if_gfe.c revision 1.36 1 /* $NetBSD: if_gfe.c,v 1.36 2010/04/28 13:51:56 kiyohara Exp $ */
2
3 /*
4 * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the NetBSD Project by
18 * Allegro Networks, Inc., and Wasabi Systems, Inc.
19 * 4. The name of Allegro Networks, Inc. may not be used to endorse
20 * or promote products derived from this software without specific prior
21 * written permission.
22 * 5. The name of Wasabi Systems, Inc. may not be used to endorse
23 * or promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
27 * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
28 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * if_gfe.c -- GT ethernet MAC driver
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.36 2010/04/28 13:51:56 kiyohara Exp $");
46
47 #include "opt_inet.h"
48 #include "rnd.h"
49
50 #include <sys/param.h>
51 #include <sys/bus.h>
52 #include <sys/callout.h>
53 #include <sys/device.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/mbuf.h>
57 #include <sys/mutex.h>
58 #include <sys/socket.h>
59
60 #include <uvm/uvm.h>
61 #include <uvm/uvm_extern.h>
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_ether.h>
66 #include <net/if_media.h>
67
68 #ifdef INET
69 #include <netinet/in.h>
70 #include <netinet/if_inarp.h>
71 #endif
72 #include <net/bpf.h>
73 #if NRND > 0
74 #include <sys/rnd.h>
75 #endif
76
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79
80 #include <dev/marvell/gtreg.h>
81 #include <dev/marvell/gtvar.h>
82 #include <dev/marvell/gtethreg.h>
83 #include <dev/marvell/if_gfevar.h>
84 #include <dev/marvell/marvellreg.h>
85 #include <dev/marvell/marvellvar.h>
86
87 #include <prop/proplib.h>
88
89 #include "locators.h"
90
91
92 #define GE_READ(sc, reg) \
93 bus_space_read_4((sc)->sc_memt, (sc)->sc_memh, (reg))
94 #define GE_WRITE(sc, reg, v) \
95 bus_space_write_4((sc)->sc_memt, (sc)->sc_memh, (reg), (v))
96
97 #define GE_DEBUG
98 #if 0
99 #define GE_NOHASH
100 #define GE_NORX
101 #endif
102
103 #ifdef GE_DEBUG
104 #define GE_DPRINTF(sc, a) \
105 do { \
106 if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG) \
107 printf a; \
108 } while (0 /* CONSTCOND */)
109 #define GE_FUNC_ENTER(sc, func) GE_DPRINTF(sc, ("[" func))
110 #define GE_FUNC_EXIT(sc, str) GE_DPRINTF(sc, (str "]"))
111 #else
112 #define GE_DPRINTF(sc, a) do { } while (0)
113 #define GE_FUNC_ENTER(sc, func) do { } while (0)
114 #define GE_FUNC_EXIT(sc, str) do { } while (0)
115 #endif
116 enum gfe_whack_op {
117 GE_WHACK_START, GE_WHACK_RESTART,
118 GE_WHACK_CHANGE, GE_WHACK_STOP
119 };
120
121 enum gfe_hash_op {
122 GE_HASH_ADD, GE_HASH_REMOVE,
123 };
124
125 #if 1
126 #define htogt32(a) htobe32(a)
127 #define gt32toh(a) be32toh(a)
128 #else
129 #define htogt32(a) htole32(a)
130 #define gt32toh(a) le32toh(a)
131 #endif
132
133 #define GE_RXDSYNC(sc, rxq, n, ops) \
134 bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \
135 (n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \
136 (ops))
137 #define GE_RXDPRESYNC(sc, rxq, n) \
138 GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
139 #define GE_RXDPOSTSYNC(sc, rxq, n) \
140 GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
141
142 #define GE_TXDSYNC(sc, txq, n, ops) \
143 bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \
144 (n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \
145 (ops))
146 #define GE_TXDPRESYNC(sc, txq, n) \
147 GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
148 #define GE_TXDPOSTSYNC(sc, txq, n) \
149 GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
150
151 #define STATIC
152
153
154 STATIC int gfec_match(device_t, cfdata_t, void *);
155 STATIC void gfec_attach(device_t, device_t, void *);
156
157 STATIC int gfec_print(void *, const char *);
158 STATIC int gfec_search(device_t, cfdata_t, const int *, void *);
159
160 STATIC int gfec_enet_phy(device_t, int);
161 STATIC int gfec_mii_read(device_t, int, int);
162 STATIC void gfec_mii_write(device_t, int, int, int);
163 STATIC void gfec_mii_statchg(device_t);
164
165 STATIC int gfe_match(device_t, cfdata_t, void *);
166 STATIC void gfe_attach(device_t, device_t, void *);
167
168 STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int,
169 size_t, int);
170 STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *);
171
172 STATIC int gfe_ifioctl(struct ifnet *, u_long, void *);
173 STATIC void gfe_ifstart(struct ifnet *);
174 STATIC void gfe_ifwatchdog(struct ifnet *);
175
176 STATIC void gfe_tick(void *arg);
177
178 STATIC void gfe_tx_restart(void *);
179 STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio);
180 STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t);
181 STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int);
182 STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio);
183 STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio);
184 STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op);
185
186 STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio);
187 STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio);
188 STATIC int gfe_rx_prime(struct gfe_softc *);
189 STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t);
190 STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio);
191 STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio);
192 STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op);
193
194 STATIC int gfe_intr(void *);
195
196 STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op);
197
198 STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]);
199 STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op,
200 enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]);
201 STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *,
202 u_long);
203 STATIC int gfe_hash_fill(struct gfe_softc *);
204 STATIC int gfe_hash_alloc(struct gfe_softc *);
205
206
207 CFATTACH_DECL_NEW(gfec, sizeof(struct gfec_softc),
208 gfec_match, gfec_attach, NULL, NULL);
209 CFATTACH_DECL_NEW(gfe, sizeof(struct gfe_softc),
210 gfe_match, gfe_attach, NULL, NULL);
211
212
213 /* ARGSUSED */
214 int
215 gfec_match(device_t parent, cfdata_t cf, void *aux)
216 {
217 struct marvell_attach_args *mva = aux;
218
219 if (strcmp(mva->mva_name, cf->cf_name) != 0)
220 return 0;
221
222 switch (mva->mva_model) {
223 case MARVELL_DISCOVERY:
224 break;
225
226 default:
227 return 0;
228 }
229 if (mva->mva_offset == GTCF_OFFSET_DEFAULT)
230 return 0;
231
232 mva->mva_size = ETHC_SIZE;
233 return 1;
234 }
235
236 /* ARGSUSED */
237 void
238 gfec_attach(device_t parent, device_t self, void *aux)
239 {
240 struct gfec_softc *sc = device_private(self);
241 struct marvell_attach_args *mva = aux, gfea;
242 static int gfe_irqs[] = { 32, 33, 34 };
243 int i;
244
245 aprint_naive("\n");
246 aprint_normal(": Ethernet Controller\n");
247
248 sc->sc_dev = self;
249 sc->sc_iot = mva->mva_iot;
250 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset,
251 mva->mva_size, &sc->sc_ioh)) {
252 aprint_error_dev(self, "Cannot map registers\n");
253 return;
254 }
255
256 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
257
258 for (i = 0; i < ETH_NUM; i++) {
259 gfea.mva_name = "gfe";
260 gfea.mva_model = mva->mva_model;
261 gfea.mva_iot = sc->sc_iot;
262 gfea.mva_ioh = sc->sc_ioh;
263 gfea.mva_unit = i;
264 gfea.mva_dmat = mva->mva_dmat;
265 gfea.mva_irq = gfe_irqs[i];
266 config_found_sm_loc(sc->sc_dev, "gfec", NULL, &gfea,
267 gfec_print, gfec_search);
268 }
269 }
270
271 int
272 gfec_print(void *aux, const char *pnp)
273 {
274 struct marvell_attach_args *gfea = aux;
275
276 if (pnp)
277 aprint_normal("%s at %s port %d",
278 gfea->mva_name, pnp, gfea->mva_unit);
279 else {
280 if (gfea->mva_unit != GFECCF_PORT_DEFAULT)
281 aprint_normal(" port %d", gfea->mva_unit);
282 if (gfea->mva_irq != GFECCF_IRQ_DEFAULT)
283 aprint_normal(" irq %d", gfea->mva_irq);
284 }
285 return UNCONF;
286 }
287
288 /* ARGSUSED */
289 int
290 gfec_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
291 {
292 struct marvell_attach_args *gfea = aux;
293
294 if (cf->cf_loc[GFECCF_PORT] == gfea->mva_unit &&
295 cf->cf_loc[GFECCF_IRQ] != GFECCF_IRQ_DEFAULT)
296 gfea->mva_irq = cf->cf_loc[GFECCF_IRQ];
297
298 return config_match(parent, cf, aux);
299 }
300
301 int
302 gfec_enet_phy(device_t dev, int unit)
303 {
304 struct gfec_softc *sc = device_private(dev);
305 uint32_t epar;
306
307 epar = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ETH_EPAR);
308 return ETH_EPAR_PhyAD_GET(epar, unit);
309 }
310
311 int
312 gfec_mii_read(device_t dev, int phy, int reg)
313 {
314 struct gfec_softc *csc = device_private(device_parent(dev));
315 uint32_t data;
316 int count = 10000;
317
318 mutex_enter(&csc->sc_mtx);
319
320 do {
321 DELAY(10);
322 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
323 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
324
325 if (count == 0) {
326 aprint_error_dev(dev,
327 "mii read for phy %d reg %d busied out\n", phy, reg);
328 mutex_exit(&csc->sc_mtx);
329 return ETH_ESMIR_Value_GET(data);
330 }
331
332 bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
333 ETH_ESMIR_READ(phy, reg));
334
335 count = 10000;
336 do {
337 DELAY(10);
338 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
339 } while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
340
341 mutex_exit(&csc->sc_mtx);
342
343 if (count == 0)
344 aprint_error_dev(dev,
345 "mii read for phy %d reg %d timed out\n", phy, reg);
346 #if defined(GTMIIDEBUG)
347 aprint_normal_dev(dev, "mii_read(%d, %d): %#x data %#x\n",
348 phy, reg, data, ETH_ESMIR_Value_GET(data));
349 #endif
350 return ETH_ESMIR_Value_GET(data);
351 }
352
353 void
354 gfec_mii_write (device_t dev, int phy, int reg, int value)
355 {
356 struct gfec_softc *csc = device_private(device_parent(dev));
357 uint32_t data;
358 int count = 10000;
359
360 mutex_enter(&csc->sc_mtx);
361
362 do {
363 DELAY(10);
364 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
365 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
366
367 if (count == 0) {
368 aprint_error_dev(dev,
369 "mii write for phy %d reg %d busied out (busy)\n",
370 phy, reg);
371 mutex_exit(&csc->sc_mtx);
372 return;
373 }
374
375 bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
376 ETH_ESMIR_WRITE(phy, reg, value));
377
378 count = 10000;
379 do {
380 DELAY(10);
381 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
382 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
383
384 mutex_exit(&csc->sc_mtx);
385
386 if (count == 0)
387 aprint_error_dev(dev,
388 "mii write for phy %d reg %d timed out\n", phy, reg);
389 #if defined(GTMIIDEBUG)
390 aprint_normal_dev(dev, "mii_write(%d, %d, %#x)\n", phy, reg, value);
391 #endif
392 }
393
394 void
395 gfec_mii_statchg(device_t dev)
396 {
397 /* struct gfe_softc *sc = device_private(self); */
398 /* do nothing? */
399 }
400
401 /* ARGSUSED */
402 int
403 gfe_match(device_t parent, cfdata_t cf, void *aux)
404 {
405
406 return 1;
407 }
408
409 /* ARGSUSED */
410 void
411 gfe_attach(device_t parent, device_t self, void *aux)
412 {
413 struct marvell_attach_args *mva = aux;
414 struct gfe_softc * const sc = device_private(self);
415 struct ifnet * const ifp = &sc->sc_ec.ec_if;
416 uint32_t sdcr;
417 int phyaddr, error;
418 prop_data_t ea;
419 uint8_t enaddr[6];
420
421 aprint_naive("\n");
422 aprint_normal(": Ethernet Controller\n");
423
424 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
425 mva->mva_offset, mva->mva_size, &sc->sc_memh)) {
426 aprint_error_dev(self, "failed to map registers\n");
427 return;
428 }
429 sc->sc_dev = self;
430 sc->sc_memt = mva->mva_iot;
431 sc->sc_dmat = mva->mva_dmat;
432 sc->sc_macno = (mva->mva_offset == ETH_BASE(0)) ? 0 :
433 ((mva->mva_offset == ETH_BASE(1)) ? 1 : 2);
434
435 callout_init(&sc->sc_co, 0);
436
437 phyaddr = gfec_enet_phy(parent, sc->sc_macno);
438
439 ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr");
440 if (ea != NULL) {
441 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
442 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
443 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
444 }
445
446 sc->sc_pcr = GE_READ(sc, ETH_EPCR);
447 sc->sc_pcxr = GE_READ(sc, ETH_EPCXR);
448 sc->sc_intrmask = GE_READ(sc, ETH_EIMR) | ETH_IR_MIIPhySTC;
449
450 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
451
452 #if defined(DEBUG)
453 printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
454 #endif
455
456 sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override;
457 if (device_cfdata(self)->cf_flags & 1) {
458 aprint_normal_dev(self, "phy %d (rmii)\n", phyaddr);
459 sc->sc_pcxr |= ETH_EPCXR_RMIIEn;
460 } else {
461 aprint_normal_dev(self, "phy %d (mii)\n", phyaddr);
462 sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn;
463 }
464 if (device_cfdata(self)->cf_flags & 2)
465 sc->sc_flags |= GE_NOFREE;
466 /* Set Max Frame Length is 1536 */
467 sc->sc_pcxr &= ~ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_MASK);
468 sc->sc_pcxr |= ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_1536);
469 sc->sc_max_frame_length = 1536;
470
471 if (sc->sc_pcr & ETH_EPCR_EN) {
472 int tries = 1000;
473 /*
474 * Abort transmitter and receiver and wait for them to quiese
475 */
476 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR | ETH_ESDCMR_AT);
477 do {
478 delay(100);
479 if (tries-- <= 0) {
480 aprint_error_dev(self, "Abort TX/RX failed\n");
481 break;
482 }
483 } while (GE_READ(sc, ETH_ESDCMR) &
484 (ETH_ESDCMR_AR | ETH_ESDCMR_AT));
485 }
486
487 sc->sc_pcr &=
488 ~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF);
489
490 #if defined(DEBUG)
491 printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
492 #endif
493
494 /*
495 * Now turn off the GT. If it didn't quiese, too ***ing bad.
496 */
497 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
498 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
499 sdcr = GE_READ(sc, ETH_ESDCR);
500 ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4);
501 sdcr |= ETH_ESDCR_RIFB;
502 GE_WRITE(sc, ETH_ESDCR, sdcr);
503
504 sc->sc_mii.mii_ifp = ifp;
505 sc->sc_mii.mii_readreg = gfec_mii_read;
506 sc->sc_mii.mii_writereg = gfec_mii_write;
507 sc->sc_mii.mii_statchg = gfec_mii_statchg;
508
509 sc->sc_ec.ec_mii = &sc->sc_mii;
510 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
511 ether_mediastatus);
512
513 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, phyaddr,
514 MII_OFFSET_ANY, MIIF_NOISOLATE);
515 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
516 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
517 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
518 } else {
519 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
520 }
521
522 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
523 ifp->if_softc = sc;
524 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
525 #if 0
526 ifp->if_flags |= IFF_DEBUG;
527 #endif
528 ifp->if_ioctl = gfe_ifioctl;
529 ifp->if_start = gfe_ifstart;
530 ifp->if_watchdog = gfe_ifwatchdog;
531
532 if (sc->sc_flags & GE_NOFREE) {
533 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI);
534 if (!error)
535 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI);
536 if (!error)
537 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO);
538 if (!error)
539 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO);
540 if (!error)
541 error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI);
542 if (!error)
543 error = gfe_hash_alloc(sc);
544 if (error)
545 aprint_error_dev(self,
546 "failed to allocate resources: %d\n", error);
547 }
548
549 if_attach(ifp);
550 ether_ifattach(ifp, enaddr);
551 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
552 #if NRND > 0
553 rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET,
554 0);
555 #endif
556 marvell_intr_establish(mva->mva_irq, IPL_NET, gfe_intr, sc);
557 }
558
559 int
560 gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs,
561 size_t size, int flags)
562 {
563 int error = 0;
564 GE_FUNC_ENTER(sc, "gfe_dmamem_alloc");
565
566 KASSERT(gdm->gdm_kva == NULL);
567 gdm->gdm_size = size;
568 gdm->gdm_maxsegs = maxsegs;
569
570 error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE,
571 gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs,
572 BUS_DMA_NOWAIT);
573 if (error)
574 goto fail;
575
576 error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs,
577 gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT);
578 if (error)
579 goto fail;
580
581 error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs,
582 gdm->gdm_size, 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT, &gdm->gdm_map);
583 if (error)
584 goto fail;
585
586 error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva,
587 gdm->gdm_size, NULL, BUS_DMA_NOWAIT);
588 if (error)
589 goto fail;
590
591 /* invalidate from cache */
592 bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size,
593 BUS_DMASYNC_PREREAD);
594 fail:
595 if (error) {
596 gfe_dmamem_free(sc, gdm);
597 GE_DPRINTF(sc, (":err=%d", error));
598 }
599 GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x",
600 gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs,
601 gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len));
602 GE_FUNC_EXIT(sc, "");
603 return error;
604 }
605
606 void
607 gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm)
608 {
609 GE_FUNC_ENTER(sc, "gfe_dmamem_free");
610 if (gdm->gdm_map)
611 bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map);
612 if (gdm->gdm_kva)
613 bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size);
614 if (gdm->gdm_nsegs > 0)
615 bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs);
616 gdm->gdm_map = NULL;
617 gdm->gdm_kva = NULL;
618 gdm->gdm_nsegs = 0;
619 GE_FUNC_EXIT(sc, "");
620 }
621
622 int
623 gfe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
624 {
625 struct gfe_softc * const sc = ifp->if_softc;
626 struct ifreq *ifr = (struct ifreq *) data;
627 struct ifaddr *ifa = (struct ifaddr *) data;
628 int s, error = 0;
629
630 GE_FUNC_ENTER(sc, "gfe_ifioctl");
631 s = splnet();
632
633 switch (cmd) {
634 case SIOCINITIFADDR:
635 ifp->if_flags |= IFF_UP;
636 error = gfe_whack(sc, GE_WHACK_START);
637 switch (ifa->ifa_addr->sa_family) {
638 #ifdef INET
639 case AF_INET:
640 if (error == 0)
641 arp_ifinit(ifp, ifa);
642 break;
643 #endif
644 default:
645 break;
646 }
647 break;
648
649 case SIOCSIFFLAGS:
650 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
651 break;
652 /* XXX re-use ether_ioctl() */
653 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
654 case IFF_UP|IFF_RUNNING:/* active->active, update */
655 error = gfe_whack(sc, GE_WHACK_CHANGE);
656 break;
657 case IFF_RUNNING: /* not up, so we stop */
658 error = gfe_whack(sc, GE_WHACK_STOP);
659 break;
660 case IFF_UP: /* not running, so we start */
661 error = gfe_whack(sc, GE_WHACK_START);
662 break;
663 case 0: /* idle->idle: do nothing */
664 break;
665 }
666 break;
667
668 case SIOCSIFMEDIA:
669 case SIOCGIFMEDIA:
670 case SIOCADDMULTI:
671 case SIOCDELMULTI:
672 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
673 if (ifp->if_flags & IFF_RUNNING)
674 error = gfe_whack(sc, GE_WHACK_CHANGE);
675 else
676 error = 0;
677 }
678 break;
679
680 case SIOCSIFMTU:
681 if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) {
682 error = EINVAL;
683 break;
684 }
685 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
686 error = 0;
687 break;
688
689 default:
690 error = ether_ioctl(ifp, cmd, data);
691 break;
692 }
693 splx(s);
694 GE_FUNC_EXIT(sc, "");
695 return error;
696 }
697
698 void
699 gfe_ifstart(struct ifnet *ifp)
700 {
701 struct gfe_softc * const sc = ifp->if_softc;
702 struct mbuf *m;
703
704 GE_FUNC_ENTER(sc, "gfe_ifstart");
705
706 if ((ifp->if_flags & IFF_RUNNING) == 0) {
707 GE_FUNC_EXIT(sc, "$");
708 return;
709 }
710
711 for (;;) {
712 IF_DEQUEUE(&ifp->if_snd, m);
713 if (m == NULL) {
714 ifp->if_flags &= ~IFF_OACTIVE;
715 GE_FUNC_EXIT(sc, "");
716 return;
717 }
718
719 /*
720 * No space in the pending queue? try later.
721 */
722 if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq))
723 break;
724
725 /*
726 * Try to enqueue a mbuf to the device. If that fails, we
727 * can always try to map the next mbuf.
728 */
729 IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m);
730 GE_DPRINTF(sc, (">"));
731 #ifndef GE_NOTX
732 (void) gfe_tx_enqueue(sc, GE_TXPRIO_HI);
733 #endif
734 }
735
736 /*
737 * Attempt to queue the mbuf for send failed.
738 */
739 IF_PREPEND(&ifp->if_snd, m);
740 ifp->if_flags |= IFF_OACTIVE;
741 GE_FUNC_EXIT(sc, "%%");
742 }
743
744 void
745 gfe_ifwatchdog(struct ifnet *ifp)
746 {
747 struct gfe_softc * const sc = ifp->if_softc;
748 struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI];
749
750 GE_FUNC_ENTER(sc, "gfe_ifwatchdog");
751 aprint_error_dev(sc->sc_dev, "device timeout");
752 if (ifp->if_flags & IFF_RUNNING) {
753 uint32_t curtxdnum;
754
755 curtxdnum = (GE_READ(sc, txq->txq_ectdp) -
756 txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]);
757 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
758 GE_TXDPOSTSYNC(sc, txq, curtxdnum);
759 aprint_error(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ",
760 txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts,
761 txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts,
762 GE_READ(sc, ETH_EICR));
763 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
764 GE_TXDPRESYNC(sc, txq, curtxdnum);
765 }
766 aprint_error("\n");
767 ifp->if_oerrors++;
768 (void) gfe_whack(sc, GE_WHACK_RESTART);
769 GE_FUNC_EXIT(sc, "");
770 }
771
772 int
773 gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio)
774 {
775 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
776 int error;
777
778 GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc");
779 GE_DPRINTF(sc, ("(%d)", rxprio));
780
781 error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1,
782 GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE);
783 if (error) {
784 GE_FUNC_EXIT(sc, "!!");
785 return error;
786 }
787
788 error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS,
789 GE_RXBUF_MEMSIZE, 0);
790 if (error) {
791 GE_FUNC_EXIT(sc, "!!!");
792 return error;
793 }
794 GE_FUNC_EXIT(sc, "");
795 return error;
796 }
797
798 int
799 gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio)
800 {
801 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
802 volatile struct gt_eth_desc *rxd;
803 const bus_dma_segment_t *ds;
804 int idx;
805 bus_addr_t nxtaddr;
806 bus_size_t boff;
807
808 GE_FUNC_ENTER(sc, "gfe_rx_rxqinit");
809 GE_DPRINTF(sc, ("(%d)", rxprio));
810
811 if ((sc->sc_flags & GE_NOFREE) == 0) {
812 int error = gfe_rx_rxqalloc(sc, rxprio);
813 if (error) {
814 GE_FUNC_EXIT(sc, "!");
815 return error;
816 }
817 } else {
818 KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL);
819 KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL);
820 }
821
822 memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE);
823
824 rxq->rxq_descs =
825 (volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva;
826 rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr;
827 rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva;
828 rxq->rxq_fi = 0;
829 rxq->rxq_active = GE_RXDESC_MAX;
830 boff = 0;
831 ds = rxq->rxq_buf_mem.gdm_map->dm_segs;
832 nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd);
833 for (idx = 0, rxd = rxq->rxq_descs; idx < GE_RXDESC_MAX;
834 idx++, nxtaddr += sizeof(*(++rxd))) {
835 rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16);
836 rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
837 rxd->ed_bufptr = htogt32(ds->ds_addr + boff);
838 /*
839 * update the nxtptr to point to the next txd.
840 */
841 if (idx == GE_RXDESC_MAX - 1)
842 nxtaddr = rxq->rxq_desc_busaddr;
843 rxd->ed_nxtptr = htogt32(nxtaddr);
844 boff += GE_RXBUF_SIZE;
845 if (boff == ds->ds_len) {
846 ds++;
847 boff = 0;
848 }
849 }
850 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0,
851 rxq->rxq_desc_mem.gdm_map->dm_mapsize,
852 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
853 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0,
854 rxq->rxq_buf_mem.gdm_map->dm_mapsize,
855 BUS_DMASYNC_PREREAD);
856
857 rxq->rxq_intrbits = ETH_IR_RxBuffer|ETH_IR_RxError;
858 switch (rxprio) {
859 case GE_RXPRIO_HI:
860 rxq->rxq_intrbits |= ETH_IR_RxBuffer_3|ETH_IR_RxError_3;
861 rxq->rxq_efrdp = ETH_EFRDP3;
862 rxq->rxq_ecrdp = ETH_ECRDP3;
863 break;
864 case GE_RXPRIO_MEDHI:
865 rxq->rxq_intrbits |= ETH_IR_RxBuffer_2|ETH_IR_RxError_2;
866 rxq->rxq_efrdp = ETH_EFRDP2;
867 rxq->rxq_ecrdp = ETH_ECRDP2;
868 break;
869 case GE_RXPRIO_MEDLO:
870 rxq->rxq_intrbits |= ETH_IR_RxBuffer_1|ETH_IR_RxError_1;
871 rxq->rxq_efrdp = ETH_EFRDP1;
872 rxq->rxq_ecrdp = ETH_ECRDP1;
873 break;
874 case GE_RXPRIO_LO:
875 rxq->rxq_intrbits |= ETH_IR_RxBuffer_0|ETH_IR_RxError_0;
876 rxq->rxq_efrdp = ETH_EFRDP0;
877 rxq->rxq_ecrdp = ETH_ECRDP0;
878 break;
879 }
880 GE_FUNC_EXIT(sc, "");
881 return 0;
882 }
883
884 void
885 gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio)
886 {
887 struct ifnet * const ifp = &sc->sc_ec.ec_if;
888 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
889 struct mbuf *m = rxq->rxq_curpkt;
890
891 GE_FUNC_ENTER(sc, "gfe_rx_get");
892 GE_DPRINTF(sc, ("(%d)", rxprio));
893
894 while (rxq->rxq_active > 0) {
895 volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi];
896 struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi];
897 const struct ether_header *eh;
898 unsigned int cmdsts;
899 size_t buflen;
900
901 GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi);
902 cmdsts = gt32toh(rxd->ed_cmdsts);
903 GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts));
904 rxq->rxq_cmdsts = cmdsts;
905 /*
906 * Sometimes the GE "forgets" to reset the ownership bit.
907 * But if the length has been rewritten, the packet is ours
908 * so pretend the O bit is set.
909 */
910 buflen = gt32toh(rxd->ed_lencnt) & 0xffff;
911 if ((cmdsts & RX_CMD_O) && buflen == 0) {
912 GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
913 break;
914 }
915
916 /*
917 * If this is not a single buffer packet with no errors
918 * or for some reason it's bigger than our frame size,
919 * ignore it and go to the next packet.
920 */
921 if ((cmdsts & (RX_CMD_F|RX_CMD_L|RX_STS_ES)) !=
922 (RX_CMD_F|RX_CMD_L) ||
923 buflen > sc->sc_max_frame_length) {
924 GE_DPRINTF(sc, ("!"));
925 --rxq->rxq_active;
926 ifp->if_ipackets++;
927 ifp->if_ierrors++;
928 goto give_it_back;
929 }
930
931 /* CRC is included with the packet; trim it off. */
932 buflen -= ETHER_CRC_LEN;
933
934 if (m == NULL) {
935 MGETHDR(m, M_DONTWAIT, MT_DATA);
936 if (m == NULL) {
937 GE_DPRINTF(sc, ("?"));
938 break;
939 }
940 }
941 if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) {
942 MCLGET(m, M_DONTWAIT);
943 if ((m->m_flags & M_EXT) == 0) {
944 GE_DPRINTF(sc, ("?"));
945 break;
946 }
947 }
948 m->m_data += 2;
949 m->m_len = 0;
950 m->m_pkthdr.len = 0;
951 m->m_pkthdr.rcvif = ifp;
952 rxq->rxq_cmdsts = cmdsts;
953 --rxq->rxq_active;
954
955 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map,
956 rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD);
957
958 KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0);
959 memcpy(m->m_data + m->m_len, rxb->rxb_data, buflen);
960 m->m_len = buflen;
961 m->m_pkthdr.len = buflen;
962
963 ifp->if_ipackets++;
964 bpf_mtap(ifp, m);
965
966 eh = (const struct ether_header *) m->m_data;
967 if ((ifp->if_flags & IFF_PROMISC) ||
968 (rxq->rxq_cmdsts & RX_STS_M) == 0 ||
969 (rxq->rxq_cmdsts & RX_STS_HE) ||
970 (eh->ether_dhost[0] & 1) != 0 ||
971 memcmp(eh->ether_dhost, CLLADDR(ifp->if_sadl),
972 ETHER_ADDR_LEN) == 0) {
973 (*ifp->if_input)(ifp, m);
974 m = NULL;
975 GE_DPRINTF(sc, (">"));
976 } else {
977 m->m_len = 0;
978 m->m_pkthdr.len = 0;
979 GE_DPRINTF(sc, ("+"));
980 }
981 rxq->rxq_cmdsts = 0;
982
983 give_it_back:
984 rxd->ed_lencnt &= ~0xffff; /* zero out length */
985 rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
986 #if 0
987 GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)",
988 rxq->rxq_fi,
989 ((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1],
990 ((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3]));
991 #endif
992 GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
993 if (++rxq->rxq_fi == GE_RXDESC_MAX)
994 rxq->rxq_fi = 0;
995 rxq->rxq_active++;
996 }
997 rxq->rxq_curpkt = m;
998 GE_FUNC_EXIT(sc, "");
999 }
1000
1001 uint32_t
1002 gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask)
1003 {
1004 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1005 struct gfe_rxqueue *rxq;
1006 uint32_t rxbits;
1007 #define RXPRIO_DECODER 0xffffaa50
1008 GE_FUNC_ENTER(sc, "gfe_rx_process");
1009
1010 rxbits = ETH_IR_RxBuffer_GET(cause);
1011 while (rxbits) {
1012 enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
1013 GE_DPRINTF(sc, ("%1x", rxbits));
1014 rxbits &= ~(1 << rxprio);
1015 gfe_rx_get(sc, rxprio);
1016 }
1017
1018 rxbits = ETH_IR_RxError_GET(cause);
1019 while (rxbits) {
1020 enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
1021 uint32_t masks[(GE_RXDESC_MAX + 31) / 32];
1022 int idx;
1023 rxbits &= ~(1 << rxprio);
1024 rxq = &sc->sc_rxq[rxprio];
1025 sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits);
1026 intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits);
1027 if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) {
1028 sc->sc_tickflags |= GE_TICK_RX_RESTART;
1029 callout_reset(&sc->sc_co, 1, gfe_tick, sc);
1030 }
1031 ifp->if_ierrors++;
1032 GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n",
1033 device_xname(sc->sc_dev), rxprio, rxq->rxq_fi));
1034 memset(masks, 0, sizeof(masks));
1035 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1036 0, rxq->rxq_desc_mem.gdm_size,
1037 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1038 for (idx = 0; idx < GE_RXDESC_MAX; idx++) {
1039 volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx];
1040
1041 if (RX_CMD_O & gt32toh(rxd->ed_cmdsts))
1042 masks[idx/32] |= 1 << (idx & 31);
1043 }
1044 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1045 0, rxq->rxq_desc_mem.gdm_size,
1046 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1047 #if defined(DEBUG)
1048 printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n",
1049 device_xname(sc->sc_dev), rxprio, rxq->rxq_fi,
1050 rxq->rxq_cmdsts, masks[0], masks[1]);
1051 #endif
1052 }
1053 if ((intrmask & ETH_IR_RxBits) == 0)
1054 intrmask &= ~(ETH_IR_RxBuffer|ETH_IR_RxError);
1055
1056 GE_FUNC_EXIT(sc, "");
1057 return intrmask;
1058 }
1059
1060 int
1061 gfe_rx_prime(struct gfe_softc *sc)
1062 {
1063 struct gfe_rxqueue *rxq;
1064 int error;
1065
1066 GE_FUNC_ENTER(sc, "gfe_rx_prime");
1067
1068 error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI);
1069 if (error)
1070 goto bail;
1071 rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1072 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1073 GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1074 GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1075 }
1076 sc->sc_intrmask |= rxq->rxq_intrbits;
1077
1078 error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI);
1079 if (error)
1080 goto bail;
1081 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1082 rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1083 GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1084 GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1085 sc->sc_intrmask |= rxq->rxq_intrbits;
1086 }
1087
1088 error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO);
1089 if (error)
1090 goto bail;
1091 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1092 rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1093 GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1094 GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1095 sc->sc_intrmask |= rxq->rxq_intrbits;
1096 }
1097
1098 error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO);
1099 if (error)
1100 goto bail;
1101 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1102 rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1103 GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1104 GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1105 sc->sc_intrmask |= rxq->rxq_intrbits;
1106 }
1107
1108 bail:
1109 GE_FUNC_EXIT(sc, "");
1110 return error;
1111 }
1112
1113 void
1114 gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio)
1115 {
1116 struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio];
1117 GE_FUNC_ENTER(sc, "gfe_rx_cleanup");
1118 if (rxq == NULL) {
1119 GE_FUNC_EXIT(sc, "");
1120 return;
1121 }
1122
1123 if (rxq->rxq_curpkt)
1124 m_freem(rxq->rxq_curpkt);
1125 if ((sc->sc_flags & GE_NOFREE) == 0) {
1126 gfe_dmamem_free(sc, &rxq->rxq_desc_mem);
1127 gfe_dmamem_free(sc, &rxq->rxq_buf_mem);
1128 }
1129 GE_FUNC_EXIT(sc, "");
1130 }
1131
1132 void
1133 gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1134 {
1135 GE_FUNC_ENTER(sc, "gfe_rx_stop");
1136 sc->sc_flags &= ~GE_RXACTIVE;
1137 sc->sc_idlemask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1138 sc->sc_intrmask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1139 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1140 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR);
1141 do {
1142 delay(10);
1143 } while (GE_READ(sc, ETH_ESDCMR) & ETH_ESDCMR_AR);
1144 gfe_rx_cleanup(sc, GE_RXPRIO_HI);
1145 gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI);
1146 gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO);
1147 gfe_rx_cleanup(sc, GE_RXPRIO_LO);
1148 GE_FUNC_EXIT(sc, "");
1149 }
1150
1151 void
1152 gfe_tick(void *arg)
1153 {
1154 struct gfe_softc * const sc = arg;
1155 uint32_t intrmask;
1156 unsigned int tickflags;
1157 int s;
1158
1159 GE_FUNC_ENTER(sc, "gfe_tick");
1160
1161 s = splnet();
1162
1163 tickflags = sc->sc_tickflags;
1164 sc->sc_tickflags = 0;
1165 intrmask = sc->sc_intrmask;
1166 if (tickflags & GE_TICK_TX_IFSTART)
1167 gfe_ifstart(&sc->sc_ec.ec_if);
1168 if (tickflags & GE_TICK_RX_RESTART) {
1169 intrmask |= sc->sc_idlemask;
1170 if (sc->sc_idlemask & (ETH_IR_RxBuffer_3|ETH_IR_RxError_3)) {
1171 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1172 rxq->rxq_fi = 0;
1173 GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1174 GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1175 }
1176 if (sc->sc_idlemask & (ETH_IR_RxBuffer_2|ETH_IR_RxError_2)) {
1177 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1178 rxq->rxq_fi = 0;
1179 GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1180 GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1181 }
1182 if (sc->sc_idlemask & (ETH_IR_RxBuffer_1|ETH_IR_RxError_1)) {
1183 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1184 rxq->rxq_fi = 0;
1185 GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1186 GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1187 }
1188 if (sc->sc_idlemask & (ETH_IR_RxBuffer_0|ETH_IR_RxError_0)) {
1189 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1190 rxq->rxq_fi = 0;
1191 GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1192 GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1193 }
1194 sc->sc_idlemask = 0;
1195 }
1196 if (intrmask != sc->sc_intrmask) {
1197 sc->sc_intrmask = intrmask;
1198 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1199 }
1200 gfe_intr(sc);
1201 splx(s);
1202
1203 GE_FUNC_EXIT(sc, "");
1204 }
1205
1206 int
1207 gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio)
1208 {
1209 const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1210 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1211 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1212 volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo];
1213 uint32_t intrmask = sc->sc_intrmask;
1214 size_t buflen;
1215 struct mbuf *m;
1216
1217 GE_FUNC_ENTER(sc, "gfe_tx_enqueue");
1218
1219 /*
1220 * Anything in the pending queue to enqueue? if not, punt. Likewise
1221 * if the txq is not yet created.
1222 * otherwise grab its dmamap.
1223 */
1224 if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) {
1225 GE_FUNC_EXIT(sc, "-");
1226 return 0;
1227 }
1228
1229 /*
1230 * Have we [over]consumed our limit of descriptors?
1231 * Do we have enough free descriptors?
1232 */
1233 if (GE_TXDESC_MAX == txq->txq_nactive + 2) {
1234 volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi];
1235 uint32_t cmdsts;
1236 size_t pktlen;
1237 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1238 cmdsts = gt32toh(txd2->ed_cmdsts);
1239 if (cmdsts & TX_CMD_O) {
1240 int nextin;
1241 /*
1242 * Sometime the Discovery forgets to update the
1243 * last descriptor. See if we own the descriptor
1244 * after it (since we know we've turned that to
1245 * the discovery and if we owned it, the Discovery
1246 * gave it back). If we do, we know the Discovery
1247 * gave back this one but forgot to mark it as ours.
1248 */
1249 nextin = txq->txq_fi + 1;
1250 if (nextin == GE_TXDESC_MAX)
1251 nextin = 0;
1252 GE_TXDPOSTSYNC(sc, txq, nextin);
1253 if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1254 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1255 GE_TXDPRESYNC(sc, txq, nextin);
1256 GE_FUNC_EXIT(sc, "@");
1257 return 0;
1258 }
1259 #ifdef DEBUG
1260 printf("%s: txenqueue: transmitter resynced at %d\n",
1261 device_xname(sc->sc_dev), txq->txq_fi);
1262 #endif
1263 }
1264 if (++txq->txq_fi == GE_TXDESC_MAX)
1265 txq->txq_fi = 0;
1266 txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr;
1267 pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff;
1268 txq->txq_inptr += roundup(pktlen, dcache_line_size);
1269 txq->txq_nactive--;
1270
1271 /* statistics */
1272 ifp->if_opackets++;
1273 if (cmdsts & TX_STS_ES)
1274 ifp->if_oerrors++;
1275 GE_DPRINTF(sc, ("%%"));
1276 }
1277
1278 buflen = roundup(m->m_pkthdr.len, dcache_line_size);
1279
1280 /*
1281 * If this packet would wrap around the end of the buffer, reset back
1282 * to the beginning.
1283 */
1284 if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) {
1285 txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr;
1286 txq->txq_outptr = 0;
1287 }
1288
1289 /*
1290 * Make sure the output packet doesn't run over the beginning of
1291 * what we've already given the GT.
1292 */
1293 if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr &&
1294 txq->txq_outptr + buflen > txq->txq_inptr) {
1295 intrmask |= txq->txq_intrbits &
1296 (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow);
1297 if (sc->sc_intrmask != intrmask) {
1298 sc->sc_intrmask = intrmask;
1299 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1300 }
1301 GE_FUNC_EXIT(sc, "#");
1302 return 0;
1303 }
1304
1305 /*
1306 * The end-of-list descriptor we put on last time is the starting point
1307 * for this packet. The GT is supposed to terminate list processing on
1308 * a NULL nxtptr but that currently is broken so a CPU-owned descriptor
1309 * must terminate the list.
1310 */
1311 intrmask = sc->sc_intrmask;
1312
1313 m_copydata(m, 0, m->m_pkthdr.len,
1314 (char *)txq->txq_buf_mem.gdm_kva + (int)txq->txq_outptr);
1315 bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1316 txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE);
1317 txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr);
1318 txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16);
1319 GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1320
1321 /*
1322 * Request a buffer interrupt every 2/3 of the way thru the transmit
1323 * buffer.
1324 */
1325 txq->txq_ei_gapcount += buflen;
1326 if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) {
1327 txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST|TX_CMD_EI);
1328 txq->txq_ei_gapcount = 0;
1329 } else {
1330 txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST);
1331 }
1332 #if 0
1333 GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo,
1334 ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1335 ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1336 #endif
1337 GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1338
1339 txq->txq_outptr += buflen;
1340 /*
1341 * Tell the SDMA engine to "Fetch!"
1342 */
1343 GE_WRITE(sc, ETH_ESDCMR,
1344 txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH|ETH_ESDCMR_TXDL));
1345
1346 GE_DPRINTF(sc, ("(%d)", txq->txq_lo));
1347
1348 /*
1349 * Update the last out appropriately.
1350 */
1351 txq->txq_nactive++;
1352 if (++txq->txq_lo == GE_TXDESC_MAX)
1353 txq->txq_lo = 0;
1354
1355 /*
1356 * Move mbuf from the pending queue to the snd queue.
1357 */
1358 IF_DEQUEUE(&txq->txq_pendq, m);
1359 bpf_mtap(ifp, m);
1360 m_freem(m);
1361 ifp->if_flags &= ~IFF_OACTIVE;
1362
1363 /*
1364 * Since we have put an item into the packet queue, we now want
1365 * an interrupt when the transmit queue finishes processing the
1366 * list. But only update the mask if needs changing.
1367 */
1368 intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow);
1369 if (sc->sc_intrmask != intrmask) {
1370 sc->sc_intrmask = intrmask;
1371 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1372 }
1373 if (ifp->if_timer == 0)
1374 ifp->if_timer = 5;
1375 GE_FUNC_EXIT(sc, "*");
1376 return 1;
1377 }
1378
1379 uint32_t
1380 gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask)
1381 {
1382 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1383 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1384
1385 GE_FUNC_ENTER(sc, "gfe_tx_done");
1386
1387 if (txq == NULL) {
1388 GE_FUNC_EXIT(sc, "");
1389 return intrmask;
1390 }
1391
1392 while (txq->txq_nactive > 0) {
1393 const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1394 volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi];
1395 uint32_t cmdsts;
1396 size_t pktlen;
1397
1398 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1399 if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) {
1400 int nextin;
1401
1402 if (txq->txq_nactive == 1) {
1403 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1404 GE_FUNC_EXIT(sc, "");
1405 return intrmask;
1406 }
1407 /*
1408 * Sometimes the Discovery forgets to update the
1409 * ownership bit in the descriptor. See if we own the
1410 * descriptor after it (since we know we've turned
1411 * that to the Discovery and if we own it now then the
1412 * Discovery gave it back). If we do, we know the
1413 * Discovery gave back this one but forgot to mark it
1414 * as ours.
1415 */
1416 nextin = txq->txq_fi + 1;
1417 if (nextin == GE_TXDESC_MAX)
1418 nextin = 0;
1419 GE_TXDPOSTSYNC(sc, txq, nextin);
1420 if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1421 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1422 GE_TXDPRESYNC(sc, txq, nextin);
1423 GE_FUNC_EXIT(sc, "");
1424 return intrmask;
1425 }
1426 #ifdef DEBUG
1427 printf("%s: txdone: transmitter resynced at %d\n",
1428 device_xname(sc->sc_dev), txq->txq_fi);
1429 #endif
1430 }
1431 #if 0
1432 GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)",
1433 txq->txq_lo,
1434 ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1435 ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1436 #endif
1437 GE_DPRINTF(sc, ("(%d)", txq->txq_fi));
1438 if (++txq->txq_fi == GE_TXDESC_MAX)
1439 txq->txq_fi = 0;
1440 txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr;
1441 pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff;
1442 bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1443 txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE);
1444 txq->txq_inptr += roundup(pktlen, dcache_line_size);
1445
1446 /* statistics */
1447 ifp->if_opackets++;
1448 if (cmdsts & TX_STS_ES)
1449 ifp->if_oerrors++;
1450
1451 /* txd->ed_bufptr = 0; */
1452
1453 ifp->if_timer = 5;
1454 --txq->txq_nactive;
1455 }
1456 if (txq->txq_nactive != 0)
1457 panic("%s: transmit fifo%d empty but active count (%d) > 0!",
1458 device_xname(sc->sc_dev), txprio, txq->txq_nactive);
1459 ifp->if_timer = 0;
1460 intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow));
1461 intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow));
1462 GE_FUNC_EXIT(sc, "");
1463 return intrmask;
1464 }
1465
1466 int
1467 gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio)
1468 {
1469 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1470 int error;
1471
1472 GE_FUNC_ENTER(sc, "gfe_tx_txqalloc");
1473
1474 error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1,
1475 GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE);
1476 if (error) {
1477 GE_FUNC_EXIT(sc, "");
1478 return error;
1479 }
1480 error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0);
1481 if (error) {
1482 gfe_dmamem_free(sc, &txq->txq_desc_mem);
1483 GE_FUNC_EXIT(sc, "");
1484 return error;
1485 }
1486 GE_FUNC_EXIT(sc, "");
1487 return 0;
1488 }
1489
1490 int
1491 gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio)
1492 {
1493 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1494 volatile struct gt_eth_desc *txd;
1495 unsigned int i;
1496 bus_addr_t addr;
1497
1498 GE_FUNC_ENTER(sc, "gfe_tx_start");
1499
1500 sc->sc_intrmask &=
1501 ~(ETH_IR_TxEndHigh |
1502 ETH_IR_TxBufferHigh |
1503 ETH_IR_TxEndLow |
1504 ETH_IR_TxBufferLow);
1505
1506 if (sc->sc_flags & GE_NOFREE) {
1507 KASSERT(txq->txq_desc_mem.gdm_kva != NULL);
1508 KASSERT(txq->txq_buf_mem.gdm_kva != NULL);
1509 } else {
1510 int error = gfe_tx_txqalloc(sc, txprio);
1511 if (error) {
1512 GE_FUNC_EXIT(sc, "!");
1513 return error;
1514 }
1515 }
1516
1517 txq->txq_descs =
1518 (volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva;
1519 txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr;
1520 txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr;
1521
1522 txq->txq_pendq.ifq_maxlen = 10;
1523 txq->txq_ei_gapcount = 0;
1524 txq->txq_nactive = 0;
1525 txq->txq_fi = 0;
1526 txq->txq_lo = 0;
1527 txq->txq_inptr = GE_TXBUF_SIZE;
1528 txq->txq_outptr = 0;
1529 for (i = 0, txd = txq->txq_descs,
1530 addr = txq->txq_desc_busaddr + sizeof(*txd);
1531 i < GE_TXDESC_MAX - 1; i++, txd++, addr += sizeof(*txd)) {
1532 /*
1533 * update the nxtptr to point to the next txd.
1534 */
1535 txd->ed_cmdsts = 0;
1536 txd->ed_nxtptr = htogt32(addr);
1537 }
1538 txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr =
1539 htogt32(txq->txq_desc_busaddr);
1540 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0,
1541 GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1542
1543 switch (txprio) {
1544 case GE_TXPRIO_HI:
1545 txq->txq_intrbits = ETH_IR_TxEndHigh|ETH_IR_TxBufferHigh;
1546 txq->txq_esdcmrbits = ETH_ESDCMR_TXDH;
1547 txq->txq_epsrbits = ETH_EPSR_TxHigh;
1548 txq->txq_ectdp = ETH_ECTDP1;
1549 GE_WRITE(sc, ETH_ECTDP1, txq->txq_desc_busaddr);
1550 break;
1551
1552 case GE_TXPRIO_LO:
1553 txq->txq_intrbits = ETH_IR_TxEndLow|ETH_IR_TxBufferLow;
1554 txq->txq_esdcmrbits = ETH_ESDCMR_TXDL;
1555 txq->txq_epsrbits = ETH_EPSR_TxLow;
1556 txq->txq_ectdp = ETH_ECTDP0;
1557 GE_WRITE(sc, ETH_ECTDP0, txq->txq_desc_busaddr);
1558 break;
1559
1560 case GE_TXPRIO_NONE:
1561 break;
1562 }
1563 #if 0
1564 GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp));
1565 GE_WRITE(sc->sc_dev, txq->txq_ectdp, txq->txq_desc_busaddr);
1566 GE_DPRINTF(sc, (")"));
1567 #endif
1568
1569 /*
1570 * If we are restarting, there may be packets in the pending queue
1571 * waiting to be enqueued. Try enqueuing packets from both priority
1572 * queues until the pending queue is empty or there no room for them
1573 * on the device.
1574 */
1575 while (gfe_tx_enqueue(sc, txprio))
1576 continue;
1577
1578 GE_FUNC_EXIT(sc, "");
1579 return 0;
1580 }
1581
1582 void
1583 gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush)
1584 {
1585 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1586
1587 GE_FUNC_ENTER(sc, "gfe_tx_cleanup");
1588 if (txq == NULL) {
1589 GE_FUNC_EXIT(sc, "");
1590 return;
1591 }
1592
1593 if (!flush) {
1594 GE_FUNC_EXIT(sc, "");
1595 return;
1596 }
1597
1598 if ((sc->sc_flags & GE_NOFREE) == 0) {
1599 gfe_dmamem_free(sc, &txq->txq_desc_mem);
1600 gfe_dmamem_free(sc, &txq->txq_buf_mem);
1601 }
1602 GE_FUNC_EXIT(sc, "-F");
1603 }
1604
1605 void
1606 gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1607 {
1608 GE_FUNC_ENTER(sc, "gfe_tx_stop");
1609
1610 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_STDH|ETH_ESDCMR_STDL);
1611
1612 sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask);
1613 sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask);
1614 sc->sc_intrmask &=
1615 ~(ETH_IR_TxEndHigh |
1616 ETH_IR_TxBufferHigh |
1617 ETH_IR_TxEndLow |
1618 ETH_IR_TxBufferLow);
1619
1620 gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP);
1621 gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP);
1622
1623 sc->sc_ec.ec_if.if_timer = 0;
1624 GE_FUNC_EXIT(sc, "");
1625 }
1626
1627 int
1628 gfe_intr(void *arg)
1629 {
1630 struct gfe_softc * const sc = arg;
1631 uint32_t cause;
1632 uint32_t intrmask = sc->sc_intrmask;
1633 int claim = 0;
1634 int cnt;
1635
1636 GE_FUNC_ENTER(sc, "gfe_intr");
1637
1638 for (cnt = 0; cnt < 4; cnt++) {
1639 if (sc->sc_intrmask != intrmask) {
1640 sc->sc_intrmask = intrmask;
1641 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1642 }
1643 cause = GE_READ(sc, ETH_EICR);
1644 cause &= sc->sc_intrmask;
1645 GE_DPRINTF(sc, (".%#x", cause));
1646 if (cause == 0)
1647 break;
1648
1649 claim = 1;
1650
1651 GE_WRITE(sc, ETH_EICR, ~cause);
1652 #ifndef GE_NORX
1653 if (cause & (ETH_IR_RxBuffer|ETH_IR_RxError))
1654 intrmask = gfe_rx_process(sc, cause, intrmask);
1655 #endif
1656
1657 #ifndef GE_NOTX
1658 if (cause & (ETH_IR_TxBufferHigh|ETH_IR_TxEndHigh))
1659 intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask);
1660 if (cause & (ETH_IR_TxBufferLow|ETH_IR_TxEndLow))
1661 intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask);
1662 #endif
1663 if (cause & ETH_IR_MIIPhySTC) {
1664 sc->sc_flags |= GE_PHYSTSCHG;
1665 /* intrmask &= ~ETH_IR_MIIPhySTC; */
1666 }
1667 }
1668
1669 while (gfe_tx_enqueue(sc, GE_TXPRIO_HI))
1670 continue;
1671 while (gfe_tx_enqueue(sc, GE_TXPRIO_LO))
1672 continue;
1673
1674 GE_FUNC_EXIT(sc, "");
1675 return claim;
1676 }
1677
1678 int
1679 gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op)
1680 {
1681 int error = 0;
1682 GE_FUNC_ENTER(sc, "gfe_whack");
1683
1684 switch (op) {
1685 case GE_WHACK_RESTART:
1686 #ifndef GE_NOTX
1687 gfe_tx_stop(sc, op);
1688 #endif
1689 /* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */
1690 /* FALLTHROUGH */
1691 case GE_WHACK_START:
1692 #ifndef GE_NOHASH
1693 if (error == 0 && sc->sc_hashtable == NULL) {
1694 error = gfe_hash_alloc(sc);
1695 if (error)
1696 break;
1697 }
1698 if (op != GE_WHACK_RESTART)
1699 gfe_hash_fill(sc);
1700 #endif
1701 #ifndef GE_NORX
1702 if (op != GE_WHACK_RESTART) {
1703 error = gfe_rx_prime(sc);
1704 if (error)
1705 break;
1706 }
1707 #endif
1708 #ifndef GE_NOTX
1709 error = gfe_tx_start(sc, GE_TXPRIO_HI);
1710 if (error)
1711 break;
1712 #endif
1713 sc->sc_ec.ec_if.if_flags |= IFF_RUNNING;
1714 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1715 GE_WRITE(sc, ETH_EPCXR, sc->sc_pcxr);
1716 GE_WRITE(sc, ETH_EICR, 0);
1717 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1718 #ifndef GE_NOHASH
1719 GE_WRITE(sc, ETH_EHTPR,
1720 sc->sc_hash_mem.gdm_map->dm_segs->ds_addr);
1721 #endif
1722 #ifndef GE_NORX
1723 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_ERD);
1724 sc->sc_flags |= GE_RXACTIVE;
1725 #endif
1726 /* FALLTHROUGH */
1727 case GE_WHACK_CHANGE:
1728 GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)",
1729 GE_READ(sc, ETH_EPCR), GE_READ(sc, ETH_EIMR)));
1730 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1731 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1732 gfe_ifstart(&sc->sc_ec.ec_if);
1733 GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)",
1734 GE_READ(sc, ETH_ECTDP0), GE_READ(sc, ETH_ECTDP1)));
1735 GE_FUNC_EXIT(sc, "");
1736 return error;
1737 case GE_WHACK_STOP:
1738 break;
1739 }
1740
1741 #ifdef GE_DEBUG
1742 if (error)
1743 GE_DPRINTF(sc, (" failed: %d\n", error));
1744 #endif
1745 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1746 GE_WRITE(sc, ETH_EIMR, 0);
1747 sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING;
1748 #ifndef GE_NOTX
1749 gfe_tx_stop(sc, GE_WHACK_STOP);
1750 #endif
1751 #ifndef GE_NORX
1752 gfe_rx_stop(sc, GE_WHACK_STOP);
1753 #endif
1754 #ifndef GE_NOHASH
1755 if ((sc->sc_flags & GE_NOFREE) == 0) {
1756 gfe_dmamem_free(sc, &sc->sc_hash_mem);
1757 sc->sc_hashtable = NULL;
1758 }
1759 #endif
1760
1761 GE_FUNC_EXIT(sc, "");
1762 return error;
1763 }
1764
1765 int
1766 gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN])
1767 {
1768 uint32_t w0, add0, add1;
1769 uint32_t result;
1770
1771 GE_FUNC_ENTER(sc, "gfe_hash_compute");
1772 add0 = ((uint32_t) eaddr[5] << 0) |
1773 ((uint32_t) eaddr[4] << 8) |
1774 ((uint32_t) eaddr[3] << 16);
1775
1776 add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4);
1777 add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2);
1778 add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1);
1779
1780 add1 = ((uint32_t) eaddr[2] << 0) |
1781 ((uint32_t) eaddr[1] << 8) |
1782 ((uint32_t) eaddr[0] << 16);
1783
1784 add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4);
1785 add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2);
1786 add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1);
1787
1788 GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr)));
1789 /*
1790 * hashResult is the 15 bits Hash entry address.
1791 * ethernetADD is a 48 bit number, which is derived from the Ethernet
1792 * MAC address, by nibble swapping in every byte (i.e MAC address
1793 * of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
1794 */
1795
1796 if ((sc->sc_pcr & ETH_EPCR_HM) == 0) {
1797 /*
1798 * hashResult[14:0] = hashFunc0(ethernetADD[47:0])
1799 *
1800 * hashFunc0 calculates the hashResult in the following manner:
1801 * hashResult[ 8:0] = ethernetADD[14:8,1,0]
1802 * XOR ethernetADD[23:15] XOR ethernetADD[32:24]
1803 */
1804 result = (add0 & 3) | ((add0 >> 6) & ~3);
1805 result ^= (add0 >> 15) ^ (add1 >> 0);
1806 result &= 0x1ff;
1807 /*
1808 * hashResult[14:9] = ethernetADD[7:2]
1809 */
1810 result |= (add0 & ~3) << 7; /* excess bits will be masked */
1811 GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff));
1812 } else {
1813 #define TRIBITFLIP 073516240 /* yes its in octal */
1814 /*
1815 * hashResult[14:0] = hashFunc1(ethernetADD[47:0])
1816 *
1817 * hashFunc1 calculates the hashResult in the following manner:
1818 * hashResult[08:00] = ethernetADD[06:14]
1819 * XOR ethernetADD[15:23] XOR ethernetADD[24:32]
1820 */
1821 w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff;
1822 /*
1823 * Now bitswap those 9 bits
1824 */
1825 result = 0;
1826 result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6;
1827 result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3;
1828 result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0;
1829
1830 /*
1831 * hashResult[14:09] = ethernetADD[00:05]
1832 */
1833 result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12;
1834 result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9;
1835 GE_DPRINTF(sc, ("1(%#x)", result));
1836 }
1837 GE_FUNC_EXIT(sc, "");
1838 return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff);
1839 }
1840
1841 int
1842 gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op,
1843 enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN])
1844 {
1845 uint64_t he;
1846 uint64_t *maybe_he_p = NULL;
1847 int limit;
1848 int hash;
1849 int maybe_hash = 0;
1850
1851 GE_FUNC_ENTER(sc, "gfe_hash_entry_op");
1852
1853 hash = gfe_hash_compute(sc, eaddr);
1854
1855 if (sc->sc_hashtable == NULL) {
1856 panic("%s:%d: hashtable == NULL!", device_xname(sc->sc_dev),
1857 __LINE__);
1858 }
1859
1860 /*
1861 * Assume we are going to insert so create the hash entry we
1862 * are going to insert. We also use it to match entries we
1863 * will be removing.
1864 */
1865 he = ((uint64_t) eaddr[5] << 43) |
1866 ((uint64_t) eaddr[4] << 35) |
1867 ((uint64_t) eaddr[3] << 27) |
1868 ((uint64_t) eaddr[2] << 19) |
1869 ((uint64_t) eaddr[1] << 11) |
1870 ((uint64_t) eaddr[0] << 3) |
1871 HSH_PRIO_INS(prio) | HSH_V | HSH_R;
1872
1873 /*
1874 * The GT will search upto 12 entries for a hit, so we must mimic that.
1875 */
1876 hash &= sc->sc_hashmask / sizeof(he);
1877 for (limit = HSH_LIMIT; limit > 0 ; --limit) {
1878 /*
1879 * Does the GT wrap at the end, stop at the, or overrun the
1880 * end? Assume it wraps for now. Stash a copy of the
1881 * current hash entry.
1882 */
1883 uint64_t *he_p = &sc->sc_hashtable[hash];
1884 uint64_t thishe = *he_p;
1885
1886 /*
1887 * If the hash entry isn't valid, that break the chain. And
1888 * this entry a good candidate for reuse.
1889 */
1890 if ((thishe & HSH_V) == 0) {
1891 maybe_he_p = he_p;
1892 break;
1893 }
1894
1895 /*
1896 * If the hash entry has the same address we are looking for
1897 * then ... if we are removing and the skip bit is set, its
1898 * already been removed. if are adding and the skip bit is
1899 * clear, then its already added. In either return EBUSY
1900 * indicating the op has already been done. Otherwise flip
1901 * the skip bit and return 0.
1902 */
1903 if (((he ^ thishe) & HSH_ADDR_MASK) == 0) {
1904 if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) ||
1905 ((op == GE_HASH_ADD) && (thishe & HSH_S) == 0))
1906 return EBUSY;
1907 *he_p = thishe ^ HSH_S;
1908 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1909 hash * sizeof(he), sizeof(he),
1910 BUS_DMASYNC_PREWRITE);
1911 GE_FUNC_EXIT(sc, "^");
1912 return 0;
1913 }
1914
1915 /*
1916 * If we haven't found a slot for the entry and this entry
1917 * is currently being skipped, return this entry.
1918 */
1919 if (maybe_he_p == NULL && (thishe & HSH_S)) {
1920 maybe_he_p = he_p;
1921 maybe_hash = hash;
1922 }
1923
1924 hash = (hash + 1) & (sc->sc_hashmask / sizeof(he));
1925 }
1926
1927 /*
1928 * If we got here, then there was no entry to remove.
1929 */
1930 if (op == GE_HASH_REMOVE) {
1931 GE_FUNC_EXIT(sc, "?");
1932 return ENOENT;
1933 }
1934
1935 /*
1936 * If we couldn't find a slot, return an error.
1937 */
1938 if (maybe_he_p == NULL) {
1939 GE_FUNC_EXIT(sc, "!");
1940 return ENOSPC;
1941 }
1942
1943 /* Update the entry.
1944 */
1945 *maybe_he_p = he;
1946 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1947 maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE);
1948 GE_FUNC_EXIT(sc, "+");
1949 return 0;
1950 }
1951
1952 int
1953 gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm,
1954 u_long cmd)
1955 {
1956 struct gfe_softc *sc = ec->ec_if.if_softc;
1957 int error;
1958 enum gfe_hash_op op;
1959 enum gfe_rxprio prio;
1960
1961 GE_FUNC_ENTER(sc, "hash_multichg");
1962 /*
1963 * Is this a wildcard entry? If so and its being removed, recompute.
1964 */
1965 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1966 if (cmd == SIOCDELMULTI) {
1967 GE_FUNC_EXIT(sc, "");
1968 return ENETRESET;
1969 }
1970
1971 /*
1972 * Switch in
1973 */
1974 sc->sc_flags |= GE_ALLMULTI;
1975 if ((sc->sc_pcr & ETH_EPCR_PM) == 0) {
1976 sc->sc_pcr |= ETH_EPCR_PM;
1977 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1978 GE_FUNC_EXIT(sc, "");
1979 return 0;
1980 }
1981 GE_FUNC_EXIT(sc, "");
1982 return ENETRESET;
1983 }
1984
1985 prio = GE_RXPRIO_MEDLO;
1986 op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD);
1987
1988 if (sc->sc_hashtable == NULL) {
1989 GE_FUNC_EXIT(sc, "");
1990 return 0;
1991 }
1992
1993 error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo);
1994 if (error == EBUSY) {
1995 aprint_error_dev(sc->sc_dev, "multichg: tried to %s %s again\n",
1996 cmd == SIOCDELMULTI ? "remove" : "add",
1997 ether_sprintf(enm->enm_addrlo));
1998 GE_FUNC_EXIT(sc, "");
1999 return 0;
2000 }
2001
2002 if (error == ENOENT) {
2003 aprint_error_dev(sc->sc_dev,
2004 "multichg: failed to remove %s: not in table\n",
2005 ether_sprintf(enm->enm_addrlo));
2006 GE_FUNC_EXIT(sc, "");
2007 return 0;
2008 }
2009
2010 if (error == ENOSPC) {
2011 aprint_error_dev(sc->sc_dev, "multichg:"
2012 " failed to add %s: no space; regenerating table\n",
2013 ether_sprintf(enm->enm_addrlo));
2014 GE_FUNC_EXIT(sc, "");
2015 return ENETRESET;
2016 }
2017 GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n",
2018 device_xname(sc->sc_dev),
2019 cmd == SIOCDELMULTI ? "remove" : "add",
2020 ether_sprintf(enm->enm_addrlo)));
2021 GE_FUNC_EXIT(sc, "");
2022 return 0;
2023 }
2024
2025 int
2026 gfe_hash_fill(struct gfe_softc *sc)
2027 {
2028 struct ether_multistep step;
2029 struct ether_multi *enm;
2030 int error;
2031
2032 GE_FUNC_ENTER(sc, "gfe_hash_fill");
2033
2034 error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI,
2035 CLLADDR(sc->sc_ec.ec_if.if_sadl));
2036 if (error)
2037 GE_FUNC_EXIT(sc, "!");
2038 return error;
2039
2040 sc->sc_flags &= ~GE_ALLMULTI;
2041 if ((sc->sc_ec.ec_if.if_flags & IFF_PROMISC) == 0)
2042 sc->sc_pcr &= ~ETH_EPCR_PM;
2043 ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
2044 while (enm != NULL) {
2045 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2046 sc->sc_flags |= GE_ALLMULTI;
2047 sc->sc_pcr |= ETH_EPCR_PM;
2048 } else {
2049 error = gfe_hash_entry_op(sc, GE_HASH_ADD,
2050 GE_RXPRIO_MEDLO, enm->enm_addrlo);
2051 if (error == ENOSPC)
2052 break;
2053 }
2054 ETHER_NEXT_MULTI(step, enm);
2055 }
2056
2057 GE_FUNC_EXIT(sc, "");
2058 return error;
2059 }
2060
2061 int
2062 gfe_hash_alloc(struct gfe_softc *sc)
2063 {
2064 int error;
2065 GE_FUNC_ENTER(sc, "gfe_hash_alloc");
2066 sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1;
2067 error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1,
2068 BUS_DMA_NOCACHE);
2069 if (error) {
2070 aprint_error_dev(sc->sc_dev,
2071 "failed to allocate %d bytes for hash table: %d\n",
2072 sc->sc_hashmask + 1, error);
2073 GE_FUNC_EXIT(sc, "");
2074 return error;
2075 }
2076 sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva;
2077 memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1);
2078 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
2079 0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE);
2080 GE_FUNC_EXIT(sc, "");
2081 return 0;
2082 }
2083