gt.c revision 1.9 1 /* $NetBSD: gt.c,v 1.9 2005/02/27 00:27:21 perry Exp $ */
2
3 /*
4 * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the NetBSD Project by
18 * Allegro Networks, Inc., and Wasabi Systems, Inc.
19 * 4. The name of Allegro Networks, Inc. may not be used to endorse
20 * or promote products derived from this software without specific prior
21 * written permission.
22 * 5. The name of Wasabi Systems, Inc. may not be used to endorse
23 * or promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
27 * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
28 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * gt.c -- GT system controller driver
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: gt.c,v 1.9 2005/02/27 00:27:21 perry Exp $");
46
47 #include "opt_marvell.h"
48 #include "locators.h"
49
50 #include <sys/param.h>
51 #include <sys/types.h>
52 #include <sys/cdefs.h>
53 #include <sys/extent.h>
54 #include <sys/device.h>
55 #include <sys/kernel.h>
56 #include <sys/malloc.h>
57
58 #define _BUS_SPACE_PRIVATE
59 #define _BUS_DMA_PRIVATE
60 #include <machine/bus.h>
61
62 #include <powerpc/spr.h>
63 #include <powerpc/oea/hid.h>
64
65 #include <dev/marvell/gtreg.h>
66 #include <dev/marvell/gtintrreg.h>
67 #include <dev/marvell/gtvar.h>
68 #include <dev/marvell/gtethreg.h>
69
70 #ifdef DEBUG
71 #include <sys/systm.h> /* for Debugger() */
72 #endif
73
74 #if ((GT_MPP_WATCHDOG & 0xf0f0f0f0) != 0)
75 # error /* unqualified: configuration botch! */
76 #endif
77 #if ((GT_MPP_WATCHDOG & GT_MPP_INTERRUPTS) != 0)
78 # error /* conflict: configuration botch! */
79 #endif
80
81 static void gt_comm_intr_enb(struct gt_softc *);
82 static void gt_devbus_intr_enb(struct gt_softc *);
83 #ifdef GT_ECC
84 static void gt_ecc_intr_enb(struct gt_softc *);
85 #endif
86
87
88 void gt_init_hostid (struct gt_softc *);
89 void gt_init_interrupt (struct gt_softc *);
90 static int gt_comm_intr (void *);
91
92 void gt_watchdog_init(struct gt_softc *);
93 void gt_watchdog_enable(void);
94 void gt_watchdog_disable(void);
95 void gt_watchdog_reset(void);
96
97 extern struct cfdriver gt_cd;
98
99 static int gtfound = 0;
100
101 static struct gt_softc *gt_watchdog_sc = 0;
102 static int gt_watchdog_state = 0;
103
104 int
105 gt_cfprint (void *aux, const char *pnp)
106 {
107 struct gt_attach_args *ga = aux;
108
109 if (pnp) {
110 aprint_normal("%s at %s", ga->ga_name, pnp);
111 }
112
113 aprint_normal(" unit %d", ga->ga_unit);
114 return (UNCONF);
115 }
116
117
118 static int
119 gt_cfsearch(struct device *parent, struct cfdata *cf,
120 const locdesc_t *ldesc, void *aux)
121 {
122 struct gt_softc *gt = (struct gt_softc *) parent;
123 struct gt_attach_args ga;
124
125 ga.ga_name = cf->cf_name;
126 ga.ga_dmat = gt->gt_dmat;
127 ga.ga_memt = gt->gt_memt;
128 ga.ga_memh = gt->gt_memh;
129 ga.ga_unit = cf->cf_loc[GTCF_UNIT];
130
131 if (config_match(parent, cf, &ga) > 0)
132 config_attach(parent, cf, &ga, gt_cfprint);
133
134 return (0);
135 }
136
137 void
138 gt_attach_common(struct gt_softc *gt)
139 {
140 uint32_t cpucfg, cpumode, cpumstr;
141 #ifdef DEBUG
142 uint32_t loaddr, hiaddr;
143 #endif
144
145 gtfound = 1;
146
147 cpumode = gt_read(gt, GT_CPU_Mode);
148 aprint_normal(": id %d", GT_CPUMode_MultiGTID_GET(cpumode));
149 if (cpumode & GT_CPUMode_MultiGT)
150 aprint_normal (" (multi)");
151 switch (GT_CPUMode_CPUType_GET(cpumode)) {
152 case 4: aprint_normal(", 60x bus"); break;
153 case 5: aprint_normal(", MPX bus"); break;
154 default: aprint_normal(", %#x(?) bus", GT_CPUMode_CPUType_GET(cpumode)); break;
155 }
156
157 cpumstr = gt_read(gt, GT_CPU_Master_Ctl);
158 cpumstr &= ~(GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock);
159 #if 0
160 cpumstr |= GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock;
161 #endif
162 gt_write(gt, GT_CPU_Master_Ctl, cpumstr);
163
164 switch (cpumstr & (GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock)) {
165 case 0: break;
166 case GT_CPUMstrCtl_CleanBlock: aprint_normal(", snoop=clean"); break;
167 case GT_CPUMstrCtl_FlushBlock: aprint_normal(", snoop=flush"); break;
168 case GT_CPUMstrCtl_CleanBlock|GT_CPUMstrCtl_FlushBlock:
169 aprint_normal(", snoop=clean&flush"); break;
170 }
171 aprint_normal(" wdog=%#x,%#x\n",
172 gt_read(gt, GT_WDOG_Config),
173 gt_read(gt, GT_WDOG_Value));
174
175 #if DEBUG
176 loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS0_Low_Decode));
177 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS0_High_Decode));
178 aprint_normal("%s: scs[0]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
179
180 loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS1_Low_Decode));
181 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS1_High_Decode));
182 aprint_normal("%s: scs[1]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
183
184 loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS2_Low_Decode));
185 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS2_High_Decode));
186 aprint_normal("%s: scs[2]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
187
188 loaddr = GT_LowAddr_GET(gt_read(gt, GT_SCS3_Low_Decode));
189 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_SCS3_High_Decode));
190 aprint_normal("%s: scs[3]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
191
192 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS0_Low_Decode));
193 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS0_High_Decode));
194 aprint_normal("%s: cs[0]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
195
196 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS1_Low_Decode));
197 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS1_High_Decode));
198 aprint_normal("%s: cs[1]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
199
200 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS2_Low_Decode));
201 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS2_High_Decode));
202 aprint_normal("%s: cs[2]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
203
204 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CS3_Low_Decode));
205 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CS3_High_Decode));
206 aprint_normal("%s: cs[3]=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
207
208 loaddr = GT_LowAddr_GET(gt_read(gt, GT_BootCS_Low_Decode));
209 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_BootCS_High_Decode));
210 aprint_normal("%s: bootcs=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
211
212 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_IO_Low_Decode));
213 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_IO_High_Decode));
214 aprint_normal("%s: pci0io=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
215
216 loaddr = gt_read(gt, GT_PCI0_IO_Remap);
217 aprint_normal("remap=%#010x\n", loaddr);
218
219 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem0_Low_Decode));
220 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem0_High_Decode));
221 aprint_normal("%s: pci0mem[0]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
222
223 loaddr = gt_read(gt, GT_PCI0_Mem0_Remap_Low);
224 hiaddr = gt_read(gt, GT_PCI0_Mem0_Remap_High);
225 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
226
227 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem1_Low_Decode));
228 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem1_High_Decode));
229 aprint_normal("%s: pci0mem[1]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
230
231 loaddr = gt_read(gt, GT_PCI0_Mem1_Remap_Low);
232 hiaddr = gt_read(gt, GT_PCI0_Mem1_Remap_High);
233 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
234
235 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem2_Low_Decode));
236 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem2_High_Decode));
237 aprint_normal("%s: pci0mem[2]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
238
239 loaddr = gt_read(gt, GT_PCI0_Mem2_Remap_Low);
240 hiaddr = gt_read(gt, GT_PCI0_Mem2_Remap_High);
241 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
242
243 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI0_Mem3_Low_Decode));
244 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI0_Mem3_High_Decode));
245 aprint_normal("%s: pci0mem[3]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
246
247 loaddr = gt_read(gt, GT_PCI0_Mem3_Remap_Low);
248 hiaddr = gt_read(gt, GT_PCI0_Mem3_Remap_High);
249 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
250
251 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_IO_Low_Decode));
252 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_IO_High_Decode));
253 aprint_normal("%s: pci1io=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
254
255 loaddr = gt_read(gt, GT_PCI1_IO_Remap);
256 aprint_normal("remap=%#010x\n", loaddr);
257
258 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem0_Low_Decode));
259 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem0_High_Decode));
260 aprint_normal("%s: pci1mem[0]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
261
262 loaddr = gt_read(gt, GT_PCI1_Mem0_Remap_Low);
263 hiaddr = gt_read(gt, GT_PCI1_Mem0_Remap_High);
264 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
265
266 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem1_Low_Decode));
267 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem1_High_Decode));
268 aprint_normal("%s: pci1mem[1]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
269
270 loaddr = gt_read(gt, GT_PCI1_Mem1_Remap_Low);
271 hiaddr = gt_read(gt, GT_PCI1_Mem1_Remap_High);
272 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
273
274 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem2_Low_Decode));
275 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem2_High_Decode));
276 aprint_normal("%s: pci1mem[2]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
277
278 loaddr = gt_read(gt, GT_PCI1_Mem2_Remap_Low);
279 hiaddr = gt_read(gt, GT_PCI1_Mem2_Remap_High);
280 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
281
282 loaddr = GT_LowAddr_GET(gt_read(gt, GT_PCI1_Mem3_Low_Decode));
283 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_PCI1_Mem3_High_Decode));
284 aprint_normal("%s: pci1mem[3]=%#10x-%#10x ", gt->gt_dev.dv_xname, loaddr, hiaddr);
285
286 loaddr = gt_read(gt, GT_PCI1_Mem3_Remap_Low);
287 hiaddr = gt_read(gt, GT_PCI1_Mem3_Remap_High);
288 aprint_normal("remap=%#010x.%#010x\n", hiaddr, loaddr);
289
290 loaddr = GT_LowAddr_GET(gt_read(gt, GT_Internal_Decode));
291 aprint_normal("%s: internal=%#10x-%#10x\n", gt->gt_dev.dv_xname,
292 loaddr, loaddr+256*1024);
293
294 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CPU0_Low_Decode));
295 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CPU0_High_Decode));
296 aprint_normal("%s: cpu0=%#10x-%#10x\n", gt->gt_dev.dv_xname, loaddr, hiaddr);
297
298 loaddr = GT_LowAddr_GET(gt_read(gt, GT_CPU1_Low_Decode));
299 hiaddr = GT_HighAddr_GET(gt_read(gt, GT_CPU1_High_Decode));
300 aprint_normal("%s: cpu1=%#10x-%#10x", gt->gt_dev.dv_xname, loaddr, hiaddr);
301 #endif
302
303 aprint_normal("%s:", gt->gt_dev.dv_xname);
304
305 cpucfg = gt_read(gt, GT_CPU_Cfg);
306 cpucfg |= GT_CPUCfg_ConfSBDis; /* per errata #46 */
307 cpucfg |= GT_CPUCfg_AACKDelay; /* per restriction #18 */
308 gt_write(gt, GT_CPU_Cfg, cpucfg);
309 if (cpucfg & GT_CPUCfg_Pipeline)
310 aprint_normal(" pipeline");
311 if (cpucfg & GT_CPUCfg_AACKDelay)
312 aprint_normal(" aack-delay");
313 if (cpucfg & GT_CPUCfg_RdOOO)
314 aprint_normal(" read-ooo");
315 if (cpucfg & GT_CPUCfg_IOSBDis)
316 aprint_normal(" io-sb-dis");
317 if (cpucfg & GT_CPUCfg_ConfSBDis)
318 aprint_normal(" conf-sb-dis");
319 if (cpucfg & GT_CPUCfg_ClkSync)
320 aprint_normal(" clk-sync");
321 aprint_normal("\n");
322
323 gt_init_hostid(gt);
324
325 gt_watchdog_init(gt);
326
327 gt_init_interrupt(gt);
328
329 #ifdef GT_ECC
330 gt_ecc_intr_enb(gt);
331 #endif
332
333 gt_comm_intr_enb(gt);
334 gt_devbus_intr_enb(gt);
335
336 gt_watchdog_disable();
337 config_search_ia(gt_cfsearch, >->gt_dev, "gt", NULL);
338 gt_watchdog_service();
339 gt_watchdog_enable();
340 }
341
342 void
343 gt_init_hostid(struct gt_softc *gt)
344 {
345
346 hostid = 1; /* XXX: Used by i2c; needs work -- AKB */
347 }
348
349 void
350 gt_init_interrupt(struct gt_softc *gt)
351 {
352 u_int32_t mppirpts = GT_MPP_INTERRUPTS; /* from config */
353 u_int32_t r;
354 u_int32_t mppbit;
355 u_int32_t mask;
356 u_int32_t mppsel;
357 u_int32_t regoff;
358
359 gt_write(gt, ICR_CIM_LO, 0);
360 gt_write(gt, ICR_CIM_HI, 0);
361
362 /*
363 * configure the GPP interrupts:
364 * - set the configured MPP pins in GPP mode
365 * - set the configured GPP pins to input, active low, interrupt enbl
366 */
367 #ifdef DEBUG
368 printf("%s: mpp cfg ", gt->gt_dev.dv_xname);
369 for (regoff = GT_MPP_Control0; regoff <= GT_MPP_Control3; regoff += 4)
370 printf("%#x ", gt_read(gt, regoff));
371 printf(", mppirpts 0x%x\n", mppirpts);
372 #endif
373 mppbit = 0x1;
374 for (regoff = GT_MPP_Control0; regoff <= GT_MPP_Control3; regoff += 4) {
375 mask = 0;
376 for (mppsel = 0xf; mppsel; mppsel <<= 4) {
377 if (mppirpts & mppbit)
378 mask |= mppsel;
379 mppbit <<= 1;
380 }
381 if (mask) {
382 r = gt_read(gt, regoff);
383 r &= ~mask;
384 gt_write(gt, regoff, r);
385 }
386 }
387
388 r = gt_read(gt, GT_GPP_IO_Control);
389 r &= ~mppirpts;
390 gt_write(gt, GT_GPP_IO_Control, r);
391
392 r = gt_read(gt, GT_GPP_Level_Control);
393 r |= mppirpts;
394 gt_write(gt, GT_GPP_Level_Control, r);
395
396 r = gt_read(gt, GT_GPP_Interrupt_Mask);
397 r |= mppirpts;
398 gt_write(gt, GT_GPP_Interrupt_Mask, r);
399 }
400
401 uint32_t
402 gt_read_mpp (void)
403 {
404 return gt_read((struct gt_softc *)gt_cd.cd_devs[0], GT_GPP_Value);
405 }
406
407 #if 0
408 int
409 gt_bs_extent_init(struct discovery_bus_space *bs, char *name)
410 {
411 u_long start, end;
412 int i, j, error;
413
414 if (bs->bs_nregion == 0) {
415 bs->bs_extent = extent_create(name, 0xffffffffUL, 0xffffffffUL,
416 M_DEVBUF, NULL, 0, EX_NOCOALESCE|EX_WAITOK);
417 KASSERT(bs->bs_extent != NULL);
418 return 0;
419 }
420 /*
421 * Find the top and bottoms of this bus space.
422 */
423 start = bs->bs_regions[0].br_start;
424 end = bs->bs_regions[0].br_end;
425 #ifdef DEBUG
426 if (gtpci_debug > 1)
427 printf("gtpci_bs_extent_init: %s: region %d: %#lx-%#lx\n",
428 name, 0, bs->bs_regions[0].br_start,
429 bs->bs_regions[0].br_end);
430 #endif
431 for (i = 1; i < bs->bs_nregion; i++) {
432 if (bs->bs_regions[i].br_start < start)
433 start = bs->bs_regions[i].br_start;
434 if (bs->bs_regions[i].br_end > end)
435 end = bs->bs_regions[i].br_end;
436 #ifdef DEBUG
437 if (gtpci_debug > 1)
438 printf("gtpci_bs_extent_init: %s: region %d:"
439 " %#lx-%#lx\n",
440 name, i, bs->bs_regions[i].br_start,
441 bs->bs_regions[i].br_end);
442 #endif
443 }
444 /*
445 * Now that we have the top and bottom limits of this
446 * bus space, create the extent map that will manage this
447 * space for us.
448 */
449 #ifdef DEBUG
450 if (gtpci_debug > 1)
451 printf("gtpci_bs_extent_init: %s: create: %#lx-%#lx\n",
452 name, start, end);
453 #endif
454 bs->bs_extent = extent_create(name, start, end, M_DEVBUF,
455 NULL, 0, EX_NOCOALESCE|EX_WAITOK);
456 KASSERT(bs->bs_extent != NULL);
457
458 /* If there was more than one bus space region, then there
459 * might gaps in between them. Allocate the gap so that
460 * they will not be legal addresses in the extent.
461 */
462 for (i = 0; i < bs->bs_nregion && bs->bs_nregion > 1; i++) {
463 /* Initial start is "infinity" and the inital end is
464 * is the end of this bus region.
465 */
466 start = ~0UL;
467 end = bs->bs_regions[i].br_end;
468 /* For each region, if it starts after this region but less
469 * than the saved start, use its start address. If the start
470 * address is one past the end address, then we're done
471 */
472 for (j = 0; j < bs->bs_nregion && start > end + 1; j++) {
473 if (i == j)
474 continue;
475 if (bs->bs_regions[j].br_start > end &&
476 bs->bs_regions[j].br_start < start)
477 start = bs->bs_regions[j].br_start;
478 }
479 /*
480 * If we found a gap, allocate it away.
481 */
482 if (start != ~0UL && start != end + 1) {
483 #ifdef DEBUG
484 if (gtpci_debug > 1)
485 printf("gtpci_bs_extent_init: %s: alloc(hole): %#lx-%#lx\n",
486 name, end + 1, start - 1);
487 #endif
488 error = extent_alloc_region(bs->bs_extent, end + 1,
489 start - (end + 1), EX_NOWAIT);
490 KASSERT(error == 0);
491 }
492 }
493 return 1;
494 }
495 #endif
496
497 /*
498 * unknown board, enable everything
499 */
500 # define GT_CommUnitIntr_DFLT GT_CommUnitIntr_S0|GT_CommUnitIntr_S1 \
501 |GT_CommUnitIntr_E0|GT_CommUnitIntr_E1 \
502 |GT_CommUnitIntr_E2
503
504 static const char * const gt_comm_subunit_name[8] = {
505 "ethernet 0",
506 "ethernet 1",
507 "ethernet 2",
508 "(reserved)",
509 "MPSC 0",
510 "MPSC 1",
511 "(reserved)",
512 "(sel)",
513 };
514
515 static int
516 gt_comm_intr(void *arg)
517 {
518 struct gt_softc *gt = (struct gt_softc *)arg;
519 u_int32_t cause;
520 u_int32_t addr;
521 unsigned int mask;
522 int i;
523
524 cause = gt_read(gt, GT_CommUnitIntr_Cause);
525 gt_write(gt, GT_CommUnitIntr_Cause, ~cause);
526 addr = gt_read(gt, GT_CommUnitIntr_ErrAddr);
527
528 printf("%s: Comm Unit irpt, cause %#x addr %#x\n",
529 gt->gt_dev.dv_xname, cause, addr);
530
531 cause &= GT_CommUnitIntr_DFLT;
532 if (cause == 0)
533 return 0;
534
535 mask = 0x7;
536 for (i=0; i<7; i++) {
537 if (cause & mask) {
538 printf("%s: Comm Unit %s:", gt->gt_dev.dv_xname,
539 gt_comm_subunit_name[i]);
540 if (cause & 1)
541 printf(" AddrMiss");
542 if (cause & 2)
543 printf(" AccProt");
544 if (cause & 4)
545 printf(" WrProt");
546 printf("\n");
547 }
548 cause >>= 4;
549 }
550 return 1;
551 }
552
553 /*
554 * gt_comm_intr_init - enable GT-64260 Comm Unit interrupts
555 */
556 static void
557 gt_comm_intr_enb(struct gt_softc *gt)
558 {
559 u_int32_t cause;
560
561 cause = gt_read(gt, GT_CommUnitIntr_Cause);
562 if (cause)
563 gt_write(gt, GT_CommUnitIntr_Cause, ~cause);
564 gt_write(gt, GT_CommUnitIntr_Mask, GT_CommUnitIntr_DFLT);
565 (void)gt_read(gt, GT_CommUnitIntr_ErrAddr);
566
567 intr_establish(IRQ_COMM, IST_LEVEL, IPL_GTERR, gt_comm_intr, gt);
568 printf("%s: Comm Unit irpt at %d\n", gt->gt_dev.dv_xname, IRQ_COMM);
569 }
570
571 #ifdef GT_ECC
572 static char *gt_ecc_intr_str[4] = {
573 "(none)",
574 "single bit",
575 "double bit",
576 "(reserved)"
577 };
578
579 static int
580 gt_ecc_intr(void *arg)
581 {
582 struct gt_softc *gt = (struct gt_softc *)arg;
583 u_int32_t addr;
584 u_int32_t dlo;
585 u_int32_t dhi;
586 u_int32_t rec;
587 u_int32_t calc;
588 u_int32_t count;
589 int err;
590
591 count = gt_read(gt, GT_ECC_Count);
592 dlo = gt_read(gt, GT_ECC_Data_Lo);
593 dhi = gt_read(gt, GT_ECC_Data_Hi);
594 rec = gt_read(gt, GT_ECC_Rec);
595 calc = gt_read(gt, GT_ECC_Calc);
596 addr = gt_read(gt, GT_ECC_Addr); /* read last! */
597 gt_write(gt, GT_ECC_Addr, 0); /* clear irpt */
598
599 err = addr & 0x3;
600
601 printf("%s: ECC error: %s: "
602 "addr %#x data %#x.%#x rec %#x calc %#x cnt %#x\n",
603 gt->gt_dev.dv_xname, gt_ecc_intr_str[err],
604 addr, dhi, dlo, rec, calc, count);
605
606 if (err == 2)
607 panic("ecc");
608
609 return (err == 1);
610 }
611
612 /*
613 * gt_ecc_intr_enb - enable GT-64260 ECC interrupts
614 */
615 static void
616 gt_ecc_intr_enb(struct gt_softc *gt)
617 {
618 u_int32_t ctl;
619
620 ctl = gt_read(gt, GT_ECC_Ctl);
621 ctl |= 1 << 16; /* XXX 1-bit threshold == 1 */
622 gt_write(gt, GT_ECC_Ctl, ctl);
623 (void)gt_read(gt, GT_ECC_Data_Lo);
624 (void)gt_read(gt, GT_ECC_Data_Hi);
625 (void)gt_read(gt, GT_ECC_Rec);
626 (void)gt_read(gt, GT_ECC_Calc);
627 (void)gt_read(gt, GT_ECC_Addr); /* read last! */
628 gt_write(gt, GT_ECC_Addr, 0); /* clear irpt */
629
630 intr_establish(IRQ_ECC, IST_LEVEL, IPL_GTERR, gt_ecc_intr, gt);
631 printf("%s: ECC irpt at %d\n", gt->gt_dev.dv_xname, IRQ_ECC);
632 }
633 #endif /* GT_ECC */
634
635
636 #ifndef GT_MPP_WATCHDOG
637 void
638 gt_watchdog_init(struct gt_softc *gt)
639 {
640 u_int32_t r;
641 unsigned int omsr;
642
643 omsr = extintr_disable();
644
645 printf("%s: watchdog", gt->gt_dev.dv_xname);
646
647 /*
648 * handle case where firmware started watchdog
649 */
650 r = gt_read(gt, GT_WDOG_Config);
651 printf(" status %#x,%#x:",
652 r, gt_read(gt, GT_WDOG_Value));
653 if ((r & 0x80000000) != 0) {
654 gt_watchdog_sc = gt; /* enabled */
655 gt_watchdog_state = 1;
656 printf(" firmware-enabled\n");
657 gt_watchdog_service();
658 return;
659 } else {
660 printf(" firmware-disabled\n");
661 }
662
663 extintr_restore(omsr);
664 }
665
666 #else /* GT_MPP_WATCHDOG */
667
668 void
669 gt_watchdog_init(struct gt_softc *gt)
670 {
671 u_int32_t mpp_watchdog = GT_MPP_WATCHDOG; /* from config */
672 u_int32_t r;
673 u_int32_t cfgbits;
674 u_int32_t mppbits;
675 u_int32_t mppmask=0;
676 u_int32_t regoff;
677 unsigned int omsr;
678
679 printf("%s: watchdog", gt->gt_dev.dv_xname);
680
681 if (mpp_watchdog == 0) {
682 printf(" not configured\n");
683 return;
684 }
685
686 #if 0
687 if (afw_wdog_ctl == 1) {
688 printf(" admin disabled\n");
689 return;
690 }
691 #endif
692
693 omsr = extintr_disable();
694
695 /*
696 * if firmware started watchdog, we disable and start
697 * from scratch to get it in a known state.
698 *
699 * on GT-64260A we always see 0xffffffff
700 * in both the GT_WDOG_Config_Enb and GT_WDOG_Value regsiters.
701 * Use AFW-supplied flag to determine run state.
702 */
703 r = gt_read(gt, GT_WDOG_Config);
704 if (r != ~0) {
705 if ((r & GT_WDOG_Config_Enb) != 0) {
706 gt_write(gt, GT_WDOG_Config,
707 (GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
708 gt_write(gt, GT_WDOG_Config,
709 (GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
710 }
711 } else {
712 #if 0
713 if (afw_wdog_state == 1) {
714 gt_write(gt, GT_WDOG_Config,
715 (GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
716 gt_write(gt, GT_WDOG_Config,
717 (GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
718 }
719 #endif
720 }
721
722 /*
723 * "the watchdog timer can be activated only after
724 * configuring two MPP pins to act as WDE and WDNMI"
725 */
726 mppbits = 0;
727 cfgbits = 0x3;
728 for (regoff = GT_MPP_Control0; regoff <= GT_MPP_Control3; regoff += 4) {
729 if ((mpp_watchdog & cfgbits) == cfgbits) {
730 mppbits = 0x99;
731 mppmask = 0xff;
732 break;
733 }
734 cfgbits <<= 2;
735 if ((mpp_watchdog & cfgbits) == cfgbits) {
736 mppbits = 0x9900;
737 mppmask = 0xff00;
738 break;
739 }
740 cfgbits <<= 6; /* skip unqualified bits */
741 }
742 if (mppbits == 0) {
743 printf(" config error\n");
744 extintr_restore(omsr);
745 return;
746 }
747
748 r = gt_read(gt, regoff);
749 r &= ~mppmask;
750 r |= mppbits;
751 gt_write(gt, regoff, r);
752 printf(" mpp %#x %#x", regoff, mppbits);
753
754 gt_write(gt, GT_WDOG_Value, GT_WDOG_NMI_DFLT);
755
756 gt_write(gt, GT_WDOG_Config,
757 (GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
758 gt_write(gt, GT_WDOG_Config,
759 (GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
760
761
762 r = gt_read(gt, GT_WDOG_Config),
763 printf(" status %#x,%#x: %s",
764 r, gt_read(gt, GT_WDOG_Value),
765 ((r & GT_WDOG_Config_Enb) != 0) ? "enabled" : "botch");
766
767 if ((r & GT_WDOG_Config_Enb) != 0) {
768 register_t hid0;
769
770 gt_watchdog_sc = gt; /* enabled */
771 gt_watchdog_state = 1;
772
773 /*
774 * configure EMCP in HID0 in case it's not already set
775 */
776 __asm __volatile("sync");
777 hid0 = mfspr(SPR_HID0);
778 if ((hid0 & HID0_EMCP) == 0) {
779 hid0 |= HID0_EMCP;
780 __asm __volatile("sync"); mtspr(SPR_HID0, hid0);
781 __asm __volatile("sync"); hid0 = mfspr(SPR_HID0);
782 printf(", EMCP set");
783 }
784 }
785 printf("\n");
786
787 extintr_restore(omsr);
788 }
789 #endif /* GT_MPP_WATCHDOG */
790
791 #ifdef DEBUG
792 u_int32_t hid0_print(void);
793 u_int32_t
794 hid0_print()
795 {
796 u_int32_t hid0;
797 __asm __volatile("sync; mfspr %0,1008;" : "=r"(hid0));
798 printf("hid0: %#x\n", hid0);
799 return hid0;
800 }
801 #endif
802
803 void
804 gt_watchdog_enable(void)
805 {
806 struct gt_softc *gt;
807 unsigned int omsr;
808
809 omsr = extintr_disable();
810 gt = gt_watchdog_sc;
811 if ((gt != NULL) && (gt_watchdog_state == 0)) {
812 gt_watchdog_state = 1;
813
814 gt_write(gt, GT_WDOG_Config,
815 (GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
816 gt_write(gt, GT_WDOG_Config,
817 (GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
818 }
819 extintr_restore(omsr);
820 }
821
822 void
823 gt_watchdog_disable(void)
824 {
825 struct gt_softc *gt;
826 unsigned int omsr;
827
828 omsr = extintr_disable();
829 gt = gt_watchdog_sc;
830 if ((gt != NULL) && (gt_watchdog_state != 0)) {
831 gt_watchdog_state = 0;
832
833 gt_write(gt, GT_WDOG_Config,
834 (GT_WDOG_Config_Ctl1a | GT_WDOG_Preset_DFLT));
835 gt_write(gt, GT_WDOG_Config,
836 (GT_WDOG_Config_Ctl1b | GT_WDOG_Preset_DFLT));
837 }
838 extintr_restore(omsr);
839 }
840
841 #ifdef DEBUG
842 int inhibit_watchdog_service = 0;
843 #endif
844 void
845 gt_watchdog_service(void)
846 {
847 struct gt_softc *gt = gt_watchdog_sc;
848
849 if ((gt == NULL) || (gt_watchdog_state == 0))
850 return; /* not enabled */
851 #ifdef DEBUG
852 if (inhibit_watchdog_service)
853 return;
854 #endif
855
856 gt_write(gt, GT_WDOG_Config,
857 (GT_WDOG_Config_Ctl2a | GT_WDOG_Preset_DFLT));
858 gt_write(gt, GT_WDOG_Config,
859 (GT_WDOG_Config_Ctl2b | GT_WDOG_Preset_DFLT));
860 }
861
862 /*
863 * gt_watchdog_reset - force a watchdog reset using Preset_VAL=0
864 */
865 void
866 gt_watchdog_reset()
867 {
868 struct gt_softc *gt = gt_watchdog_sc;
869 u_int32_t r;
870
871 (void)extintr_disable();
872 r = gt_read(gt, GT_WDOG_Config);
873 gt_write(gt, GT_WDOG_Config, (GT_WDOG_Config_Ctl1a | 0));
874 gt_write(gt, GT_WDOG_Config, (GT_WDOG_Config_Ctl1b | 0));
875 if ((r & GT_WDOG_Config_Enb) != 0) {
876 /*
877 * was enabled, we just toggled it off, toggle on again
878 */
879 gt_write(gt, GT_WDOG_Config,
880 (GT_WDOG_Config_Ctl1a | 0));
881 gt_write(gt, GT_WDOG_Config,
882 (GT_WDOG_Config_Ctl1b | 0));
883 }
884 for(;;);
885 }
886
887 static int
888 gt_devbus_intr(void *arg)
889 {
890 struct gt_softc *gt = (struct gt_softc *)arg;
891 u_int32_t cause;
892 u_int32_t addr;
893
894 cause = gt_read(gt, GT_DEVBUS_ICAUSE);
895 addr = gt_read(gt, GT_DEVBUS_ERR_ADDR);
896 gt_write(gt, GT_DEVBUS_ICAUSE, 0); /* clear irpt */
897
898 if (cause & GT_DEVBUS_DBurstErr) {
899 printf("%s: Device Bus error: burst violation",
900 gt->gt_dev.dv_xname);
901 if ((cause & GT_DEVBUS_Sel) == 0)
902 printf(", addr %#x", addr);
903 printf("\n");
904 }
905 if (cause & GT_DEVBUS_DRdyErr) {
906 printf("%s: Device Bus error: ready timer expired",
907 gt->gt_dev.dv_xname);
908 if ((cause & GT_DEVBUS_Sel) != 0)
909 printf(", addr %#x\n", addr);
910 printf("\n");
911 }
912
913 return (cause != 0);
914 }
915
916 /*
917 * gt_ecc_intr_enb - enable GT-64260 ECC interrupts
918 */
919 static void
920 gt_devbus_intr_enb(struct gt_softc *gt)
921 {
922 gt_write(gt, GT_DEVBUS_IMASK,
923 GT_DEVBUS_DBurstErr|GT_DEVBUS_DRdyErr);
924 (void)gt_read(gt, GT_DEVBUS_ERR_ADDR); /* clear addr */
925 gt_write(gt, GT_ECC_Addr, 0); /* clear irpt */
926
927 intr_establish(IRQ_DEV, IST_LEVEL, IPL_GTERR, gt_devbus_intr, gt);
928 printf("%s: Device Bus Error irpt at %d\n",
929 gt->gt_dev.dv_xname, IRQ_DEV);
930 }
931
932
933 int
934 gt_mii_read(
935 struct device *child,
936 struct device *parent,
937 int phy,
938 int reg)
939 {
940 struct gt_softc * const gt = (struct gt_softc *) parent;
941 uint32_t data;
942 int count = 10000;
943
944 do {
945 DELAY(10);
946 data = gt_read(gt, ETH_ESMIR);
947 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
948
949 if (count == 0) {
950 printf("%s: mii read for phy %d reg %d busied out\n",
951 child->dv_xname, phy, reg);
952 return ETH_ESMIR_Value_GET(data);
953 }
954
955 gt_write(gt, ETH_ESMIR, ETH_ESMIR_READ(phy, reg));
956
957 count = 10000;
958 do {
959 DELAY(10);
960 data = gt_read(gt, ETH_ESMIR);
961 } while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
962
963 if (count == 0)
964 printf("%s: mii read for phy %d reg %d timed out\n",
965 child->dv_xname, phy, reg);
966 #if defined(GTMIIDEBUG)
967 printf("%s: mii_read(%d, %d): %#x data %#x\n",
968 child->dv_xname, phy, reg,
969 data, ETH_ESMIR_Value_GET(data));
970 #endif
971 return ETH_ESMIR_Value_GET(data);
972 }
973
974 void
975 gt_mii_write (
976 struct device *child,
977 struct device *parent,
978 int phy, int reg,
979 int value)
980 {
981 struct gt_softc * const gt = (struct gt_softc *) parent;
982 uint32_t data;
983 int count = 10000;
984
985 do {
986 DELAY(10);
987 data = gt_read(gt, ETH_ESMIR);
988 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
989
990 if (count == 0) {
991 printf("%s: mii write for phy %d reg %d busied out (busy)\n",
992 child->dv_xname, phy, reg);
993 return;
994 }
995
996 gt_write(gt, ETH_ESMIR,
997 ETH_ESMIR_WRITE(phy, reg, value));
998
999 count = 10000;
1000 do {
1001 DELAY(10);
1002 data = gt_read(gt, ETH_ESMIR);
1003 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
1004
1005 if (count == 0)
1006 printf("%s: mii write for phy %d reg %d timed out\n",
1007 child->dv_xname, phy, reg);
1008 #if defined(GTMIIDEBUG)
1009 printf("%s: mii_write(%d, %d, %#x)\n",
1010 child->dv_xname, phy, reg, value);
1011 #endif
1012 }
1013
1014 /*
1015 * Since the memory and pci spaces are mapped 1:1 we just need
1016 * to return unity here
1017 */
1018 bus_addr_t
1019 gt_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a)
1020 {
1021 return a;
1022 }
1023 bus_addr_t
1024 gt_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a)
1025 {
1026 return a;
1027 }
1028