gt.c revision 1.7 1 /* $NetBSD: gt.c,v 1.7 2004/09/13 12:55:48 drochner Exp $ */
2
3 /*
4 * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the NetBSD Project by
18 * Allegro Networks, Inc., and Wasabi Systems, Inc.
19 * 4. The name of Allegro Networks, Inc. may not be used to endorse
20 * or promote products derived from this software without specific prior
21 * written permission.
22 * 5. The name of Wasabi Systems, Inc. may not be used to endorse
23 * or promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
27 * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
28 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * gt.c -- GT system controller driver
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: gt.c,v 1.7 2004/09/13 12:55:48 drochner Exp $");
46
47 #include "opt_marvell.h"
48
49 #include <sys/param.h>
50 #include <sys/types.h>
51 #include <sys/cdefs.h>
52 #include <sys/extent.h>
53 #include <sys/device.h>
54 #include <sys/kernel.h>
55 #include <sys/malloc.h>
56
57 #define _BUS_SPACE_PRIVATE
58 #define _BUS_DMA_PRIVATE
59 #include <machine/bus.h>
60
61 #include <powerpc/spr.h>
62 #include <powerpc/oea/hid.h>
63
64 #include <dev/marvell/gtreg.h>
65 #include <dev/marvell/gtintrreg.h>
66 #include <dev/marvell/gtvar.h>
67 #include <dev/marvell/gtethreg.h>
68
69 #ifdef DEBUG
70 #include <sys/systm.h> /* for Debugger() */
71 #endif
72
73 #if ((GT_MPP_WATCHDOG & 0xf0f0f0f0) != 0)
74 # error /* unqualified: configuration botch! */
75 #endif
76 #if ((GT_MPP_WATCHDOG & GT_MPP_INTERRUPTS) != 0)
77 # error /* conflict: configuration botch! */
78 #endif
79
80 static void gt_comm_intr_enb(struct gt_softc *);
81 static void gt_devbus_intr_enb(struct gt_softc *);
82 #ifdef GT_ECC
83 static void gt_ecc_intr_enb(struct gt_softc *);
84 #endif
85
86
87 void gt_init_hostid (struct gt_softc *);
88 void gt_init_interrupt (struct gt_softc *);
89 static int gt_comm_intr (void *);
90
91 void gt_watchdog_init(struct gt_softc *);
92 void gt_watchdog_enable(void);
93 void gt_watchdog_disable(void);
94 void gt_watchdog_reset(void);
95
96 extern struct cfdriver gt_cd;
97
98 static int gtfound = 0;
99
100 static struct gt_softc *gt_watchdog_sc = 0;
101 static int gt_watchdog_state = 0;
102
103 int
104 gt_cfprint (void *aux, const char *pnp)
105 {
106 struct gt_attach_args *ga = aux;
107
108 if (pnp) {
109 aprint_normal("%s at %s", ga->ga_name, pnp);
110 }
111
112 aprint_normal(" unit %d", ga->ga_unit);
113 return (UNCONF);
114 }
115
116
117 static int
118 gt_cfsearch(struct device *parent, struct cfdata *cf,
119 const locdesc_t *ldesc, void *aux)
120 {
121 struct gt_softc *gt = (struct gt_softc *) parent;
122 struct gt_attach_args ga;
123
124 ga.ga_name = cf->cf_name;
125 ga.ga_dmat = gt->gt_dmat;
126 ga.ga_memt = gt->gt_memt;
127 ga.ga_memh = gt->gt_memh;
128 ga.ga_unit = cf->cf_loc[GTCF_UNIT];
129
130 if (config_match(parent, cf, &ga) > 0)
131 config_attach(parent, cf, &ga, gt_cfprint);
132
133 return (0);
134 }
135
136 void
137 gt_attach_common(struct gt_softc *gt)
138 {
139 uint32_t cpucfg, cpumode, cpumstr;
140 #ifdef DEBUG
141 uint32_t loaddr, hiaddr;
142 #endif
143
144 gtfound = 1;
145
146 cpumode = gt_read(gt, GT_CPU_Mode);
147 aprint_normal(": id %d", GT_CPUMode_MultiGTID_GET(cpumode));
148 if (cpumode & GT_CPUMode_MultiGT)
149 aprint_normal (" (multi)");
150 switch (GT_CPUMode_CPUType_GET(cpumode)) {
151 case 4: aprint_normal(", 60x bus"); break;
152 case 5: aprint_normal(", MPX bus"); break;
153 default: aprint_normal(", %#x(?) bus", GT_CPUMode_CPUType_GET(cpumode)); break;
154 }
155
156 cpumstr = gt_read(gt, GT_CPU_Master_Ctl);
157 cpumstr &= ~(GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock);
158 #if 0
159 cpumstr |= GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock;
160 #endif
161 gt_write(gt, GT_CPU_Master_Ctl, cpumstr);
162
163 switch (cpumstr & (GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock)) {
164 case 0: break;
165 case GT_CPUMstrCtl_CleanBlock: aprint_normal(", snoop=clean"); break;
166 case GT_CPUMstrCtl_FlushBlock: aprint_normal(", snoop=flush"); break;
167 case GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock:
168 aprint_normal(", snoop=clean&flush"); break;
169 }
170 aprint_normal(" wdog=%#x,%#x\n",
171 gt_read(gt, GT_WDOG_Config),
172 gt_read(gt, GT_WDOG_Value));
173
174 #if DEBUG
175 loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS0_Low_Decode));
176 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS0_High_Decode));
177 aprint_normal("%s: scs[0]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
178
179 loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS1_Low_Decode));
180 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS1_High_Decode));
181 aprint_normal("%s: scs[1]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
182
183 loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS2_Low_Decode));
184 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS2_High_Decode));
185 aprint_normal("%s: scs[2]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
186
187 loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS3_Low_Decode));
188 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS3_High_Decode));
189 aprint_normal("%s: scs[3]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
190
191 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS0_Low_Decode));
192 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS0_High_Decode));
193 aprint_normal("%s: cs[0]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
194
195 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS1_Low_Decode));
196 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS1_High_Decode));
197 aprint_normal("%s: cs[1]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
198
199 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS2_Low_Decode));
200 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS2_High_Decode));
201 aprint_normal("%s: cs[2]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
202
203 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS3_Low_Decode));
204 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS3_High_Decode));
205 aprint_normal("%s: cs[3]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
206
207 loaddr = GT_LowAddr_GET(gt_read(gt, GT_BootCS_Low_Decode));
208 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_BootCS_High_Decode));
209 aprint_normal("%s: bootcs=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
210
211 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_IO_Low_Decode));
212 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_IO_High_Decode));
213 aprint_normal("%s: pci0io=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
214
215 loaddr = gt_read(gt, GT_PCI0_IO_Remap);
216 aprint_normal("remap=%#010x\n", loaddr);
217
218 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem0_Low_Decode));
219 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem0_High_Decode));
220 aprint_normal("%s: pci0mem[0]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
221
222 loaddr = gt_read(gt, GT_PCI0_Mem0_Remap_Low);
223 hiaddr = gt_read(gt, GT_PCI0_Mem0_Remap_High);
224 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
225
226 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem1_Low_Decode));
227 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem1_High_Decode));
228 aprint_normal("%s: pci0mem[1]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
229
230 loaddr = gt_read(gt, GT_PCI0_Mem1_Remap_Low);
231 hiaddr = gt_read(gt, GT_PCI0_Mem1_Remap_High);
232 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
233
234 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem2_Low_Decode));
235 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem2_High_Decode));
236 aprint_normal("%s: pci0mem[2]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
237
238 loaddr = gt_read(gt, GT_PCI0_Mem2_Remap_Low);
239 hiaddr = gt_read(gt, GT_PCI0_Mem2_Remap_High);
240 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
241
242 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem3_Low_Decode));
243 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem3_High_Decode));
244 aprint_normal("%s: pci0mem[3]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
245
246 loaddr = gt_read(gt, GT_PCI0_Mem3_Remap_Low);
247 hiaddr = gt_read(gt, GT_PCI0_Mem3_Remap_High);
248 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
249
250 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_IO_Low_Decode));
251 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_IO_High_Decode));
252 aprint_normal("%s: pci1io=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
253
254 loaddr = gt_read(gt, GT_PCI1_IO_Remap);
255 aprint_normal("remap=%#010x\n", loaddr);
256
257 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem0_Low_Decode));
258 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem0_High_Decode));
259 aprint_normal("%s: pci1mem[0]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
260
261 loaddr = gt_read(gt, GT_PCI1_Mem0_Remap_Low);
262 hiaddr = gt_read(gt, GT_PCI1_Mem0_Remap_High);
263 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
264
265 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem1_Low_Decode));
266 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem1_High_Decode));
267 aprint_normal("%s: pci1mem[1]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
268
269 loaddr = gt_read(gt, GT_PCI1_Mem1_Remap_Low);
270 hiaddr = gt_read(gt, GT_PCI1_Mem1_Remap_High);
271 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
272
273 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem2_Low_Decode));
274 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem2_High_Decode));
275 aprint_normal("%s: pci1mem[2]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
276
277 loaddr = gt_read(gt, GT_PCI1_Mem2_Remap_Low);
278 hiaddr = gt_read(gt, GT_PCI1_Mem2_Remap_High);
279 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
280
281 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem3_Low_Decode));
282 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem3_High_Decode));
283 aprint_normal("%s: pci1mem[3]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
284
285 loaddr = gt_read(gt, GT_PCI1_Mem3_Remap_Low);
286 hiaddr = gt_read(gt, GT_PCI1_Mem3_Remap_High);
287 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
288
289 loaddr = GT_LowAddr_GET(gt_read(gt, GT_Internal_Decode));
290 aprint_normal("%s: internal=%#10x-%#10x\n", gt->gt_dev.dv_xname,
291 loaddr, loaddr+256*1024);
292
293 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CPU0_Low_Decode));
294 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CPU0_High_Decode));
295 aprint_normal("%s: cpu0=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
296
297 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CPU1_Low_Decode));
298 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CPU1_High_Decode));
299 aprint_normal("%s: cpu1=%#10x-%#10x", gt->gt_dev.dv_xname, loaddr, hiaddr);
300 #endif
301
302 aprint_normal("%s:", gt->gt_dev.dv_xname);
303
304 cpucfg = gt_read(gt, GT_CPU_Cfg);
305 cpucfg |= GT_CPUCfg_ConfSBDis; /* per errata #46 */
306 cpucfg |= GT_CPUCfg_AACKDelay; /* per restriction #18 */
307 gt_write(gt, GT_CPU_Cfg, cpucfg);
308 if (cpucfg & GT_CPUCfg_Pipeline)
309 aprint_normal(" pipeline");
310 if (cpucfg & GT_CPUCfg_AACKDelay)
311 aprint_normal(" aack-delay");
312 if (cpucfg & GT_CPUCfg_RdOOO)
313 aprint_normal(" read-ooo");
314 if (cpucfg & GT_CPUCfg_IOSBDis)
315 aprint_normal(" io-sb-dis");
316 if (cpucfg & GT_CPUCfg_ConfSBDis)
317 aprint_normal(" conf-sb-dis");
318 if (cpucfg & GT_CPUCfg_ClkSync)
319 aprint_normal(" clk-sync");
320 aprint_normal("\n");
321
322 gt_init_hostid(gt);
323
324 gt_watchdog_init(gt);
325
326 gt_init_interrupt(gt);
327
328 #ifdef GT_ECC
329 gt_ecc_intr_enb(gt);
330 #endif
331
332 gt_comm_intr_enb(gt);
333 gt_devbus_intr_enb(gt);
334
335 gt_watchdog_disable();
336 config_search_ia(gt_cfsearch, >->gt_dev, "gt", NULL);
337 gt_watchdog_service();
338 gt_watchdog_enable();
339 }
340
341 void
342 gt_init_hostid(struct gt_softc *gt)
343 {
344
345 hostid = 1; /* XXX: Used by i2c; needs work -- AKB */
346 }
347
348 void
349 gt_init_interrupt(struct gt_softc *gt)
350 {
351 u_int32_t mppirpts = GT_MPP_INTERRUPTS; /* from config */
352 u_int32_t r;
353 u_int32_t mppbit;
354 u_int32_t mask;
355 u_int32_t mppsel;
356 u_int32_t regoff;
357
358 gt_write(gt, ICR_CIM_LO, 0);
359 gt_write(gt, ICR_CIM_HI, 0);
360
361 /*
362 * configure the GPP interrupts:
363 * - set the configured MPP pins in GPP mode
364 * - set the configured GPP pins to input, active low, interrupt enbl
365 */
366 #ifdef DEBUG
367 printf("%s: mpp cfg ", gt->gt_dev.dv_xname);
368 for (regoff = GT_MPP_Control0; regoff <= GT_MPP_Control3; regoff += 4)
369 printf("%#x ", gt_read(gt, regoff));
370 printf(", mppirpts 0x%x\n", mppirpts);
371 #endif
372 mppbit = 0x1;
373 for (regoff = GT_MPP_Control0; regoff <= GT_MPP_Control3; regoff += 4) {
374 mask = 0;
375 for (mppsel = 0xf; mppsel; mppsel <<= 4) {
376 if (mppirpts & mppbit)
377 mask |= mppsel;
378 mppbit <<= 1;
379 }
380 if (mask) {
381 r = gt_read(gt, regoff);
382 r &= ~mask;
383 gt_write(gt, regoff, r);
384 }
385 }
386
387 r = gt_read(gt, GT_GPP_IO_Control);
388 r &= ~mppirpts;
389 gt_write(gt, GT_GPP_IO_Control, r);
390
391 r = gt_read(gt, GT_GPP_Level_Control);
392 r |= mppirpts;
393 gt_write(gt, GT_GPP_Level_Control, r);
394
395 r = gt_read(gt, GT_GPP_Interrupt_Mask);
396 r |= mppirpts;
397 gt_write(gt, GT_GPP_Interrupt_Mask, r);
398 }
399
400 uint32_t
401 gt_read_mpp (void)
402 {
403 return gt_read((struct gt_softc *)gt_cd.cd_devs[0], GT_GPP_Value);
404 }
405
406 #if 0
407 int
408 gt_bs_extent_init(struct discovery_bus_space *bs, char *name)
409 {
410 u_long start, end;
411 int i, j, error;
412
413 if (bs->bs_nregion == 0) {
414 bs->bs_extent = extent_create(name, 0xffffffffUL, 0xffffffffUL,
415 M_DEVBUF, NULL, 0, EX_NOCOALESCE|EX_WAITOK);
416 KASSERT(bs->bs_extent != NULL);
417 return 0;
418 }
419 /*
420 * Find the top and bottoms of this bus space.
421 */
422 start = bs->bs_regions[0].br_start;
423 end = bs->bs_regions[0].br_end;
424 #ifdef DEBUG
425 if (gtpci_debug > 1)
426 printf("gtpci_bs_extent_init: %s: region %d: %#lx-%#lx\n",
427 name, 0, bs->bs_regions[0].br_start,
428 bs->bs_regions[0].br_end);
429 #endif
430 for (i = 1; i < bs->bs_nregion; i++) {
431 if (bs->bs_regions[i].br_start < start)
432 start = bs->bs_regions[i].br_start;
433 if (bs->bs_regions[i].br_end > end)
434 end = bs->bs_regions[i].br_end;
435 #ifdef DEBUG
436 if (gtpci_debug > 1)
437 printf("gtpci_bs_extent_init: %s: region %d:"
438 " %#lx-%#lx\n",
439 name, i, bs->bs_regions[i].br_start,
440 bs->bs_regions[i].br_end);
441 #endif
442 }
443 /*
444 * Now that we have the top and bottom limits of this
445 * bus space, create the extent map that will manage this
446 * space for us.
447 */
448 #ifdef DEBUG
449 if (gtpci_debug > 1)
450 printf("gtpci_bs_extent_init: %s: create: %#lx-%#lx\n",
451 name, start, end);
452 #endif
453 bs->bs_extent = extent_create(name, start, end, M_DEVBUF,
454 NULL, 0, EX_NOCOALESCE|EX_WAITOK);
455 KASSERT(bs->bs_extent != NULL);
456
457 /* If there was more than one bus space region, then there
458 * might gaps in between them. Allocate the gap so that
459 * they will not be legal addresses in the extent.
460 */
461 for (i = 0; i < bs->bs_nregion && bs->bs_nregion > 1; i++) {
462 /* Initial start is "infinity" and the inital end is
463 * is the end of this bus region.
464 */
465 start = ~0UL;
466 end = bs->bs_regions[i].br_end;
467 /* For each region, if it starts after this region but less
468 * than the saved start, use its start address. If the start
469 * address is one past the end address, then we're done
470 */
471 for (j = 0; j < bs->bs_nregion && start > end + 1; j++) {
472 if (i == j)
473 continue;
474 if (bs->bs_regions[j].br_start > end &&
475 bs->bs_regions[j].br_start < start)
476 start = bs->bs_regions[j].br_start;
477 }
478 /*
479 * If we found a gap, allocate it away.
480 */
481 if (start != ~0UL && start != end + 1) {
482 #ifdef DEBUG
483 if (gtpci_debug > 1)
484 printf("gtpci_bs_extent_init: %s: alloc(hole): %#lx-%#lx\n",
485 name, end + 1, start - 1);
486 #endif
487 error = extent_alloc_region(bs->bs_extent, end + 1,
488 start - (end + 1), EX_NOWAIT);
489 KASSERT(error == 0);
490 }
491 }
492 return 1;
493 }
494 #endif
495
496 /*
497 * unknown board, enable everything
498 */
499 # define GT_CommUnitIntr_DFLT GT_CommUnitIntr_S0|GT_CommUnitIntr_S1 \
500 |GT_CommUnitIntr_E0|GT_CommUnitIntr_E1 \
501 |GT_CommUnitIntr_E2
502
503 static const char * const gt_comm_subunit_name[8] = {
504 "ethernet 0",
505 "ethernet 1",
506 "ethernet 2",
507 "(reserved)",
508 "MPSC 0",
509 "MPSC 1",
510 "(reserved)",
511 "(sel)",
512 };
513
514 static int
515 gt_comm_intr(void *arg)
516 {
517 struct gt_softc *gt = (struct gt_softc *)arg;
518 u_int32_t cause;
519 u_int32_t addr;
520 unsigned int mask;
521 int i;
522
523 cause = gt_read(gt, GT_CommUnitIntr_Cause);
524 gt_write(gt, GT_CommUnitIntr_Cause, ~cause);
525 addr = gt_read(gt, GT_CommUnitIntr_ErrAddr);
526
527 printf("%s: Comm Unit irpt, cause %#x addr %#x\n",
528 gt->gt_dev.dv_xname, cause, addr);
529
530 cause &= GT_CommUnitIntr_DFLT;
531 if (cause == 0)
532 return 0;
533
534 mask = 0x7;
535 for (i=0; i<7; i++) {
536 if (cause & mask) {
537 printf("%s: Comm Unit %s:", gt->gt_dev.dv_xname,
538 gt_comm_subunit_name[i]);
539 if (cause & 1)
540 printf(" AddrMiss");
541 if (cause & 2)
542 printf(" AccProt");
543 if (cause & 4)
544 printf(" WrProt");
545 printf("\n");
546 }
547 cause >>= 4;
548 }
549 return 1;
550 }
551
552 /*
553 * gt_comm_intr_init - enable GT-64260 Comm Unit interrupts
554 */
555 static void
556 gt_comm_intr_enb(struct gt_softc *gt)
557 {
558 u_int32_t cause;
559
560 cause = gt_read(gt, GT_CommUnitIntr_Cause);
561 if (cause)
562 gt_write(gt, GT_CommUnitIntr_Cause, ~cause);
563 gt_write(gt, GT_CommUnitIntr_Mask, GT_CommUnitIntr_DFLT);
564 (void)gt_read(gt, GT_CommUnitIntr_ErrAddr);
565
566 intr_establish(IRQ_COMM, IST_LEVEL, IPL_GTERR, gt_comm_intr, gt);
567 printf("%s: Comm Unit irpt at %d\n", gt->gt_dev.dv_xname, IRQ_COMM);
568 }
569
570 #ifdef GT_ECC
571 static char *gt_ecc_intr_str[4] = {
572 "(none)",
573 "single bit",
574 "double bit",
575 "(reserved)"
576 };
577
578 static int
579 gt_ecc_intr(void *arg)
580 {
581 struct gt_softc *gt = (struct gt_softc *)arg;
582 u_int32_t addr;
583 u_int32_t dlo;
584 u_int32_t dhi;
585 u_int32_t rec;
586 u_int32_t calc;
587 u_int32_t count;
588 int err;
589
590 count = gt_read(gt, GT_ECC_Count);
591 dlo = gt_read(gt, GT_ECC_Data_Lo);
592 dhi = gt_read(gt, GT_ECC_Data_Hi);
593 rec = gt_read(gt, GT_ECC_Rec);
594 calc = gt_read(gt, GT_ECC_Calc);
595 addr = gt_read(gt, GT_ECC_Addr); /* read last! */
596 gt_write(gt, GT_ECC_Addr, 0); /* clear irpt */
597
598 err = addr & 0x3;
599
600 printf("%s: ECC error: %s: "
601 "addr %#x data %#x.%#x rec %#x calc %#x cnt %#x\n",
602 gt->gt_dev.dv_xname, gt_ecc_intr_str[err],
603 addr, dhi, dlo, rec, calc, count);
604
605 if (err == 2)
606 panic("ecc");
607
608 return (err == 1);
609 }
610
611 /*
612 * gt_ecc_intr_enb - enable GT-64260 ECC interrupts
613 */
614 static void
615 gt_ecc_intr_enb(struct gt_softc *gt)
616 {
617 u_int32_t ctl;
618
619 ctl = gt_read(gt, GT_ECC_Ctl);
620 ctl |= 1 << 16; /* XXX 1-bit threshold == 1 */
621 gt_write(gt, GT_ECC_Ctl, ctl);
622 (void)gt_read(gt, GT_ECC_Data_Lo);
623 (void)gt_read(gt, GT_ECC_Data_Hi);
624 (void)gt_read(gt, GT_ECC_Rec);
625 (void)gt_read(gt, GT_ECC_Calc);
626 (void)gt_read(gt, GT_ECC_Addr); /* read last! */
627 gt_write(gt, GT_ECC_Addr, 0); /* clear irpt */
628
629 intr_establish(IRQ_ECC, IST_LEVEL, IPL_GTERR, gt_ecc_intr, gt);
630 printf("%s: ECC irpt at %d\n", gt->gt_dev.dv_xname, IRQ_ECC);
631 }
632 #endif /* GT_ECC */
633
634
635 #ifndef GT_MPP_WATCHDOG
636 void
637 gt_watchdog_init(struct gt_softc *gt)
638 {
639 u_int32_t r;
640 unsigned int omsr;
641
642 omsr = extintr_disable();
643
644 printf("%s: watchdog", gt->gt_dev.dv_xname);
645
646 /*
647 * handle case where firmware started watchdog
648 */
649 r = gt_read(gt, GT_WDOG_Config);
650 printf(" status %#x,%#x:",
651 r, gt_read(gt, GT_WDOG_Value));
652 if ((r & 0x80000000) != 0) {
653 gt_watchdog_sc = gt; /* enabled */
654 gt_watchdog_state = 1;
655 printf(" firmware-enabled\n");
656 gt_watchdog_service();
657 return;
658 } else {
659 printf(" firmware-disabled\n");
660 }
661
662 extintr_restore(omsr);
663 }
664
665 #else /* GT_MPP_WATCHDOG */
666
667 void
668 gt_watchdog_init(struct gt_softc *gt)
669 {
670 u_int32_t mpp_watchdog = GT_MPP_WATCHDOG; /* from config */
671 u_int32_t r;
672 u_int32_t cfgbits;
673 u_int32_t mppbits;
674 u_int32_t mppmask=0;
675 u_int32_t regoff;
676 unsigned int omsr;
677
678 printf("%s: watchdog", gt->gt_dev.dv_xname);
679
680 if (mpp_watchdog == 0) {
681 printf(" not configured\n");
682 return;
683 }
684
685 #if 0
686 if (afw_wdog_ctl == 1) {
687 printf(" admin disabled\n");
688 return;
689 }
690 #endif
691
692 omsr = extintr_disable();
693
694 /*
695 * if firmware started watchdog, we disable and start
696 * from scratch to get it in a known state.
697 *
698 * on GT-64260A we always see 0xffffffff
699 * in both the GT_WDOG_Config_Enb and GT_WDOG_Value regsiters.
700 * Use AFW-supplied flag to determine run state.
701 */
702 r = gt_read(gt, GT_WDOG_Config);
703 if (r != ~0) {
704 if ((r & GT_WDOG_Config_Enb) != 0) {
705 gt_write(gt, GT_WDOG_Config,
706 (GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
707 gt_write(gt, GT_WDOG_Config,
708 (GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
709 }
710 } else {
711 #if 0
712 if (afw_wdog_state == 1) {
713 gt_write(gt, GT_WDOG_Config,
714 (GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
715 gt_write(gt, GT_WDOG_Config,
716 (GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
717 }
718 #endif
719 }
720
721 /*
722 * "the watchdog timer can be activated only after
723 * configuring two MPP pins to act as WDE and WDNMI"
724 */
725 mppbits = 0;
726 cfgbits = 0x3;
727 for (regoff = GT_MPP_Control0; regoff <= GT_MPP_Control3; regoff += 4) {
728 if ((mpp_watchdog & cfgbits) == cfgbits) {
729 mppbits = 0x99;
730 mppmask = 0xff;
731 break;
732 }
733 cfgbits <<= 2;
734 if ((mpp_watchdog & cfgbits) == cfgbits) {
735 mppbits = 0x9900;
736 mppmask = 0xff00;
737 break;
738 }
739 cfgbits <<= 6; /* skip unqualified bits */
740 }
741 if (mppbits == 0) {
742 printf(" config error\n");
743 extintr_restore(omsr);
744 return;
745 }
746
747 r = gt_read(gt, regoff);
748 r &= ~mppmask;
749 r |= mppbits;
750 gt_write(gt, regoff, r);
751 printf(" mpp %#x %#x", regoff, mppbits);
752
753 gt_write(gt, GT_WDOG_Value, GT_WDOG_NMI_DFLT);
754
755 gt_write(gt, GT_WDOG_Config,
756 (GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
757 gt_write(gt, GT_WDOG_Config,
758 (GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
759
760
761 r = gt_read(gt, GT_WDOG_Config),
762 printf(" status %#x,%#x: %s",
763 r, gt_read(gt, GT_WDOG_Value),
764 ((r & GT_WDOG_Config_Enb) != 0) ? "enabled" : "botch");
765
766 if ((r & GT_WDOG_Config_Enb) != 0) {
767 register_t hid0;
768
769 gt_watchdog_sc = gt; /* enabled */
770 gt_watchdog_state = 1;
771
772 /*
773 * configure EMCP in HID0 in case it's not already set
774 */
775 __asm __volatile("sync");
776 hid0 = mfspr(SPR_HID0);
777 if ((hid0 & HID0_EMCP) == 0) {
778 hid0 |= HID0_EMCP;
779 __asm __volatile("sync"); mtspr(SPR_HID0, hid0);
780 __asm __volatile("sync"); hid0 = mfspr(SPR_HID0);
781 printf(", EMCP set");
782 }
783 }
784 printf("\n");
785
786 extintr_restore(omsr);
787 }
788 #endif /* GT_MPP_WATCHDOG */
789
790 #ifdef DEBUG
791 u_int32_t hid0_print(void);
792 u_int32_t
793 hid0_print()
794 {
795 u_int32_t hid0;
796 __asm __volatile("sync; mfspr %0,1008;" : "=r"(hid0));
797 printf("hid0: %#x\n", hid0);
798 return hid0;
799 }
800 #endif
801
802 void
803 gt_watchdog_enable(void)
804 {
805 struct gt_softc *gt;
806 unsigned int omsr;
807
808 omsr = extintr_disable();
809 gt = gt_watchdog_sc;
810 if ((gt != NULL) && (gt_watchdog_state == 0)) {
811 gt_watchdog_state = 1;
812
813 gt_write(gt, GT_WDOG_Config,
814 (GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
815 gt_write(gt, GT_WDOG_Config,
816 (GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
817 }
818 extintr_restore(omsr);
819 }
820
821 void
822 gt_watchdog_disable(void)
823 {
824 struct gt_softc *gt;
825 unsigned int omsr;
826
827 omsr = extintr_disable();
828 gt = gt_watchdog_sc;
829 if ((gt != NULL) && (gt_watchdog_state != 0)) {
830 gt_watchdog_state = 0;
831
832 gt_write(gt, GT_WDOG_Config,
833 (GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
834 gt_write(gt, GT_WDOG_Config,
835 (GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
836 }
837 extintr_restore(omsr);
838 }
839
840 #ifdef DEBUG
841 int inhibit_watchdog_service = 0;
842 #endif
843 void
844 gt_watchdog_service(void)
845 {
846 struct gt_softc *gt = gt_watchdog_sc;
847
848 if ((gt == NULL) || (gt_watchdog_state == 0))
849 return; /* not enabled */
850 #ifdef DEBUG
851 if (inhibit_watchdog_service)
852 return;
853 #endif
854
855 gt_write(gt, GT_WDOG_Config,
856 (GT_WDOG_Config_Ctl2a | GT_WDOG_Preset_DFLT));
857 gt_write(gt, GT_WDOG_Config,
858 (GT_WDOG_Config_Ctl2b | GT_WDOG_Preset_DFLT));
859 }
860
861 /*
862 * gt_watchdog_reset - force a watchdog reset using Preset_VAL=0
863 */
864 void
865 gt_watchdog_reset()
866 {
867 struct gt_softc *gt = gt_watchdog_sc;
868 u_int32_t r;
869
870 (void)extintr_disable();
871 r = gt_read(gt, GT_WDOG_Config);
872 gt_write(gt, GT_WDOG_Config, (GT_WDOG_Config_Ctl1a | 0));
873 gt_write(gt, GT_WDOG_Config, (GT_WDOG_Config_Ctl1b | 0));
874 if ((r & GT_WDOG_Config_Enb) != 0) {
875 /*
876 * was enabled, we just toggled it off, toggle on again
877 */
878 gt_write(gt, GT_WDOG_Config,
879 (GT_WDOG_Config_Ctl1a | 0));
880 gt_write(gt, GT_WDOG_Config,
881 (GT_WDOG_Config_Ctl1b | 0));
882 }
883 for(;;);
884 }
885
886 static int
887 gt_devbus_intr(void *arg)
888 {
889 struct gt_softc *gt = (struct gt_softc *)arg;
890 u_int32_t cause;
891 u_int32_t addr;
892
893 cause = gt_read(gt, GT_DEVBUS_ICAUSE);
894 addr = gt_read(gt, GT_DEVBUS_ERR_ADDR);
895 gt_write(gt, GT_DEVBUS_ICAUSE, 0); /* clear irpt */
896
897 if (cause & GT_DEVBUS_DBurstErr) {
898 printf("%s: Device Bus error: burst violation",
899 gt->gt_dev.dv_xname);
900 if ((cause & GT_DEVBUS_Sel) == 0)
901 printf(", addr %#x", addr);
902 printf("\n");
903 }
904 if (cause & GT_DEVBUS_DRdyErr) {
905 printf("%s: Device Bus error: ready timer expired",
906 gt->gt_dev.dv_xname);
907 if ((cause & GT_DEVBUS_Sel) != 0)
908 printf(", addr %#x\n", addr);
909 printf("\n");
910 }
911
912 return (cause != 0);
913 }
914
915 /*
916 * gt_ecc_intr_enb - enable GT-64260 ECC interrupts
917 */
918 static void
919 gt_devbus_intr_enb(struct gt_softc *gt)
920 {
921 gt_write(gt, GT_DEVBUS_IMASK,
922 GT_DEVBUS_DBurstErr|GT_DEVBUS_DRdyErr);
923 (void)gt_read(gt, GT_DEVBUS_ERR_ADDR); /* clear addr */
924 gt_write(gt, GT_ECC_Addr, 0); /* clear irpt */
925
926 intr_establish(IRQ_DEV, IST_LEVEL, IPL_GTERR, gt_devbus_intr, gt);
927 printf("%s: Device Bus Error irpt at %d\n",
928 gt->gt_dev.dv_xname, IRQ_DEV);
929 }
930
931
932 int
933 gt_mii_read(
934 struct device *child,
935 struct device *parent,
936 int phy,
937 int reg)
938 {
939 struct gt_softc * const gt = (struct gt_softc *) parent;
940 uint32_t data;
941 int count = 10000;
942
943 do {
944 DELAY(10);
945 data = gt_read(gt, ETH_ESMIR);
946 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
947
948 if (count == 0) {
949 printf("%s: mii read for phy %d reg %d busied out\n",
950 child->dv_xname, phy, reg);
951 return ETH_ESMIR_Value_GET(data);
952 }
953
954 gt_write(gt, ETH_ESMIR, ETH_ESMIR_READ(phy, reg));
955
956 count = 10000;
957 do {
958 DELAY(10);
959 data = gt_read(gt, ETH_ESMIR);
960 } while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
961
962 if (count == 0)
963 printf("%s: mii read for phy %d reg %d timed out\n",
964 child->dv_xname, phy, reg);
965 #if defined(GTMIIDEBUG)
966 printf("%s: mii_read(%d, %d): %#x data %#x\n",
967 child->dv_xname, phy, reg,
968 data, ETH_ESMIR_Value_GET(data));
969 #endif
970 return ETH_ESMIR_Value_GET(data);
971 }
972
973 void
974 gt_mii_write (
975 struct device *child,
976 struct device *parent,
977 int phy, int reg,
978 int value)
979 {
980 struct gt_softc * const gt = (struct gt_softc *) parent;
981 uint32_t data;
982 int count = 10000;
983
984 do {
985 DELAY(10);
986 data = gt_read(gt, ETH_ESMIR);
987 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
988
989 if (count == 0) {
990 printf("%s: mii write for phy %d reg %d busied out (busy)\n",
991 child->dv_xname, phy, reg);
992 return;
993 }
994
995 gt_write(gt, ETH_ESMIR,
996 ETH_ESMIR_WRITE(phy, reg, value));
997
998 count = 10000;
999 do {
1000 DELAY(10);
1001 data = gt_read(gt, ETH_ESMIR);
1002 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
1003
1004 if (count == 0)
1005 printf("%s: mii write for phy %d reg %d timed out\n",
1006 child->dv_xname, phy, reg);
1007 #if defined(GTMIIDEBUG)
1008 printf("%s: mii_write(%d, %d, %#x)\n",
1009 child->dv_xname, phy, reg, value);
1010 #endif
1011 }
1012
1013 /*
1014 * Since the memory and pci spaces are mapped 1:1 we just need
1015 * to return unity here
1016 */
1017 bus_addr_t
1018 gt_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a)
1019 {
1020 return a;
1021 }
1022 bus_addr_t
1023 gt_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a)
1024 {
1025 return a;
1026 }
1027