if_gfe.c revision 1.61 1 1.61 rin /* $NetBSD: if_gfe.c,v 1.61 2024/07/05 04:31:51 rin Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
5 1.1 matt * All rights reserved.
6 1.1 matt *
7 1.1 matt * Redistribution and use in source and binary forms, with or without
8 1.1 matt * modification, are permitted provided that the following conditions
9 1.1 matt * are met:
10 1.1 matt * 1. Redistributions of source code must retain the above copyright
11 1.1 matt * notice, this list of conditions and the following disclaimer.
12 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer in the
14 1.1 matt * documentation and/or other materials provided with the distribution.
15 1.1 matt * 3. All advertising materials mentioning features or use of this software
16 1.1 matt * must display the following acknowledgement:
17 1.1 matt * This product includes software developed for the NetBSD Project by
18 1.1 matt * Allegro Networks, Inc., and Wasabi Systems, Inc.
19 1.1 matt * 4. The name of Allegro Networks, Inc. may not be used to endorse
20 1.1 matt * or promote products derived from this software without specific prior
21 1.1 matt * written permission.
22 1.1 matt * 5. The name of Wasabi Systems, Inc. may not be used to endorse
23 1.1 matt * or promote products derived from this software without specific prior
24 1.1 matt * written permission.
25 1.1 matt *
26 1.1 matt * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
27 1.1 matt * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
28 1.1 matt * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
29 1.1 matt * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 1.1 matt * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
31 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
38 1.1 matt */
39 1.1 matt
40 1.1 matt /*
41 1.1 matt * if_gfe.c -- GT ethernet MAC driver
42 1.1 matt */
43 1.12 lukem
44 1.12 lukem #include <sys/cdefs.h>
45 1.61 rin __KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.61 2024/07/05 04:31:51 rin Exp $");
46 1.1 matt
47 1.1 matt #include "opt_inet.h"
48 1.1 matt
49 1.1 matt #include <sys/param.h>
50 1.36 kiyohara #include <sys/bus.h>
51 1.1 matt #include <sys/callout.h>
52 1.1 matt #include <sys/device.h>
53 1.1 matt #include <sys/errno.h>
54 1.1 matt #include <sys/ioctl.h>
55 1.1 matt #include <sys/mbuf.h>
56 1.36 kiyohara #include <sys/mutex.h>
57 1.1 matt #include <sys/socket.h>
58 1.1 matt
59 1.1 matt #include <net/if.h>
60 1.1 matt #include <net/if_dl.h>
61 1.1 matt #include <net/if_ether.h>
62 1.1 matt #include <net/if_media.h>
63 1.1 matt
64 1.1 matt #ifdef INET
65 1.1 matt #include <netinet/in.h>
66 1.1 matt #include <netinet/if_inarp.h>
67 1.1 matt #endif
68 1.1 matt #include <net/bpf.h>
69 1.45 riastrad #include <sys/rndsource.h>
70 1.1 matt
71 1.36 kiyohara #include <dev/mii/mii.h>
72 1.1 matt #include <dev/mii/miivar.h>
73 1.1 matt
74 1.36 kiyohara #include <dev/marvell/gtreg.h>
75 1.36 kiyohara #include <dev/marvell/gtvar.h>
76 1.1 matt #include <dev/marvell/gtethreg.h>
77 1.36 kiyohara #include <dev/marvell/if_gfevar.h>
78 1.36 kiyohara #include <dev/marvell/marvellreg.h>
79 1.36 kiyohara #include <dev/marvell/marvellvar.h>
80 1.36 kiyohara
81 1.36 kiyohara #include <prop/proplib.h>
82 1.36 kiyohara
83 1.36 kiyohara #include "locators.h"
84 1.1 matt
85 1.1 matt
86 1.1 matt #define GE_READ(sc, reg) \
87 1.36 kiyohara bus_space_read_4((sc)->sc_memt, (sc)->sc_memh, (reg))
88 1.1 matt #define GE_WRITE(sc, reg, v) \
89 1.36 kiyohara bus_space_write_4((sc)->sc_memt, (sc)->sc_memh, (reg), (v))
90 1.1 matt
91 1.1 matt #define GE_DEBUG
92 1.1 matt #if 0
93 1.1 matt #define GE_NOHASH
94 1.1 matt #define GE_NORX
95 1.1 matt #endif
96 1.1 matt
97 1.1 matt #ifdef GE_DEBUG
98 1.36 kiyohara #define GE_DPRINTF(sc, a) \
99 1.36 kiyohara do { \
100 1.36 kiyohara if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG) \
101 1.36 kiyohara printf a; \
102 1.36 kiyohara } while (0 /* CONSTCOND */)
103 1.1 matt #define GE_FUNC_ENTER(sc, func) GE_DPRINTF(sc, ("[" func))
104 1.1 matt #define GE_FUNC_EXIT(sc, str) GE_DPRINTF(sc, (str "]"))
105 1.1 matt #else
106 1.1 matt #define GE_DPRINTF(sc, a) do { } while (0)
107 1.1 matt #define GE_FUNC_ENTER(sc, func) do { } while (0)
108 1.1 matt #define GE_FUNC_EXIT(sc, str) do { } while (0)
109 1.1 matt #endif
110 1.1 matt enum gfe_whack_op {
111 1.1 matt GE_WHACK_START, GE_WHACK_RESTART,
112 1.1 matt GE_WHACK_CHANGE, GE_WHACK_STOP
113 1.1 matt };
114 1.1 matt
115 1.1 matt enum gfe_hash_op {
116 1.1 matt GE_HASH_ADD, GE_HASH_REMOVE,
117 1.1 matt };
118 1.1 matt
119 1.2 matt #if 1
120 1.2 matt #define htogt32(a) htobe32(a)
121 1.2 matt #define gt32toh(a) be32toh(a)
122 1.2 matt #else
123 1.2 matt #define htogt32(a) htole32(a)
124 1.2 matt #define gt32toh(a) le32toh(a)
125 1.2 matt #endif
126 1.2 matt
127 1.6 matt #define GE_RXDSYNC(sc, rxq, n, ops) \
128 1.6 matt bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \
129 1.6 matt (n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \
130 1.6 matt (ops))
131 1.6 matt #define GE_RXDPRESYNC(sc, rxq, n) \
132 1.52 msaitoh GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)
133 1.6 matt #define GE_RXDPOSTSYNC(sc, rxq, n) \
134 1.52 msaitoh GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)
135 1.6 matt
136 1.6 matt #define GE_TXDSYNC(sc, txq, n, ops) \
137 1.6 matt bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \
138 1.6 matt (n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \
139 1.6 matt (ops))
140 1.6 matt #define GE_TXDPRESYNC(sc, txq, n) \
141 1.52 msaitoh GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)
142 1.6 matt #define GE_TXDPOSTSYNC(sc, txq, n) \
143 1.52 msaitoh GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)
144 1.6 matt
145 1.1 matt #define STATIC
146 1.1 matt
147 1.36 kiyohara
148 1.36 kiyohara STATIC int gfec_match(device_t, cfdata_t, void *);
149 1.36 kiyohara STATIC void gfec_attach(device_t, device_t, void *);
150 1.36 kiyohara
151 1.36 kiyohara STATIC int gfec_print(void *, const char *);
152 1.36 kiyohara STATIC int gfec_search(device_t, cfdata_t, const int *, void *);
153 1.36 kiyohara
154 1.36 kiyohara STATIC int gfec_enet_phy(device_t, int);
155 1.50 msaitoh STATIC int gfec_mii_read(device_t, int, int, uint16_t *);
156 1.50 msaitoh STATIC int gfec_mii_write(device_t, int, int, uint16_t);
157 1.41 matt STATIC void gfec_mii_statchg(struct ifnet *);
158 1.36 kiyohara
159 1.36 kiyohara STATIC int gfe_match(device_t, cfdata_t, void *);
160 1.36 kiyohara STATIC void gfe_attach(device_t, device_t, void *);
161 1.1 matt
162 1.2 matt STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int,
163 1.2 matt size_t, int);
164 1.1 matt STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *);
165 1.1 matt
166 1.36 kiyohara STATIC int gfe_ifioctl(struct ifnet *, u_long, void *);
167 1.36 kiyohara STATIC void gfe_ifstart(struct ifnet *);
168 1.36 kiyohara STATIC void gfe_ifwatchdog(struct ifnet *);
169 1.1 matt
170 1.1 matt STATIC void gfe_tick(void *arg);
171 1.1 matt
172 1.1 matt STATIC void gfe_tx_restart(void *);
173 1.1 matt STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio);
174 1.1 matt STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t);
175 1.1 matt STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int);
176 1.15 matt STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio);
177 1.1 matt STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio);
178 1.1 matt STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op);
179 1.1 matt
180 1.1 matt STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio);
181 1.1 matt STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio);
182 1.1 matt STATIC int gfe_rx_prime(struct gfe_softc *);
183 1.1 matt STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t);
184 1.1 matt STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio);
185 1.15 matt STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio);
186 1.1 matt STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op);
187 1.1 matt
188 1.1 matt STATIC int gfe_intr(void *);
189 1.1 matt
190 1.1 matt STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op);
191 1.1 matt
192 1.6 matt STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]);
193 1.1 matt STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op,
194 1.6 matt enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]);
195 1.1 matt STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *,
196 1.1 matt u_long);
197 1.1 matt STATIC int gfe_hash_fill(struct gfe_softc *);
198 1.1 matt STATIC int gfe_hash_alloc(struct gfe_softc *);
199 1.1 matt
200 1.36 kiyohara
201 1.36 kiyohara CFATTACH_DECL_NEW(gfec, sizeof(struct gfec_softc),
202 1.36 kiyohara gfec_match, gfec_attach, NULL, NULL);
203 1.36 kiyohara CFATTACH_DECL_NEW(gfe, sizeof(struct gfe_softc),
204 1.1 matt gfe_match, gfe_attach, NULL, NULL);
205 1.1 matt
206 1.2 matt
207 1.36 kiyohara /* ARGSUSED */
208 1.1 matt int
209 1.36 kiyohara gfec_match(device_t parent, cfdata_t cf, void *aux)
210 1.1 matt {
211 1.36 kiyohara struct marvell_attach_args *mva = aux;
212 1.1 matt
213 1.36 kiyohara if (strcmp(mva->mva_name, cf->cf_name) != 0)
214 1.1 matt return 0;
215 1.37 kiyohara if (mva->mva_offset == MVA_OFFSET_DEFAULT)
216 1.36 kiyohara return 0;
217 1.36 kiyohara
218 1.36 kiyohara mva->mva_size = ETHC_SIZE;
219 1.36 kiyohara return 1;
220 1.36 kiyohara }
221 1.36 kiyohara
222 1.36 kiyohara /* ARGSUSED */
223 1.36 kiyohara void
224 1.36 kiyohara gfec_attach(device_t parent, device_t self, void *aux)
225 1.36 kiyohara {
226 1.36 kiyohara struct gfec_softc *sc = device_private(self);
227 1.36 kiyohara struct marvell_attach_args *mva = aux, gfea;
228 1.36 kiyohara static int gfe_irqs[] = { 32, 33, 34 };
229 1.36 kiyohara int i;
230 1.36 kiyohara
231 1.36 kiyohara aprint_naive("\n");
232 1.36 kiyohara aprint_normal(": Ethernet Controller\n");
233 1.36 kiyohara
234 1.36 kiyohara sc->sc_dev = self;
235 1.36 kiyohara sc->sc_iot = mva->mva_iot;
236 1.36 kiyohara if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset,
237 1.36 kiyohara mva->mva_size, &sc->sc_ioh)) {
238 1.36 kiyohara aprint_error_dev(self, "Cannot map registers\n");
239 1.36 kiyohara return;
240 1.36 kiyohara }
241 1.36 kiyohara
242 1.36 kiyohara mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
243 1.36 kiyohara
244 1.36 kiyohara for (i = 0; i < ETH_NUM; i++) {
245 1.36 kiyohara gfea.mva_name = "gfe";
246 1.36 kiyohara gfea.mva_model = mva->mva_model;
247 1.36 kiyohara gfea.mva_iot = sc->sc_iot;
248 1.36 kiyohara gfea.mva_ioh = sc->sc_ioh;
249 1.36 kiyohara gfea.mva_unit = i;
250 1.36 kiyohara gfea.mva_dmat = mva->mva_dmat;
251 1.36 kiyohara gfea.mva_irq = gfe_irqs[i];
252 1.58 thorpej config_found(sc->sc_dev, &gfea, gfec_print,
253 1.59 thorpej CFARGS(.submatch = gfec_search));
254 1.36 kiyohara }
255 1.36 kiyohara }
256 1.36 kiyohara
257 1.36 kiyohara int
258 1.36 kiyohara gfec_print(void *aux, const char *pnp)
259 1.36 kiyohara {
260 1.36 kiyohara struct marvell_attach_args *gfea = aux;
261 1.36 kiyohara
262 1.36 kiyohara if (pnp)
263 1.36 kiyohara aprint_normal("%s at %s port %d",
264 1.36 kiyohara gfea->mva_name, pnp, gfea->mva_unit);
265 1.36 kiyohara else {
266 1.36 kiyohara if (gfea->mva_unit != GFECCF_PORT_DEFAULT)
267 1.36 kiyohara aprint_normal(" port %d", gfea->mva_unit);
268 1.36 kiyohara if (gfea->mva_irq != GFECCF_IRQ_DEFAULT)
269 1.36 kiyohara aprint_normal(" irq %d", gfea->mva_irq);
270 1.36 kiyohara }
271 1.36 kiyohara return UNCONF;
272 1.36 kiyohara }
273 1.36 kiyohara
274 1.36 kiyohara /* ARGSUSED */
275 1.36 kiyohara int
276 1.36 kiyohara gfec_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
277 1.36 kiyohara {
278 1.36 kiyohara struct marvell_attach_args *gfea = aux;
279 1.36 kiyohara
280 1.36 kiyohara if (cf->cf_loc[GFECCF_PORT] == gfea->mva_unit &&
281 1.36 kiyohara cf->cf_loc[GFECCF_IRQ] != GFECCF_IRQ_DEFAULT)
282 1.36 kiyohara gfea->mva_irq = cf->cf_loc[GFECCF_IRQ];
283 1.36 kiyohara
284 1.36 kiyohara return config_match(parent, cf, aux);
285 1.36 kiyohara }
286 1.36 kiyohara
287 1.36 kiyohara int
288 1.36 kiyohara gfec_enet_phy(device_t dev, int unit)
289 1.36 kiyohara {
290 1.36 kiyohara struct gfec_softc *sc = device_private(dev);
291 1.36 kiyohara uint32_t epar;
292 1.36 kiyohara
293 1.36 kiyohara epar = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ETH_EPAR);
294 1.36 kiyohara return ETH_EPAR_PhyAD_GET(epar, unit);
295 1.36 kiyohara }
296 1.36 kiyohara
297 1.36 kiyohara int
298 1.50 msaitoh gfec_mii_read(device_t dev, int phy, int reg, uint16_t *val)
299 1.36 kiyohara {
300 1.36 kiyohara struct gfec_softc *csc = device_private(device_parent(dev));
301 1.36 kiyohara uint32_t data;
302 1.36 kiyohara int count = 10000;
303 1.36 kiyohara
304 1.36 kiyohara mutex_enter(&csc->sc_mtx);
305 1.36 kiyohara
306 1.36 kiyohara do {
307 1.36 kiyohara DELAY(10);
308 1.36 kiyohara data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
309 1.36 kiyohara } while ((data & ETH_ESMIR_Busy) && count-- > 0);
310 1.36 kiyohara
311 1.36 kiyohara if (count == 0) {
312 1.36 kiyohara aprint_error_dev(dev,
313 1.36 kiyohara "mii read for phy %d reg %d busied out\n", phy, reg);
314 1.36 kiyohara mutex_exit(&csc->sc_mtx);
315 1.50 msaitoh return ETIMEDOUT;
316 1.36 kiyohara }
317 1.36 kiyohara
318 1.36 kiyohara bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
319 1.36 kiyohara ETH_ESMIR_READ(phy, reg));
320 1.36 kiyohara
321 1.36 kiyohara count = 10000;
322 1.36 kiyohara do {
323 1.36 kiyohara DELAY(10);
324 1.36 kiyohara data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
325 1.36 kiyohara } while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
326 1.36 kiyohara
327 1.36 kiyohara mutex_exit(&csc->sc_mtx);
328 1.36 kiyohara
329 1.50 msaitoh if (count == 0) {
330 1.36 kiyohara aprint_error_dev(dev,
331 1.36 kiyohara "mii read for phy %d reg %d timed out\n", phy, reg);
332 1.50 msaitoh return ETIMEDOUT;
333 1.50 msaitoh }
334 1.36 kiyohara #if defined(GTMIIDEBUG)
335 1.36 kiyohara aprint_normal_dev(dev, "mii_read(%d, %d): %#x data %#x\n",
336 1.36 kiyohara phy, reg, data, ETH_ESMIR_Value_GET(data));
337 1.36 kiyohara #endif
338 1.50 msaitoh *val = ETH_ESMIR_Value_GET(data);
339 1.50 msaitoh return 0;
340 1.36 kiyohara }
341 1.1 matt
342 1.50 msaitoh int
343 1.50 msaitoh gfec_mii_write(device_t dev, int phy, int reg, uint16_t value)
344 1.36 kiyohara {
345 1.36 kiyohara struct gfec_softc *csc = device_private(device_parent(dev));
346 1.36 kiyohara uint32_t data;
347 1.36 kiyohara int count = 10000;
348 1.36 kiyohara
349 1.36 kiyohara mutex_enter(&csc->sc_mtx);
350 1.36 kiyohara
351 1.36 kiyohara do {
352 1.36 kiyohara DELAY(10);
353 1.36 kiyohara data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
354 1.36 kiyohara } while ((data & ETH_ESMIR_Busy) && count-- > 0);
355 1.36 kiyohara
356 1.36 kiyohara if (count == 0) {
357 1.36 kiyohara aprint_error_dev(dev,
358 1.36 kiyohara "mii write for phy %d reg %d busied out (busy)\n",
359 1.36 kiyohara phy, reg);
360 1.36 kiyohara mutex_exit(&csc->sc_mtx);
361 1.50 msaitoh return ETIMEDOUT;
362 1.36 kiyohara }
363 1.36 kiyohara
364 1.36 kiyohara bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
365 1.36 kiyohara ETH_ESMIR_WRITE(phy, reg, value));
366 1.36 kiyohara
367 1.36 kiyohara count = 10000;
368 1.36 kiyohara do {
369 1.36 kiyohara DELAY(10);
370 1.36 kiyohara data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
371 1.36 kiyohara } while ((data & ETH_ESMIR_Busy) && count-- > 0);
372 1.36 kiyohara
373 1.36 kiyohara mutex_exit(&csc->sc_mtx);
374 1.36 kiyohara
375 1.50 msaitoh if (count == 0) {
376 1.36 kiyohara aprint_error_dev(dev,
377 1.36 kiyohara "mii write for phy %d reg %d timed out\n", phy, reg);
378 1.50 msaitoh return ETIMEDOUT;
379 1.50 msaitoh }
380 1.36 kiyohara #if defined(GTMIIDEBUG)
381 1.50 msaitoh aprint_normal_dev(dev, "mii_write(%d, %d, %#hx)\n", phy, reg, value);
382 1.36 kiyohara #endif
383 1.50 msaitoh return 0;
384 1.36 kiyohara }
385 1.36 kiyohara
386 1.36 kiyohara void
387 1.41 matt gfec_mii_statchg(struct ifnet *ifp)
388 1.36 kiyohara {
389 1.41 matt /* struct gfe_softc *sc = ifp->if_softc; */
390 1.36 kiyohara /* do nothing? */
391 1.36 kiyohara }
392 1.36 kiyohara
393 1.36 kiyohara /* ARGSUSED */
394 1.36 kiyohara int
395 1.36 kiyohara gfe_match(device_t parent, cfdata_t cf, void *aux)
396 1.36 kiyohara {
397 1.1 matt
398 1.1 matt return 1;
399 1.16 perry }
400 1.1 matt
401 1.36 kiyohara /* ARGSUSED */
402 1.1 matt void
403 1.33 cegger gfe_attach(device_t parent, device_t self, void *aux)
404 1.1 matt {
405 1.36 kiyohara struct marvell_attach_args *mva = aux;
406 1.20 thorpej struct gfe_softc * const sc = device_private(self);
407 1.5 matt struct ifnet * const ifp = &sc->sc_ec.ec_if;
408 1.52 msaitoh struct mii_data * const mii = &sc->sc_mii;
409 1.36 kiyohara uint32_t sdcr;
410 1.36 kiyohara int phyaddr, error;
411 1.36 kiyohara prop_data_t ea;
412 1.1 matt uint8_t enaddr[6];
413 1.1 matt
414 1.36 kiyohara aprint_naive("\n");
415 1.36 kiyohara aprint_normal(": Ethernet Controller\n");
416 1.2 matt
417 1.36 kiyohara if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
418 1.36 kiyohara mva->mva_offset, mva->mva_size, &sc->sc_memh)) {
419 1.36 kiyohara aprint_error_dev(self, "failed to map registers\n");
420 1.36 kiyohara return;
421 1.3 matt }
422 1.36 kiyohara sc->sc_dev = self;
423 1.36 kiyohara sc->sc_memt = mva->mva_iot;
424 1.36 kiyohara sc->sc_dmat = mva->mva_dmat;
425 1.36 kiyohara sc->sc_macno = (mva->mva_offset == ETH_BASE(0)) ? 0 :
426 1.36 kiyohara ((mva->mva_offset == ETH_BASE(1)) ? 1 : 2);
427 1.1 matt
428 1.23 ad callout_init(&sc->sc_co, 0);
429 1.1 matt
430 1.36 kiyohara phyaddr = gfec_enet_phy(parent, sc->sc_macno);
431 1.1 matt
432 1.36 kiyohara ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr");
433 1.36 kiyohara if (ea != NULL) {
434 1.36 kiyohara KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
435 1.36 kiyohara KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
436 1.36 kiyohara memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
437 1.36 kiyohara }
438 1.1 matt
439 1.36 kiyohara sc->sc_pcr = GE_READ(sc, ETH_EPCR);
440 1.36 kiyohara sc->sc_pcxr = GE_READ(sc, ETH_EPCXR);
441 1.36 kiyohara sc->sc_intrmask = GE_READ(sc, ETH_EIMR) | ETH_IR_MIIPhySTC;
442 1.1 matt
443 1.36 kiyohara aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
444 1.1 matt
445 1.1 matt #if defined(DEBUG)
446 1.36 kiyohara printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
447 1.1 matt #endif
448 1.1 matt
449 1.1 matt sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override;
450 1.36 kiyohara if (device_cfdata(self)->cf_flags & 1) {
451 1.36 kiyohara aprint_normal_dev(self, "phy %d (rmii)\n", phyaddr);
452 1.2 matt sc->sc_pcxr |= ETH_EPCXR_RMIIEn;
453 1.2 matt } else {
454 1.36 kiyohara aprint_normal_dev(self, "phy %d (mii)\n", phyaddr);
455 1.2 matt sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn;
456 1.2 matt }
457 1.36 kiyohara if (device_cfdata(self)->cf_flags & 2)
458 1.15 matt sc->sc_flags |= GE_NOFREE;
459 1.36 kiyohara /* Set Max Frame Length is 1536 */
460 1.36 kiyohara sc->sc_pcxr &= ~ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_MASK);
461 1.36 kiyohara sc->sc_pcxr |= ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_1536);
462 1.36 kiyohara sc->sc_max_frame_length = 1536;
463 1.1 matt
464 1.1 matt if (sc->sc_pcr & ETH_EPCR_EN) {
465 1.1 matt int tries = 1000;
466 1.1 matt /*
467 1.1 matt * Abort transmitter and receiver and wait for them to quiese
468 1.1 matt */
469 1.36 kiyohara GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR | ETH_ESDCMR_AT);
470 1.1 matt do {
471 1.1 matt delay(100);
472 1.36 kiyohara if (tries-- <= 0) {
473 1.36 kiyohara aprint_error_dev(self, "Abort TX/RX failed\n");
474 1.36 kiyohara break;
475 1.36 kiyohara }
476 1.36 kiyohara } while (GE_READ(sc, ETH_ESDCMR) &
477 1.36 kiyohara (ETH_ESDCMR_AR | ETH_ESDCMR_AT));
478 1.1 matt }
479 1.1 matt
480 1.36 kiyohara sc->sc_pcr &=
481 1.36 kiyohara ~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF);
482 1.1 matt
483 1.1 matt #if defined(DEBUG)
484 1.36 kiyohara printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
485 1.1 matt #endif
486 1.1 matt
487 1.1 matt /*
488 1.1 matt * Now turn off the GT. If it didn't quiese, too ***ing bad.
489 1.1 matt */
490 1.36 kiyohara GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
491 1.36 kiyohara GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
492 1.36 kiyohara sdcr = GE_READ(sc, ETH_ESDCR);
493 1.1 matt ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4);
494 1.1 matt sdcr |= ETH_ESDCR_RIFB;
495 1.36 kiyohara GE_WRITE(sc, ETH_ESDCR, sdcr);
496 1.1 matt
497 1.52 msaitoh mii->mii_ifp = ifp;
498 1.52 msaitoh mii->mii_readreg = gfec_mii_read;
499 1.52 msaitoh mii->mii_writereg = gfec_mii_write;
500 1.52 msaitoh mii->mii_statchg = gfec_mii_statchg;
501 1.1 matt
502 1.52 msaitoh sc->sc_ec.ec_mii = mii;
503 1.52 msaitoh ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
504 1.52 msaitoh
505 1.52 msaitoh mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
506 1.1 matt MII_OFFSET_ANY, MIIF_NOISOLATE);
507 1.52 msaitoh if (LIST_FIRST(&mii->mii_phys) == NULL) {
508 1.52 msaitoh ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
509 1.52 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
510 1.52 msaitoh } else
511 1.52 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
512 1.1 matt
513 1.36 kiyohara strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
514 1.1 matt ifp->if_softc = sc;
515 1.1 matt ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
516 1.1 matt #if 0
517 1.1 matt ifp->if_flags |= IFF_DEBUG;
518 1.1 matt #endif
519 1.1 matt ifp->if_ioctl = gfe_ifioctl;
520 1.1 matt ifp->if_start = gfe_ifstart;
521 1.1 matt ifp->if_watchdog = gfe_ifwatchdog;
522 1.1 matt
523 1.15 matt if (sc->sc_flags & GE_NOFREE) {
524 1.15 matt error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI);
525 1.15 matt if (!error)
526 1.15 matt error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI);
527 1.15 matt if (!error)
528 1.15 matt error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO);
529 1.15 matt if (!error)
530 1.15 matt error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO);
531 1.15 matt if (!error)
532 1.15 matt error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI);
533 1.15 matt if (!error)
534 1.15 matt error = gfe_hash_alloc(sc);
535 1.15 matt if (error)
536 1.36 kiyohara aprint_error_dev(self,
537 1.36 kiyohara "failed to allocate resources: %d\n", error);
538 1.15 matt }
539 1.15 matt
540 1.1 matt if_attach(ifp);
541 1.1 matt ether_ifattach(ifp, enaddr);
542 1.35 joerg bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
543 1.36 kiyohara rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET,
544 1.42 tls RND_FLAG_DEFAULT);
545 1.36 kiyohara marvell_intr_establish(mva->mva_irq, IPL_NET, gfe_intr, sc);
546 1.1 matt }
547 1.1 matt
548 1.1 matt int
549 1.1 matt gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs,
550 1.2 matt size_t size, int flags)
551 1.1 matt {
552 1.1 matt int error = 0;
553 1.1 matt GE_FUNC_ENTER(sc, "gfe_dmamem_alloc");
554 1.15 matt
555 1.15 matt KASSERT(gdm->gdm_kva == NULL);
556 1.1 matt gdm->gdm_size = size;
557 1.1 matt gdm->gdm_maxsegs = maxsegs;
558 1.1 matt
559 1.7 thorpej error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE,
560 1.1 matt gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs,
561 1.1 matt BUS_DMA_NOWAIT);
562 1.1 matt if (error)
563 1.1 matt goto fail;
564 1.1 matt
565 1.1 matt error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs,
566 1.2 matt gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT);
567 1.1 matt if (error)
568 1.1 matt goto fail;
569 1.1 matt
570 1.1 matt error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs,
571 1.52 msaitoh gdm->gdm_size, 0, BUS_DMA_ALLOCNOW |BUS_DMA_NOWAIT, &gdm->gdm_map);
572 1.1 matt if (error)
573 1.1 matt goto fail;
574 1.1 matt
575 1.1 matt error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva,
576 1.1 matt gdm->gdm_size, NULL, BUS_DMA_NOWAIT);
577 1.2 matt if (error)
578 1.2 matt goto fail;
579 1.1 matt
580 1.2 matt /* invalidate from cache */
581 1.2 matt bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size,
582 1.2 matt BUS_DMASYNC_PREREAD);
583 1.1 matt fail:
584 1.1 matt if (error) {
585 1.1 matt gfe_dmamem_free(sc, gdm);
586 1.1 matt GE_DPRINTF(sc, (":err=%d", error));
587 1.1 matt }
588 1.2 matt GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x",
589 1.2 matt gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs,
590 1.2 matt gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len));
591 1.1 matt GE_FUNC_EXIT(sc, "");
592 1.1 matt return error;
593 1.1 matt }
594 1.1 matt
595 1.1 matt void
596 1.1 matt gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm)
597 1.1 matt {
598 1.1 matt GE_FUNC_ENTER(sc, "gfe_dmamem_free");
599 1.1 matt if (gdm->gdm_map)
600 1.1 matt bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map);
601 1.1 matt if (gdm->gdm_kva)
602 1.1 matt bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size);
603 1.1 matt if (gdm->gdm_nsegs > 0)
604 1.1 matt bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs);
605 1.1 matt gdm->gdm_map = NULL;
606 1.1 matt gdm->gdm_kva = NULL;
607 1.1 matt gdm->gdm_nsegs = 0;
608 1.1 matt GE_FUNC_EXIT(sc, "");
609 1.1 matt }
610 1.1 matt
611 1.1 matt int
612 1.21 christos gfe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
613 1.1 matt {
614 1.1 matt struct gfe_softc * const sc = ifp->if_softc;
615 1.1 matt struct ifreq *ifr = (struct ifreq *) data;
616 1.1 matt struct ifaddr *ifa = (struct ifaddr *) data;
617 1.1 matt int s, error = 0;
618 1.1 matt
619 1.1 matt GE_FUNC_ENTER(sc, "gfe_ifioctl");
620 1.1 matt s = splnet();
621 1.1 matt
622 1.1 matt switch (cmd) {
623 1.31 dyoung case SIOCINITIFADDR:
624 1.1 matt ifp->if_flags |= IFF_UP;
625 1.31 dyoung error = gfe_whack(sc, GE_WHACK_START);
626 1.1 matt switch (ifa->ifa_addr->sa_family) {
627 1.1 matt #ifdef INET
628 1.1 matt case AF_INET:
629 1.1 matt if (error == 0)
630 1.1 matt arp_ifinit(ifp, ifa);
631 1.1 matt break;
632 1.1 matt #endif
633 1.1 matt default:
634 1.1 matt break;
635 1.1 matt }
636 1.1 matt break;
637 1.1 matt
638 1.1 matt case SIOCSIFFLAGS:
639 1.31 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
640 1.31 dyoung break;
641 1.31 dyoung /* XXX re-use ether_ioctl() */
642 1.52 msaitoh switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
643 1.52 msaitoh case IFF_UP | IFF_RUNNING:/* active->active, update */
644 1.1 matt error = gfe_whack(sc, GE_WHACK_CHANGE);
645 1.1 matt break;
646 1.1 matt case IFF_RUNNING: /* not up, so we stop */
647 1.1 matt error = gfe_whack(sc, GE_WHACK_STOP);
648 1.1 matt break;
649 1.1 matt case IFF_UP: /* not running, so we start */
650 1.1 matt error = gfe_whack(sc, GE_WHACK_START);
651 1.1 matt break;
652 1.1 matt case 0: /* idle->idle: do nothing */
653 1.1 matt break;
654 1.1 matt }
655 1.1 matt break;
656 1.1 matt
657 1.1 matt case SIOCSIFMTU:
658 1.1 matt if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) {
659 1.1 matt error = EINVAL;
660 1.1 matt break;
661 1.1 matt }
662 1.28 dyoung if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
663 1.28 dyoung error = 0;
664 1.1 matt break;
665 1.1 matt
666 1.1 matt default:
667 1.51 msaitoh if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
668 1.51 msaitoh if (ifp->if_flags & IFF_RUNNING)
669 1.51 msaitoh error = gfe_whack(sc, GE_WHACK_CHANGE);
670 1.51 msaitoh else
671 1.51 msaitoh error = 0;
672 1.51 msaitoh }
673 1.1 matt break;
674 1.1 matt }
675 1.1 matt splx(s);
676 1.1 matt GE_FUNC_EXIT(sc, "");
677 1.1 matt return error;
678 1.1 matt }
679 1.1 matt
680 1.1 matt void
681 1.1 matt gfe_ifstart(struct ifnet *ifp)
682 1.1 matt {
683 1.1 matt struct gfe_softc * const sc = ifp->if_softc;
684 1.1 matt struct mbuf *m;
685 1.1 matt
686 1.1 matt GE_FUNC_ENTER(sc, "gfe_ifstart");
687 1.1 matt
688 1.1 matt if ((ifp->if_flags & IFF_RUNNING) == 0) {
689 1.1 matt GE_FUNC_EXIT(sc, "$");
690 1.1 matt return;
691 1.1 matt }
692 1.1 matt
693 1.1 matt for (;;) {
694 1.60 thorpej IF_POLL(&ifp->if_snd, m);
695 1.1 matt if (m == NULL) {
696 1.1 matt ifp->if_flags &= ~IFF_OACTIVE;
697 1.1 matt GE_FUNC_EXIT(sc, "");
698 1.1 matt return;
699 1.1 matt }
700 1.1 matt
701 1.1 matt /*
702 1.1 matt * No space in the pending queue? try later.
703 1.1 matt */
704 1.15 matt if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq))
705 1.1 matt break;
706 1.1 matt
707 1.60 thorpej IF_DEQUEUE(&ifp->if_snd, m);
708 1.60 thorpej
709 1.1 matt /*
710 1.1 matt * Try to enqueue a mbuf to the device. If that fails, we
711 1.1 matt * can always try to map the next mbuf.
712 1.1 matt */
713 1.15 matt IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m);
714 1.1 matt GE_DPRINTF(sc, (">"));
715 1.1 matt #ifndef GE_NOTX
716 1.1 matt (void) gfe_tx_enqueue(sc, GE_TXPRIO_HI);
717 1.1 matt #endif
718 1.1 matt }
719 1.1 matt
720 1.1 matt /*
721 1.1 matt * Attempt to queue the mbuf for send failed.
722 1.1 matt */
723 1.1 matt ifp->if_flags |= IFF_OACTIVE;
724 1.1 matt GE_FUNC_EXIT(sc, "%%");
725 1.1 matt }
726 1.1 matt
727 1.1 matt void
728 1.1 matt gfe_ifwatchdog(struct ifnet *ifp)
729 1.1 matt {
730 1.1 matt struct gfe_softc * const sc = ifp->if_softc;
731 1.15 matt struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI];
732 1.1 matt
733 1.1 matt GE_FUNC_ENTER(sc, "gfe_ifwatchdog");
734 1.36 kiyohara aprint_error_dev(sc->sc_dev, "device timeout");
735 1.15 matt if (ifp->if_flags & IFF_RUNNING) {
736 1.36 kiyohara uint32_t curtxdnum;
737 1.36 kiyohara
738 1.36 kiyohara curtxdnum = (GE_READ(sc, txq->txq_ectdp) -
739 1.36 kiyohara txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]);
740 1.6 matt GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
741 1.6 matt GE_TXDPOSTSYNC(sc, txq, curtxdnum);
742 1.36 kiyohara aprint_error(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ",
743 1.6 matt txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts,
744 1.6 matt txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts,
745 1.36 kiyohara GE_READ(sc, ETH_EICR));
746 1.6 matt GE_TXDPRESYNC(sc, txq, txq->txq_fi);
747 1.6 matt GE_TXDPRESYNC(sc, txq, curtxdnum);
748 1.1 matt }
749 1.36 kiyohara aprint_error("\n");
750 1.55 skrll if_statinc(ifp, if_oerrors);
751 1.1 matt (void) gfe_whack(sc, GE_WHACK_RESTART);
752 1.1 matt GE_FUNC_EXIT(sc, "");
753 1.1 matt }
754 1.36 kiyohara
755 1.1 matt int
756 1.1 matt gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio)
757 1.1 matt {
758 1.15 matt struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
759 1.1 matt int error;
760 1.1 matt
761 1.1 matt GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc");
762 1.2 matt GE_DPRINTF(sc, ("(%d)", rxprio));
763 1.1 matt
764 1.2 matt error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1,
765 1.5 matt GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE);
766 1.1 matt if (error) {
767 1.1 matt GE_FUNC_EXIT(sc, "!!");
768 1.1 matt return error;
769 1.1 matt }
770 1.15 matt
771 1.1 matt error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS,
772 1.2 matt GE_RXBUF_MEMSIZE, 0);
773 1.1 matt if (error) {
774 1.1 matt GE_FUNC_EXIT(sc, "!!!");
775 1.1 matt return error;
776 1.1 matt }
777 1.15 matt GE_FUNC_EXIT(sc, "");
778 1.15 matt return error;
779 1.15 matt }
780 1.1 matt
781 1.15 matt int
782 1.15 matt gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio)
783 1.15 matt {
784 1.15 matt struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
785 1.15 matt volatile struct gt_eth_desc *rxd;
786 1.15 matt const bus_dma_segment_t *ds;
787 1.15 matt int idx;
788 1.15 matt bus_addr_t nxtaddr;
789 1.15 matt bus_size_t boff;
790 1.15 matt
791 1.15 matt GE_FUNC_ENTER(sc, "gfe_rx_rxqinit");
792 1.15 matt GE_DPRINTF(sc, ("(%d)", rxprio));
793 1.15 matt
794 1.15 matt if ((sc->sc_flags & GE_NOFREE) == 0) {
795 1.15 matt int error = gfe_rx_rxqalloc(sc, rxprio);
796 1.15 matt if (error) {
797 1.15 matt GE_FUNC_EXIT(sc, "!");
798 1.15 matt return error;
799 1.15 matt }
800 1.15 matt } else {
801 1.15 matt KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL);
802 1.15 matt KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL);
803 1.15 matt }
804 1.15 matt
805 1.15 matt memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE);
806 1.1 matt
807 1.1 matt rxq->rxq_descs =
808 1.1 matt (volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva;
809 1.1 matt rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr;
810 1.1 matt rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva;
811 1.1 matt rxq->rxq_fi = 0;
812 1.1 matt rxq->rxq_active = GE_RXDESC_MAX;
813 1.36 kiyohara boff = 0;
814 1.36 kiyohara ds = rxq->rxq_buf_mem.gdm_map->dm_segs;
815 1.36 kiyohara nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd);
816 1.36 kiyohara for (idx = 0, rxd = rxq->rxq_descs; idx < GE_RXDESC_MAX;
817 1.44 joerg idx++, rxd++, nxtaddr += sizeof(*rxd)) {
818 1.2 matt rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16);
819 1.2 matt rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
820 1.2 matt rxd->ed_bufptr = htogt32(ds->ds_addr + boff);
821 1.1 matt /*
822 1.1 matt * update the nxtptr to point to the next txd.
823 1.1 matt */
824 1.1 matt if (idx == GE_RXDESC_MAX - 1)
825 1.1 matt nxtaddr = rxq->rxq_desc_busaddr;
826 1.2 matt rxd->ed_nxtptr = htogt32(nxtaddr);
827 1.1 matt boff += GE_RXBUF_SIZE;
828 1.1 matt if (boff == ds->ds_len) {
829 1.1 matt ds++;
830 1.1 matt boff = 0;
831 1.1 matt }
832 1.1 matt }
833 1.1 matt bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0,
834 1.1 matt rxq->rxq_desc_mem.gdm_map->dm_mapsize,
835 1.52 msaitoh BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
836 1.1 matt bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0,
837 1.1 matt rxq->rxq_buf_mem.gdm_map->dm_mapsize,
838 1.2 matt BUS_DMASYNC_PREREAD);
839 1.1 matt
840 1.52 msaitoh rxq->rxq_intrbits = ETH_IR_RxBuffer | ETH_IR_RxError;
841 1.1 matt switch (rxprio) {
842 1.1 matt case GE_RXPRIO_HI:
843 1.52 msaitoh rxq->rxq_intrbits |= ETH_IR_RxBuffer_3 | ETH_IR_RxError_3;
844 1.36 kiyohara rxq->rxq_efrdp = ETH_EFRDP3;
845 1.36 kiyohara rxq->rxq_ecrdp = ETH_ECRDP3;
846 1.1 matt break;
847 1.1 matt case GE_RXPRIO_MEDHI:
848 1.52 msaitoh rxq->rxq_intrbits |= ETH_IR_RxBuffer_2 | ETH_IR_RxError_2;
849 1.36 kiyohara rxq->rxq_efrdp = ETH_EFRDP2;
850 1.36 kiyohara rxq->rxq_ecrdp = ETH_ECRDP2;
851 1.1 matt break;
852 1.1 matt case GE_RXPRIO_MEDLO:
853 1.52 msaitoh rxq->rxq_intrbits |= ETH_IR_RxBuffer_1 | ETH_IR_RxError_1;
854 1.36 kiyohara rxq->rxq_efrdp = ETH_EFRDP1;
855 1.36 kiyohara rxq->rxq_ecrdp = ETH_ECRDP1;
856 1.1 matt break;
857 1.1 matt case GE_RXPRIO_LO:
858 1.52 msaitoh rxq->rxq_intrbits |= ETH_IR_RxBuffer_0 | ETH_IR_RxError_0;
859 1.36 kiyohara rxq->rxq_efrdp = ETH_EFRDP0;
860 1.36 kiyohara rxq->rxq_ecrdp = ETH_ECRDP0;
861 1.1 matt break;
862 1.1 matt }
863 1.1 matt GE_FUNC_EXIT(sc, "");
864 1.15 matt return 0;
865 1.1 matt }
866 1.1 matt
867 1.1 matt void
868 1.1 matt gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio)
869 1.1 matt {
870 1.1 matt struct ifnet * const ifp = &sc->sc_ec.ec_if;
871 1.15 matt struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
872 1.1 matt struct mbuf *m = rxq->rxq_curpkt;
873 1.1 matt
874 1.1 matt GE_FUNC_ENTER(sc, "gfe_rx_get");
875 1.1 matt GE_DPRINTF(sc, ("(%d)", rxprio));
876 1.1 matt
877 1.1 matt while (rxq->rxq_active > 0) {
878 1.1 matt volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi];
879 1.1 matt struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi];
880 1.1 matt const struct ether_header *eh;
881 1.1 matt unsigned int cmdsts;
882 1.1 matt size_t buflen;
883 1.1 matt
884 1.6 matt GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi);
885 1.2 matt cmdsts = gt32toh(rxd->ed_cmdsts);
886 1.1 matt GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts));
887 1.1 matt rxq->rxq_cmdsts = cmdsts;
888 1.1 matt /*
889 1.1 matt * Sometimes the GE "forgets" to reset the ownership bit.
890 1.1 matt * But if the length has been rewritten, the packet is ours
891 1.1 matt * so pretend the O bit is set.
892 1.1 matt */
893 1.2 matt buflen = gt32toh(rxd->ed_lencnt) & 0xffff;
894 1.1 matt if ((cmdsts & RX_CMD_O) && buflen == 0) {
895 1.6 matt GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
896 1.1 matt break;
897 1.1 matt }
898 1.1 matt
899 1.1 matt /*
900 1.1 matt * If this is not a single buffer packet with no errors
901 1.1 matt * or for some reason it's bigger than our frame size,
902 1.1 matt * ignore it and go to the next packet.
903 1.1 matt */
904 1.52 msaitoh if ((cmdsts & (RX_CMD_F | RX_CMD_L | RX_STS_ES)) !=
905 1.52 msaitoh (RX_CMD_F | RX_CMD_L) ||
906 1.52 msaitoh (buflen > sc->sc_max_frame_length)) {
907 1.1 matt GE_DPRINTF(sc, ("!"));
908 1.1 matt --rxq->rxq_active;
909 1.56 skrll if_statinc(ifp, if_ipackets);
910 1.55 skrll if_statinc(ifp, if_ierrors);
911 1.1 matt goto give_it_back;
912 1.1 matt }
913 1.1 matt
914 1.14 thorpej /* CRC is included with the packet; trim it off. */
915 1.14 thorpej buflen -= ETHER_CRC_LEN;
916 1.14 thorpej
917 1.1 matt if (m == NULL) {
918 1.1 matt MGETHDR(m, M_DONTWAIT, MT_DATA);
919 1.1 matt if (m == NULL) {
920 1.1 matt GE_DPRINTF(sc, ("?"));
921 1.1 matt break;
922 1.1 matt }
923 1.1 matt }
924 1.1 matt if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) {
925 1.1 matt MCLGET(m, M_DONTWAIT);
926 1.1 matt if ((m->m_flags & M_EXT) == 0) {
927 1.1 matt GE_DPRINTF(sc, ("?"));
928 1.1 matt break;
929 1.1 matt }
930 1.1 matt }
931 1.5 matt m->m_data += 2;
932 1.1 matt m->m_len = 0;
933 1.1 matt m->m_pkthdr.len = 0;
934 1.47 ozaki m_set_rcvif(m, ifp);
935 1.1 matt rxq->rxq_cmdsts = cmdsts;
936 1.1 matt --rxq->rxq_active;
937 1.1 matt
938 1.1 matt bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map,
939 1.2 matt rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD);
940 1.1 matt
941 1.1 matt KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0);
942 1.30 he memcpy(m->m_data + m->m_len, rxb->rxb_data, buflen);
943 1.1 matt m->m_len = buflen;
944 1.1 matt m->m_pkthdr.len = buflen;
945 1.1 matt
946 1.1 matt eh = (const struct ether_header *) m->m_data;
947 1.1 matt if ((ifp->if_flags & IFF_PROMISC) ||
948 1.1 matt (rxq->rxq_cmdsts & RX_STS_M) == 0 ||
949 1.1 matt (rxq->rxq_cmdsts & RX_STS_HE) ||
950 1.1 matt (eh->ether_dhost[0] & 1) != 0 ||
951 1.24 dyoung memcmp(eh->ether_dhost, CLLADDR(ifp->if_sadl),
952 1.36 kiyohara ETHER_ADDR_LEN) == 0) {
953 1.46 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
954 1.1 matt m = NULL;
955 1.1 matt GE_DPRINTF(sc, (">"));
956 1.1 matt } else {
957 1.1 matt m->m_len = 0;
958 1.1 matt m->m_pkthdr.len = 0;
959 1.1 matt GE_DPRINTF(sc, ("+"));
960 1.1 matt }
961 1.1 matt rxq->rxq_cmdsts = 0;
962 1.1 matt
963 1.1 matt give_it_back:
964 1.1 matt rxd->ed_lencnt &= ~0xffff; /* zero out length */
965 1.2 matt rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
966 1.2 matt #if 0
967 1.2 matt GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)",
968 1.2 matt rxq->rxq_fi,
969 1.2 matt ((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1],
970 1.2 matt ((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3]));
971 1.2 matt #endif
972 1.6 matt GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
973 1.1 matt if (++rxq->rxq_fi == GE_RXDESC_MAX)
974 1.1 matt rxq->rxq_fi = 0;
975 1.1 matt rxq->rxq_active++;
976 1.1 matt }
977 1.1 matt rxq->rxq_curpkt = m;
978 1.1 matt GE_FUNC_EXIT(sc, "");
979 1.1 matt }
980 1.1 matt
981 1.1 matt uint32_t
982 1.1 matt gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask)
983 1.1 matt {
984 1.5 matt struct ifnet * const ifp = &sc->sc_ec.ec_if;
985 1.1 matt struct gfe_rxqueue *rxq;
986 1.1 matt uint32_t rxbits;
987 1.1 matt #define RXPRIO_DECODER 0xffffaa50
988 1.1 matt GE_FUNC_ENTER(sc, "gfe_rx_process");
989 1.1 matt
990 1.1 matt rxbits = ETH_IR_RxBuffer_GET(cause);
991 1.1 matt while (rxbits) {
992 1.1 matt enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
993 1.1 matt GE_DPRINTF(sc, ("%1x", rxbits));
994 1.1 matt rxbits &= ~(1 << rxprio);
995 1.1 matt gfe_rx_get(sc, rxprio);
996 1.1 matt }
997 1.1 matt
998 1.1 matt rxbits = ETH_IR_RxError_GET(cause);
999 1.1 matt while (rxbits) {
1000 1.1 matt enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
1001 1.1 matt uint32_t masks[(GE_RXDESC_MAX + 31) / 32];
1002 1.1 matt int idx;
1003 1.1 matt rxbits &= ~(1 << rxprio);
1004 1.15 matt rxq = &sc->sc_rxq[rxprio];
1005 1.1 matt sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits);
1006 1.1 matt intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits);
1007 1.1 matt if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) {
1008 1.1 matt sc->sc_tickflags |= GE_TICK_RX_RESTART;
1009 1.1 matt callout_reset(&sc->sc_co, 1, gfe_tick, sc);
1010 1.1 matt }
1011 1.55 skrll if_statinc(ifp, if_ierrors);
1012 1.1 matt GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n",
1013 1.36 kiyohara device_xname(sc->sc_dev), rxprio, rxq->rxq_fi));
1014 1.1 matt memset(masks, 0, sizeof(masks));
1015 1.2 matt bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1016 1.2 matt 0, rxq->rxq_desc_mem.gdm_size,
1017 1.52 msaitoh BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1018 1.1 matt for (idx = 0; idx < GE_RXDESC_MAX; idx++) {
1019 1.1 matt volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx];
1020 1.1 matt
1021 1.2 matt if (RX_CMD_O & gt32toh(rxd->ed_cmdsts))
1022 1.1 matt masks[idx/32] |= 1 << (idx & 31);
1023 1.1 matt }
1024 1.2 matt bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1025 1.2 matt 0, rxq->rxq_desc_mem.gdm_size,
1026 1.52 msaitoh BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1027 1.1 matt #if defined(DEBUG)
1028 1.1 matt printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n",
1029 1.36 kiyohara device_xname(sc->sc_dev), rxprio, rxq->rxq_fi,
1030 1.1 matt rxq->rxq_cmdsts, masks[0], masks[1]);
1031 1.1 matt #endif
1032 1.1 matt }
1033 1.1 matt if ((intrmask & ETH_IR_RxBits) == 0)
1034 1.52 msaitoh intrmask &= ~(ETH_IR_RxBuffer | ETH_IR_RxError);
1035 1.1 matt
1036 1.1 matt GE_FUNC_EXIT(sc, "");
1037 1.1 matt return intrmask;
1038 1.1 matt }
1039 1.1 matt
1040 1.1 matt int
1041 1.1 matt gfe_rx_prime(struct gfe_softc *sc)
1042 1.1 matt {
1043 1.1 matt struct gfe_rxqueue *rxq;
1044 1.1 matt int error;
1045 1.1 matt
1046 1.1 matt GE_FUNC_ENTER(sc, "gfe_rx_prime");
1047 1.1 matt
1048 1.15 matt error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI);
1049 1.1 matt if (error)
1050 1.1 matt goto bail;
1051 1.15 matt rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1052 1.1 matt if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1053 1.36 kiyohara GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1054 1.36 kiyohara GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1055 1.1 matt }
1056 1.1 matt sc->sc_intrmask |= rxq->rxq_intrbits;
1057 1.1 matt
1058 1.15 matt error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI);
1059 1.1 matt if (error)
1060 1.1 matt goto bail;
1061 1.1 matt if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1062 1.15 matt rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1063 1.36 kiyohara GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1064 1.36 kiyohara GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1065 1.1 matt sc->sc_intrmask |= rxq->rxq_intrbits;
1066 1.1 matt }
1067 1.1 matt
1068 1.15 matt error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO);
1069 1.1 matt if (error)
1070 1.1 matt goto bail;
1071 1.1 matt if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1072 1.15 matt rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1073 1.36 kiyohara GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1074 1.36 kiyohara GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1075 1.1 matt sc->sc_intrmask |= rxq->rxq_intrbits;
1076 1.1 matt }
1077 1.1 matt
1078 1.15 matt error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO);
1079 1.1 matt if (error)
1080 1.1 matt goto bail;
1081 1.1 matt if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1082 1.15 matt rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1083 1.36 kiyohara GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1084 1.36 kiyohara GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1085 1.1 matt sc->sc_intrmask |= rxq->rxq_intrbits;
1086 1.1 matt }
1087 1.1 matt
1088 1.1 matt bail:
1089 1.1 matt GE_FUNC_EXIT(sc, "");
1090 1.1 matt return error;
1091 1.1 matt }
1092 1.1 matt
1093 1.1 matt void
1094 1.1 matt gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio)
1095 1.1 matt {
1096 1.15 matt struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio];
1097 1.1 matt GE_FUNC_ENTER(sc, "gfe_rx_cleanup");
1098 1.1 matt if (rxq == NULL) {
1099 1.1 matt GE_FUNC_EXIT(sc, "");
1100 1.1 matt return;
1101 1.1 matt }
1102 1.1 matt
1103 1.61 rin m_freem(rxq->rxq_curpkt);
1104 1.15 matt if ((sc->sc_flags & GE_NOFREE) == 0) {
1105 1.15 matt gfe_dmamem_free(sc, &rxq->rxq_desc_mem);
1106 1.15 matt gfe_dmamem_free(sc, &rxq->rxq_buf_mem);
1107 1.15 matt }
1108 1.1 matt GE_FUNC_EXIT(sc, "");
1109 1.1 matt }
1110 1.1 matt
1111 1.1 matt void
1112 1.1 matt gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1113 1.1 matt {
1114 1.1 matt GE_FUNC_ENTER(sc, "gfe_rx_stop");
1115 1.1 matt sc->sc_flags &= ~GE_RXACTIVE;
1116 1.52 msaitoh sc->sc_idlemask &= ~(ETH_IR_RxBits | ETH_IR_RxBuffer | ETH_IR_RxError);
1117 1.52 msaitoh sc->sc_intrmask &= ~(ETH_IR_RxBits | ETH_IR_RxBuffer | ETH_IR_RxError);
1118 1.36 kiyohara GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1119 1.36 kiyohara GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR);
1120 1.1 matt do {
1121 1.1 matt delay(10);
1122 1.36 kiyohara } while (GE_READ(sc, ETH_ESDCMR) & ETH_ESDCMR_AR);
1123 1.1 matt gfe_rx_cleanup(sc, GE_RXPRIO_HI);
1124 1.1 matt gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI);
1125 1.1 matt gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO);
1126 1.1 matt gfe_rx_cleanup(sc, GE_RXPRIO_LO);
1127 1.1 matt GE_FUNC_EXIT(sc, "");
1128 1.1 matt }
1129 1.36 kiyohara
1130 1.1 matt void
1131 1.1 matt gfe_tick(void *arg)
1132 1.1 matt {
1133 1.1 matt struct gfe_softc * const sc = arg;
1134 1.1 matt uint32_t intrmask;
1135 1.1 matt unsigned int tickflags;
1136 1.1 matt int s;
1137 1.1 matt
1138 1.1 matt GE_FUNC_ENTER(sc, "gfe_tick");
1139 1.1 matt
1140 1.1 matt s = splnet();
1141 1.1 matt
1142 1.1 matt tickflags = sc->sc_tickflags;
1143 1.1 matt sc->sc_tickflags = 0;
1144 1.1 matt intrmask = sc->sc_intrmask;
1145 1.1 matt if (tickflags & GE_TICK_TX_IFSTART)
1146 1.1 matt gfe_ifstart(&sc->sc_ec.ec_if);
1147 1.1 matt if (tickflags & GE_TICK_RX_RESTART) {
1148 1.1 matt intrmask |= sc->sc_idlemask;
1149 1.52 msaitoh if (sc->sc_idlemask & (ETH_IR_RxBuffer_3 | ETH_IR_RxError_3)) {
1150 1.15 matt struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1151 1.1 matt rxq->rxq_fi = 0;
1152 1.36 kiyohara GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1153 1.36 kiyohara GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1154 1.1 matt }
1155 1.52 msaitoh if (sc->sc_idlemask & (ETH_IR_RxBuffer_2 | ETH_IR_RxError_2)) {
1156 1.15 matt struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1157 1.1 matt rxq->rxq_fi = 0;
1158 1.36 kiyohara GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1159 1.36 kiyohara GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1160 1.1 matt }
1161 1.52 msaitoh if (sc->sc_idlemask & (ETH_IR_RxBuffer_1 | ETH_IR_RxError_1)) {
1162 1.15 matt struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1163 1.1 matt rxq->rxq_fi = 0;
1164 1.36 kiyohara GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1165 1.36 kiyohara GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1166 1.1 matt }
1167 1.52 msaitoh if (sc->sc_idlemask & (ETH_IR_RxBuffer_0 | ETH_IR_RxError_0)) {
1168 1.15 matt struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1169 1.1 matt rxq->rxq_fi = 0;
1170 1.36 kiyohara GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1171 1.36 kiyohara GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1172 1.1 matt }
1173 1.1 matt sc->sc_idlemask = 0;
1174 1.1 matt }
1175 1.1 matt if (intrmask != sc->sc_intrmask) {
1176 1.1 matt sc->sc_intrmask = intrmask;
1177 1.36 kiyohara GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1178 1.1 matt }
1179 1.1 matt gfe_intr(sc);
1180 1.1 matt splx(s);
1181 1.1 matt
1182 1.1 matt GE_FUNC_EXIT(sc, "");
1183 1.1 matt }
1184 1.1 matt
1185 1.1 matt int
1186 1.1 matt gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio)
1187 1.1 matt {
1188 1.5 matt const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1189 1.5 matt struct ifnet * const ifp = &sc->sc_ec.ec_if;
1190 1.15 matt struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1191 1.1 matt volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo];
1192 1.1 matt uint32_t intrmask = sc->sc_intrmask;
1193 1.9 matt size_t buflen;
1194 1.1 matt struct mbuf *m;
1195 1.1 matt
1196 1.1 matt GE_FUNC_ENTER(sc, "gfe_tx_enqueue");
1197 1.1 matt
1198 1.1 matt /*
1199 1.13 scw * Anything in the pending queue to enqueue? if not, punt. Likewise
1200 1.13 scw * if the txq is not yet created.
1201 1.1 matt * otherwise grab its dmamap.
1202 1.1 matt */
1203 1.13 scw if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) {
1204 1.1 matt GE_FUNC_EXIT(sc, "-");
1205 1.1 matt return 0;
1206 1.1 matt }
1207 1.1 matt
1208 1.1 matt /*
1209 1.1 matt * Have we [over]consumed our limit of descriptors?
1210 1.1 matt * Do we have enough free descriptors?
1211 1.1 matt */
1212 1.6 matt if (GE_TXDESC_MAX == txq->txq_nactive + 2) {
1213 1.1 matt volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi];
1214 1.1 matt uint32_t cmdsts;
1215 1.1 matt size_t pktlen;
1216 1.6 matt GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1217 1.2 matt cmdsts = gt32toh(txd2->ed_cmdsts);
1218 1.1 matt if (cmdsts & TX_CMD_O) {
1219 1.6 matt int nextin;
1220 1.6 matt /*
1221 1.6 matt * Sometime the Discovery forgets to update the
1222 1.6 matt * last descriptor. See if we own the descriptor
1223 1.6 matt * after it (since we know we've turned that to
1224 1.6 matt * the discovery and if we owned it, the Discovery
1225 1.6 matt * gave it back). If we do, we know the Discovery
1226 1.6 matt * gave back this one but forgot to mark it as ours.
1227 1.6 matt */
1228 1.6 matt nextin = txq->txq_fi + 1;
1229 1.6 matt if (nextin == GE_TXDESC_MAX)
1230 1.6 matt nextin = 0;
1231 1.6 matt GE_TXDPOSTSYNC(sc, txq, nextin);
1232 1.6 matt if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1233 1.6 matt GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1234 1.6 matt GE_TXDPRESYNC(sc, txq, nextin);
1235 1.6 matt GE_FUNC_EXIT(sc, "@");
1236 1.6 matt return 0;
1237 1.6 matt }
1238 1.6 matt #ifdef DEBUG
1239 1.6 matt printf("%s: txenqueue: transmitter resynced at %d\n",
1240 1.36 kiyohara device_xname(sc->sc_dev), txq->txq_fi);
1241 1.6 matt #endif
1242 1.1 matt }
1243 1.1 matt if (++txq->txq_fi == GE_TXDESC_MAX)
1244 1.1 matt txq->txq_fi = 0;
1245 1.2 matt txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr;
1246 1.2 matt pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff;
1247 1.5 matt txq->txq_inptr += roundup(pktlen, dcache_line_size);
1248 1.1 matt txq->txq_nactive--;
1249 1.1 matt
1250 1.1 matt /* statistics */
1251 1.55 skrll if_statinc(ifp, if_opackets);
1252 1.1 matt if (cmdsts & TX_STS_ES)
1253 1.55 skrll if_statinc(ifp, if_oerrors);
1254 1.1 matt GE_DPRINTF(sc, ("%%"));
1255 1.1 matt }
1256 1.1 matt
1257 1.9 matt buflen = roundup(m->m_pkthdr.len, dcache_line_size);
1258 1.9 matt
1259 1.1 matt /*
1260 1.1 matt * If this packet would wrap around the end of the buffer, reset back
1261 1.1 matt * to the beginning.
1262 1.1 matt */
1263 1.9 matt if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) {
1264 1.1 matt txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr;
1265 1.1 matt txq->txq_outptr = 0;
1266 1.1 matt }
1267 1.1 matt
1268 1.1 matt /*
1269 1.1 matt * Make sure the output packet doesn't run over the beginning of
1270 1.1 matt * what we've already given the GT.
1271 1.1 matt */
1272 1.5 matt if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr &&
1273 1.9 matt txq->txq_outptr + buflen > txq->txq_inptr) {
1274 1.1 matt intrmask |= txq->txq_intrbits &
1275 1.52 msaitoh (ETH_IR_TxBufferHigh | ETH_IR_TxBufferLow);
1276 1.1 matt if (sc->sc_intrmask != intrmask) {
1277 1.1 matt sc->sc_intrmask = intrmask;
1278 1.36 kiyohara GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1279 1.1 matt }
1280 1.1 matt GE_FUNC_EXIT(sc, "#");
1281 1.1 matt return 0;
1282 1.1 matt }
1283 1.1 matt
1284 1.16 perry /*
1285 1.1 matt * The end-of-list descriptor we put on last time is the starting point
1286 1.1 matt * for this packet. The GT is supposed to terminate list processing on
1287 1.1 matt * a NULL nxtptr but that currently is broken so a CPU-owned descriptor
1288 1.1 matt * must terminate the list.
1289 1.1 matt */
1290 1.1 matt intrmask = sc->sc_intrmask;
1291 1.1 matt
1292 1.1 matt m_copydata(m, 0, m->m_pkthdr.len,
1293 1.22 he (char *)txq->txq_buf_mem.gdm_kva + (int)txq->txq_outptr);
1294 1.1 matt bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1295 1.9 matt txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE);
1296 1.2 matt txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr);
1297 1.2 matt txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16);
1298 1.6 matt GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1299 1.2 matt
1300 1.1 matt /*
1301 1.1 matt * Request a buffer interrupt every 2/3 of the way thru the transmit
1302 1.1 matt * buffer.
1303 1.1 matt */
1304 1.9 matt txq->txq_ei_gapcount += buflen;
1305 1.1 matt if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) {
1306 1.52 msaitoh txd->ed_cmdsts = htogt32(TX_CMD_FIRST |TX_CMD_LAST |TX_CMD_EI);
1307 1.1 matt txq->txq_ei_gapcount = 0;
1308 1.1 matt } else {
1309 1.52 msaitoh txd->ed_cmdsts = htogt32(TX_CMD_FIRST | TX_CMD_LAST);
1310 1.1 matt }
1311 1.2 matt #if 0
1312 1.2 matt GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo,
1313 1.2 matt ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1314 1.2 matt ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1315 1.2 matt #endif
1316 1.6 matt GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1317 1.1 matt
1318 1.9 matt txq->txq_outptr += buflen;
1319 1.1 matt /*
1320 1.1 matt * Tell the SDMA engine to "Fetch!"
1321 1.1 matt */
1322 1.36 kiyohara GE_WRITE(sc, ETH_ESDCMR,
1323 1.52 msaitoh txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH | ETH_ESDCMR_TXDL));
1324 1.1 matt
1325 1.1 matt GE_DPRINTF(sc, ("(%d)", txq->txq_lo));
1326 1.1 matt
1327 1.1 matt /*
1328 1.1 matt * Update the last out appropriately.
1329 1.1 matt */
1330 1.5 matt txq->txq_nactive++;
1331 1.1 matt if (++txq->txq_lo == GE_TXDESC_MAX)
1332 1.1 matt txq->txq_lo = 0;
1333 1.1 matt
1334 1.1 matt /*
1335 1.1 matt * Move mbuf from the pending queue to the snd queue.
1336 1.1 matt */
1337 1.1 matt IF_DEQUEUE(&txq->txq_pendq, m);
1338 1.49 msaitoh bpf_mtap(ifp, m, BPF_D_OUT);
1339 1.1 matt m_freem(m);
1340 1.5 matt ifp->if_flags &= ~IFF_OACTIVE;
1341 1.1 matt
1342 1.1 matt /*
1343 1.1 matt * Since we have put an item into the packet queue, we now want
1344 1.1 matt * an interrupt when the transmit queue finishes processing the
1345 1.1 matt * list. But only update the mask if needs changing.
1346 1.1 matt */
1347 1.52 msaitoh intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh | ETH_IR_TxEndLow);
1348 1.1 matt if (sc->sc_intrmask != intrmask) {
1349 1.1 matt sc->sc_intrmask = intrmask;
1350 1.36 kiyohara GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1351 1.1 matt }
1352 1.5 matt if (ifp->if_timer == 0)
1353 1.5 matt ifp->if_timer = 5;
1354 1.1 matt GE_FUNC_EXIT(sc, "*");
1355 1.1 matt return 1;
1356 1.1 matt }
1357 1.1 matt
1358 1.1 matt uint32_t
1359 1.1 matt gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask)
1360 1.1 matt {
1361 1.15 matt struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1362 1.5 matt struct ifnet * const ifp = &sc->sc_ec.ec_if;
1363 1.1 matt
1364 1.1 matt GE_FUNC_ENTER(sc, "gfe_tx_done");
1365 1.1 matt
1366 1.1 matt if (txq == NULL) {
1367 1.1 matt GE_FUNC_EXIT(sc, "");
1368 1.1 matt return intrmask;
1369 1.1 matt }
1370 1.1 matt
1371 1.1 matt while (txq->txq_nactive > 0) {
1372 1.5 matt const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1373 1.2 matt volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi];
1374 1.1 matt uint32_t cmdsts;
1375 1.1 matt size_t pktlen;
1376 1.1 matt
1377 1.6 matt GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1378 1.2 matt if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) {
1379 1.6 matt int nextin;
1380 1.6 matt
1381 1.6 matt if (txq->txq_nactive == 1) {
1382 1.6 matt GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1383 1.6 matt GE_FUNC_EXIT(sc, "");
1384 1.6 matt return intrmask;
1385 1.6 matt }
1386 1.1 matt /*
1387 1.6 matt * Sometimes the Discovery forgets to update the
1388 1.6 matt * ownership bit in the descriptor. See if we own the
1389 1.6 matt * descriptor after it (since we know we've turned
1390 1.6 matt * that to the Discovery and if we own it now then the
1391 1.6 matt * Discovery gave it back). If we do, we know the
1392 1.6 matt * Discovery gave back this one but forgot to mark it
1393 1.6 matt * as ours.
1394 1.1 matt */
1395 1.6 matt nextin = txq->txq_fi + 1;
1396 1.6 matt if (nextin == GE_TXDESC_MAX)
1397 1.6 matt nextin = 0;
1398 1.6 matt GE_TXDPOSTSYNC(sc, txq, nextin);
1399 1.6 matt if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1400 1.6 matt GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1401 1.6 matt GE_TXDPRESYNC(sc, txq, nextin);
1402 1.6 matt GE_FUNC_EXIT(sc, "");
1403 1.6 matt return intrmask;
1404 1.1 matt }
1405 1.6 matt #ifdef DEBUG
1406 1.6 matt printf("%s: txdone: transmitter resynced at %d\n",
1407 1.36 kiyohara device_xname(sc->sc_dev), txq->txq_fi);
1408 1.1 matt #endif
1409 1.1 matt }
1410 1.2 matt #if 0
1411 1.2 matt GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)",
1412 1.2 matt txq->txq_lo,
1413 1.2 matt ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1414 1.2 matt ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1415 1.2 matt #endif
1416 1.1 matt GE_DPRINTF(sc, ("(%d)", txq->txq_fi));
1417 1.1 matt if (++txq->txq_fi == GE_TXDESC_MAX)
1418 1.1 matt txq->txq_fi = 0;
1419 1.2 matt txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr;
1420 1.2 matt pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff;
1421 1.2 matt bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1422 1.2 matt txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE);
1423 1.10 matt txq->txq_inptr += roundup(pktlen, dcache_line_size);
1424 1.1 matt
1425 1.1 matt /* statistics */
1426 1.55 skrll if_statinc(ifp, if_opackets);
1427 1.1 matt if (cmdsts & TX_STS_ES)
1428 1.55 skrll if_statinc(ifp, if_oerrors);
1429 1.1 matt
1430 1.6 matt /* txd->ed_bufptr = 0; */
1431 1.1 matt
1432 1.5 matt ifp->if_timer = 5;
1433 1.1 matt --txq->txq_nactive;
1434 1.1 matt }
1435 1.1 matt if (txq->txq_nactive != 0)
1436 1.1 matt panic("%s: transmit fifo%d empty but active count (%d) > 0!",
1437 1.36 kiyohara device_xname(sc->sc_dev), txprio, txq->txq_nactive);
1438 1.5 matt ifp->if_timer = 0;
1439 1.52 msaitoh intrmask &=
1440 1.52 msaitoh ~(txq->txq_intrbits & (ETH_IR_TxEndHigh | ETH_IR_TxEndLow));
1441 1.52 msaitoh intrmask &=
1442 1.52 msaitoh ~(txq->txq_intrbits & (ETH_IR_TxBufferHigh | ETH_IR_TxBufferLow));
1443 1.1 matt GE_FUNC_EXIT(sc, "");
1444 1.1 matt return intrmask;
1445 1.1 matt }
1446 1.1 matt
1447 1.1 matt int
1448 1.15 matt gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio)
1449 1.15 matt {
1450 1.15 matt struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1451 1.15 matt int error;
1452 1.15 matt
1453 1.15 matt GE_FUNC_ENTER(sc, "gfe_tx_txqalloc");
1454 1.15 matt
1455 1.15 matt error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1,
1456 1.15 matt GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE);
1457 1.15 matt if (error) {
1458 1.15 matt GE_FUNC_EXIT(sc, "");
1459 1.15 matt return error;
1460 1.15 matt }
1461 1.15 matt error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0);
1462 1.15 matt if (error) {
1463 1.15 matt gfe_dmamem_free(sc, &txq->txq_desc_mem);
1464 1.15 matt GE_FUNC_EXIT(sc, "");
1465 1.15 matt return error;
1466 1.15 matt }
1467 1.15 matt GE_FUNC_EXIT(sc, "");
1468 1.15 matt return 0;
1469 1.15 matt }
1470 1.15 matt
1471 1.15 matt int
1472 1.1 matt gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio)
1473 1.1 matt {
1474 1.15 matt struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1475 1.1 matt volatile struct gt_eth_desc *txd;
1476 1.1 matt unsigned int i;
1477 1.1 matt bus_addr_t addr;
1478 1.1 matt
1479 1.1 matt GE_FUNC_ENTER(sc, "gfe_tx_start");
1480 1.1 matt
1481 1.36 kiyohara sc->sc_intrmask &=
1482 1.36 kiyohara ~(ETH_IR_TxEndHigh |
1483 1.36 kiyohara ETH_IR_TxBufferHigh |
1484 1.36 kiyohara ETH_IR_TxEndLow |
1485 1.36 kiyohara ETH_IR_TxBufferLow);
1486 1.1 matt
1487 1.15 matt if (sc->sc_flags & GE_NOFREE) {
1488 1.15 matt KASSERT(txq->txq_desc_mem.gdm_kva != NULL);
1489 1.15 matt KASSERT(txq->txq_buf_mem.gdm_kva != NULL);
1490 1.15 matt } else {
1491 1.15 matt int error = gfe_tx_txqalloc(sc, txprio);
1492 1.1 matt if (error) {
1493 1.15 matt GE_FUNC_EXIT(sc, "!");
1494 1.1 matt return error;
1495 1.1 matt }
1496 1.1 matt }
1497 1.1 matt
1498 1.1 matt txq->txq_descs =
1499 1.1 matt (volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva;
1500 1.1 matt txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr;
1501 1.1 matt txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr;
1502 1.1 matt
1503 1.1 matt txq->txq_pendq.ifq_maxlen = 10;
1504 1.1 matt txq->txq_ei_gapcount = 0;
1505 1.1 matt txq->txq_nactive = 0;
1506 1.1 matt txq->txq_fi = 0;
1507 1.1 matt txq->txq_lo = 0;
1508 1.1 matt txq->txq_inptr = GE_TXBUF_SIZE;
1509 1.1 matt txq->txq_outptr = 0;
1510 1.1 matt for (i = 0, txd = txq->txq_descs,
1511 1.36 kiyohara addr = txq->txq_desc_busaddr + sizeof(*txd);
1512 1.36 kiyohara i < GE_TXDESC_MAX - 1; i++, txd++, addr += sizeof(*txd)) {
1513 1.1 matt /*
1514 1.1 matt * update the nxtptr to point to the next txd.
1515 1.1 matt */
1516 1.1 matt txd->ed_cmdsts = 0;
1517 1.2 matt txd->ed_nxtptr = htogt32(addr);
1518 1.1 matt }
1519 1.1 matt txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr =
1520 1.2 matt htogt32(txq->txq_desc_busaddr);
1521 1.1 matt bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0,
1522 1.52 msaitoh GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1523 1.1 matt
1524 1.1 matt switch (txprio) {
1525 1.1 matt case GE_TXPRIO_HI:
1526 1.52 msaitoh txq->txq_intrbits = ETH_IR_TxEndHigh | ETH_IR_TxBufferHigh;
1527 1.1 matt txq->txq_esdcmrbits = ETH_ESDCMR_TXDH;
1528 1.1 matt txq->txq_epsrbits = ETH_EPSR_TxHigh;
1529 1.36 kiyohara txq->txq_ectdp = ETH_ECTDP1;
1530 1.36 kiyohara GE_WRITE(sc, ETH_ECTDP1, txq->txq_desc_busaddr);
1531 1.1 matt break;
1532 1.1 matt
1533 1.1 matt case GE_TXPRIO_LO:
1534 1.52 msaitoh txq->txq_intrbits = ETH_IR_TxEndLow | ETH_IR_TxBufferLow;
1535 1.1 matt txq->txq_esdcmrbits = ETH_ESDCMR_TXDL;
1536 1.1 matt txq->txq_epsrbits = ETH_EPSR_TxLow;
1537 1.36 kiyohara txq->txq_ectdp = ETH_ECTDP0;
1538 1.36 kiyohara GE_WRITE(sc, ETH_ECTDP0, txq->txq_desc_busaddr);
1539 1.1 matt break;
1540 1.1 matt
1541 1.1 matt case GE_TXPRIO_NONE:
1542 1.1 matt break;
1543 1.1 matt }
1544 1.1 matt #if 0
1545 1.1 matt GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp));
1546 1.36 kiyohara GE_WRITE(sc->sc_dev, txq->txq_ectdp, txq->txq_desc_busaddr);
1547 1.1 matt GE_DPRINTF(sc, (")"));
1548 1.1 matt #endif
1549 1.1 matt
1550 1.1 matt /*
1551 1.1 matt * If we are restarting, there may be packets in the pending queue
1552 1.1 matt * waiting to be enqueued. Try enqueuing packets from both priority
1553 1.1 matt * queues until the pending queue is empty or there no room for them
1554 1.1 matt * on the device.
1555 1.1 matt */
1556 1.1 matt while (gfe_tx_enqueue(sc, txprio))
1557 1.1 matt continue;
1558 1.1 matt
1559 1.1 matt GE_FUNC_EXIT(sc, "");
1560 1.1 matt return 0;
1561 1.1 matt }
1562 1.1 matt
1563 1.1 matt void
1564 1.1 matt gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush)
1565 1.1 matt {
1566 1.15 matt struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1567 1.1 matt
1568 1.1 matt GE_FUNC_ENTER(sc, "gfe_tx_cleanup");
1569 1.1 matt if (txq == NULL) {
1570 1.1 matt GE_FUNC_EXIT(sc, "");
1571 1.1 matt return;
1572 1.1 matt }
1573 1.1 matt
1574 1.1 matt if (!flush) {
1575 1.1 matt GE_FUNC_EXIT(sc, "");
1576 1.1 matt return;
1577 1.1 matt }
1578 1.1 matt
1579 1.15 matt if ((sc->sc_flags & GE_NOFREE) == 0) {
1580 1.15 matt gfe_dmamem_free(sc, &txq->txq_desc_mem);
1581 1.15 matt gfe_dmamem_free(sc, &txq->txq_buf_mem);
1582 1.15 matt }
1583 1.1 matt GE_FUNC_EXIT(sc, "-F");
1584 1.1 matt }
1585 1.1 matt
1586 1.1 matt void
1587 1.1 matt gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1588 1.1 matt {
1589 1.1 matt GE_FUNC_ENTER(sc, "gfe_tx_stop");
1590 1.1 matt
1591 1.52 msaitoh GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_STDH | ETH_ESDCMR_STDL);
1592 1.1 matt
1593 1.1 matt sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask);
1594 1.1 matt sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask);
1595 1.36 kiyohara sc->sc_intrmask &=
1596 1.36 kiyohara ~(ETH_IR_TxEndHigh |
1597 1.36 kiyohara ETH_IR_TxBufferHigh |
1598 1.36 kiyohara ETH_IR_TxEndLow |
1599 1.36 kiyohara ETH_IR_TxBufferLow);
1600 1.1 matt
1601 1.1 matt gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP);
1602 1.1 matt gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP);
1603 1.1 matt
1604 1.1 matt sc->sc_ec.ec_if.if_timer = 0;
1605 1.1 matt GE_FUNC_EXIT(sc, "");
1606 1.1 matt }
1607 1.36 kiyohara
1608 1.1 matt int
1609 1.1 matt gfe_intr(void *arg)
1610 1.1 matt {
1611 1.1 matt struct gfe_softc * const sc = arg;
1612 1.1 matt uint32_t cause;
1613 1.1 matt uint32_t intrmask = sc->sc_intrmask;
1614 1.1 matt int claim = 0;
1615 1.1 matt int cnt;
1616 1.1 matt
1617 1.1 matt GE_FUNC_ENTER(sc, "gfe_intr");
1618 1.1 matt
1619 1.1 matt for (cnt = 0; cnt < 4; cnt++) {
1620 1.1 matt if (sc->sc_intrmask != intrmask) {
1621 1.1 matt sc->sc_intrmask = intrmask;
1622 1.36 kiyohara GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1623 1.1 matt }
1624 1.36 kiyohara cause = GE_READ(sc, ETH_EICR);
1625 1.1 matt cause &= sc->sc_intrmask;
1626 1.1 matt GE_DPRINTF(sc, (".%#x", cause));
1627 1.1 matt if (cause == 0)
1628 1.1 matt break;
1629 1.1 matt
1630 1.1 matt claim = 1;
1631 1.1 matt
1632 1.36 kiyohara GE_WRITE(sc, ETH_EICR, ~cause);
1633 1.1 matt #ifndef GE_NORX
1634 1.52 msaitoh if (cause & (ETH_IR_RxBuffer | ETH_IR_RxError))
1635 1.1 matt intrmask = gfe_rx_process(sc, cause, intrmask);
1636 1.1 matt #endif
1637 1.1 matt
1638 1.1 matt #ifndef GE_NOTX
1639 1.52 msaitoh if (cause & (ETH_IR_TxBufferHigh | ETH_IR_TxEndHigh))
1640 1.1 matt intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask);
1641 1.52 msaitoh if (cause & (ETH_IR_TxBufferLow | ETH_IR_TxEndLow))
1642 1.1 matt intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask);
1643 1.1 matt #endif
1644 1.1 matt if (cause & ETH_IR_MIIPhySTC) {
1645 1.1 matt sc->sc_flags |= GE_PHYSTSCHG;
1646 1.1 matt /* intrmask &= ~ETH_IR_MIIPhySTC; */
1647 1.1 matt }
1648 1.1 matt }
1649 1.13 scw
1650 1.13 scw while (gfe_tx_enqueue(sc, GE_TXPRIO_HI))
1651 1.13 scw continue;
1652 1.13 scw while (gfe_tx_enqueue(sc, GE_TXPRIO_LO))
1653 1.13 scw continue;
1654 1.1 matt
1655 1.1 matt GE_FUNC_EXIT(sc, "");
1656 1.1 matt return claim;
1657 1.1 matt }
1658 1.1 matt
1659 1.1 matt int
1660 1.1 matt gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op)
1661 1.1 matt {
1662 1.1 matt int error = 0;
1663 1.1 matt GE_FUNC_ENTER(sc, "gfe_whack");
1664 1.1 matt
1665 1.1 matt switch (op) {
1666 1.1 matt case GE_WHACK_RESTART:
1667 1.1 matt #ifndef GE_NOTX
1668 1.1 matt gfe_tx_stop(sc, op);
1669 1.1 matt #endif
1670 1.1 matt /* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */
1671 1.1 matt /* FALLTHROUGH */
1672 1.1 matt case GE_WHACK_START:
1673 1.1 matt #ifndef GE_NOHASH
1674 1.1 matt if (error == 0 && sc->sc_hashtable == NULL) {
1675 1.1 matt error = gfe_hash_alloc(sc);
1676 1.1 matt if (error)
1677 1.1 matt break;
1678 1.1 matt }
1679 1.1 matt if (op != GE_WHACK_RESTART)
1680 1.1 matt gfe_hash_fill(sc);
1681 1.1 matt #endif
1682 1.1 matt #ifndef GE_NORX
1683 1.1 matt if (op != GE_WHACK_RESTART) {
1684 1.1 matt error = gfe_rx_prime(sc);
1685 1.1 matt if (error)
1686 1.1 matt break;
1687 1.1 matt }
1688 1.1 matt #endif
1689 1.1 matt #ifndef GE_NOTX
1690 1.1 matt error = gfe_tx_start(sc, GE_TXPRIO_HI);
1691 1.1 matt if (error)
1692 1.1 matt break;
1693 1.1 matt #endif
1694 1.1 matt sc->sc_ec.ec_if.if_flags |= IFF_RUNNING;
1695 1.36 kiyohara GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1696 1.36 kiyohara GE_WRITE(sc, ETH_EPCXR, sc->sc_pcxr);
1697 1.36 kiyohara GE_WRITE(sc, ETH_EICR, 0);
1698 1.36 kiyohara GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1699 1.1 matt #ifndef GE_NOHASH
1700 1.36 kiyohara GE_WRITE(sc, ETH_EHTPR,
1701 1.36 kiyohara sc->sc_hash_mem.gdm_map->dm_segs->ds_addr);
1702 1.1 matt #endif
1703 1.1 matt #ifndef GE_NORX
1704 1.36 kiyohara GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_ERD);
1705 1.1 matt sc->sc_flags |= GE_RXACTIVE;
1706 1.1 matt #endif
1707 1.1 matt /* FALLTHROUGH */
1708 1.1 matt case GE_WHACK_CHANGE:
1709 1.1 matt GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)",
1710 1.36 kiyohara GE_READ(sc, ETH_EPCR), GE_READ(sc, ETH_EIMR)));
1711 1.36 kiyohara GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1712 1.36 kiyohara GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1713 1.1 matt gfe_ifstart(&sc->sc_ec.ec_if);
1714 1.2 matt GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)",
1715 1.36 kiyohara GE_READ(sc, ETH_ECTDP0), GE_READ(sc, ETH_ECTDP1)));
1716 1.2 matt GE_FUNC_EXIT(sc, "");
1717 1.1 matt return error;
1718 1.1 matt case GE_WHACK_STOP:
1719 1.1 matt break;
1720 1.1 matt }
1721 1.1 matt
1722 1.1 matt #ifdef GE_DEBUG
1723 1.1 matt if (error)
1724 1.1 matt GE_DPRINTF(sc, (" failed: %d\n", error));
1725 1.1 matt #endif
1726 1.36 kiyohara GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1727 1.36 kiyohara GE_WRITE(sc, ETH_EIMR, 0);
1728 1.1 matt sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING;
1729 1.1 matt #ifndef GE_NOTX
1730 1.1 matt gfe_tx_stop(sc, GE_WHACK_STOP);
1731 1.1 matt #endif
1732 1.1 matt #ifndef GE_NORX
1733 1.1 matt gfe_rx_stop(sc, GE_WHACK_STOP);
1734 1.1 matt #endif
1735 1.1 matt #ifndef GE_NOHASH
1736 1.15 matt if ((sc->sc_flags & GE_NOFREE) == 0) {
1737 1.15 matt gfe_dmamem_free(sc, &sc->sc_hash_mem);
1738 1.15 matt sc->sc_hashtable = NULL;
1739 1.15 matt }
1740 1.1 matt #endif
1741 1.1 matt
1742 1.1 matt GE_FUNC_EXIT(sc, "");
1743 1.1 matt return error;
1744 1.1 matt }
1745 1.36 kiyohara
1746 1.1 matt int
1747 1.1 matt gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN])
1748 1.1 matt {
1749 1.1 matt uint32_t w0, add0, add1;
1750 1.1 matt uint32_t result;
1751 1.1 matt
1752 1.1 matt GE_FUNC_ENTER(sc, "gfe_hash_compute");
1753 1.53 msaitoh add0 = ((uint32_t) eaddr[5] << 0) |
1754 1.53 msaitoh ((uint32_t) eaddr[4] << 8) |
1755 1.1 matt ((uint32_t) eaddr[3] << 16);
1756 1.1 matt
1757 1.1 matt add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4);
1758 1.1 matt add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2);
1759 1.1 matt add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1);
1760 1.1 matt
1761 1.53 msaitoh add1 = ((uint32_t) eaddr[2] << 0) |
1762 1.53 msaitoh ((uint32_t) eaddr[1] << 8) |
1763 1.1 matt ((uint32_t) eaddr[0] << 16);
1764 1.1 matt
1765 1.1 matt add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4);
1766 1.1 matt add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2);
1767 1.1 matt add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1);
1768 1.1 matt
1769 1.1 matt GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr)));
1770 1.1 matt /*
1771 1.1 matt * hashResult is the 15 bits Hash entry address.
1772 1.1 matt * ethernetADD is a 48 bit number, which is derived from the Ethernet
1773 1.1 matt * MAC address, by nibble swapping in every byte (i.e MAC address
1774 1.1 matt * of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
1775 1.1 matt */
1776 1.1 matt
1777 1.1 matt if ((sc->sc_pcr & ETH_EPCR_HM) == 0) {
1778 1.1 matt /*
1779 1.1 matt * hashResult[14:0] = hashFunc0(ethernetADD[47:0])
1780 1.1 matt *
1781 1.1 matt * hashFunc0 calculates the hashResult in the following manner:
1782 1.1 matt * hashResult[ 8:0] = ethernetADD[14:8,1,0]
1783 1.1 matt * XOR ethernetADD[23:15] XOR ethernetADD[32:24]
1784 1.1 matt */
1785 1.1 matt result = (add0 & 3) | ((add0 >> 6) & ~3);
1786 1.1 matt result ^= (add0 >> 15) ^ (add1 >> 0);
1787 1.1 matt result &= 0x1ff;
1788 1.1 matt /*
1789 1.1 matt * hashResult[14:9] = ethernetADD[7:2]
1790 1.1 matt */
1791 1.1 matt result |= (add0 & ~3) << 7; /* excess bits will be masked */
1792 1.1 matt GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff));
1793 1.1 matt } else {
1794 1.1 matt #define TRIBITFLIP 073516240 /* yes its in octal */
1795 1.1 matt /*
1796 1.1 matt * hashResult[14:0] = hashFunc1(ethernetADD[47:0])
1797 1.1 matt *
1798 1.1 matt * hashFunc1 calculates the hashResult in the following manner:
1799 1.1 matt * hashResult[08:00] = ethernetADD[06:14]
1800 1.1 matt * XOR ethernetADD[15:23] XOR ethernetADD[24:32]
1801 1.1 matt */
1802 1.1 matt w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff;
1803 1.1 matt /*
1804 1.1 matt * Now bitswap those 9 bits
1805 1.1 matt */
1806 1.1 matt result = 0;
1807 1.1 matt result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6;
1808 1.1 matt result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3;
1809 1.1 matt result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0;
1810 1.1 matt
1811 1.1 matt /*
1812 1.1 matt * hashResult[14:09] = ethernetADD[00:05]
1813 1.1 matt */
1814 1.1 matt result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12;
1815 1.1 matt result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9;
1816 1.1 matt GE_DPRINTF(sc, ("1(%#x)", result));
1817 1.1 matt }
1818 1.1 matt GE_FUNC_EXIT(sc, "");
1819 1.1 matt return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff);
1820 1.1 matt }
1821 1.1 matt
1822 1.1 matt int
1823 1.1 matt gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op,
1824 1.6 matt enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN])
1825 1.1 matt {
1826 1.1 matt uint64_t he;
1827 1.1 matt uint64_t *maybe_he_p = NULL;
1828 1.1 matt int limit;
1829 1.1 matt int hash;
1830 1.1 matt int maybe_hash = 0;
1831 1.1 matt
1832 1.1 matt GE_FUNC_ENTER(sc, "gfe_hash_entry_op");
1833 1.1 matt
1834 1.1 matt hash = gfe_hash_compute(sc, eaddr);
1835 1.1 matt
1836 1.1 matt if (sc->sc_hashtable == NULL) {
1837 1.36 kiyohara panic("%s:%d: hashtable == NULL!", device_xname(sc->sc_dev),
1838 1.1 matt __LINE__);
1839 1.1 matt }
1840 1.1 matt
1841 1.1 matt /*
1842 1.1 matt * Assume we are going to insert so create the hash entry we
1843 1.1 matt * are going to insert. We also use it to match entries we
1844 1.1 matt * will be removing.
1845 1.1 matt */
1846 1.1 matt he = ((uint64_t) eaddr[5] << 43) |
1847 1.1 matt ((uint64_t) eaddr[4] << 35) |
1848 1.1 matt ((uint64_t) eaddr[3] << 27) |
1849 1.1 matt ((uint64_t) eaddr[2] << 19) |
1850 1.1 matt ((uint64_t) eaddr[1] << 11) |
1851 1.1 matt ((uint64_t) eaddr[0] << 3) |
1852 1.1 matt HSH_PRIO_INS(prio) | HSH_V | HSH_R;
1853 1.1 matt
1854 1.1 matt /*
1855 1.1 matt * The GT will search upto 12 entries for a hit, so we must mimic that.
1856 1.1 matt */
1857 1.1 matt hash &= sc->sc_hashmask / sizeof(he);
1858 1.1 matt for (limit = HSH_LIMIT; limit > 0 ; --limit) {
1859 1.1 matt /*
1860 1.1 matt * Does the GT wrap at the end, stop at the, or overrun the
1861 1.16 perry * end? Assume it wraps for now. Stash a copy of the
1862 1.1 matt * current hash entry.
1863 1.1 matt */
1864 1.1 matt uint64_t *he_p = &sc->sc_hashtable[hash];
1865 1.1 matt uint64_t thishe = *he_p;
1866 1.1 matt
1867 1.1 matt /*
1868 1.1 matt * If the hash entry isn't valid, that break the chain. And
1869 1.1 matt * this entry a good candidate for reuse.
1870 1.1 matt */
1871 1.1 matt if ((thishe & HSH_V) == 0) {
1872 1.1 matt maybe_he_p = he_p;
1873 1.1 matt break;
1874 1.1 matt }
1875 1.1 matt
1876 1.1 matt /*
1877 1.1 matt * If the hash entry has the same address we are looking for
1878 1.1 matt * then ... if we are removing and the skip bit is set, its
1879 1.1 matt * already been removed. if are adding and the skip bit is
1880 1.1 matt * clear, then its already added. In either return EBUSY
1881 1.1 matt * indicating the op has already been done. Otherwise flip
1882 1.1 matt * the skip bit and return 0.
1883 1.1 matt */
1884 1.1 matt if (((he ^ thishe) & HSH_ADDR_MASK) == 0) {
1885 1.1 matt if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) ||
1886 1.1 matt ((op == GE_HASH_ADD) && (thishe & HSH_S) == 0))
1887 1.1 matt return EBUSY;
1888 1.1 matt *he_p = thishe ^ HSH_S;
1889 1.1 matt bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1890 1.2 matt hash * sizeof(he), sizeof(he),
1891 1.2 matt BUS_DMASYNC_PREWRITE);
1892 1.1 matt GE_FUNC_EXIT(sc, "^");
1893 1.1 matt return 0;
1894 1.1 matt }
1895 1.1 matt
1896 1.1 matt /*
1897 1.1 matt * If we haven't found a slot for the entry and this entry
1898 1.1 matt * is currently being skipped, return this entry.
1899 1.1 matt */
1900 1.1 matt if (maybe_he_p == NULL && (thishe & HSH_S)) {
1901 1.1 matt maybe_he_p = he_p;
1902 1.1 matt maybe_hash = hash;
1903 1.1 matt }
1904 1.16 perry
1905 1.1 matt hash = (hash + 1) & (sc->sc_hashmask / sizeof(he));
1906 1.1 matt }
1907 1.1 matt
1908 1.1 matt /*
1909 1.1 matt * If we got here, then there was no entry to remove.
1910 1.1 matt */
1911 1.1 matt if (op == GE_HASH_REMOVE) {
1912 1.1 matt GE_FUNC_EXIT(sc, "?");
1913 1.1 matt return ENOENT;
1914 1.1 matt }
1915 1.1 matt
1916 1.1 matt /*
1917 1.1 matt * If we couldn't find a slot, return an error.
1918 1.1 matt */
1919 1.1 matt if (maybe_he_p == NULL) {
1920 1.1 matt GE_FUNC_EXIT(sc, "!");
1921 1.1 matt return ENOSPC;
1922 1.1 matt }
1923 1.1 matt
1924 1.1 matt /* Update the entry.
1925 1.1 matt */
1926 1.1 matt *maybe_he_p = he;
1927 1.1 matt bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1928 1.2 matt maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE);
1929 1.1 matt GE_FUNC_EXIT(sc, "+");
1930 1.1 matt return 0;
1931 1.1 matt }
1932 1.1 matt
1933 1.1 matt int
1934 1.36 kiyohara gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm,
1935 1.36 kiyohara u_long cmd)
1936 1.1 matt {
1937 1.36 kiyohara struct gfe_softc *sc = ec->ec_if.if_softc;
1938 1.1 matt int error;
1939 1.1 matt enum gfe_hash_op op;
1940 1.1 matt enum gfe_rxprio prio;
1941 1.1 matt
1942 1.1 matt GE_FUNC_ENTER(sc, "hash_multichg");
1943 1.1 matt /*
1944 1.1 matt * Is this a wildcard entry? If so and its being removed, recompute.
1945 1.1 matt */
1946 1.1 matt if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1947 1.1 matt if (cmd == SIOCDELMULTI) {
1948 1.1 matt GE_FUNC_EXIT(sc, "");
1949 1.1 matt return ENETRESET;
1950 1.1 matt }
1951 1.1 matt
1952 1.1 matt /*
1953 1.1 matt * Switch in
1954 1.1 matt */
1955 1.1 matt sc->sc_flags |= GE_ALLMULTI;
1956 1.1 matt if ((sc->sc_pcr & ETH_EPCR_PM) == 0) {
1957 1.1 matt sc->sc_pcr |= ETH_EPCR_PM;
1958 1.36 kiyohara GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1959 1.1 matt GE_FUNC_EXIT(sc, "");
1960 1.1 matt return 0;
1961 1.1 matt }
1962 1.1 matt GE_FUNC_EXIT(sc, "");
1963 1.1 matt return ENETRESET;
1964 1.1 matt }
1965 1.1 matt
1966 1.1 matt prio = GE_RXPRIO_MEDLO;
1967 1.1 matt op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD);
1968 1.1 matt
1969 1.1 matt if (sc->sc_hashtable == NULL) {
1970 1.1 matt GE_FUNC_EXIT(sc, "");
1971 1.1 matt return 0;
1972 1.1 matt }
1973 1.1 matt
1974 1.1 matt error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo);
1975 1.1 matt if (error == EBUSY) {
1976 1.36 kiyohara aprint_error_dev(sc->sc_dev, "multichg: tried to %s %s again\n",
1977 1.36 kiyohara cmd == SIOCDELMULTI ? "remove" : "add",
1978 1.36 kiyohara ether_sprintf(enm->enm_addrlo));
1979 1.1 matt GE_FUNC_EXIT(sc, "");
1980 1.1 matt return 0;
1981 1.1 matt }
1982 1.1 matt
1983 1.1 matt if (error == ENOENT) {
1984 1.36 kiyohara aprint_error_dev(sc->sc_dev,
1985 1.36 kiyohara "multichg: failed to remove %s: not in table\n",
1986 1.36 kiyohara ether_sprintf(enm->enm_addrlo));
1987 1.1 matt GE_FUNC_EXIT(sc, "");
1988 1.1 matt return 0;
1989 1.1 matt }
1990 1.1 matt
1991 1.1 matt if (error == ENOSPC) {
1992 1.36 kiyohara aprint_error_dev(sc->sc_dev, "multichg:"
1993 1.36 kiyohara " failed to add %s: no space; regenerating table\n",
1994 1.36 kiyohara ether_sprintf(enm->enm_addrlo));
1995 1.1 matt GE_FUNC_EXIT(sc, "");
1996 1.1 matt return ENETRESET;
1997 1.1 matt }
1998 1.1 matt GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n",
1999 1.36 kiyohara device_xname(sc->sc_dev),
2000 1.36 kiyohara cmd == SIOCDELMULTI ? "remove" : "add",
2001 1.36 kiyohara ether_sprintf(enm->enm_addrlo)));
2002 1.1 matt GE_FUNC_EXIT(sc, "");
2003 1.1 matt return 0;
2004 1.1 matt }
2005 1.1 matt
2006 1.1 matt int
2007 1.1 matt gfe_hash_fill(struct gfe_softc *sc)
2008 1.1 matt {
2009 1.52 msaitoh struct ethercom *ec = &sc->sc_ec;
2010 1.1 matt struct ether_multistep step;
2011 1.1 matt struct ether_multi *enm;
2012 1.1 matt int error;
2013 1.1 matt
2014 1.1 matt GE_FUNC_ENTER(sc, "gfe_hash_fill");
2015 1.1 matt
2016 1.1 matt error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI,
2017 1.52 msaitoh CLLADDR(ec->ec_if.if_sadl));
2018 1.43 christos if (error) {
2019 1.1 matt GE_FUNC_EXIT(sc, "!");
2020 1.1 matt return error;
2021 1.43 christos }
2022 1.1 matt
2023 1.1 matt sc->sc_flags &= ~GE_ALLMULTI;
2024 1.52 msaitoh if ((ec->ec_if.if_flags & IFF_PROMISC) == 0)
2025 1.1 matt sc->sc_pcr &= ~ETH_EPCR_PM;
2026 1.54 msaitoh ETHER_LOCK(ec);
2027 1.52 msaitoh ETHER_FIRST_MULTI(step, ec, enm);
2028 1.1 matt while (enm != NULL) {
2029 1.1 matt if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2030 1.1 matt sc->sc_flags |= GE_ALLMULTI;
2031 1.1 matt sc->sc_pcr |= ETH_EPCR_PM;
2032 1.1 matt } else {
2033 1.1 matt error = gfe_hash_entry_op(sc, GE_HASH_ADD,
2034 1.1 matt GE_RXPRIO_MEDLO, enm->enm_addrlo);
2035 1.1 matt if (error == ENOSPC)
2036 1.1 matt break;
2037 1.1 matt }
2038 1.1 matt ETHER_NEXT_MULTI(step, enm);
2039 1.1 matt }
2040 1.54 msaitoh ETHER_UNLOCK(ec);
2041 1.1 matt
2042 1.1 matt GE_FUNC_EXIT(sc, "");
2043 1.1 matt return error;
2044 1.1 matt }
2045 1.1 matt
2046 1.1 matt int
2047 1.1 matt gfe_hash_alloc(struct gfe_softc *sc)
2048 1.1 matt {
2049 1.1 matt int error;
2050 1.1 matt GE_FUNC_ENTER(sc, "gfe_hash_alloc");
2051 1.1 matt sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1;
2052 1.2 matt error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1,
2053 1.2 matt BUS_DMA_NOCACHE);
2054 1.1 matt if (error) {
2055 1.36 kiyohara aprint_error_dev(sc->sc_dev,
2056 1.36 kiyohara "failed to allocate %d bytes for hash table: %d\n",
2057 1.36 kiyohara sc->sc_hashmask + 1, error);
2058 1.1 matt GE_FUNC_EXIT(sc, "");
2059 1.1 matt return error;
2060 1.1 matt }
2061 1.1 matt sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva;
2062 1.1 matt memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1);
2063 1.1 matt bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
2064 1.2 matt 0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE);
2065 1.1 matt GE_FUNC_EXIT(sc, "");
2066 1.1 matt return 0;
2067 1.1 matt }
2068