Home | History | Annotate | Line # | Download | only in isa
sbdsp.c revision 1.99
      1 /*	$NetBSD: sbdsp.c,v 1.99 1999/08/02 17:37:42 augustss Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Charles M. Hannum.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *	  Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1991-1993 Regents of the University of California.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by the Computer Systems
     54  *	Engineering Group at Lawrence Berkeley Laboratory.
     55  * 4. Neither the name of the University nor of the Laboratory may be used
     56  *    to endorse or promote products derived from this software without
     57  *    specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     69  * SUCH DAMAGE.
     70  *
     71  */
     72 
     73 /*
     74  * SoundBlaster Pro code provided by John Kohl, based on lots of
     75  * information he gleaned from Steve Haehnichen <steve (at) vigra.com>'s
     76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
     77  * <sachs (at) meibm15.cen.uiuc.edu>.
     78  * Lots of rewrites by Lennart Augustsson <augustss (at) cs.chalmers.se>
     79  * with information from SB "Hardware Programming Guide" and the
     80  * Linux drivers.
     81  */
     82 
     83 #include "midi.h"
     84 
     85 #include <sys/param.h>
     86 #include <sys/systm.h>
     87 #include <sys/errno.h>
     88 #include <sys/ioctl.h>
     89 #include <sys/syslog.h>
     90 #include <sys/device.h>
     91 #include <sys/proc.h>
     92 #include <sys/buf.h>
     93 #include <vm/vm.h>
     94 
     95 #include <machine/cpu.h>
     96 #include <machine/intr.h>
     97 #include <machine/bus.h>
     98 
     99 #include <sys/audioio.h>
    100 #include <dev/audio_if.h>
    101 #include <dev/midi_if.h>
    102 #include <dev/mulaw.h>
    103 #include <dev/auconv.h>
    104 
    105 #include <dev/isa/isavar.h>
    106 #include <dev/isa/isadmavar.h>
    107 
    108 #include <dev/isa/sbreg.h>
    109 #include <dev/isa/sbdspvar.h>
    110 
    111 
    112 #ifdef AUDIO_DEBUG
    113 #define DPRINTF(x)	if (sbdspdebug) printf x
    114 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
    115 int	sbdspdebug = 0;
    116 #else
    117 #define DPRINTF(x)
    118 #define DPRINTFN(n,x)
    119 #endif
    120 
    121 #ifndef SBDSP_NPOLL
    122 #define SBDSP_NPOLL 3000
    123 #endif
    124 
    125 struct {
    126 	int wdsp;
    127 	int rdsp;
    128 	int wmidi;
    129 } sberr;
    130 
    131 /*
    132  * Time constant routines follow.  See SBK, section 12.
    133  * Although they don't come out and say it (in the docs),
    134  * the card clearly uses a 1MHz countdown timer, as the
    135  * low-speed formula (p. 12-4) is:
    136  *	tc = 256 - 10^6 / sr
    137  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
    138  * and a 256MHz clock is used:
    139  *	tc = 65536 - 256 * 10^ 6 / sr
    140  * Since we can only use the upper byte of the HS TC, the two formulae
    141  * are equivalent.  (Why didn't they say so?)  E.g.,
    142  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
    143  *
    144  * The crossover point (from low- to high-speed modes) is different
    145  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
    146  *
    147  *				SBPRO			SB20
    148  *				-----			--------
    149  * input ls min			4	KHz		4	KHz
    150  * input ls max			23	KHz		13	KHz
    151  * input hs max			44.1	KHz		15	KHz
    152  * output ls min		4	KHz		4	KHz
    153  * output ls max		23	KHz		23	KHz
    154  * output hs max		44.1	KHz		44.1	KHz
    155  */
    156 /* XXX Should we round the tc?
    157 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
    158 */
    159 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
    160 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
    161 
    162 struct sbmode {
    163 	short	model;
    164 	u_char	channels;
    165 	u_char	precision;
    166 	u_short	lowrate, highrate;
    167 	u_char	cmd;
    168 	u_char	halt, cont;
    169 	u_char	cmdchan;
    170 };
    171 static struct sbmode sbpmodes[] = {
    172  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    173  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    174  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    175  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    176  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    177  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    178  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
    179  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
    180  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    181  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    182  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    183  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    184  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    185  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    186  { SB_16,  1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    187  { SB_16,  2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    188 #define PLAY16 15 /* must be the index of the next entry in the table */
    189  { SB_16,  1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    190  { SB_16,  2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    191  { -1 }
    192 };
    193 static struct sbmode sbrmodes[] = {
    194  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
    195  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    196  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
    197  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
    198  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    199  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    200  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    201  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    202  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
    203  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
    204  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    205  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
    206  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
    207  { SB_16,  1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    208  { SB_16,  2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
    209  { SB_16,  1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    210  { SB_16,  2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
    211  { -1 }
    212 };
    213 
    214 void	sbversion __P((struct sbdsp_softc *));
    215 void	sbdsp_jazz16_probe __P((struct sbdsp_softc *));
    216 void	sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
    217 void	sbdsp_to __P((void *));
    218 void	sbdsp_pause __P((struct sbdsp_softc *));
    219 int	sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
    220 int	sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
    221 int	sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
    222 void	sbdsp_set_ifilter __P((void *, int));
    223 int	sbdsp_get_ifilter __P((void *));
    224 
    225 int	sbdsp_block_output __P((void *));
    226 int	sbdsp_block_input __P((void *));
    227 static	int sbdsp_adjust __P((int, int));
    228 
    229 int	sbdsp_midi_intr __P((void *));
    230 
    231 #ifdef AUDIO_DEBUG
    232 void	sb_printsc __P((struct sbdsp_softc *));
    233 
    234 void
    235 sb_printsc(sc)
    236 	struct sbdsp_softc *sc;
    237 {
    238 	int i;
    239 
    240 	printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
    241 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
    242 	    sc->sc_drq8, sc->sc_drq16,
    243 	    sc->sc_iobase, sc->sc_irq);
    244 	printf("irate %d itc %x orate %d otc %x\n",
    245 	    sc->sc_i.rate, sc->sc_i.tc,
    246 	    sc->sc_o.rate, sc->sc_o.tc);
    247 	printf("spkron %u nintr %lu\n",
    248 	    sc->spkr_state, sc->sc_interrupts);
    249 	printf("intr8 %p intr16 %p\n",
    250 	    sc->sc_intr8, sc->sc_intr16);
    251 	printf("gain:");
    252 	for (i = 0; i < SB_NDEVS; i++)
    253 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
    254 	printf("\n");
    255 }
    256 #endif /* AUDIO_DEBUG */
    257 
    258 /*
    259  * Probe / attach routines.
    260  */
    261 
    262 /*
    263  * Probe for the soundblaster hardware.
    264  */
    265 int
    266 sbdsp_probe(sc)
    267 	struct sbdsp_softc *sc;
    268 {
    269 
    270 	if (sbdsp_reset(sc) < 0) {
    271 		DPRINTF(("sbdsp: couldn't reset card\n"));
    272 		return 0;
    273 	}
    274 	/* if flags set, go and probe the jazz16 stuff */
    275 	if (sc->sc_dev.dv_cfdata->cf_flags & 1)
    276 		sbdsp_jazz16_probe(sc);
    277 	else
    278 		sbversion(sc);
    279 	if (sc->sc_model == SB_UNK) {
    280 		/* Unknown SB model found. */
    281 		DPRINTF(("sbdsp: unknown SB model found\n"));
    282 		return 0;
    283 	}
    284 	return 1;
    285 }
    286 
    287 /*
    288  * Try add-on stuff for Jazz16.
    289  */
    290 void
    291 sbdsp_jazz16_probe(sc)
    292 	struct sbdsp_softc *sc;
    293 {
    294 	static u_char jazz16_irq_conf[16] = {
    295 	    -1, -1, 0x02, 0x03,
    296 	    -1, 0x01, -1, 0x04,
    297 	    -1, 0x02, 0x05, -1,
    298 	    -1, -1, -1, 0x06};
    299 	static u_char jazz16_drq_conf[8] = {
    300 	    -1, 0x01, -1, 0x02,
    301 	    -1, 0x03, -1, 0x04};
    302 
    303 	bus_space_tag_t iot = sc->sc_iot;
    304 	bus_space_handle_t ioh;
    305 
    306 	sbversion(sc);
    307 
    308 	DPRINTF(("jazz16 probe\n"));
    309 
    310 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
    311 		DPRINTF(("bus map failed\n"));
    312 		return;
    313 	}
    314 
    315 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
    316 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
    317 		DPRINTF(("drq/irq check failed\n"));
    318 		goto done;		/* give up, we can't do it. */
    319 	}
    320 
    321 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
    322 	delay(10000);			/* delay 10 ms */
    323 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
    324 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
    325 
    326 	if (sbdsp_reset(sc) < 0) {
    327 		DPRINTF(("sbdsp_reset check failed\n"));
    328 		goto done;		/* XXX? what else could we do? */
    329 	}
    330 
    331 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
    332 		DPRINTF(("read16 setup failed\n"));
    333 		goto done;
    334 	}
    335 
    336 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
    337 		DPRINTF(("read16 failed\n"));
    338 		goto done;
    339 	}
    340 
    341 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
    342 	sc->sc_drq16 = sc->sc_drq8;
    343 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
    344 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
    345 		jazz16_drq_conf[sc->sc_drq8]) ||
    346 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
    347 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
    348 	} else {
    349 		DPRINTF(("jazz16 detected!\n"));
    350 		sc->sc_model = SB_JAZZ;
    351 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
    352 	}
    353 
    354 done:
    355 	bus_space_unmap(iot, ioh, 1);
    356 }
    357 
    358 /*
    359  * Attach hardware to driver, attach hardware driver to audio
    360  * pseudo-device driver .
    361  */
    362 void
    363 sbdsp_attach(sc)
    364 	struct sbdsp_softc *sc;
    365 {
    366 	struct audio_params pparams, rparams;
    367 	int i;
    368 	u_int v;
    369 
    370 	pparams = audio_default;
    371 	rparams = audio_default;
    372 	sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
    373 
    374 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
    375 
    376 	if (sc->sc_mixer_model != SBM_NONE) {
    377 		/* Reset the mixer.*/
    378 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
    379 		/* And set our own default values */
    380 		for (i = 0; i < SB_NDEVS; i++) {
    381 			switch(i) {
    382 			case SB_MIC_VOL:
    383 			case SB_LINE_IN_VOL:
    384 				v = 0;
    385 				break;
    386 			case SB_BASS:
    387 			case SB_TREBLE:
    388 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    389 				break;
    390 			case SB_CD_IN_MUTE:
    391 			case SB_MIC_IN_MUTE:
    392 			case SB_LINE_IN_MUTE:
    393 			case SB_MIDI_IN_MUTE:
    394 			case SB_CD_SWAP:
    395 			case SB_MIC_SWAP:
    396 			case SB_LINE_SWAP:
    397 			case SB_MIDI_SWAP:
    398 			case SB_CD_OUT_MUTE:
    399 			case SB_MIC_OUT_MUTE:
    400 			case SB_LINE_OUT_MUTE:
    401 				v = 0;
    402 				break;
    403 			default:
    404 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
    405 				break;
    406 			}
    407 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
    408 			sbdsp_set_mixer_gain(sc, i);
    409 		}
    410 		sc->in_filter = 0;	/* no filters turned on, please */
    411 	}
    412 
    413 	printf(": dsp v%d.%02d%s\n",
    414 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
    415 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
    416 
    417 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
    418 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
    419 	    sc->sc_drq8 != sc->sc_drq16;
    420 }
    421 
    422 void
    423 sbdsp_mix_write(sc, mixerport, val)
    424 	struct sbdsp_softc *sc;
    425 	int mixerport;
    426 	int val;
    427 {
    428 	bus_space_tag_t iot = sc->sc_iot;
    429 	bus_space_handle_t ioh = sc->sc_ioh;
    430 	int s;
    431 
    432 	s = splaudio();
    433 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    434 	delay(20);
    435 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
    436 	delay(30);
    437 	splx(s);
    438 }
    439 
    440 int
    441 sbdsp_mix_read(sc, mixerport)
    442 	struct sbdsp_softc *sc;
    443 	int mixerport;
    444 {
    445 	bus_space_tag_t iot = sc->sc_iot;
    446 	bus_space_handle_t ioh = sc->sc_ioh;
    447 	int val;
    448 	int s;
    449 
    450 	s = splaudio();
    451 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
    452 	delay(20);
    453 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
    454 	delay(30);
    455 	splx(s);
    456 	return val;
    457 }
    458 
    459 /*
    460  * Various routines to interface to higher level audio driver
    461  */
    462 
    463 int
    464 sbdsp_query_encoding(addr, fp)
    465 	void *addr;
    466 	struct audio_encoding *fp;
    467 {
    468 	struct sbdsp_softc *sc = addr;
    469 	int emul;
    470 
    471 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
    472 
    473 	switch (fp->index) {
    474 	case 0:
    475 		strcpy(fp->name, AudioEulinear);
    476 		fp->encoding = AUDIO_ENCODING_ULINEAR;
    477 		fp->precision = 8;
    478 		fp->flags = 0;
    479 		return 0;
    480 	case 1:
    481 		strcpy(fp->name, AudioEmulaw);
    482 		fp->encoding = AUDIO_ENCODING_ULAW;
    483 		fp->precision = 8;
    484 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    485 		return 0;
    486 	case 2:
    487 		strcpy(fp->name, AudioEalaw);
    488 		fp->encoding = AUDIO_ENCODING_ALAW;
    489 		fp->precision = 8;
    490 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    491 		return 0;
    492 	case 3:
    493 		strcpy(fp->name, AudioEslinear);
    494 		fp->encoding = AUDIO_ENCODING_SLINEAR;
    495 		fp->precision = 8;
    496 		fp->flags = emul;
    497 		return 0;
    498 	}
    499 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
    500 		return EINVAL;
    501 
    502 	switch(fp->index) {
    503 	case 4:
    504 		strcpy(fp->name, AudioEslinear_le);
    505 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
    506 		fp->precision = 16;
    507 		fp->flags = 0;
    508 		return 0;
    509 	case 5:
    510 		strcpy(fp->name, AudioEulinear_le);
    511 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
    512 		fp->precision = 16;
    513 		fp->flags = emul;
    514 		return 0;
    515 	case 6:
    516 		strcpy(fp->name, AudioEslinear_be);
    517 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
    518 		fp->precision = 16;
    519 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    520 		return 0;
    521 	case 7:
    522 		strcpy(fp->name, AudioEulinear_be);
    523 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
    524 		fp->precision = 16;
    525 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
    526 		return 0;
    527 	default:
    528 		return EINVAL;
    529 	}
    530 	return 0;
    531 }
    532 
    533 int
    534 sbdsp_set_params(addr, setmode, usemode, play, rec)
    535 	void *addr;
    536 	int setmode, usemode;
    537 	struct audio_params *play, *rec;
    538 {
    539 	struct sbdsp_softc *sc = addr;
    540 	struct sbmode *m;
    541 	u_int rate, tc, bmode;
    542 	void (*swcode) __P((void *, u_char *buf, int cnt));
    543 	int factor;
    544 	int model;
    545 	int chan;
    546 	struct audio_params *p;
    547 	int mode;
    548 
    549 	if (sc->sc_open == SB_OPEN_MIDI)
    550 		return EBUSY;
    551 
    552 	/* Later models work like SB16. */
    553 	model = min(sc->sc_model, SB_16);
    554 
    555 	/*
    556 	 * Prior to the SB16, we have only one clock, so make the sample
    557 	 * rates match.
    558 	 */
    559 	if (!ISSB16CLASS(sc) &&
    560 	    play->sample_rate != rec->sample_rate &&
    561 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    562 		if (setmode == AUMODE_PLAY) {
    563 			rec->sample_rate = play->sample_rate;
    564 			setmode |= AUMODE_RECORD;
    565 		} else if (setmode == AUMODE_RECORD) {
    566 			play->sample_rate = rec->sample_rate;
    567 			setmode |= AUMODE_PLAY;
    568 		} else
    569 			return (EINVAL);
    570 	}
    571 
    572 	/* Set first record info, then play info */
    573 	for (mode = AUMODE_RECORD; mode != -1;
    574 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    575 		if ((setmode & mode) == 0)
    576 			continue;
    577 
    578 		p = mode == AUMODE_PLAY ? play : rec;
    579 		/* Locate proper commands */
    580 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
    581 		    m->model != -1; m++) {
    582 			if (model == m->model &&
    583 			    p->channels == m->channels &&
    584 			    p->precision == m->precision &&
    585 			    p->sample_rate >= m->lowrate &&
    586 			    p->sample_rate <= m->highrate)
    587 				break;
    588 		}
    589 		if (m->model == -1)
    590 			return EINVAL;
    591 		rate = p->sample_rate;
    592 		swcode = 0;
    593 		factor = 1;
    594 		tc = 1;
    595 		bmode = -1;
    596 		if (model == SB_16) {
    597 			switch (p->encoding) {
    598 			case AUDIO_ENCODING_SLINEAR_BE:
    599 				if (p->precision == 16)
    600 					swcode = swap_bytes;
    601 				/* fall into */
    602 			case AUDIO_ENCODING_SLINEAR_LE:
    603 				bmode = SB_BMODE_SIGNED;
    604 				break;
    605 			case AUDIO_ENCODING_ULINEAR_BE:
    606 				if (p->precision == 16)
    607 					swcode = swap_bytes;
    608 				/* fall into */
    609 			case AUDIO_ENCODING_ULINEAR_LE:
    610 				bmode = SB_BMODE_UNSIGNED;
    611 				break;
    612 			case AUDIO_ENCODING_ULAW:
    613 				if (mode == AUMODE_PLAY) {
    614 					swcode = mulaw_to_ulinear16;
    615 					factor = 2;
    616 					m = &sbpmodes[PLAY16];
    617 				} else
    618 					swcode = ulinear8_to_mulaw;
    619 				bmode = SB_BMODE_UNSIGNED;
    620 				break;
    621 			case AUDIO_ENCODING_ALAW:
    622 				if (mode == AUMODE_PLAY) {
    623 					swcode = alaw_to_ulinear16;
    624 					factor = 2;
    625 					m = &sbpmodes[PLAY16];
    626 				} else
    627 					swcode = ulinear8_to_alaw;
    628 				bmode = SB_BMODE_UNSIGNED;
    629 				break;
    630 			default:
    631 				return EINVAL;
    632 			}
    633 			if (p->channels == 2)
    634 				bmode |= SB_BMODE_STEREO;
    635 		} else if (m->model == SB_JAZZ && m->precision == 16) {
    636 			switch (p->encoding) {
    637 			case AUDIO_ENCODING_SLINEAR_LE:
    638 				break;
    639 			case AUDIO_ENCODING_ULINEAR_LE:
    640 				swcode = change_sign16;
    641 				break;
    642 			case AUDIO_ENCODING_SLINEAR_BE:
    643 				swcode = swap_bytes;
    644 				break;
    645 			case AUDIO_ENCODING_ULINEAR_BE:
    646 				swcode = mode == AUMODE_PLAY ?
    647 					swap_bytes_change_sign16 : change_sign16_swap_bytes;
    648 				break;
    649 			case AUDIO_ENCODING_ULAW:
    650 				swcode = mode == AUMODE_PLAY ?
    651 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    652 				break;
    653 			case AUDIO_ENCODING_ALAW:
    654 				swcode = mode == AUMODE_PLAY ?
    655 					alaw_to_ulinear8 : ulinear8_to_alaw;
    656 				break;
    657 			default:
    658 				return EINVAL;
    659 			}
    660 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    661 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    662 		} else {
    663 			switch (p->encoding) {
    664 			case AUDIO_ENCODING_SLINEAR_BE:
    665 			case AUDIO_ENCODING_SLINEAR_LE:
    666 				swcode = change_sign8;
    667 				break;
    668 			case AUDIO_ENCODING_ULINEAR_BE:
    669 			case AUDIO_ENCODING_ULINEAR_LE:
    670 				break;
    671 			case AUDIO_ENCODING_ULAW:
    672 				swcode = mode == AUMODE_PLAY ?
    673 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
    674 				break;
    675 			case AUDIO_ENCODING_ALAW:
    676 				swcode = mode == AUMODE_PLAY ?
    677 					alaw_to_ulinear8 : ulinear8_to_alaw;
    678 				break;
    679 			default:
    680 				return EINVAL;
    681 			}
    682 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
    683 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
    684 		}
    685 
    686 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
    687 		if (mode == AUMODE_PLAY) {
    688 			sc->sc_o.rate = rate;
    689 			sc->sc_o.tc = tc;
    690 			sc->sc_o.modep = m;
    691 			sc->sc_o.bmode = bmode;
    692 			sc->sc_o.dmachan = chan;
    693 		} else {
    694 			sc->sc_i.rate = rate;
    695 			sc->sc_i.tc = tc;
    696 			sc->sc_i.modep = m;
    697 			sc->sc_i.bmode = bmode;
    698 			sc->sc_i.dmachan = chan;
    699 		}
    700 
    701 		p->sw_code = swcode;
    702 		p->factor = factor;
    703 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
    704 			 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
    705 			 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
    706 
    707 	}
    708 
    709 	if (sc->sc_fullduplex &&
    710 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
    711 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
    712 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
    713 		if (sc->sc_o.dmachan == sc->sc_drq8) {
    714 			/* Use 16 bit DMA for playing by expanding the samples. */
    715 			play->sw_code = linear8_to_linear16;
    716 			play->factor = 2;
    717 			sc->sc_o.modep = &sbpmodes[PLAY16];
    718 			sc->sc_o.dmachan = sc->sc_drq16;
    719 		} else {
    720 			return EINVAL;
    721 		}
    722 	}
    723 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
    724 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
    725 
    726 	return (0);
    727 }
    728 
    729 void
    730 sbdsp_set_ifilter(addr, which)
    731 	void *addr;
    732 	int which;
    733 {
    734 	struct sbdsp_softc *sc = addr;
    735 	int mixval;
    736 
    737 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
    738 	switch (which) {
    739 	case 0:
    740 		mixval |= SBP_FILTER_OFF;
    741 		break;
    742 	case SB_TREBLE:
    743 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
    744 		break;
    745 	case SB_BASS:
    746 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
    747 		break;
    748 	default:
    749 		return;
    750 	}
    751 	sc->in_filter = mixval & SBP_IFILTER_MASK;
    752 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
    753 }
    754 
    755 int
    756 sbdsp_get_ifilter(addr)
    757 	void *addr;
    758 {
    759 	struct sbdsp_softc *sc = addr;
    760 
    761 	sc->in_filter =
    762 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
    763 	switch (sc->in_filter) {
    764 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
    765 		return SB_TREBLE;
    766 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
    767 		return SB_BASS;
    768 	default:
    769 		return 0;
    770 	}
    771 }
    772 
    773 int
    774 sbdsp_set_in_ports(sc, mask)
    775 	struct sbdsp_softc *sc;
    776 	int mask;
    777 {
    778 	int bitsl, bitsr;
    779 	int sbport;
    780 
    781 	if (sc->sc_open == SB_OPEN_MIDI)
    782 		return EBUSY;
    783 
    784 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
    785 		 sc->sc_mixer_model, mask));
    786 
    787 	switch(sc->sc_mixer_model) {
    788 	case SBM_NONE:
    789 		return EINVAL;
    790 	case SBM_CT1335:
    791 		if (mask != (1 << SB_MIC_VOL))
    792 			return EINVAL;
    793 		break;
    794 	case SBM_CT1345:
    795 		switch (mask) {
    796 		case 1 << SB_MIC_VOL:
    797 			sbport = SBP_FROM_MIC;
    798 			break;
    799 		case 1 << SB_LINE_IN_VOL:
    800 			sbport = SBP_FROM_LINE;
    801 			break;
    802 		case 1 << SB_CD_VOL:
    803 			sbport = SBP_FROM_CD;
    804 			break;
    805 		default:
    806 			return (EINVAL);
    807 		}
    808 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
    809 		break;
    810 	case SBM_CT1XX5:
    811 	case SBM_CT1745:
    812 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
    813 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
    814 			return EINVAL;
    815 		bitsr = 0;
    816 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
    817 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
    818 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
    819 		bitsl = SB_SRC_R_TO_L(bitsr);
    820 		if (mask & (1<<SB_MIC_VOL)) {
    821 			bitsl |= SBP_MIC_SRC;
    822 			bitsr |= SBP_MIC_SRC;
    823 		}
    824 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
    825 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
    826 		break;
    827 	}
    828 	sc->in_mask = mask;
    829 
    830 	return 0;
    831 }
    832 
    833 int
    834 sbdsp_speaker_ctl(addr, newstate)
    835 	void *addr;
    836 	int newstate;
    837 {
    838 	struct sbdsp_softc *sc = addr;
    839 
    840 	if (sc->sc_open == SB_OPEN_MIDI)
    841 		return EBUSY;
    842 
    843 	if ((newstate == SPKR_ON) &&
    844 	    (sc->spkr_state == SPKR_OFF)) {
    845 		sbdsp_spkron(sc);
    846 		sc->spkr_state = SPKR_ON;
    847 	}
    848 	if ((newstate == SPKR_OFF) &&
    849 	    (sc->spkr_state == SPKR_ON)) {
    850 		sbdsp_spkroff(sc);
    851 		sc->spkr_state = SPKR_OFF;
    852 	}
    853 	return 0;
    854 }
    855 
    856 int
    857 sbdsp_round_blocksize(addr, blk)
    858 	void *addr;
    859 	int blk;
    860 {
    861 	return blk & -4;	/* round to biggest sample size */
    862 }
    863 
    864 int
    865 sbdsp_open(addr, flags)
    866 	void *addr;
    867 	int flags;
    868 {
    869 	struct sbdsp_softc *sc = addr;
    870 	int error, state;
    871 
    872 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
    873 
    874 	if (sc->sc_open != SB_CLOSED)
    875 		return (EBUSY);
    876 	sc->sc_open = SB_OPEN_AUDIO;
    877 	sc->sc_openflags = flags;
    878 	state = 0;
    879 
    880 	if (sc->sc_drq8 != -1) {
    881 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
    882 		    MAX_ISADMA, BUS_DMA_NOWAIT);
    883 		if (error) {
    884 			printf("%s: can't create map for drq %d\n",
    885 			    sc->sc_dev.dv_xname, sc->sc_drq8);
    886 			goto bad;
    887 		}
    888 		state |= 1;
    889 	}
    890 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
    891 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
    892 		    MAX_ISADMA, BUS_DMA_NOWAIT);
    893 		if (error) {
    894 			printf("%s: can't create map for drq %d\n",
    895 			    sc->sc_dev.dv_xname, sc->sc_drq16);
    896 			goto bad;
    897 		}
    898 		state |= 2;
    899 	}
    900 
    901 	if (sbdsp_reset(sc) != 0) {
    902 		error = EIO;
    903 		goto bad;
    904 	}
    905 
    906 	if (ISSBPRO(sc) &&
    907 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
    908 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
    909 		/* we'll readjust when it's time for DMA. */
    910 	}
    911 
    912 	/*
    913 	 * Leave most things as they were; users must change things if
    914 	 * the previous process didn't leave it they way they wanted.
    915 	 * Looked at another way, it's easy to set up a configuration
    916 	 * in one program and leave it for another to inherit.
    917 	 */
    918 	DPRINTF(("sbdsp_open: opened\n"));
    919 
    920 	return (0);
    921 
    922 bad:
    923 	if (state & 1)
    924 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    925 	if (state & 2)
    926 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
    927 
    928 	sc->sc_open = SB_CLOSED;
    929 	return (error);
    930 }
    931 
    932 void
    933 sbdsp_close(addr)
    934 	void *addr;
    935 {
    936 	struct sbdsp_softc *sc = addr;
    937 
    938 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
    939 
    940 	sbdsp_spkroff(sc);
    941 	sc->spkr_state = SPKR_OFF;
    942 
    943 	sbdsp_halt_output(sc);
    944 	sbdsp_halt_input(sc);
    945 
    946 	sc->sc_intr8 = 0;
    947 	sc->sc_intr16 = 0;
    948 
    949 	if (sc->sc_drq8 != -1)
    950 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
    951 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
    952 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
    953 
    954 	sc->sc_open = SB_CLOSED;
    955 	DPRINTF(("sbdsp_close: closed\n"));
    956 }
    957 
    958 /*
    959  * Lower-level routines
    960  */
    961 
    962 /*
    963  * Reset the card.
    964  * Return non-zero if the card isn't detected.
    965  */
    966 int
    967 sbdsp_reset(sc)
    968 	struct sbdsp_softc *sc;
    969 {
    970 	bus_space_tag_t iot = sc->sc_iot;
    971 	bus_space_handle_t ioh = sc->sc_ioh;
    972 
    973 	sc->sc_intr8 = 0;
    974 	sc->sc_intr16 = 0;
    975 	sc->sc_intrm = 0;
    976 
    977 	/*
    978 	 * See SBK, section 11.3.
    979 	 * We pulse a reset signal into the card.
    980 	 * Gee, what a brilliant hardware design.
    981 	 */
    982 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
    983 	delay(10);
    984 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
    985 	delay(30);
    986 	if (sbdsp_rdsp(sc) != SB_MAGIC)
    987 		return -1;
    988 
    989 	return 0;
    990 }
    991 
    992 /*
    993  * Write a byte to the dsp.
    994  * We are at the mercy of the card as we use a
    995  * polling loop and wait until it can take the byte.
    996  */
    997 int
    998 sbdsp_wdsp(sc, v)
    999 	struct sbdsp_softc *sc;
   1000 	int v;
   1001 {
   1002 	bus_space_tag_t iot = sc->sc_iot;
   1003 	bus_space_handle_t ioh = sc->sc_ioh;
   1004 	int i;
   1005 	u_char x;
   1006 
   1007 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1008 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
   1009 		delay(10);
   1010 		if ((x & SB_DSP_BUSY) == 0) {
   1011 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
   1012 			delay(10);
   1013 			return 0;
   1014 		}
   1015 	}
   1016 	++sberr.wdsp;
   1017 	return -1;
   1018 }
   1019 
   1020 /*
   1021  * Read a byte from the DSP, using polling.
   1022  */
   1023 int
   1024 sbdsp_rdsp(sc)
   1025 	struct sbdsp_softc *sc;
   1026 {
   1027 	bus_space_tag_t iot = sc->sc_iot;
   1028 	bus_space_handle_t ioh = sc->sc_ioh;
   1029 	int i;
   1030 	u_char x;
   1031 
   1032 	for (i = SBDSP_NPOLL; --i >= 0; ) {
   1033 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
   1034 		delay(10);
   1035 		if (x & SB_DSP_READY) {
   1036 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
   1037 			delay(10);
   1038 			return x;
   1039 		}
   1040 	}
   1041 	++sberr.rdsp;
   1042 	return -1;
   1043 }
   1044 
   1045 /*
   1046  * Doing certain things (like toggling the speaker) make
   1047  * the SB hardware go away for a while, so pause a little.
   1048  */
   1049 void
   1050 sbdsp_to(arg)
   1051 	void *arg;
   1052 {
   1053 	wakeup(arg);
   1054 }
   1055 
   1056 void
   1057 sbdsp_pause(sc)
   1058 	struct sbdsp_softc *sc;
   1059 {
   1060 	extern int hz;
   1061 
   1062 	timeout(sbdsp_to, sbdsp_to, hz/8);
   1063 	(void)tsleep(sbdsp_to, PWAIT, "sbpause", 0);
   1064 }
   1065 
   1066 /*
   1067  * Turn on the speaker.  The SBK documention says this operation
   1068  * can take up to 1/10 of a second.  Higher level layers should
   1069  * probably let the task sleep for this amount of time after
   1070  * calling here.  Otherwise, things might not work (because
   1071  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
   1072  *
   1073  * These engineers had their heads up their ass when
   1074  * they designed this card.
   1075  */
   1076 void
   1077 sbdsp_spkron(sc)
   1078 	struct sbdsp_softc *sc;
   1079 {
   1080 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
   1081 	sbdsp_pause(sc);
   1082 }
   1083 
   1084 /*
   1085  * Turn off the speaker; see comment above.
   1086  */
   1087 void
   1088 sbdsp_spkroff(sc)
   1089 	struct sbdsp_softc *sc;
   1090 {
   1091 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
   1092 	sbdsp_pause(sc);
   1093 }
   1094 
   1095 /*
   1096  * Read the version number out of the card.
   1097  * Store version information in the softc.
   1098  */
   1099 void
   1100 sbversion(sc)
   1101 	struct sbdsp_softc *sc;
   1102 {
   1103 	int v;
   1104 
   1105 	sc->sc_model = SB_UNK;
   1106 	sc->sc_version = 0;
   1107 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
   1108 		return;
   1109 	v = sbdsp_rdsp(sc) << 8;
   1110 	v |= sbdsp_rdsp(sc);
   1111 	if (v < 0)
   1112 		return;
   1113 	sc->sc_version = v;
   1114 	switch(SBVER_MAJOR(v)) {
   1115 	case 1:
   1116 		sc->sc_mixer_model = SBM_NONE;
   1117 		sc->sc_model = SB_1;
   1118 		break;
   1119 	case 2:
   1120 		/* Some SB2 have a mixer, some don't. */
   1121 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
   1122 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
   1123 		/* Check if we can read back the mixer values. */
   1124 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
   1125 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
   1126 			sc->sc_mixer_model = SBM_CT1335;
   1127 		else
   1128 			sc->sc_mixer_model = SBM_NONE;
   1129 		if (SBVER_MINOR(v) == 0)
   1130 			sc->sc_model = SB_20;
   1131 		else
   1132 			sc->sc_model = SB_2x;
   1133 		break;
   1134 	case 3:
   1135 		sc->sc_mixer_model = SBM_CT1345;
   1136 		sc->sc_model = SB_PRO;
   1137 		break;
   1138 	case 4:
   1139 #if 0
   1140 /* XXX This does not work */
   1141 		/* Most SB16 have a tone controls, but some don't. */
   1142 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
   1143 		/* Check if we can read back the mixer value. */
   1144 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
   1145 			sc->sc_mixer_model = SBM_CT1745;
   1146 		else
   1147 			sc->sc_mixer_model = SBM_CT1XX5;
   1148 #else
   1149 		sc->sc_mixer_model = SBM_CT1745;
   1150 #endif
   1151 #if 0
   1152 /* XXX figure out a good way of determining the model */
   1153 		/* XXX what about SB_32 */
   1154 		if (SBVER_MINOR(v) == 16)
   1155 			sc->sc_model = SB_64;
   1156 		else
   1157 #endif
   1158 			sc->sc_model = SB_16;
   1159 		break;
   1160 	}
   1161 }
   1162 
   1163 int
   1164 sbdsp_set_timeconst(sc, tc)
   1165 	struct sbdsp_softc *sc;
   1166 	int tc;
   1167 {
   1168 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
   1169 
   1170 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
   1171 	    sbdsp_wdsp(sc, tc) < 0)
   1172 		return EIO;
   1173 
   1174 	return 0;
   1175 }
   1176 
   1177 int
   1178 sbdsp16_set_rate(sc, cmd, rate)
   1179 	struct sbdsp_softc *sc;
   1180 	int cmd, rate;
   1181 {
   1182 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
   1183 
   1184 	if (sbdsp_wdsp(sc, cmd) < 0 ||
   1185 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
   1186 	    sbdsp_wdsp(sc, rate) < 0)
   1187 		return EIO;
   1188 	return 0;
   1189 }
   1190 
   1191 int
   1192 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
   1193 	void *addr;
   1194 	void *start, *end;
   1195 	int blksize;
   1196 	void (*intr) __P((void *));
   1197 	void *arg;
   1198 	struct audio_params *param;
   1199 {
   1200 	struct sbdsp_softc *sc = addr;
   1201 	int stereo = param->channels == 2;
   1202 	int width = param->precision * param->factor;
   1203 	int filter;
   1204 
   1205 #ifdef DIAGNOSTIC
   1206 	if (stereo && (blksize & 1)) {
   1207 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
   1208 		return (EIO);
   1209 	}
   1210 	if (sc->sc_i.run != SB_NOTRUNNING)
   1211 		printf("sbdsp_trigger_input: already running\n");
   1212 #endif
   1213 
   1214 	sc->sc_intrr = intr;
   1215 	sc->sc_argr = arg;
   1216 
   1217 	if (width == 8) {
   1218 #ifdef DIAGNOSTIC
   1219 		if (sc->sc_i.dmachan != sc->sc_drq8) {
   1220 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1221 			    width, sc->sc_i.dmachan);
   1222 			return (EIO);
   1223 		}
   1224 #endif
   1225 		sc->sc_intr8 = sbdsp_block_input;
   1226 	} else {
   1227 #ifdef DIAGNOSTIC
   1228 		if (sc->sc_i.dmachan != sc->sc_drq16) {
   1229 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
   1230 			    width, sc->sc_i.dmachan);
   1231 			return (EIO);
   1232 		}
   1233 #endif
   1234 		sc->sc_intr16 = sbdsp_block_input;
   1235 	}
   1236 
   1237 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
   1238 		blksize >>= 1;
   1239 	--blksize;
   1240 	sc->sc_i.blksize = blksize;
   1241 
   1242 	if (ISSBPRO(sc)) {
   1243 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
   1244 			return (EIO);
   1245 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
   1246 		sbdsp_mix_write(sc, SBP_INFILTER,
   1247 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
   1248 		    filter);
   1249 	}
   1250 
   1251 	if (ISSB16CLASS(sc)) {
   1252 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
   1253 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
   1254 				 sc->sc_i.rate));
   1255 			return (EIO);
   1256 		}
   1257 	} else {
   1258 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
   1259 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
   1260 				 sc->sc_i.rate));
   1261 			return (EIO);
   1262 		}
   1263 	}
   1264 
   1265 	DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
   1266 	    start, end, sc->sc_i.dmachan));
   1267 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
   1268 	    (char *)end - (char *)start, NULL,
   1269 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1270 
   1271 	return sbdsp_block_input(addr);
   1272 }
   1273 
   1274 int
   1275 sbdsp_block_input(addr)
   1276 	void *addr;
   1277 {
   1278 	struct sbdsp_softc *sc = addr;
   1279 	int cc = sc->sc_i.blksize;
   1280 
   1281 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
   1282 
   1283 	if (sc->sc_i.run != SB_NOTRUNNING)
   1284 		sc->sc_intrr(sc->sc_argr);
   1285 
   1286 	if (sc->sc_model == SB_1) {
   1287 		/* Non-looping mode, start DMA */
   1288 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1289 		    sbdsp_wdsp(sc, cc) < 0 ||
   1290 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1291 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
   1292 			return (EIO);
   1293 		}
   1294 		sc->sc_i.run = SB_RUNNING;
   1295 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
   1296 		/* Initialize looping PCM */
   1297 		if (ISSB16CLASS(sc)) {
   1298 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
   1299 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
   1300 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
   1301 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
   1302 			    sbdsp_wdsp(sc, cc) < 0 ||
   1303 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1304 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
   1305 				return (EIO);
   1306 			}
   1307 		} else {
   1308 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
   1309 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1310 			    sbdsp_wdsp(sc, cc) < 0 ||
   1311 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1312 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
   1313 				return (EIO);
   1314 			}
   1315 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
   1316 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
   1317 				return (EIO);
   1318 			}
   1319 		}
   1320 		sc->sc_i.run = SB_LOOPING;
   1321 	}
   1322 
   1323 	return (0);
   1324 }
   1325 
   1326 int
   1327 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
   1328 	void *addr;
   1329 	void *start, *end;
   1330 	int blksize;
   1331 	void (*intr) __P((void *));
   1332 	void *arg;
   1333 	struct audio_params *param;
   1334 {
   1335 	struct sbdsp_softc *sc = addr;
   1336 	int stereo = param->channels == 2;
   1337 	int width = param->precision * param->factor;
   1338 	int cmd;
   1339 
   1340 #ifdef DIAGNOSTIC
   1341 	if (stereo && (blksize & 1)) {
   1342 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
   1343 		return (EIO);
   1344 	}
   1345 	if (sc->sc_o.run != SB_NOTRUNNING)
   1346 		printf("sbdsp_trigger_output: already running\n");
   1347 #endif
   1348 
   1349 	sc->sc_intrp = intr;
   1350 	sc->sc_argp = arg;
   1351 
   1352 	if (width == 8) {
   1353 #ifdef DIAGNOSTIC
   1354 		if (sc->sc_o.dmachan != sc->sc_drq8) {
   1355 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1356 			    width, sc->sc_o.dmachan);
   1357 			return (EIO);
   1358 		}
   1359 #endif
   1360 		sc->sc_intr8 = sbdsp_block_output;
   1361 	} else {
   1362 #ifdef DIAGNOSTIC
   1363 		if (sc->sc_o.dmachan != sc->sc_drq16) {
   1364 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
   1365 			    width, sc->sc_o.dmachan);
   1366 			return (EIO);
   1367 		}
   1368 #endif
   1369 		sc->sc_intr16 = sbdsp_block_output;
   1370 	}
   1371 
   1372 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
   1373 		blksize >>= 1;
   1374 	--blksize;
   1375 	sc->sc_o.blksize = blksize;
   1376 
   1377 	if (ISSBPRO(sc)) {
   1378 		/* make sure we re-set stereo mixer bit when we start output. */
   1379 		sbdsp_mix_write(sc, SBP_STEREO,
   1380 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
   1381 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
   1382 		cmd = sc->sc_o.modep->cmdchan;
   1383 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
   1384 			return (EIO);
   1385 	}
   1386 
   1387 	if (ISSB16CLASS(sc)) {
   1388 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
   1389 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
   1390 				 sc->sc_o.rate));
   1391 			return (EIO);
   1392 		}
   1393 	} else {
   1394 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
   1395 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
   1396 				 sc->sc_o.rate));
   1397 			return (EIO);
   1398 		}
   1399 	}
   1400 
   1401 	DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
   1402 	    start, end, sc->sc_o.dmachan));
   1403 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
   1404 	    (char *)end - (char *)start, NULL,
   1405 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
   1406 
   1407 	return sbdsp_block_output(addr);
   1408 }
   1409 
   1410 int
   1411 sbdsp_block_output(addr)
   1412 	void *addr;
   1413 {
   1414 	struct sbdsp_softc *sc = addr;
   1415 	int cc = sc->sc_o.blksize;
   1416 
   1417 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
   1418 
   1419 	if (sc->sc_o.run != SB_NOTRUNNING)
   1420 		sc->sc_intrp(sc->sc_argp);
   1421 
   1422 	if (sc->sc_model == SB_1) {
   1423 		/* Non-looping mode, initialized. Start DMA and PCM */
   1424 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1425 		    sbdsp_wdsp(sc, cc) < 0 ||
   1426 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1427 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
   1428 			return (EIO);
   1429 		}
   1430 		sc->sc_o.run = SB_RUNNING;
   1431 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
   1432 		/* Initialize looping PCM */
   1433 		if (ISSB16CLASS(sc)) {
   1434 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
   1435 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
   1436 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
   1437 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
   1438 			    sbdsp_wdsp(sc, cc) < 0 ||
   1439 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1440 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
   1441 				return (EIO);
   1442 			}
   1443 		} else {
   1444 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
   1445 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
   1446 			    sbdsp_wdsp(sc, cc) < 0 ||
   1447 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
   1448 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
   1449 				return (EIO);
   1450 			}
   1451 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
   1452 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
   1453 				return (EIO);
   1454 			}
   1455 		}
   1456 		sc->sc_o.run = SB_LOOPING;
   1457 	}
   1458 
   1459 	return (0);
   1460 }
   1461 
   1462 int
   1463 sbdsp_halt_output(addr)
   1464 	void *addr;
   1465 {
   1466 	struct sbdsp_softc *sc = addr;
   1467 
   1468 	if (sc->sc_o.run != SB_NOTRUNNING) {
   1469 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
   1470 			printf("sbdsp_halt_output: failed to halt\n");
   1471 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
   1472 		sc->sc_o.run = SB_NOTRUNNING;
   1473 	}
   1474 
   1475 	return (0);
   1476 }
   1477 
   1478 int
   1479 sbdsp_halt_input(addr)
   1480 	void *addr;
   1481 {
   1482 	struct sbdsp_softc *sc = addr;
   1483 
   1484 	if (sc->sc_i.run != SB_NOTRUNNING) {
   1485 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
   1486 			printf("sbdsp_halt_input: failed to halt\n");
   1487 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
   1488 		sc->sc_i.run = SB_NOTRUNNING;
   1489 	}
   1490 
   1491 	return (0);
   1492 }
   1493 
   1494 /*
   1495  * Only the DSP unit on the sound blaster generates interrupts.
   1496  * There are three cases of interrupt: reception of a midi byte
   1497  * (when mode is enabled), completion of dma transmission, or
   1498  * completion of a dma reception.
   1499  *
   1500  * If there is interrupt sharing or a spurious interrupt occurs
   1501  * there is no way to distinguish this on an SB2.  So if you have
   1502  * an SB2 and experience problems, buy an SB16 (it's only $40).
   1503  */
   1504 int
   1505 sbdsp_intr(arg)
   1506 	void *arg;
   1507 {
   1508 	struct sbdsp_softc *sc = arg;
   1509 	u_char irq;
   1510 
   1511 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
   1512 		   sc->sc_intr8, sc->sc_intr16));
   1513 	if (ISSB16CLASS(sc)) {
   1514 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
   1515 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
   1516 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
   1517 			return 0;
   1518 		}
   1519 	} else {
   1520 		/* XXXX CHECK FOR INTERRUPT */
   1521 		irq = SBP_IRQ_DMA8;
   1522 	}
   1523 
   1524 	sc->sc_interrupts++;
   1525 	delay(10);		/* XXX why? */
   1526 
   1527 	/* clear interrupt */
   1528 	if (irq & SBP_IRQ_DMA8) {
   1529 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
   1530 		if (sc->sc_intr8)
   1531 			sc->sc_intr8(arg);
   1532 	}
   1533 	if (irq & SBP_IRQ_DMA16) {
   1534 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
   1535 		if (sc->sc_intr16)
   1536 			sc->sc_intr16(arg);
   1537 	}
   1538 #if NMIDI > 0
   1539 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
   1540 		mpu_intr(sc->sc_mpudev);
   1541 	}
   1542 #endif
   1543 	return 1;
   1544 }
   1545 
   1546 /* Like val & mask, but make sure the result is correctly rounded. */
   1547 #define MAXVAL 256
   1548 static int
   1549 sbdsp_adjust(val, mask)
   1550 	int val, mask;
   1551 {
   1552 	val += (MAXVAL - mask) >> 1;
   1553 	if (val >= MAXVAL)
   1554 		val = MAXVAL-1;
   1555 	return val & mask;
   1556 }
   1557 
   1558 void
   1559 sbdsp_set_mixer_gain(sc, port)
   1560 	struct sbdsp_softc *sc;
   1561 	int port;
   1562 {
   1563 	int src, gain;
   1564 
   1565 	switch(sc->sc_mixer_model) {
   1566 	case SBM_NONE:
   1567 		return;
   1568 	case SBM_CT1335:
   1569 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
   1570 		switch(port) {
   1571 		case SB_MASTER_VOL:
   1572 			src = SBP_1335_MASTER_VOL;
   1573 			break;
   1574 		case SB_MIDI_VOL:
   1575 			src = SBP_1335_MIDI_VOL;
   1576 			break;
   1577 		case SB_CD_VOL:
   1578 			src = SBP_1335_CD_VOL;
   1579 			break;
   1580 		case SB_VOICE_VOL:
   1581 			src = SBP_1335_VOICE_VOL;
   1582 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
   1583 			break;
   1584 		default:
   1585 			return;
   1586 		}
   1587 		sbdsp_mix_write(sc, src, gain);
   1588 		break;
   1589 	case SBM_CT1345:
   1590 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
   1591 				      sc->gain[port][SB_RIGHT]);
   1592 		switch (port) {
   1593 		case SB_MIC_VOL:
   1594 			src = SBP_MIC_VOL;
   1595 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
   1596 			break;
   1597 		case SB_MASTER_VOL:
   1598 			src = SBP_MASTER_VOL;
   1599 			break;
   1600 		case SB_LINE_IN_VOL:
   1601 			src = SBP_LINE_VOL;
   1602 			break;
   1603 		case SB_VOICE_VOL:
   1604 			src = SBP_VOICE_VOL;
   1605 			break;
   1606 		case SB_MIDI_VOL:
   1607 			src = SBP_MIDI_VOL;
   1608 			break;
   1609 		case SB_CD_VOL:
   1610 			src = SBP_CD_VOL;
   1611 			break;
   1612 		default:
   1613 			return;
   1614 		}
   1615 		sbdsp_mix_write(sc, src, gain);
   1616 		break;
   1617 	case SBM_CT1XX5:
   1618 	case SBM_CT1745:
   1619 		switch (port) {
   1620 		case SB_MIC_VOL:
   1621 			src = SB16P_MIC_L;
   1622 			break;
   1623 		case SB_MASTER_VOL:
   1624 			src = SB16P_MASTER_L;
   1625 			break;
   1626 		case SB_LINE_IN_VOL:
   1627 			src = SB16P_LINE_L;
   1628 			break;
   1629 		case SB_VOICE_VOL:
   1630 			src = SB16P_VOICE_L;
   1631 			break;
   1632 		case SB_MIDI_VOL:
   1633 			src = SB16P_MIDI_L;
   1634 			break;
   1635 		case SB_CD_VOL:
   1636 			src = SB16P_CD_L;
   1637 			break;
   1638 		case SB_INPUT_GAIN:
   1639 			src = SB16P_INPUT_GAIN_L;
   1640 			break;
   1641 		case SB_OUTPUT_GAIN:
   1642 			src = SB16P_OUTPUT_GAIN_L;
   1643 			break;
   1644 		case SB_TREBLE:
   1645 			src = SB16P_TREBLE_L;
   1646 			break;
   1647 		case SB_BASS:
   1648 			src = SB16P_BASS_L;
   1649 			break;
   1650 		case SB_PCSPEAKER:
   1651 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
   1652 			return;
   1653 		default:
   1654 			return;
   1655 		}
   1656 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
   1657 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
   1658 		break;
   1659 	}
   1660 }
   1661 
   1662 int
   1663 sbdsp_mixer_set_port(addr, cp)
   1664 	void *addr;
   1665 	mixer_ctrl_t *cp;
   1666 {
   1667 	struct sbdsp_softc *sc = addr;
   1668 	int lgain, rgain;
   1669 	int mask, bits;
   1670 	int lmask, rmask, lbits, rbits;
   1671 	int mute, swap;
   1672 
   1673 	if (sc->sc_open == SB_OPEN_MIDI)
   1674 		return EBUSY;
   1675 
   1676 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
   1677 	    cp->un.value.num_channels));
   1678 
   1679 	if (sc->sc_mixer_model == SBM_NONE)
   1680 		return EINVAL;
   1681 
   1682 	switch (cp->dev) {
   1683 	case SB_TREBLE:
   1684 	case SB_BASS:
   1685 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1686 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1687 			if (cp->type != AUDIO_MIXER_ENUM)
   1688 				return EINVAL;
   1689 			switch (cp->dev) {
   1690 			case SB_TREBLE:
   1691 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
   1692 				return 0;
   1693 			case SB_BASS:
   1694 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
   1695 				return 0;
   1696 			}
   1697 		}
   1698 	case SB_PCSPEAKER:
   1699 	case SB_INPUT_GAIN:
   1700 	case SB_OUTPUT_GAIN:
   1701 		if (!ISSBM1745(sc))
   1702 			return EINVAL;
   1703 	case SB_MIC_VOL:
   1704 	case SB_LINE_IN_VOL:
   1705 		if (sc->sc_mixer_model == SBM_CT1335)
   1706 			return EINVAL;
   1707 	case SB_VOICE_VOL:
   1708 	case SB_MIDI_VOL:
   1709 	case SB_CD_VOL:
   1710 	case SB_MASTER_VOL:
   1711 		if (cp->type != AUDIO_MIXER_VALUE)
   1712 			return EINVAL;
   1713 
   1714 		/*
   1715 		 * All the mixer ports are stereo except for the microphone.
   1716 		 * If we get a single-channel gain value passed in, then we
   1717 		 * duplicate it to both left and right channels.
   1718 		 */
   1719 
   1720 		switch (cp->dev) {
   1721 		case SB_MIC_VOL:
   1722 			if (cp->un.value.num_channels != 1)
   1723 				return EINVAL;
   1724 
   1725 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
   1726 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1727 			break;
   1728 		case SB_PCSPEAKER:
   1729 			if (cp->un.value.num_channels != 1)
   1730 				return EINVAL;
   1731 			/* fall into */
   1732 		case SB_INPUT_GAIN:
   1733 		case SB_OUTPUT_GAIN:
   1734 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
   1735 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1736 			break;
   1737 		default:
   1738 			switch (cp->un.value.num_channels) {
   1739 			case 1:
   1740 				lgain = rgain = SB_ADJUST_GAIN(sc,
   1741 				  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
   1742 				break;
   1743 			case 2:
   1744 				if (sc->sc_mixer_model == SBM_CT1335)
   1745 					return EINVAL;
   1746 				lgain = SB_ADJUST_GAIN(sc,
   1747 				  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
   1748 				rgain = SB_ADJUST_GAIN(sc,
   1749 				  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
   1750 				break;
   1751 			default:
   1752 				return EINVAL;
   1753 			}
   1754 			break;
   1755 		}
   1756 		sc->gain[cp->dev][SB_LEFT]  = lgain;
   1757 		sc->gain[cp->dev][SB_RIGHT] = rgain;
   1758 
   1759 		sbdsp_set_mixer_gain(sc, cp->dev);
   1760 		break;
   1761 
   1762 	case SB_RECORD_SOURCE:
   1763 		if (ISSBM1745(sc)) {
   1764 			if (cp->type != AUDIO_MIXER_SET)
   1765 				return EINVAL;
   1766 			return sbdsp_set_in_ports(sc, cp->un.mask);
   1767 		} else {
   1768 			if (cp->type != AUDIO_MIXER_ENUM)
   1769 				return EINVAL;
   1770 			sc->in_port = cp->un.ord;
   1771 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
   1772 		}
   1773 		break;
   1774 
   1775 	case SB_AGC:
   1776 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
   1777 			return EINVAL;
   1778 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
   1779 		break;
   1780 
   1781 	case SB_CD_OUT_MUTE:
   1782 		mask = SB16P_SW_CD;
   1783 		goto omute;
   1784 	case SB_MIC_OUT_MUTE:
   1785 		mask = SB16P_SW_MIC;
   1786 		goto omute;
   1787 	case SB_LINE_OUT_MUTE:
   1788 		mask = SB16P_SW_LINE;
   1789 	omute:
   1790 		if (cp->type != AUDIO_MIXER_ENUM)
   1791 			return EINVAL;
   1792 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
   1793 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1794 		if (cp->un.ord)
   1795 			bits = bits & ~mask;
   1796 		else
   1797 			bits = bits | mask;
   1798 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
   1799 		break;
   1800 
   1801 	case SB_MIC_IN_MUTE:
   1802 	case SB_MIC_SWAP:
   1803 		lmask = rmask = SB16P_SW_MIC;
   1804 		goto imute;
   1805 	case SB_CD_IN_MUTE:
   1806 	case SB_CD_SWAP:
   1807 		lmask = SB16P_SW_CD_L;
   1808 		rmask = SB16P_SW_CD_R;
   1809 		goto imute;
   1810 	case SB_LINE_IN_MUTE:
   1811 	case SB_LINE_SWAP:
   1812 		lmask = SB16P_SW_LINE_L;
   1813 		rmask = SB16P_SW_LINE_R;
   1814 		goto imute;
   1815 	case SB_MIDI_IN_MUTE:
   1816 	case SB_MIDI_SWAP:
   1817 		lmask = SB16P_SW_MIDI_L;
   1818 		rmask = SB16P_SW_MIDI_R;
   1819 	imute:
   1820 		if (cp->type != AUDIO_MIXER_ENUM)
   1821 			return EINVAL;
   1822 		mask = lmask | rmask;
   1823 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
   1824 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
   1825 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
   1826 		if (SB_IS_IN_MUTE(cp->dev)) {
   1827 			mute = cp->dev;
   1828 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
   1829 		} else {
   1830 			swap = cp->dev;
   1831 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
   1832 		}
   1833 		if (sc->gain[swap][SB_LR]) {
   1834 			mask = lmask;
   1835 			lmask = rmask;
   1836 			rmask = mask;
   1837 		}
   1838 		if (!sc->gain[mute][SB_LR]) {
   1839 			lbits = lbits | lmask;
   1840 			rbits = rbits | rmask;
   1841 		}
   1842 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
   1843 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
   1844 		break;
   1845 
   1846 	default:
   1847 		return EINVAL;
   1848 	}
   1849 
   1850 	return 0;
   1851 }
   1852 
   1853 int
   1854 sbdsp_mixer_get_port(addr, cp)
   1855 	void *addr;
   1856 	mixer_ctrl_t *cp;
   1857 {
   1858 	struct sbdsp_softc *sc = addr;
   1859 
   1860 	if (sc->sc_open == SB_OPEN_MIDI)
   1861 		return EBUSY;
   1862 
   1863 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
   1864 
   1865 	if (sc->sc_mixer_model == SBM_NONE)
   1866 		return EINVAL;
   1867 
   1868 	switch (cp->dev) {
   1869 	case SB_TREBLE:
   1870 	case SB_BASS:
   1871 		if (sc->sc_mixer_model == SBM_CT1345 ||
   1872 		    sc->sc_mixer_model == SBM_CT1XX5) {
   1873 			switch (cp->dev) {
   1874 			case SB_TREBLE:
   1875 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
   1876 				return 0;
   1877 			case SB_BASS:
   1878 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
   1879 				return 0;
   1880 			}
   1881 		}
   1882 	case SB_PCSPEAKER:
   1883 	case SB_INPUT_GAIN:
   1884 	case SB_OUTPUT_GAIN:
   1885 		if (!ISSBM1745(sc))
   1886 			return EINVAL;
   1887 	case SB_MIC_VOL:
   1888 	case SB_LINE_IN_VOL:
   1889 		if (sc->sc_mixer_model == SBM_CT1335)
   1890 			return EINVAL;
   1891 	case SB_VOICE_VOL:
   1892 	case SB_MIDI_VOL:
   1893 	case SB_CD_VOL:
   1894 	case SB_MASTER_VOL:
   1895 		switch (cp->dev) {
   1896 		case SB_MIC_VOL:
   1897 		case SB_PCSPEAKER:
   1898 			if (cp->un.value.num_channels != 1)
   1899 				return EINVAL;
   1900 			/* fall into */
   1901 		default:
   1902 			switch (cp->un.value.num_channels) {
   1903 			case 1:
   1904 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
   1905 					sc->gain[cp->dev][SB_LEFT];
   1906 				break;
   1907 			case 2:
   1908 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
   1909 					sc->gain[cp->dev][SB_LEFT];
   1910 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
   1911 					sc->gain[cp->dev][SB_RIGHT];
   1912 				break;
   1913 			default:
   1914 				return EINVAL;
   1915 			}
   1916 			break;
   1917 		}
   1918 		break;
   1919 
   1920 	case SB_RECORD_SOURCE:
   1921 		if (ISSBM1745(sc))
   1922 			cp->un.mask = sc->in_mask;
   1923 		else
   1924 			cp->un.ord = sc->in_port;
   1925 		break;
   1926 
   1927 	case SB_AGC:
   1928 		if (!ISSBM1745(sc))
   1929 			return EINVAL;
   1930 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
   1931 		break;
   1932 
   1933 	case SB_CD_IN_MUTE:
   1934 	case SB_MIC_IN_MUTE:
   1935 	case SB_LINE_IN_MUTE:
   1936 	case SB_MIDI_IN_MUTE:
   1937 	case SB_CD_SWAP:
   1938 	case SB_MIC_SWAP:
   1939 	case SB_LINE_SWAP:
   1940 	case SB_MIDI_SWAP:
   1941 	case SB_CD_OUT_MUTE:
   1942 	case SB_MIC_OUT_MUTE:
   1943 	case SB_LINE_OUT_MUTE:
   1944 		cp->un.ord = sc->gain[cp->dev][SB_LR];
   1945 		break;
   1946 
   1947 	default:
   1948 		return EINVAL;
   1949 	}
   1950 
   1951 	return 0;
   1952 }
   1953 
   1954 int
   1955 sbdsp_mixer_query_devinfo(addr, dip)
   1956 	void *addr;
   1957 	mixer_devinfo_t *dip;
   1958 {
   1959 	struct sbdsp_softc *sc = addr;
   1960 	int chan, class, is1745;
   1961 
   1962 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
   1963 		 sc->sc_mixer_model, dip->index));
   1964 
   1965 	if (sc->sc_mixer_model == SBM_NONE)
   1966 		return ENXIO;
   1967 
   1968 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
   1969 	is1745 = ISSBM1745(sc);
   1970 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
   1971 
   1972 	switch (dip->index) {
   1973 	case SB_MASTER_VOL:
   1974 		dip->type = AUDIO_MIXER_VALUE;
   1975 		dip->mixer_class = SB_OUTPUT_CLASS;
   1976 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   1977 		strcpy(dip->label.name, AudioNmaster);
   1978 		dip->un.v.num_channels = chan;
   1979 		strcpy(dip->un.v.units.name, AudioNvolume);
   1980 		return 0;
   1981 	case SB_MIDI_VOL:
   1982 		dip->type = AUDIO_MIXER_VALUE;
   1983 		dip->mixer_class = class;
   1984 		dip->prev = AUDIO_MIXER_LAST;
   1985 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
   1986 		strcpy(dip->label.name, AudioNfmsynth);
   1987 		dip->un.v.num_channels = chan;
   1988 		strcpy(dip->un.v.units.name, AudioNvolume);
   1989 		return 0;
   1990 	case SB_CD_VOL:
   1991 		dip->type = AUDIO_MIXER_VALUE;
   1992 		dip->mixer_class = class;
   1993 		dip->prev = AUDIO_MIXER_LAST;
   1994 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
   1995 		strcpy(dip->label.name, AudioNcd);
   1996 		dip->un.v.num_channels = chan;
   1997 		strcpy(dip->un.v.units.name, AudioNvolume);
   1998 		return 0;
   1999 	case SB_VOICE_VOL:
   2000 		dip->type = AUDIO_MIXER_VALUE;
   2001 		dip->mixer_class = class;
   2002 		dip->prev = AUDIO_MIXER_LAST;
   2003 		dip->next = AUDIO_MIXER_LAST;
   2004 		strcpy(dip->label.name, AudioNdac);
   2005 		dip->un.v.num_channels = chan;
   2006 		strcpy(dip->un.v.units.name, AudioNvolume);
   2007 		return 0;
   2008 	case SB_OUTPUT_CLASS:
   2009 		dip->type = AUDIO_MIXER_CLASS;
   2010 		dip->mixer_class = SB_OUTPUT_CLASS;
   2011 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2012 		strcpy(dip->label.name, AudioCoutputs);
   2013 		return 0;
   2014 	}
   2015 
   2016 	if (sc->sc_mixer_model == SBM_CT1335)
   2017 		return ENXIO;
   2018 
   2019 	switch (dip->index) {
   2020 	case SB_MIC_VOL:
   2021 		dip->type = AUDIO_MIXER_VALUE;
   2022 		dip->mixer_class = class;
   2023 		dip->prev = AUDIO_MIXER_LAST;
   2024 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
   2025 		strcpy(dip->label.name, AudioNmicrophone);
   2026 		dip->un.v.num_channels = 1;
   2027 		strcpy(dip->un.v.units.name, AudioNvolume);
   2028 		return 0;
   2029 
   2030 	case SB_LINE_IN_VOL:
   2031 		dip->type = AUDIO_MIXER_VALUE;
   2032 		dip->mixer_class = class;
   2033 		dip->prev = AUDIO_MIXER_LAST;
   2034 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
   2035 		strcpy(dip->label.name, AudioNline);
   2036 		dip->un.v.num_channels = 2;
   2037 		strcpy(dip->un.v.units.name, AudioNvolume);
   2038 		return 0;
   2039 
   2040 	case SB_RECORD_SOURCE:
   2041 		dip->mixer_class = SB_RECORD_CLASS;
   2042 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2043 		strcpy(dip->label.name, AudioNsource);
   2044 		if (ISSBM1745(sc)) {
   2045 			dip->type = AUDIO_MIXER_SET;
   2046 			dip->un.s.num_mem = 4;
   2047 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
   2048 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
   2049 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
   2050 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
   2051 			strcpy(dip->un.s.member[2].label.name, AudioNline);
   2052 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
   2053 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
   2054 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
   2055 		} else {
   2056 			dip->type = AUDIO_MIXER_ENUM;
   2057 			dip->un.e.num_mem = 3;
   2058 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
   2059 			dip->un.e.member[0].ord = SB_MIC_VOL;
   2060 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
   2061 			dip->un.e.member[1].ord = SB_CD_VOL;
   2062 			strcpy(dip->un.e.member[2].label.name, AudioNline);
   2063 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
   2064 		}
   2065 		return 0;
   2066 
   2067 	case SB_BASS:
   2068 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2069 		strcpy(dip->label.name, AudioNbass);
   2070 		if (sc->sc_mixer_model == SBM_CT1745) {
   2071 			dip->type = AUDIO_MIXER_VALUE;
   2072 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2073 			dip->un.v.num_channels = 2;
   2074 			strcpy(dip->un.v.units.name, AudioNbass);
   2075 		} else {
   2076 			dip->type = AUDIO_MIXER_ENUM;
   2077 			dip->mixer_class = SB_INPUT_CLASS;
   2078 			dip->un.e.num_mem = 2;
   2079 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2080 			dip->un.e.member[0].ord = 0;
   2081 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2082 			dip->un.e.member[1].ord = 1;
   2083 		}
   2084 		return 0;
   2085 
   2086 	case SB_TREBLE:
   2087 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2088 		strcpy(dip->label.name, AudioNtreble);
   2089 		if (sc->sc_mixer_model == SBM_CT1745) {
   2090 			dip->type = AUDIO_MIXER_VALUE;
   2091 			dip->mixer_class = SB_EQUALIZATION_CLASS;
   2092 			dip->un.v.num_channels = 2;
   2093 			strcpy(dip->un.v.units.name, AudioNtreble);
   2094 		} else {
   2095 			dip->type = AUDIO_MIXER_ENUM;
   2096 			dip->mixer_class = SB_INPUT_CLASS;
   2097 			dip->un.e.num_mem = 2;
   2098 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2099 			dip->un.e.member[0].ord = 0;
   2100 			strcpy(dip->un.e.member[1].label.name, AudioNon);
   2101 			dip->un.e.member[1].ord = 1;
   2102 		}
   2103 		return 0;
   2104 
   2105 	case SB_RECORD_CLASS:			/* record source class */
   2106 		dip->type = AUDIO_MIXER_CLASS;
   2107 		dip->mixer_class = SB_RECORD_CLASS;
   2108 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2109 		strcpy(dip->label.name, AudioCrecord);
   2110 		return 0;
   2111 
   2112 	case SB_INPUT_CLASS:
   2113 		dip->type = AUDIO_MIXER_CLASS;
   2114 		dip->mixer_class = SB_INPUT_CLASS;
   2115 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2116 		strcpy(dip->label.name, AudioCinputs);
   2117 		return 0;
   2118 
   2119 	}
   2120 
   2121 	if (sc->sc_mixer_model == SBM_CT1345)
   2122 		return ENXIO;
   2123 
   2124 	switch(dip->index) {
   2125 	case SB_PCSPEAKER:
   2126 		dip->type = AUDIO_MIXER_VALUE;
   2127 		dip->mixer_class = SB_INPUT_CLASS;
   2128 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2129 		strcpy(dip->label.name, "pc_speaker");
   2130 		dip->un.v.num_channels = 1;
   2131 		strcpy(dip->un.v.units.name, AudioNvolume);
   2132 		return 0;
   2133 
   2134 	case SB_INPUT_GAIN:
   2135 		dip->type = AUDIO_MIXER_VALUE;
   2136 		dip->mixer_class = SB_INPUT_CLASS;
   2137 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2138 		strcpy(dip->label.name, AudioNinput);
   2139 		dip->un.v.num_channels = 2;
   2140 		strcpy(dip->un.v.units.name, AudioNvolume);
   2141 		return 0;
   2142 
   2143 	case SB_OUTPUT_GAIN:
   2144 		dip->type = AUDIO_MIXER_VALUE;
   2145 		dip->mixer_class = SB_OUTPUT_CLASS;
   2146 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2147 		strcpy(dip->label.name, AudioNoutput);
   2148 		dip->un.v.num_channels = 2;
   2149 		strcpy(dip->un.v.units.name, AudioNvolume);
   2150 		return 0;
   2151 
   2152 	case SB_AGC:
   2153 		dip->type = AUDIO_MIXER_ENUM;
   2154 		dip->mixer_class = SB_INPUT_CLASS;
   2155 		dip->prev = dip->next = AUDIO_MIXER_LAST;
   2156 		strcpy(dip->label.name, "agc");
   2157 		dip->un.e.num_mem = 2;
   2158 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2159 		dip->un.e.member[0].ord = 0;
   2160 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2161 		dip->un.e.member[1].ord = 1;
   2162 		return 0;
   2163 
   2164 	case SB_EQUALIZATION_CLASS:
   2165 		dip->type = AUDIO_MIXER_CLASS;
   2166 		dip->mixer_class = SB_EQUALIZATION_CLASS;
   2167 		dip->next = dip->prev = AUDIO_MIXER_LAST;
   2168 		strcpy(dip->label.name, AudioCequalization);
   2169 		return 0;
   2170 
   2171 	case SB_CD_IN_MUTE:
   2172 		dip->prev = SB_CD_VOL;
   2173 		dip->next = SB_CD_SWAP;
   2174 		dip->mixer_class = SB_INPUT_CLASS;
   2175 		goto mute;
   2176 
   2177 	case SB_MIC_IN_MUTE:
   2178 		dip->prev = SB_MIC_VOL;
   2179 		dip->next = SB_MIC_SWAP;
   2180 		dip->mixer_class = SB_INPUT_CLASS;
   2181 		goto mute;
   2182 
   2183 	case SB_LINE_IN_MUTE:
   2184 		dip->prev = SB_LINE_IN_VOL;
   2185 		dip->next = SB_LINE_SWAP;
   2186 		dip->mixer_class = SB_INPUT_CLASS;
   2187 		goto mute;
   2188 
   2189 	case SB_MIDI_IN_MUTE:
   2190 		dip->prev = SB_MIDI_VOL;
   2191 		dip->next = SB_MIDI_SWAP;
   2192 		dip->mixer_class = SB_INPUT_CLASS;
   2193 		goto mute;
   2194 
   2195 	case SB_CD_SWAP:
   2196 		dip->prev = SB_CD_IN_MUTE;
   2197 		dip->next = SB_CD_OUT_MUTE;
   2198 		goto swap;
   2199 
   2200 	case SB_MIC_SWAP:
   2201 		dip->prev = SB_MIC_IN_MUTE;
   2202 		dip->next = SB_MIC_OUT_MUTE;
   2203 		goto swap;
   2204 
   2205 	case SB_LINE_SWAP:
   2206 		dip->prev = SB_LINE_IN_MUTE;
   2207 		dip->next = SB_LINE_OUT_MUTE;
   2208 		goto swap;
   2209 
   2210 	case SB_MIDI_SWAP:
   2211 		dip->prev = SB_MIDI_IN_MUTE;
   2212 		dip->next = AUDIO_MIXER_LAST;
   2213 	swap:
   2214 		dip->mixer_class = SB_INPUT_CLASS;
   2215 		strcpy(dip->label.name, AudioNswap);
   2216 		goto mute1;
   2217 
   2218 	case SB_CD_OUT_MUTE:
   2219 		dip->prev = SB_CD_SWAP;
   2220 		dip->next = AUDIO_MIXER_LAST;
   2221 		dip->mixer_class = SB_OUTPUT_CLASS;
   2222 		goto mute;
   2223 
   2224 	case SB_MIC_OUT_MUTE:
   2225 		dip->prev = SB_MIC_SWAP;
   2226 		dip->next = AUDIO_MIXER_LAST;
   2227 		dip->mixer_class = SB_OUTPUT_CLASS;
   2228 		goto mute;
   2229 
   2230 	case SB_LINE_OUT_MUTE:
   2231 		dip->prev = SB_LINE_SWAP;
   2232 		dip->next = AUDIO_MIXER_LAST;
   2233 		dip->mixer_class = SB_OUTPUT_CLASS;
   2234 	mute:
   2235 		strcpy(dip->label.name, AudioNmute);
   2236 	mute1:
   2237 		dip->type = AUDIO_MIXER_ENUM;
   2238 		dip->un.e.num_mem = 2;
   2239 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
   2240 		dip->un.e.member[0].ord = 0;
   2241 		strcpy(dip->un.e.member[1].label.name, AudioNon);
   2242 		dip->un.e.member[1].ord = 1;
   2243 		return 0;
   2244 
   2245 	}
   2246 
   2247 	return ENXIO;
   2248 }
   2249 
   2250 void *
   2251 sb_malloc(addr, direction, size, pool, flags)
   2252 	void *addr;
   2253 	int direction;
   2254 	size_t size;
   2255 	int pool, flags;
   2256 {
   2257 	struct sbdsp_softc *sc = addr;
   2258 	int drq;
   2259 
   2260 	if (sc->sc_drq8 != -1)
   2261 		drq = sc->sc_drq8;
   2262 	else
   2263 		drq = sc->sc_drq16;
   2264 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
   2265 }
   2266 
   2267 void
   2268 sb_free(addr, ptr, pool)
   2269 	void *addr;
   2270 	void *ptr;
   2271 	int pool;
   2272 {
   2273 	isa_free(ptr, pool);
   2274 }
   2275 
   2276 size_t
   2277 sb_round_buffersize(addr, direction, size)
   2278 	void *addr;
   2279 	int direction;
   2280 	size_t size;
   2281 {
   2282 	if (size > MAX_ISADMA)
   2283 		size = MAX_ISADMA;
   2284 	return (size);
   2285 }
   2286 
   2287 int
   2288 sb_mappage(addr, mem, off, prot)
   2289 	void *addr;
   2290 	void *mem;
   2291 	int off;
   2292 	int prot;
   2293 {
   2294 	return isa_mappage(mem, off, prot);
   2295 }
   2296 
   2297 int
   2298 sbdsp_get_props(addr)
   2299 	void *addr;
   2300 {
   2301 	struct sbdsp_softc *sc = addr;
   2302 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
   2303 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
   2304 }
   2305 
   2306 #if NMIDI > 0
   2307 /*
   2308  * MIDI related routines.
   2309  */
   2310 
   2311 int
   2312 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
   2313 	void *addr;
   2314 	int flags;
   2315 	void (*iintr)__P((void *, int));
   2316 	void (*ointr)__P((void *));
   2317 	void *arg;
   2318 {
   2319 	struct sbdsp_softc *sc = addr;
   2320 
   2321 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
   2322 
   2323 	if (sc->sc_open != SB_CLOSED)
   2324 		return EBUSY;
   2325 	if (sbdsp_reset(sc) != 0)
   2326 		return EIO;
   2327 
   2328 	sc->sc_open = SB_OPEN_MIDI;
   2329 	sc->sc_openflags = flags;
   2330 
   2331 	if (sc->sc_model >= SB_20)
   2332 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
   2333 			return EIO;
   2334 
   2335 	sc->sc_intr8 = sbdsp_midi_intr;
   2336 	sc->sc_intrm = iintr;
   2337 	sc->sc_argm = arg;
   2338 
   2339 	return 0;
   2340 }
   2341 
   2342 void
   2343 sbdsp_midi_close(addr)
   2344 	void *addr;
   2345 {
   2346 	struct sbdsp_softc *sc = addr;
   2347 
   2348 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
   2349 
   2350 	if (sc->sc_model >= SB_20)
   2351 		sbdsp_reset(sc); /* exit UART mode */
   2352 
   2353 	sc->sc_intrm = 0;
   2354 	sc->sc_open = SB_CLOSED;
   2355 }
   2356 
   2357 int
   2358 sbdsp_midi_output(addr, d)
   2359 	void *addr;
   2360 	int d;
   2361 {
   2362 	struct sbdsp_softc *sc = addr;
   2363 
   2364 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
   2365 		return EIO;
   2366 	if (sbdsp_wdsp(sc, d))
   2367 		return EIO;
   2368 	return 0;
   2369 }
   2370 
   2371 void
   2372 sbdsp_midi_getinfo(addr, mi)
   2373 	void *addr;
   2374 	struct midi_info *mi;
   2375 {
   2376 	struct sbdsp_softc *sc = addr;
   2377 
   2378 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
   2379 	mi->props = MIDI_PROP_CAN_INPUT;
   2380 }
   2381 
   2382 int
   2383 sbdsp_midi_intr(addr)
   2384 	void *addr;
   2385 {
   2386 	struct sbdsp_softc *sc = addr;
   2387 
   2388 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
   2389 	return (0);
   2390 }
   2391 
   2392 #endif
   2393 
   2394