC;
822 bitsr |= SBP_MIC_SRC;
823 }
824 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
825 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
826 break;
827 }
828 sc->in_mask = mask;
829
830 return 0;
831 }
832
833 int
834 sbdsp_speaker_ctl(addr, newstate)
835 void *addr;
836 int newstate;
837 {
838 struct sbdsp_softc *sc = addr;
839
840 if (sc->sc_open == SB_OPEN_MIDI)
841 return EBUSY;
842
843 if ((newstate == SPKR_ON) &&
844 (sc->spkr_state == SPKR_OFF)) {
845 sbdsp_spkron(sc);
846 sc->spkr_state = SPKR_ON;
847 }
848 if ((newstate == SPKR_OFF) &&
849 (sc->spkr_state == SPKR_ON)) {
850 sbdsp_spkroff(sc);
851 sc->spkr_state = SPKR_OFF;
852 }
853 return 0;
854 }
855
856 int
857 sbdsp_round_blocksize(addr, blk)
858 void *addr;
859 int blk;
860 {
861 return blk & -4; /* round to biggest sample size */
862 }
863
864 int
865 sbdsp_open(addr, flags)
866 void *addr;
867 int flags;
868 {
869 struct sbdsp_softc *sc = addr;
870 int error, state;
871
872 DPRINTF(("sbdsp_open: sc=%p\n", sc));
873
874 if (sc->sc_open != SB_CLOSED)
875 return (EBUSY);
876 sc->sc_open = SB_OPEN_AUDIO;
877 sc->sc_openflags = flags;
878 state = 0;
879
880 if (sc->sc_drq8 != -1) {
881 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
882 MAX_ISADMA, BUS_DMA_NOWAIT);
883 if (error) {
884 printf("%s: can't create map for drq %d\n",
885 sc->sc_dev.dv_xname, sc->sc_drq8);
886 goto bad;
887 }
888 state |= 1;
889 }
890 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
891 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
892 MAX_ISADMA, BUS_DMA_NOWAIT);
893 if (error) {
894 printf("%s: can't create map for drq %d\n",
895 sc->sc_dev.dv_xname, sc->sc_drq16);
896 goto bad;
897 }
898 state |= 2;
899 }
900
901 if (sbdsp_reset(sc) != 0) {
902 error = EIO;
903 goto bad;
904 }
905
906 if (ISSBPRO(sc) &&
907 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
908 DPRINTF(("sbdsp_open: can't set mono mode\n"));
909 /* we'll readjust when it's time for DMA. */
910 }
911
912 /*
913 * Leave most things as they were; users must change things if
914 * the previous process didn't leave it they way they wanted.
915 * Looked at another way, it's easy to set up a configuration
916 * in one program and leave it for another to inherit.
917 */
918 DPRINTF(("sbdsp_open: opened\n"));
919
920 return (0);
921
922 bad:
923 if (state & 1)
924 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
925 if (state & 2)
926 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
927
928 sc->sc_open = SB_CLOSED;
929 return (error);
930 }
931
932 void
933 sbdsp_close(addr)
934 void *addr;
935 {
936 struct sbdsp_softc *sc = addr;
937
938 DPRINTF(("sbdsp_close: sc=%p\n", sc));
939
940 sbdsp_spkroff(sc);
941 sc->spkr_state = SPKR_OFF;
942
943 sbdsp_halt_output(sc);
944 sbdsp_halt_input(sc);
945
946 sc->sc_intr8 = 0;
947 sc->sc_intr16 = 0;
948
949 if (sc->sc_drq8 != -1)
950 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
951 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
952 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
953
954 sc->sc_open = SB_CLOSED;
955 DPRINTF(("sbdsp_close: closed\n"));
956 }
957
958 /*
959 * Lower-level routines
960 */
961
962 /*
963 * Reset the card.
964 * Return non-zero if the card isn't detected.
965 */
966 int
967 sbdsp_reset(sc)
968 struct sbdsp_softc *sc;
969 {
970 bus_space_tag_t iot = sc->sc_iot;
971 bus_space_handle_t ioh = sc->sc_ioh;
972
973 sc->sc_intr8 = 0;
974 sc->sc_intr16 = 0;
975 sc->sc_intrm = 0;
976
977 /*
978 * See SBK, section 11.3.
979 * We pulse a reset signal into the card.
980 * Gee, what a brilliant hardware design.
981 */
982 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
983 delay(10);
984 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
985 delay(30);
986 if (sbdsp_rdsp(sc) != SB_MAGIC)
987 return -1;
988
989 return 0;
990 }
991
992 /*
993 * Write a byte to the dsp.
994 * We are at the mercy of the card as we use a
995 * polling loop and wait until it can take the byte.
996 */
997 int
998 sbdsp_wdsp(sc, v)
999 struct sbdsp_softc *sc;
1000 int v;
1001 {
1002 bus_space_tag_t iot = sc->sc_iot;
1003 bus_space_handle_t ioh = sc->sc_ioh;
1004 int i;
1005 u_char x;
1006
1007 for (i = SBDSP_NPOLL; --i >= 0; ) {
1008 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1009 delay(10);
1010 if ((x & SB_DSP_BUSY) == 0) {
1011 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1012 delay(10);
1013 return 0;
1014 }
1015 }
1016 ++sberr.wdsp;
1017 return -1;
1018 }
1019
1020 /*
1021 * Read a byte from the DSP, using polling.
1022 */
1023 int
1024 sbdsp_rdsp(sc)
1025 struct sbdsp_softc *sc;
1026 {
1027 bus_space_tag_t iot = sc->sc_iot;
1028 bus_space_handle_t ioh = sc->sc_ioh;
1029 int i;
1030 u_char x;
1031
1032 for (i = SBDSP_NPOLL; --i >= 0; ) {
1033 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1034 delay(10);
1035 if (x & SB_DSP_READY) {
1036 x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1037 delay(10);
1038 return x;
1039 }
1040 }
1041 ++sberr.rdsp;
1042 return -1;
1043 }
1044
1045 /*
1046 * Doing certain things (like toggling the speaker) make
1047 * the SB hardware go away for a while, so pause a little.
1048 */
1049 void
1050 sbdsp_to(arg)
1051 void *arg;
1052 {
1053 wakeup(arg);
1054 }
1055
1056 void
1057 sbdsp_pause(sc)
1058 struct sbdsp_softc *sc;
1059 {
1060 extern int hz;
1061
1062 timeout(sbdsp_to, sbdsp_to, hz/8);
1063 (void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
1064 }
1065
1066 /*
1067 * Turn on the speaker. The SBK documention says this operation
1068 * can take up to 1/10 of a second. Higher level layers should
1069 * probably let the task sleep for this amount of time after
1070 * calling here. Otherwise, things might not work (because
1071 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1072 *
1073 * These engineers had their heads up their ass when
1074 * they designed this card.
1075 */
1076 void
1077 sbdsp_spkron(sc)
1078 struct sbdsp_softc *sc;
1079 {
1080 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1081 sbdsp_pause(sc);
1082 }
1083
1084 /*
1085 * Turn off the speaker; see comment above.
1086 */
1087 void
1088 sbdsp_spkroff(sc)
1089 struct sbdsp_softc *sc;
1090 {
1091 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1092 sbdsp_pause(sc);
1093 }
1094
1095 /*
1096 * Read the version number out of the card.
1097 * Store version information in the softc.
1098 */
1099 void
1100 sbversion(sc)
1101 struct sbdsp_softc *sc;
1102 {
1103 int v;
1104
1105 sc->sc_model = SB_UNK;
1106 sc->sc_version = 0;
1107 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1108 return;
1109 v = sbdsp_rdsp(sc) << 8;
1110 v |= sbdsp_rdsp(sc);
1111 if (v < 0)
1112 return;
1113 sc->sc_version = v;
1114 switch(SBVER_MAJOR(v)) {
1115 case 1:
1116 sc->sc_mixer_model = SBM_NONE;
1117 sc->sc_model = SB_1;
1118 break;
1119 case 2:
1120 /* Some SB2 have a mixer, some don't. */
1121 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1122 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06);
1123 /* Check if we can read back the mixer values. */
1124 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1125 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06)
1126 sc->sc_mixer_model = SBM_CT1335;
1127 else
1128 sc->sc_mixer_model = SBM_NONE;
1129 if (SBVER_MINOR(v) == 0)
1130 sc->sc_model = SB_20;
1131 else
1132 sc->sc_model = SB_2x;
1133 break;
1134 case 3:
1135 sc->sc_mixer_model = SBM_CT1345;
1136 sc->sc_model = SB_PRO;
1137 break;
1138 case 4:
1139 #if 0
1140 /* XXX This does not work */
1141 /* Most SB16 have a tone controls, but some don't. */
1142 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1143 /* Check if we can read back the mixer value. */
1144 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1145 sc->sc_mixer_model = SBM_CT1745;
1146 else
1147 sc->sc_mixer_model = SBM_CT1XX5;
1148 #else
1149 sc->sc_mixer_model = SBM_CT1745;
1150 #endif
1151 #if 0
1152 /* XXX figure out a good way of determining the model */
1153 /* XXX what about SB_32 */
1154 if (SBVER_MINOR(v) == 16)
1155 sc->sc_model = SB_64;
1156 else
1157 #endif
1158 sc->sc_model = SB_16;
1159 break;
1160 }
1161 }
1162
1163 int
1164 sbdsp_set_timeconst(sc, tc)
1165 struct sbdsp_softc *sc;
1166 int tc;
1167 {
1168 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1169
1170 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1171 sbdsp_wdsp(sc, tc) < 0)
1172 return EIO;
1173
1174 return 0;
1175 }
1176
1177 int
1178 sbdsp16_set_rate(sc, cmd, rate)
1179 struct sbdsp_softc *sc;
1180 int cmd, rate;
1181 {
1182 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1183
1184 if (sbdsp_wdsp(sc, cmd) < 0 ||
1185 sbdsp_wdsp(sc, rate >> 8) < 0 ||
1186 sbdsp_wdsp(sc, rate) < 0)
1187 return EIO;
1188 return 0;
1189 }
1190
1191 int
1192 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1193 void *addr;
1194 void *start, *end;
1195 int blksize;
1196 void (*intr) __P((void *));
1197 void *arg;
1198 struct audio_params *param;
1199 {
1200 struct sbdsp_softc *sc = addr;
1201 int stereo = param->channels == 2;
1202 int width = param->precision * param->factor;
1203 int filter;
1204
1205 #ifdef DIAGNOSTIC
1206 if (stereo && (blksize & 1)) {
1207 DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1208 return (EIO);
1209 }
1210 if (sc->sc_i.run != SB_NOTRUNNING)
1211 printf("sbdsp_trigger_input: already running\n");
1212 #endif
1213
1214 sc->sc_intrr = intr;
1215 sc->sc_argr = arg;
1216
1217 if (width == 8) {
1218 #ifdef DIAGNOSTIC
1219 if (sc->sc_i.dmachan != sc->sc_drq8) {
1220 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1221 width, sc->sc_i.dmachan);
1222 return (EIO);
1223 }
1224 #endif
1225 sc->sc_intr8 = sbdsp_block_input;
1226 } else {
1227 #ifdef DIAGNOSTIC
1228 if (sc->sc_i.dmachan != sc->sc_drq16) {
1229 printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1230 width, sc->sc_i.dmachan);
1231 return (EIO);
1232 }
1233 #endif
1234 sc->sc_intr16 = sbdsp_block_input;
1235 }
1236
1237 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1238 blksize >>= 1;
1239 --blksize;
1240 sc->sc_i.blksize = blksize;
1241
1242 if (ISSBPRO(sc)) {
1243 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1244 return (EIO);
1245 filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1246 sbdsp_mix_write(sc, SBP_INFILTER,
1247 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1248 filter);
1249 }
1250
1251 if (ISSB16CLASS(sc)) {
1252 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1253 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1254 sc->sc_i.rate));
1255 return (EIO);
1256 }
1257 } else {
1258 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1259 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1260 sc->sc_i.rate));
1261 return (EIO);
1262 }
1263 }
1264
1265 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1266 start, end, sc->sc_i.dmachan));
1267 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1268 (char *)end - (char *)start, NULL,
1269 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1270
1271 return sbdsp_block_input(addr);
1272 }
1273
1274 int
1275 sbdsp_block_input(addr)
1276 void *addr;
1277 {
1278 struct sbdsp_softc *sc = addr;
1279 int cc = sc->sc_i.blksize;
1280
1281 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1282
1283 if (sc->sc_i.run != SB_NOTRUNNING)
1284 sc->sc_intrr(sc->sc_argr);
1285
1286 if (sc->sc_model == SB_1) {
1287 /* Non-looping mode, start DMA */
1288 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1289 sbdsp_wdsp(sc, cc) < 0 ||
1290 sbdsp_wdsp(sc, cc >> 8) < 0) {
1291 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1292 return (EIO);
1293 }
1294 sc->sc_i.run = SB_RUNNING;
1295 } else if (sc->sc_i.run == SB_NOTRUNNING) {
1296 /* Initialize looping PCM */
1297 if (ISSB16CLASS(sc)) {
1298 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1299 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1300 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1301 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1302 sbdsp_wdsp(sc, cc) < 0 ||
1303 sbdsp_wdsp(sc, cc >> 8) < 0) {
1304 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1305 return (EIO);
1306 }
1307 } else {
1308 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1309 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1310 sbdsp_wdsp(sc, cc) < 0 ||
1311 sbdsp_wdsp(sc, cc >> 8) < 0) {
1312 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1313 return (EIO);
1314 }
1315 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1316 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1317 return (EIO);
1318 }
1319 }
1320 sc->sc_i.run = SB_LOOPING;
1321 }
1322
1323 return (0);
1324 }
1325
1326 int
1327 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1328 void *addr;
1329 void *start, *end;
1330 int blksize;
1331 void (*intr) __P((void *));
1332 void *arg;
1333 struct audio_params *param;
1334 {
1335 struct sbdsp_softc *sc = addr;
1336 int stereo = param->channels == 2;
1337 int width = param->precision * param->factor;
1338 int cmd;
1339
1340 #ifdef DIAGNOSTIC
1341 if (stereo && (blksize & 1)) {
1342 DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1343 return (EIO);
1344 }
1345 if (sc->sc_o.run != SB_NOTRUNNING)
1346 printf("sbdsp_trigger_output: already running\n");
1347 #endif
1348
1349 sc->sc_intrp = intr;
1350 sc->sc_argp = arg;
1351
1352 if (width == 8) {
1353 #ifdef DIAGNOSTIC
1354 if (sc->sc_o.dmachan != sc->sc_drq8) {
1355 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1356 width, sc->sc_o.dmachan);
1357 return (EIO);
1358 }
1359 #endif
1360 sc->sc_intr8 = sbdsp_block_output;
1361 } else {
1362 #ifdef DIAGNOSTIC
1363 if (sc->sc_o.dmachan != sc->sc_drq16) {
1364 printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1365 width, sc->sc_o.dmachan);
1366 return (EIO);
1367 }
1368 #endif
1369 sc->sc_intr16 = sbdsp_block_output;
1370 }
1371
1372 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1373 blksize >>= 1;
1374 --blksize;
1375 sc->sc_o.blksize = blksize;
1376
1377 if (ISSBPRO(sc)) {
1378 /* make sure we re-set stereo mixer bit when we start output. */
1379 sbdsp_mix_write(sc, SBP_STEREO,
1380 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1381 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1382 cmd = sc->sc_o.modep->cmdchan;
1383 if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1384 return (EIO);
1385 }
1386
1387 if (ISSB16CLASS(sc)) {
1388 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1389 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1390 sc->sc_o.rate));
1391 return (EIO);
1392 }
1393 } else {
1394 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1395 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1396 sc->sc_o.rate));
1397 return (EIO);
1398 }
1399 }
1400
1401 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1402 start, end, sc->sc_o.dmachan));
1403 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1404 (char *)end - (char *)start, NULL,
1405 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1406
1407 return sbdsp_block_output(addr);
1408 }
1409
1410 int
1411 sbdsp_block_output(addr)
1412 void *addr;
1413 {
1414 struct sbdsp_softc *sc = addr;
1415 int cc = sc->sc_o.blksize;
1416
1417 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1418
1419 if (sc->sc_o.run != SB_NOTRUNNING)
1420 sc->sc_intrp(sc->sc_argp);
1421
1422 if (sc->sc_model == SB_1) {
1423 /* Non-looping mode, initialized. Start DMA and PCM */
1424 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1425 sbdsp_wdsp(sc, cc) < 0 ||
1426 sbdsp_wdsp(sc, cc >> 8) < 0) {
1427 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1428 return (EIO);
1429 }
1430 sc->sc_o.run = SB_RUNNING;
1431 } else if (sc->sc_o.run == SB_NOTRUNNING) {
1432 /* Initialize looping PCM */
1433 if (ISSB16CLASS(sc)) {
1434 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1435 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1436 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1437 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1438 sbdsp_wdsp(sc, cc) < 0 ||
1439 sbdsp_wdsp(sc, cc >> 8) < 0) {
1440 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1441 return (EIO);
1442 }
1443 } else {
1444 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1445 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1446 sbdsp_wdsp(sc, cc) < 0 ||
1447 sbdsp_wdsp(sc, cc >> 8) < 0) {
1448 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1449 return (EIO);
1450 }
1451 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1452 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1453 return (EIO);
1454 }
1455 }
1456 sc->sc_o.run = SB_LOOPING;
1457 }
1458
1459 return (0);
1460 }
1461
1462 int
1463 sbdsp_halt_output(addr)
1464 void *addr;
1465 {
1466 struct sbdsp_softc *sc = addr;
1467
1468 if (sc->sc_o.run != SB_NOTRUNNING) {
1469 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1470 printf("sbdsp_halt_output: failed to halt\n");
1471 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1472 sc->sc_o.run = SB_NOTRUNNING;
1473 }
1474
1475 return (0);
1476 }
1477
1478 int
1479 sbdsp_halt_input(addr)
1480 void *addr;
1481 {
1482 struct sbdsp_softc *sc = addr;
1483
1484 if (sc->sc_i.run != SB_NOTRUNNING) {
1485 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1486 printf("sbdsp_halt_input: failed to halt\n");
1487 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1488 sc->sc_i.run = SB_NOTRUNNING;
1489 }
1490
1491 return (0);
1492 }
1493
1494 /*
1495 * Only the DSP unit on the sound blaster generates interrupts.
1496 * There are three cases of interrupt: reception of a midi byte
1497 * (when mode is enabled), completion of dma transmission, or
1498 * completion of a dma reception.
1499 *
1500 * If there is interrupt sharing or a spurious interrupt occurs
1501 * there is no way to distinguish this on an SB2. So if you have
1502 * an SB2 and experience problems, buy an SB16 (it's only $40).
1503 */
1504 int
1505 sbdsp_intr(arg)
1506 void *arg;
1507 {
1508 struct sbdsp_softc *sc = arg;
1509 u_char irq;
1510
1511 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1512 sc->sc_intr8, sc->sc_intr16));
1513 if (ISSB16CLASS(sc)) {
1514 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1515 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1516 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1517 return 0;
1518 }
1519 } else {
1520 /* XXXX CHECK FOR INTERRUPT */
1521 irq = SBP_IRQ_DMA8;
1522 }
1523
1524 sc->sc_interrupts++;
1525 delay(10); /* XXX why? */
1526
1527 /* clear interrupt */
1528 if (irq & SBP_IRQ_DMA8) {
1529 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1530 if (sc->sc_intr8)
1531 sc->sc_intr8(arg);
1532 }
1533 if (irq & SBP_IRQ_DMA16) {
1534 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1535 if (sc->sc_intr16)
1536 sc->sc_intr16(arg);
1537 }
1538 #if NMIDI > 0
1539 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1540 mpu_intr(sc->sc_mpudev);
1541 }
1542 #endif
1543 return 1;
1544 }
1545
1546 /* Like val & mask, but make sure the result is correctly rounded. */
1547 #define MAXVAL 256
1548 static int
1549 sbdsp_adjust(val, mask)
1550 int val, mask;
1551 {
1552 val += (MAXVAL - mask) >> 1;
1553 if (val >= MAXVAL)
1554 val = MAXVAL-1;
1555 return val & mask;
1556 }
1557
1558 void
1559 sbdsp_set_mixer_gain(sc, port)
1560 struct sbdsp_softc *sc;
1561 int port;
1562 {
1563 int src, gain;
1564
1565 switch(sc->sc_mixer_model) {
1566 case SBM_NONE:
1567 return;
1568 case SBM_CT1335:
1569 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1570 switch(port) {
1571 case SB_MASTER_VOL:
1572 src = SBP_1335_MASTER_VOL;
1573 break;
1574 case SB_MIDI_VOL:
1575 src = SBP_1335_MIDI_VOL;
1576 break;
1577 case SB_CD_VOL:
1578 src = SBP_1335_CD_VOL;
1579 break;
1580 case SB_VOICE_VOL:
1581 src = SBP_1335_VOICE_VOL;
1582 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1583 break;
1584 default:
1585 return;
1586 }
1587 sbdsp_mix_write(sc, src, gain);
1588 break;
1589 case SBM_CT1345:
1590 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1591 sc->gain[port][SB_RIGHT]);
1592 switch (port) {
1593 case SB_MIC_VOL:
1594 src = SBP_MIC_VOL;
1595 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1596 break;
1597 case SB_MASTER_VOL:
1598 src = SBP_MASTER_VOL;
1599 break;
1600 case SB_LINE_IN_VOL:
1601 src = SBP_LINE_VOL;
1602 break;
1603 case SB_VOICE_VOL:
1604 src = SBP_VOICE_VOL;
1605 break;
1606 case SB_MIDI_VOL:
1607 src = SBP_MIDI_VOL;
1608 break;
1609 case SB_CD_VOL:
1610 src = SBP_CD_VOL;
1611 break;
1612 default:
1613 return;
1614 }
1615 sbdsp_mix_write(sc, src, gain);
1616 break;
1617 case SBM_CT1XX5:
1618 case SBM_CT1745:
1619 switch (port) {
1620 case SB_MIC_VOL:
1621 src = SB16P_MIC_L;
1622 break;
1623 case SB_MASTER_VOL:
1624 src = SB16P_MASTER_L;
1625 break;
1626 case SB_LINE_IN_VOL:
1627 src = SB16P_LINE_L;
1628 break;
1629 case SB_VOICE_VOL:
1630 src = SB16P_VOICE_L;
1631 break;
1632 case SB_MIDI_VOL:
1633 src = SB16P_MIDI_L;
1634 break;
1635 case SB_CD_VOL:
1636 src = SB16P_CD_L;
1637 break;
1638 case SB_INPUT_GAIN:
1639 src = SB16P_INPUT_GAIN_L;
1640 break;
1641 case SB_OUTPUT_GAIN:
1642 src = SB16P_OUTPUT_GAIN_L;
1643 break;
1644 case SB_TREBLE:
1645 src = SB16P_TREBLE_L;
1646 break;
1647 case SB_BASS:
1648 src = SB16P_BASS_L;
1649 break;
1650 case SB_PCSPEAKER:
1651 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1652 return;
1653 default:
1654 return;
1655 }
1656 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1657 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1658 break;
1659 }
1660 }
1661
1662 int
1663 sbdsp_mixer_set_port(addr, cp)
1664 void *addr;
1665 mixer_ctrl_t *cp;
1666 {
1667 struct sbdsp_softc *sc = addr;
1668 int lgain, rgain;
1669 int mask, bits;
1670 int lmask, rmask, lbits, rbits;
1671 int mute, swap;
1672
1673 if (sc->sc_open == SB_OPEN_MIDI)
1674 return EBUSY;
1675
1676 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1677 cp->un.value.num_channels));
1678
1679 if (sc->sc_mixer_model == SBM_NONE)
1680 return EINVAL;
1681
1682 switch (cp->dev) {
1683 case SB_TREBLE:
1684 case SB_BASS:
1685 if (sc->sc_mixer_model == SBM_CT1345 ||
1686 sc->sc_mixer_model == SBM_CT1XX5) {
1687 if (cp->type != AUDIO_MIXER_ENUM)
1688 return EINVAL;
1689 switch (cp->dev) {
1690 case SB_TREBLE:
1691 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1692 return 0;
1693 case SB_BASS:
1694 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1695 return 0;
1696 }
1697 }
1698 case SB_PCSPEAKER:
1699 case SB_INPUT_GAIN:
1700 case SB_OUTPUT_GAIN:
1701 if (!ISSBM1745(sc))
1702 return EINVAL;
1703 case SB_MIC_VOL:
1704 case SB_LINE_IN_VOL:
1705 if (sc->sc_mixer_model == SBM_CT1335)
1706 return EINVAL;
1707 case SB_VOICE_VOL:
1708 case SB_MIDI_VOL:
1709 case SB_CD_VOL:
1710 case SB_MASTER_VOL:
1711 if (cp->type != AUDIO_MIXER_VALUE)
1712 return EINVAL;
1713
1714 /*
1715 * All the mixer ports are stereo except for the microphone.
1716 * If we get a single-channel gain value passed in, then we
1717 * duplicate it to both left and right channels.
1718 */
1719
1720 switch (cp->dev) {
1721 case SB_MIC_VOL:
1722 if (cp->un.value.num_channels != 1)
1723 return EINVAL;
1724
1725 lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1726 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1727 break;
1728 case SB_PCSPEAKER:
1729 if (cp->un.value.num_channels != 1)
1730 return EINVAL;
1731 /* fall into */
1732 case SB_INPUT_GAIN:
1733 case SB_OUTPUT_GAIN:
1734 lgain = rgain = SB_ADJUST_2_GAIN(sc,
1735 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1736 break;
1737 default:
1738 switch (cp->un.value.num_channels) {
1739 case 1:
1740 lgain = rgain = SB_ADJUST_GAIN(sc,
1741 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1742 break;
1743 case 2:
1744 if (sc->sc_mixer_model == SBM_CT1335)
1745 return EINVAL;
1746 lgain = SB_ADJUST_GAIN(sc,
1747 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1748 rgain = SB_ADJUST_GAIN(sc,
1749 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1750 break;
1751 default:
1752 return EINVAL;
1753 }
1754 break;
1755 }
1756 sc->gain[cp->dev][SB_LEFT] = lgain;
1757 sc->gain[cp->dev][SB_RIGHT] = rgain;
1758
1759 sbdsp_set_mixer_gain(sc, cp->dev);
1760 break;
1761
1762 case SB_RECORD_SOURCE:
1763 if (ISSBM1745(sc)) {
1764 if (cp->type != AUDIO_MIXER_SET)
1765 return EINVAL;
1766 return sbdsp_set_in_ports(sc, cp->un.mask);
1767 } else {
1768 if (cp->type != AUDIO_MIXER_ENUM)
1769 return EINVAL;
1770 sc->in_port = cp->un.ord;
1771 return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1772 }
1773 break;
1774
1775 case SB_AGC:
1776 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1777 return EINVAL;
1778 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1779 break;
1780
1781 case SB_CD_OUT_MUTE:
1782 mask = SB16P_SW_CD;
1783 goto omute;
1784 case SB_MIC_OUT_MUTE:
1785 mask = SB16P_SW_MIC;
1786 goto omute;
1787 case SB_LINE_OUT_MUTE:
1788 mask = SB16P_SW_LINE;
1789 omute:
1790 if (cp->type != AUDIO_MIXER_ENUM)
1791 return EINVAL;
1792 bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1793 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1794 if (cp->un.ord)
1795 bits = bits & ~mask;
1796 else
1797 bits = bits | mask;
1798 sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1799 break;
1800
1801 case SB_MIC_IN_MUTE:
1802 case SB_MIC_SWAP:
1803 lmask = rmask = SB16P_SW_MIC;
1804 goto imute;
1805 case SB_CD_IN_MUTE:
1806 case SB_CD_SWAP:
1807 lmask = SB16P_SW_CD_L;
1808 rmask = SB16P_SW_CD_R;
1809 goto imute;
1810 case SB_LINE_IN_MUTE:
1811 case SB_LINE_SWAP:
1812 lmask = SB16P_SW_LINE_L;
1813 rmask = SB16P_SW_LINE_R;
1814 goto imute;
1815 case SB_MIDI_IN_MUTE:
1816 case SB_MIDI_SWAP:
1817 lmask = SB16P_SW_MIDI_L;
1818 rmask = SB16P_SW_MIDI_R;
1819 imute:
1820 if (cp->type != AUDIO_MIXER_ENUM)
1821 return EINVAL;
1822 mask = lmask | rmask;
1823 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1824 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1825 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1826 if (SB_IS_IN_MUTE(cp->dev)) {
1827 mute = cp->dev;
1828 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1829 } else {
1830 swap = cp->dev;
1831 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1832 }
1833 if (sc->gain[swap][SB_LR]) {
1834 mask = lmask;
1835 lmask = rmask;
1836 rmask = mask;
1837 }
1838 if (!sc->gain[mute][SB_LR]) {
1839 lbits = lbits | lmask;
1840 rbits = rbits | rmask;
1841 }
1842 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1843 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1844 break;
1845
1846 default:
1847 return EINVAL;
1848 }
1849
1850 return 0;
1851 }
1852
1853 int
1854 sbdsp_mixer_get_port(addr, cp)
1855 void *addr;
1856 mixer_ctrl_t *cp;
1857 {
1858 struct sbdsp_softc *sc = addr;
1859
1860 if (sc->sc_open == SB_OPEN_MIDI)
1861 return EBUSY;
1862
1863 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1864
1865 if (sc->sc_mixer_model == SBM_NONE)
1866 return EINVAL;
1867
1868 switch (cp->dev) {
1869 case SB_TREBLE:
1870 case SB_BASS:
1871 if (sc->sc_mixer_model == SBM_CT1345 ||
1872 sc->sc_mixer_model == SBM_CT1XX5) {
1873 switch (cp->dev) {
1874 case SB_TREBLE:
1875 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1876 return 0;
1877 case SB_BASS:
1878 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1879 return 0;
1880 }
1881 }
1882 case SB_PCSPEAKER:
1883 case SB_INPUT_GAIN:
1884 case SB_OUTPUT_GAIN:
1885 if (!ISSBM1745(sc))
1886 return EINVAL;
1887 case SB_MIC_VOL:
1888 case SB_LINE_IN_VOL:
1889 if (sc->sc_mixer_model == SBM_CT1335)
1890 return EINVAL;
1891 case SB_VOICE_VOL:
1892 case SB_MIDI_VOL:
1893 case SB_CD_VOL:
1894 case SB_MASTER_VOL:
1895 switch (cp->dev) {
1896 case SB_MIC_VOL:
1897 case SB_PCSPEAKER:
1898 if (cp->un.value.num_channels != 1)
1899 return EINVAL;
1900 /* fall into */
1901 default:
1902 switch (cp->un.value.num_channels) {
1903 case 1:
1904 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1905 sc->gain[cp->dev][SB_LEFT];
1906 break;
1907 case 2:
1908 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1909 sc->gain[cp->dev][SB_LEFT];
1910 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1911 sc->gain[cp->dev][SB_RIGHT];
1912 break;
1913 default:
1914 return EINVAL;
1915 }
1916 break;
1917 }
1918 break;
1919
1920 case SB_RECORD_SOURCE:
1921 if (ISSBM1745(sc))
1922 cp->un.mask = sc->in_mask;
1923 else
1924 cp->un.ord = sc->in_port;
1925 break;
1926
1927 case SB_AGC:
1928 if (!ISSBM1745(sc))
1929 return EINVAL;
1930 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1931 break;
1932
1933 case SB_CD_IN_MUTE:
1934 case SB_MIC_IN_MUTE:
1935 case SB_LINE_IN_MUTE:
1936 case SB_MIDI_IN_MUTE:
1937 case SB_CD_SWAP:
1938 case SB_MIC_SWAP:
1939 case SB_LINE_SWAP:
1940 case SB_MIDI_SWAP:
1941 case SB_CD_OUT_MUTE:
1942 case SB_MIC_OUT_MUTE:
1943 case SB_LINE_OUT_MUTE:
1944 cp->un.ord = sc->gain[cp->dev][SB_LR];
1945 break;
1946
1947 default:
1948 return EINVAL;
1949 }
1950
1951 return 0;
1952 }
1953
1954 int
1955 sbdsp_mixer_query_devinfo(addr, dip)
1956 void *addr;
1957 mixer_devinfo_t *dip;
1958 {
1959 struct sbdsp_softc *sc = addr;
1960 int chan, class, is1745;
1961
1962 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1963 sc->sc_mixer_model, dip->index));
1964
1965 if (sc->sc_mixer_model == SBM_NONE)
1966 return ENXIO;
1967
1968 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1969 is1745 = ISSBM1745(sc);
1970 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1971
1972 switch (dip->index) {
1973 case SB_MASTER_VOL:
1974 dip->type = AUDIO_MIXER_VALUE;
1975 dip->mixer_class = SB_OUTPUT_CLASS;
1976 dip->prev = dip->next = AUDIO_MIXER_LAST;
1977 strcpy(dip->label.name, AudioNmaster);
1978 dip->un.v.num_channels = chan;
1979 strcpy(dip->un.v.units.name, AudioNvolume);
1980 return 0;
1981 case SB_MIDI_VOL:
1982 dip->type = AUDIO_MIXER_VALUE;
1983 dip->mixer_class = class;
1984 dip->prev = AUDIO_MIXER_LAST;
1985 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
1986 strcpy(dip->label.name, AudioNfmsynth);
1987 dip->un.v.num_channels = chan;
1988 strcpy(dip->un.v.units.name, AudioNvolume);
1989 return 0;
1990 case SB_CD_VOL:
1991 dip->type = AUDIO_MIXER_VALUE;
1992 dip->mixer_class = class;
1993 dip->prev = AUDIO_MIXER_LAST;
1994 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
1995 strcpy(dip->label.name, AudioNcd);
1996 dip->un.v.num_channels = chan;
1997 strcpy(dip->un.v.units.name, AudioNvolume);
1998 return 0;
1999 case SB_VOICE_VOL:
2000 dip->type = AUDIO_MIXER_VALUE;
2001 dip->mixer_class = class;
2002 dip->prev = AUDIO_MIXER_LAST;
2003 dip->next = AUDIO_MIXER_LAST;
2004 strcpy(dip->label.name, AudioNdac);
2005 dip->un.v.num_channels = chan;
2006 strcpy(dip->un.v.units.name, AudioNvolume);
2007 return 0;
2008 case SB_OUTPUT_CLASS:
2009 dip->type = AUDIO_MIXER_CLASS;
2010 dip->mixer_class = SB_OUTPUT_CLASS;
2011 dip->next = dip->prev = AUDIO_MIXER_LAST;
2012 strcpy(dip->label.name, AudioCoutputs);
2013 return 0;
2014 }
2015
2016 if (sc->sc_mixer_model == SBM_CT1335)
2017 return ENXIO;
2018
2019 switch (dip->index) {
2020 case SB_MIC_VOL:
2021 dip->type = AUDIO_MIXER_VALUE;
2022 dip->mixer_class = class;
2023 dip->prev = AUDIO_MIXER_LAST;
2024 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2025 strcpy(dip->label.name, AudioNmicrophone);
2026 dip->un.v.num_channels = 1;
2027 strcpy(dip->un.v.units.name, AudioNvolume);
2028 return 0;
2029
2030 case SB_LINE_IN_VOL:
2031 dip->type = AUDIO_MIXER_VALUE;
2032 dip->mixer_class = class;
2033 dip->prev = AUDIO_MIXER_LAST;
2034 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2035 strcpy(dip->label.name, AudioNline);
2036 dip->un.v.num_channels = 2;
2037 strcpy(dip->un.v.units.name, AudioNvolume);
2038 return 0;
2039
2040 case SB_RECORD_SOURCE:
2041 dip->mixer_class = SB_RECORD_CLASS;
2042 dip->prev = dip->next = AUDIO_MIXER_LAST;
2043 strcpy(dip->label.name, AudioNsource);
2044 if (ISSBM1745(sc)) {
2045 dip->type = AUDIO_MIXER_SET;
2046 dip->un.s.num_mem = 4;
2047 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2048 dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2049 strcpy(dip->un.s.member[1].label.name, AudioNcd);
2050 dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2051 strcpy(dip->un.s.member[2].label.name, AudioNline);
2052 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2053 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2054 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2055 } else {
2056 dip->type = AUDIO_MIXER_ENUM;
2057 dip->un.e.num_mem = 3;
2058 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2059 dip->un.e.member[0].ord = SB_MIC_VOL;
2060 strcpy(dip->un.e.member[1].label.name, AudioNcd);
2061 dip->un.e.member[1].ord = SB_CD_VOL;
2062 strcpy(dip->un.e.member[2].label.name, AudioNline);
2063 dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2064 }
2065 return 0;
2066
2067 case SB_BASS:
2068 dip->prev = dip->next = AUDIO_MIXER_LAST;
2069 strcpy(dip->label.name, AudioNbass);
2070 if (sc->sc_mixer_model == SBM_CT1745) {
2071 dip->type = AUDIO_MIXER_VALUE;
2072 dip->mixer_class = SB_EQUALIZATION_CLASS;
2073 dip->un.v.num_channels = 2;
2074 strcpy(dip->un.v.units.name, AudioNbass);
2075 } else {
2076 dip->type = AUDIO_MIXER_ENUM;
2077 dip->mixer_class = SB_INPUT_CLASS;
2078 dip->un.e.num_mem = 2;
2079 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2080 dip->un.e.member[0].ord = 0;
2081 strcpy(dip->un.e.member[1].label.name, AudioNon);
2082 dip->un.e.member[1].ord = 1;
2083 }
2084 return 0;
2085
2086 case SB_TREBLE:
2087 dip->prev = dip->next = AUDIO_MIXER_LAST;
2088 strcpy(dip->label.name, AudioNtreble);
2089 if (sc->sc_mixer_model == SBM_CT1745) {
2090 dip->type = AUDIO_MIXER_VALUE;
2091 dip->mixer_class = SB_EQUALIZATION_CLASS;
2092 dip->un.v.num_channels = 2;
2093 strcpy(dip->un.v.units.name, AudioNtreble);
2094 } else {
2095 dip->type = AUDIO_MIXER_ENUM;
2096 dip->mixer_class = SB_INPUT_CLASS;
2097 dip->un.e.num_mem = 2;
2098 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2099 dip->un.e.member[0].ord = 0;
2100 strcpy(dip->un.e.member[1].label.name, AudioNon);
2101 dip->un.e.member[1].ord = 1;
2102 }
2103 return 0;
2104
2105 case SB_RECORD_CLASS: /* record source class */
2106 dip->type = AUDIO_MIXER_CLASS;
2107 dip->mixer_class = SB_RECORD_CLASS;
2108 dip->next = dip->prev = AUDIO_MIXER_LAST;
2109 strcpy(dip->label.name, AudioCrecord);
2110 return 0;
2111
2112 case SB_INPUT_CLASS:
2113 dip->type = AUDIO_MIXER_CLASS;
2114 dip->mixer_class = SB_INPUT_CLASS;
2115 dip->next = dip->prev = AUDIO_MIXER_LAST;
2116 strcpy(dip->label.name, AudioCinputs);
2117 return 0;
2118
2119 }
2120
2121 if (sc->sc_mixer_model == SBM_CT1345)
2122 return ENXIO;
2123
2124 switch(dip->index) {
2125 case SB_PCSPEAKER:
2126 dip->type = AUDIO_MIXER_VALUE;
2127 dip->mixer_class = SB_INPUT_CLASS;
2128 dip->prev = dip->next = AUDIO_MIXER_LAST;
2129 strcpy(dip->label.name, "pc_speaker");
2130 dip->un.v.num_channels = 1;
2131 strcpy(dip->un.v.units.name, AudioNvolume);
2132 return 0;
2133
2134 case SB_INPUT_GAIN:
2135 dip->type = AUDIO_MIXER_VALUE;
2136 dip->mixer_class = SB_INPUT_CLASS;
2137 dip->prev = dip->next = AUDIO_MIXER_LAST;
2138 strcpy(dip->label.name, AudioNinput);
2139 dip->un.v.num_channels = 2;
2140 strcpy(dip->un.v.units.name, AudioNvolume);
2141 return 0;
2142
2143 case SB_OUTPUT_GAIN:
2144 dip->type = AUDIO_MIXER_VALUE;
2145 dip->mixer_class = SB_OUTPUT_CLASS;
2146 dip->prev = dip->next = AUDIO_MIXER_LAST;
2147 strcpy(dip->label.name, AudioNoutput);
2148 dip->un.v.num_channels = 2;
2149 strcpy(dip->un.v.units.name, AudioNvolume);
2150 return 0;
2151
2152 case SB_AGC:
2153 dip->type = AUDIO_MIXER_ENUM;
2154 dip->mixer_class = SB_INPUT_CLASS;
2155 dip->prev = dip->next = AUDIO_MIXER_LAST;
2156 strcpy(dip->label.name, "agc");
2157 dip->un.e.num_mem = 2;
2158 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2159 dip->un.e.member[0].ord = 0;
2160 strcpy(dip->un.e.member[1].label.name, AudioNon);
2161 dip->un.e.member[1].ord = 1;
2162 return 0;
2163
2164 case SB_EQUALIZATION_CLASS:
2165 dip->type = AUDIO_MIXER_CLASS;
2166 dip->mixer_class = SB_EQUALIZATION_CLASS;
2167 dip->next = dip->prev = AUDIO_MIXER_LAST;
2168 strcpy(dip->label.name, AudioCequalization);
2169 return 0;
2170
2171 case SB_CD_IN_MUTE:
2172 dip->prev = SB_CD_VOL;
2173 dip->next = SB_CD_SWAP;
2174 dip->mixer_class = SB_INPUT_CLASS;
2175 goto mute;
2176
2177 case SB_MIC_IN_MUTE:
2178 dip->prev = SB_MIC_VOL;
2179 dip->next = SB_MIC_SWAP;
2180 dip->mixer_class = SB_INPUT_CLASS;
2181 goto mute;
2182
2183 case SB_LINE_IN_MUTE:
2184 dip->prev = SB_LINE_IN_VOL;
2185 dip->next = SB_LINE_SWAP;
2186 dip->mixer_class = SB_INPUT_CLASS;
2187 goto mute;
2188
2189 case SB_MIDI_IN_MUTE:
2190 dip->prev = SB_MIDI_VOL;
2191 dip->next = SB_MIDI_SWAP;
2192 dip->mixer_class = SB_INPUT_CLASS;
2193 goto mute;
2194
2195 case SB_CD_SWAP:
2196 dip->prev = SB_CD_IN_MUTE;
2197 dip->next = SB_CD_OUT_MUTE;
2198 goto swap;
2199
2200 case SB_MIC_SWAP:
2201 dip->prev = SB_MIC_IN_MUTE;
2202 dip->next = SB_MIC_OUT_MUTE;
2203 goto swap;
2204
2205 case SB_LINE_SWAP:
2206 dip->prev = SB_LINE_IN_MUTE;
2207 dip->next = SB_LINE_OUT_MUTE;
2208 goto swap;
2209
2210 case SB_MIDI_SWAP:
2211 dip->prev = SB_MIDI_IN_MUTE;
2212 dip->next = AUDIO_MIXER_LAST;
2213 swap:
2214 dip->mixer_class = SB_INPUT_CLASS;
2215 strcpy(dip->label.name, AudioNswap);
2216 goto mute1;
2217
2218 case SB_CD_OUT_MUTE:
2219 dip->prev = SB_CD_SWAP;
2220 dip->next = AUDIO_MIXER_LAST;
2221 dip->mixer_class = SB_OUTPUT_CLASS;
2222 goto mute;
2223
2224 case SB_MIC_OUT_MUTE:
2225 dip->prev = SB_MIC_SWAP;
2226 dip->next = AUDIO_MIXER_LAST;
2227 dip->mixer_class = SB_OUTPUT_CLASS;
2228 goto mute;
2229
2230 case SB_LINE_OUT_MUTE:
2231 dip->prev = SB_LINE_SWAP;
2232 dip->next = AUDIO_MIXER_LAST;
2233 dip->mixer_class = SB_OUTPUT_CLASS;
2234 mute:
2235 strcpy(dip->label.name, AudioNmute);
2236 mute1:
2237 dip->type = AUDIO_MIXER_ENUM;
2238 dip->un.e.num_mem = 2;
2239 strcpy(dip->un.e.member[0].label.name, AudioNoff);
2240 dip->un.e.member[0].ord = 0;
2241 strcpy(dip->un.e.member[1].label.name, AudioNon);
2242 dip->un.e.member[1].ord = 1;
2243 return 0;
2244
2245 }
2246
2247 return ENXIO;
2248 }
2249
2250 void *
2251 sb_malloc(addr, direction, size, pool, flags)
2252 void *addr;
2253 int direction;
2254 size_t size;
2255 int pool, flags;
2256 {
2257 struct sbdsp_softc *sc = addr;
2258 int drq;
2259
2260 if (sc->sc_drq8 != -1)
2261 drq = sc->sc_drq8;
2262 else
2263 drq = sc->sc_drq16;
2264 return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2265 }
2266
2267 void
2268 sb_free(addr, ptr, pool)
2269 void *addr;
2270 void *ptr;
2271 int pool;
2272 {
2273 isa_free(ptr, pool);
2274 }
2275
2276 size_t
2277 sb_round_buffersize(addr, direction, size)
2278 void *addr;
2279 int direction;
2280 size_t size;
2281 {
2282 if (size > MAX_ISADMA)
2283 size = MAX_ISADMA;
2284 return (size);
2285 }
2286
2287 int
2288 sb_mappage(addr, mem, off, prot)
2289 void *addr;
2290 void *mem;
2291 int off;
2292 int prot;
2293 {
2294 return isa_mappage(mem, off, prot);
2295 }
2296
2297 int
2298 sbdsp_get_props(addr)
2299 void *addr;
2300 {
2301 struct sbdsp_softc *sc = addr;
2302 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2303 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2304 }
2305
2306 #if NMIDI > 0
2307 /*
2308 * MIDI related routines.
2309 */
2310
2311 int
2312 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2313 void *addr;
2314 int flags;
2315 void (*iintr)__P((void *, int));
2316 void (*ointr)__P((void *));
2317 void *arg;
2318 {
2319 struct sbdsp_softc *sc = addr;
2320
2321 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2322
2323 if (sc->sc_open != SB_CLOSED)
2324 return EBUSY;
2325 if (sbdsp_reset(sc) != 0)
2326 return EIO;
2327
2328 sc->sc_open = SB_OPEN_MIDI;
2329 sc->sc_openflags = flags;
2330
2331 if (sc->sc_model >= SB_20)
2332 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2333 return EIO;
2334
2335 sc->sc_intr8 = sbdsp_midi_intr;
2336 sc->sc_intrm = iintr;
2337 sc->sc_argm = arg;
2338
2339 return 0;
2340 }
2341
2342 void
2343 sbdsp_midi_close(addr)
2344 void *addr;
2345 {
2346 struct sbdsp_softc *sc = addr;
2347
2348 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2349
2350 if (sc->sc_model >= SB_20)
2351 sbdsp_reset(sc); /* exit UART mode */
2352
2353 sc->sc_intrm = 0;
2354 sc->sc_open = SB_CLOSED;
2355 }
2356
2357 int
2358 sbdsp_midi_output(addr, d)
2359 void *addr;
2360 int d;
2361 {
2362 struct sbdsp_softc *sc = addr;
2363
2364 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2365 return EIO;
2366 if (sbdsp_wdsp(sc, d))
2367 return EIO;
2368 return 0;
2369 }
2370
2371 void
2372 sbdsp_midi_getinfo(addr, mi)
2373 void *addr;
2374 struct midi_info *mi;
2375 {
2376 struct sbdsp_softc *sc = addr;
2377
2378 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2379 mi->props = MIDI_PROP_CAN_INPUT;
2380 }
2381
2382 int
2383 sbdsp_midi_intr(addr)
2384 void *addr;
2385 {
2386 struct sbdsp_softc *sc = addr;
2387
2388 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2389 return (0);
2390 }
2391
2392 #endif
2393
2394