if_gfe.c revision 1.49 1 /* $NetBSD: if_gfe.c,v 1.49 2018/06/26 06:48:01 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the NetBSD Project by
18 * Allegro Networks, Inc., and Wasabi Systems, Inc.
19 * 4. The name of Allegro Networks, Inc. may not be used to endorse
20 * or promote products derived from this software without specific prior
21 * written permission.
22 * 5. The name of Wasabi Systems, Inc. may not be used to endorse
23 * or promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
27 * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
28 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * if_gfe.c -- GT ethernet MAC driver
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.49 2018/06/26 06:48:01 msaitoh Exp $");
46
47 #include "opt_inet.h"
48
49 #include <sys/param.h>
50 #include <sys/bus.h>
51 #include <sys/callout.h>
52 #include <sys/device.h>
53 #include <sys/errno.h>
54 #include <sys/ioctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/socket.h>
58
59 #include <uvm/uvm.h>
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #endif
69 #include <net/bpf.h>
70 #include <sys/rndsource.h>
71
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74
75 #include <dev/marvell/gtreg.h>
76 #include <dev/marvell/gtvar.h>
77 #include <dev/marvell/gtethreg.h>
78 #include <dev/marvell/if_gfevar.h>
79 #include <dev/marvell/marvellreg.h>
80 #include <dev/marvell/marvellvar.h>
81
82 #include <prop/proplib.h>
83
84 #include "locators.h"
85
86
87 #define GE_READ(sc, reg) \
88 bus_space_read_4((sc)->sc_memt, (sc)->sc_memh, (reg))
89 #define GE_WRITE(sc, reg, v) \
90 bus_space_write_4((sc)->sc_memt, (sc)->sc_memh, (reg), (v))
91
92 #define GE_DEBUG
93 #if 0
94 #define GE_NOHASH
95 #define GE_NORX
96 #endif
97
98 #ifdef GE_DEBUG
99 #define GE_DPRINTF(sc, a) \
100 do { \
101 if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG) \
102 printf a; \
103 } while (0 /* CONSTCOND */)
104 #define GE_FUNC_ENTER(sc, func) GE_DPRINTF(sc, ("[" func))
105 #define GE_FUNC_EXIT(sc, str) GE_DPRINTF(sc, (str "]"))
106 #else
107 #define GE_DPRINTF(sc, a) do { } while (0)
108 #define GE_FUNC_ENTER(sc, func) do { } while (0)
109 #define GE_FUNC_EXIT(sc, str) do { } while (0)
110 #endif
111 enum gfe_whack_op {
112 GE_WHACK_START, GE_WHACK_RESTART,
113 GE_WHACK_CHANGE, GE_WHACK_STOP
114 };
115
116 enum gfe_hash_op {
117 GE_HASH_ADD, GE_HASH_REMOVE,
118 };
119
120 #if 1
121 #define htogt32(a) htobe32(a)
122 #define gt32toh(a) be32toh(a)
123 #else
124 #define htogt32(a) htole32(a)
125 #define gt32toh(a) le32toh(a)
126 #endif
127
128 #define GE_RXDSYNC(sc, rxq, n, ops) \
129 bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \
130 (n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \
131 (ops))
132 #define GE_RXDPRESYNC(sc, rxq, n) \
133 GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
134 #define GE_RXDPOSTSYNC(sc, rxq, n) \
135 GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
136
137 #define GE_TXDSYNC(sc, txq, n, ops) \
138 bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \
139 (n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \
140 (ops))
141 #define GE_TXDPRESYNC(sc, txq, n) \
142 GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
143 #define GE_TXDPOSTSYNC(sc, txq, n) \
144 GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
145
146 #define STATIC
147
148
149 STATIC int gfec_match(device_t, cfdata_t, void *);
150 STATIC void gfec_attach(device_t, device_t, void *);
151
152 STATIC int gfec_print(void *, const char *);
153 STATIC int gfec_search(device_t, cfdata_t, const int *, void *);
154
155 STATIC int gfec_enet_phy(device_t, int);
156 STATIC int gfec_mii_read(device_t, int, int);
157 STATIC void gfec_mii_write(device_t, int, int, int);
158 STATIC void gfec_mii_statchg(struct ifnet *);
159
160 STATIC int gfe_match(device_t, cfdata_t, void *);
161 STATIC void gfe_attach(device_t, device_t, void *);
162
163 STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int,
164 size_t, int);
165 STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *);
166
167 STATIC int gfe_ifioctl(struct ifnet *, u_long, void *);
168 STATIC void gfe_ifstart(struct ifnet *);
169 STATIC void gfe_ifwatchdog(struct ifnet *);
170
171 STATIC void gfe_tick(void *arg);
172
173 STATIC void gfe_tx_restart(void *);
174 STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio);
175 STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t);
176 STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int);
177 STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio);
178 STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio);
179 STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op);
180
181 STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio);
182 STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio);
183 STATIC int gfe_rx_prime(struct gfe_softc *);
184 STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t);
185 STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio);
186 STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio);
187 STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op);
188
189 STATIC int gfe_intr(void *);
190
191 STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op);
192
193 STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]);
194 STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op,
195 enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]);
196 STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *,
197 u_long);
198 STATIC int gfe_hash_fill(struct gfe_softc *);
199 STATIC int gfe_hash_alloc(struct gfe_softc *);
200
201
202 CFATTACH_DECL_NEW(gfec, sizeof(struct gfec_softc),
203 gfec_match, gfec_attach, NULL, NULL);
204 CFATTACH_DECL_NEW(gfe, sizeof(struct gfe_softc),
205 gfe_match, gfe_attach, NULL, NULL);
206
207
208 /* ARGSUSED */
209 int
210 gfec_match(device_t parent, cfdata_t cf, void *aux)
211 {
212 struct marvell_attach_args *mva = aux;
213
214 if (strcmp(mva->mva_name, cf->cf_name) != 0)
215 return 0;
216 if (mva->mva_offset == MVA_OFFSET_DEFAULT)
217 return 0;
218
219 mva->mva_size = ETHC_SIZE;
220 return 1;
221 }
222
223 /* ARGSUSED */
224 void
225 gfec_attach(device_t parent, device_t self, void *aux)
226 {
227 struct gfec_softc *sc = device_private(self);
228 struct marvell_attach_args *mva = aux, gfea;
229 static int gfe_irqs[] = { 32, 33, 34 };
230 int i;
231
232 aprint_naive("\n");
233 aprint_normal(": Ethernet Controller\n");
234
235 sc->sc_dev = self;
236 sc->sc_iot = mva->mva_iot;
237 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset,
238 mva->mva_size, &sc->sc_ioh)) {
239 aprint_error_dev(self, "Cannot map registers\n");
240 return;
241 }
242
243 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
244
245 for (i = 0; i < ETH_NUM; i++) {
246 gfea.mva_name = "gfe";
247 gfea.mva_model = mva->mva_model;
248 gfea.mva_iot = sc->sc_iot;
249 gfea.mva_ioh = sc->sc_ioh;
250 gfea.mva_unit = i;
251 gfea.mva_dmat = mva->mva_dmat;
252 gfea.mva_irq = gfe_irqs[i];
253 config_found_sm_loc(sc->sc_dev, "gfec", NULL, &gfea,
254 gfec_print, gfec_search);
255 }
256 }
257
258 int
259 gfec_print(void *aux, const char *pnp)
260 {
261 struct marvell_attach_args *gfea = aux;
262
263 if (pnp)
264 aprint_normal("%s at %s port %d",
265 gfea->mva_name, pnp, gfea->mva_unit);
266 else {
267 if (gfea->mva_unit != GFECCF_PORT_DEFAULT)
268 aprint_normal(" port %d", gfea->mva_unit);
269 if (gfea->mva_irq != GFECCF_IRQ_DEFAULT)
270 aprint_normal(" irq %d", gfea->mva_irq);
271 }
272 return UNCONF;
273 }
274
275 /* ARGSUSED */
276 int
277 gfec_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
278 {
279 struct marvell_attach_args *gfea = aux;
280
281 if (cf->cf_loc[GFECCF_PORT] == gfea->mva_unit &&
282 cf->cf_loc[GFECCF_IRQ] != GFECCF_IRQ_DEFAULT)
283 gfea->mva_irq = cf->cf_loc[GFECCF_IRQ];
284
285 return config_match(parent, cf, aux);
286 }
287
288 int
289 gfec_enet_phy(device_t dev, int unit)
290 {
291 struct gfec_softc *sc = device_private(dev);
292 uint32_t epar;
293
294 epar = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ETH_EPAR);
295 return ETH_EPAR_PhyAD_GET(epar, unit);
296 }
297
298 int
299 gfec_mii_read(device_t dev, int phy, int reg)
300 {
301 struct gfec_softc *csc = device_private(device_parent(dev));
302 uint32_t data;
303 int count = 10000;
304
305 mutex_enter(&csc->sc_mtx);
306
307 do {
308 DELAY(10);
309 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
310 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
311
312 if (count == 0) {
313 aprint_error_dev(dev,
314 "mii read for phy %d reg %d busied out\n", phy, reg);
315 mutex_exit(&csc->sc_mtx);
316 return ETH_ESMIR_Value_GET(data);
317 }
318
319 bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
320 ETH_ESMIR_READ(phy, reg));
321
322 count = 10000;
323 do {
324 DELAY(10);
325 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
326 } while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
327
328 mutex_exit(&csc->sc_mtx);
329
330 if (count == 0)
331 aprint_error_dev(dev,
332 "mii read for phy %d reg %d timed out\n", phy, reg);
333 #if defined(GTMIIDEBUG)
334 aprint_normal_dev(dev, "mii_read(%d, %d): %#x data %#x\n",
335 phy, reg, data, ETH_ESMIR_Value_GET(data));
336 #endif
337 return ETH_ESMIR_Value_GET(data);
338 }
339
340 void
341 gfec_mii_write (device_t dev, int phy, int reg, int value)
342 {
343 struct gfec_softc *csc = device_private(device_parent(dev));
344 uint32_t data;
345 int count = 10000;
346
347 mutex_enter(&csc->sc_mtx);
348
349 do {
350 DELAY(10);
351 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
352 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
353
354 if (count == 0) {
355 aprint_error_dev(dev,
356 "mii write for phy %d reg %d busied out (busy)\n",
357 phy, reg);
358 mutex_exit(&csc->sc_mtx);
359 return;
360 }
361
362 bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
363 ETH_ESMIR_WRITE(phy, reg, value));
364
365 count = 10000;
366 do {
367 DELAY(10);
368 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
369 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
370
371 mutex_exit(&csc->sc_mtx);
372
373 if (count == 0)
374 aprint_error_dev(dev,
375 "mii write for phy %d reg %d timed out\n", phy, reg);
376 #if defined(GTMIIDEBUG)
377 aprint_normal_dev(dev, "mii_write(%d, %d, %#x)\n", phy, reg, value);
378 #endif
379 }
380
381 void
382 gfec_mii_statchg(struct ifnet *ifp)
383 {
384 /* struct gfe_softc *sc = ifp->if_softc; */
385 /* do nothing? */
386 }
387
388 /* ARGSUSED */
389 int
390 gfe_match(device_t parent, cfdata_t cf, void *aux)
391 {
392
393 return 1;
394 }
395
396 /* ARGSUSED */
397 void
398 gfe_attach(device_t parent, device_t self, void *aux)
399 {
400 struct marvell_attach_args *mva = aux;
401 struct gfe_softc * const sc = device_private(self);
402 struct ifnet * const ifp = &sc->sc_ec.ec_if;
403 uint32_t sdcr;
404 int phyaddr, error;
405 prop_data_t ea;
406 uint8_t enaddr[6];
407
408 aprint_naive("\n");
409 aprint_normal(": Ethernet Controller\n");
410
411 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
412 mva->mva_offset, mva->mva_size, &sc->sc_memh)) {
413 aprint_error_dev(self, "failed to map registers\n");
414 return;
415 }
416 sc->sc_dev = self;
417 sc->sc_memt = mva->mva_iot;
418 sc->sc_dmat = mva->mva_dmat;
419 sc->sc_macno = (mva->mva_offset == ETH_BASE(0)) ? 0 :
420 ((mva->mva_offset == ETH_BASE(1)) ? 1 : 2);
421
422 callout_init(&sc->sc_co, 0);
423
424 phyaddr = gfec_enet_phy(parent, sc->sc_macno);
425
426 ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr");
427 if (ea != NULL) {
428 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
429 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
430 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
431 }
432
433 sc->sc_pcr = GE_READ(sc, ETH_EPCR);
434 sc->sc_pcxr = GE_READ(sc, ETH_EPCXR);
435 sc->sc_intrmask = GE_READ(sc, ETH_EIMR) | ETH_IR_MIIPhySTC;
436
437 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
438
439 #if defined(DEBUG)
440 printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
441 #endif
442
443 sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override;
444 if (device_cfdata(self)->cf_flags & 1) {
445 aprint_normal_dev(self, "phy %d (rmii)\n", phyaddr);
446 sc->sc_pcxr |= ETH_EPCXR_RMIIEn;
447 } else {
448 aprint_normal_dev(self, "phy %d (mii)\n", phyaddr);
449 sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn;
450 }
451 if (device_cfdata(self)->cf_flags & 2)
452 sc->sc_flags |= GE_NOFREE;
453 /* Set Max Frame Length is 1536 */
454 sc->sc_pcxr &= ~ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_MASK);
455 sc->sc_pcxr |= ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_1536);
456 sc->sc_max_frame_length = 1536;
457
458 if (sc->sc_pcr & ETH_EPCR_EN) {
459 int tries = 1000;
460 /*
461 * Abort transmitter and receiver and wait for them to quiese
462 */
463 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR | ETH_ESDCMR_AT);
464 do {
465 delay(100);
466 if (tries-- <= 0) {
467 aprint_error_dev(self, "Abort TX/RX failed\n");
468 break;
469 }
470 } while (GE_READ(sc, ETH_ESDCMR) &
471 (ETH_ESDCMR_AR | ETH_ESDCMR_AT));
472 }
473
474 sc->sc_pcr &=
475 ~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF);
476
477 #if defined(DEBUG)
478 printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
479 #endif
480
481 /*
482 * Now turn off the GT. If it didn't quiese, too ***ing bad.
483 */
484 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
485 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
486 sdcr = GE_READ(sc, ETH_ESDCR);
487 ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4);
488 sdcr |= ETH_ESDCR_RIFB;
489 GE_WRITE(sc, ETH_ESDCR, sdcr);
490
491 sc->sc_mii.mii_ifp = ifp;
492 sc->sc_mii.mii_readreg = gfec_mii_read;
493 sc->sc_mii.mii_writereg = gfec_mii_write;
494 sc->sc_mii.mii_statchg = gfec_mii_statchg;
495
496 sc->sc_ec.ec_mii = &sc->sc_mii;
497 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
498 ether_mediastatus);
499
500 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, phyaddr,
501 MII_OFFSET_ANY, MIIF_NOISOLATE);
502 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
503 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
504 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
505 } else {
506 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
507 }
508
509 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
510 ifp->if_softc = sc;
511 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
512 #if 0
513 ifp->if_flags |= IFF_DEBUG;
514 #endif
515 ifp->if_ioctl = gfe_ifioctl;
516 ifp->if_start = gfe_ifstart;
517 ifp->if_watchdog = gfe_ifwatchdog;
518
519 if (sc->sc_flags & GE_NOFREE) {
520 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI);
521 if (!error)
522 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI);
523 if (!error)
524 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO);
525 if (!error)
526 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO);
527 if (!error)
528 error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI);
529 if (!error)
530 error = gfe_hash_alloc(sc);
531 if (error)
532 aprint_error_dev(self,
533 "failed to allocate resources: %d\n", error);
534 }
535
536 if_attach(ifp);
537 ether_ifattach(ifp, enaddr);
538 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
539 rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET,
540 RND_FLAG_DEFAULT);
541 marvell_intr_establish(mva->mva_irq, IPL_NET, gfe_intr, sc);
542 }
543
544 int
545 gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs,
546 size_t size, int flags)
547 {
548 int error = 0;
549 GE_FUNC_ENTER(sc, "gfe_dmamem_alloc");
550
551 KASSERT(gdm->gdm_kva == NULL);
552 gdm->gdm_size = size;
553 gdm->gdm_maxsegs = maxsegs;
554
555 error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE,
556 gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs,
557 BUS_DMA_NOWAIT);
558 if (error)
559 goto fail;
560
561 error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs,
562 gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT);
563 if (error)
564 goto fail;
565
566 error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs,
567 gdm->gdm_size, 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT, &gdm->gdm_map);
568 if (error)
569 goto fail;
570
571 error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva,
572 gdm->gdm_size, NULL, BUS_DMA_NOWAIT);
573 if (error)
574 goto fail;
575
576 /* invalidate from cache */
577 bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size,
578 BUS_DMASYNC_PREREAD);
579 fail:
580 if (error) {
581 gfe_dmamem_free(sc, gdm);
582 GE_DPRINTF(sc, (":err=%d", error));
583 }
584 GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x",
585 gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs,
586 gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len));
587 GE_FUNC_EXIT(sc, "");
588 return error;
589 }
590
591 void
592 gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm)
593 {
594 GE_FUNC_ENTER(sc, "gfe_dmamem_free");
595 if (gdm->gdm_map)
596 bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map);
597 if (gdm->gdm_kva)
598 bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size);
599 if (gdm->gdm_nsegs > 0)
600 bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs);
601 gdm->gdm_map = NULL;
602 gdm->gdm_kva = NULL;
603 gdm->gdm_nsegs = 0;
604 GE_FUNC_EXIT(sc, "");
605 }
606
607 int
608 gfe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
609 {
610 struct gfe_softc * const sc = ifp->if_softc;
611 struct ifreq *ifr = (struct ifreq *) data;
612 struct ifaddr *ifa = (struct ifaddr *) data;
613 int s, error = 0;
614
615 GE_FUNC_ENTER(sc, "gfe_ifioctl");
616 s = splnet();
617
618 switch (cmd) {
619 case SIOCINITIFADDR:
620 ifp->if_flags |= IFF_UP;
621 error = gfe_whack(sc, GE_WHACK_START);
622 switch (ifa->ifa_addr->sa_family) {
623 #ifdef INET
624 case AF_INET:
625 if (error == 0)
626 arp_ifinit(ifp, ifa);
627 break;
628 #endif
629 default:
630 break;
631 }
632 break;
633
634 case SIOCSIFFLAGS:
635 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
636 break;
637 /* XXX re-use ether_ioctl() */
638 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
639 case IFF_UP|IFF_RUNNING:/* active->active, update */
640 error = gfe_whack(sc, GE_WHACK_CHANGE);
641 break;
642 case IFF_RUNNING: /* not up, so we stop */
643 error = gfe_whack(sc, GE_WHACK_STOP);
644 break;
645 case IFF_UP: /* not running, so we start */
646 error = gfe_whack(sc, GE_WHACK_START);
647 break;
648 case 0: /* idle->idle: do nothing */
649 break;
650 }
651 break;
652
653 case SIOCSIFMEDIA:
654 case SIOCGIFMEDIA:
655 case SIOCADDMULTI:
656 case SIOCDELMULTI:
657 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
658 if (ifp->if_flags & IFF_RUNNING)
659 error = gfe_whack(sc, GE_WHACK_CHANGE);
660 else
661 error = 0;
662 }
663 break;
664
665 case SIOCSIFMTU:
666 if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) {
667 error = EINVAL;
668 break;
669 }
670 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
671 error = 0;
672 break;
673
674 default:
675 error = ether_ioctl(ifp, cmd, data);
676 break;
677 }
678 splx(s);
679 GE_FUNC_EXIT(sc, "");
680 return error;
681 }
682
683 void
684 gfe_ifstart(struct ifnet *ifp)
685 {
686 struct gfe_softc * const sc = ifp->if_softc;
687 struct mbuf *m;
688
689 GE_FUNC_ENTER(sc, "gfe_ifstart");
690
691 if ((ifp->if_flags & IFF_RUNNING) == 0) {
692 GE_FUNC_EXIT(sc, "$");
693 return;
694 }
695
696 for (;;) {
697 IF_DEQUEUE(&ifp->if_snd, m);
698 if (m == NULL) {
699 ifp->if_flags &= ~IFF_OACTIVE;
700 GE_FUNC_EXIT(sc, "");
701 return;
702 }
703
704 /*
705 * No space in the pending queue? try later.
706 */
707 if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq))
708 break;
709
710 /*
711 * Try to enqueue a mbuf to the device. If that fails, we
712 * can always try to map the next mbuf.
713 */
714 IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m);
715 GE_DPRINTF(sc, (">"));
716 #ifndef GE_NOTX
717 (void) gfe_tx_enqueue(sc, GE_TXPRIO_HI);
718 #endif
719 }
720
721 /*
722 * Attempt to queue the mbuf for send failed.
723 */
724 IF_PREPEND(&ifp->if_snd, m);
725 ifp->if_flags |= IFF_OACTIVE;
726 GE_FUNC_EXIT(sc, "%%");
727 }
728
729 void
730 gfe_ifwatchdog(struct ifnet *ifp)
731 {
732 struct gfe_softc * const sc = ifp->if_softc;
733 struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI];
734
735 GE_FUNC_ENTER(sc, "gfe_ifwatchdog");
736 aprint_error_dev(sc->sc_dev, "device timeout");
737 if (ifp->if_flags & IFF_RUNNING) {
738 uint32_t curtxdnum;
739
740 curtxdnum = (GE_READ(sc, txq->txq_ectdp) -
741 txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]);
742 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
743 GE_TXDPOSTSYNC(sc, txq, curtxdnum);
744 aprint_error(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ",
745 txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts,
746 txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts,
747 GE_READ(sc, ETH_EICR));
748 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
749 GE_TXDPRESYNC(sc, txq, curtxdnum);
750 }
751 aprint_error("\n");
752 ifp->if_oerrors++;
753 (void) gfe_whack(sc, GE_WHACK_RESTART);
754 GE_FUNC_EXIT(sc, "");
755 }
756
757 int
758 gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio)
759 {
760 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
761 int error;
762
763 GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc");
764 GE_DPRINTF(sc, ("(%d)", rxprio));
765
766 error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1,
767 GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE);
768 if (error) {
769 GE_FUNC_EXIT(sc, "!!");
770 return error;
771 }
772
773 error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS,
774 GE_RXBUF_MEMSIZE, 0);
775 if (error) {
776 GE_FUNC_EXIT(sc, "!!!");
777 return error;
778 }
779 GE_FUNC_EXIT(sc, "");
780 return error;
781 }
782
783 int
784 gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio)
785 {
786 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
787 volatile struct gt_eth_desc *rxd;
788 const bus_dma_segment_t *ds;
789 int idx;
790 bus_addr_t nxtaddr;
791 bus_size_t boff;
792
793 GE_FUNC_ENTER(sc, "gfe_rx_rxqinit");
794 GE_DPRINTF(sc, ("(%d)", rxprio));
795
796 if ((sc->sc_flags & GE_NOFREE) == 0) {
797 int error = gfe_rx_rxqalloc(sc, rxprio);
798 if (error) {
799 GE_FUNC_EXIT(sc, "!");
800 return error;
801 }
802 } else {
803 KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL);
804 KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL);
805 }
806
807 memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE);
808
809 rxq->rxq_descs =
810 (volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva;
811 rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr;
812 rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva;
813 rxq->rxq_fi = 0;
814 rxq->rxq_active = GE_RXDESC_MAX;
815 boff = 0;
816 ds = rxq->rxq_buf_mem.gdm_map->dm_segs;
817 nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd);
818 for (idx = 0, rxd = rxq->rxq_descs; idx < GE_RXDESC_MAX;
819 idx++, rxd++, nxtaddr += sizeof(*rxd)) {
820 rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16);
821 rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
822 rxd->ed_bufptr = htogt32(ds->ds_addr + boff);
823 /*
824 * update the nxtptr to point to the next txd.
825 */
826 if (idx == GE_RXDESC_MAX - 1)
827 nxtaddr = rxq->rxq_desc_busaddr;
828 rxd->ed_nxtptr = htogt32(nxtaddr);
829 boff += GE_RXBUF_SIZE;
830 if (boff == ds->ds_len) {
831 ds++;
832 boff = 0;
833 }
834 }
835 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0,
836 rxq->rxq_desc_mem.gdm_map->dm_mapsize,
837 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
838 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0,
839 rxq->rxq_buf_mem.gdm_map->dm_mapsize,
840 BUS_DMASYNC_PREREAD);
841
842 rxq->rxq_intrbits = ETH_IR_RxBuffer|ETH_IR_RxError;
843 switch (rxprio) {
844 case GE_RXPRIO_HI:
845 rxq->rxq_intrbits |= ETH_IR_RxBuffer_3|ETH_IR_RxError_3;
846 rxq->rxq_efrdp = ETH_EFRDP3;
847 rxq->rxq_ecrdp = ETH_ECRDP3;
848 break;
849 case GE_RXPRIO_MEDHI:
850 rxq->rxq_intrbits |= ETH_IR_RxBuffer_2|ETH_IR_RxError_2;
851 rxq->rxq_efrdp = ETH_EFRDP2;
852 rxq->rxq_ecrdp = ETH_ECRDP2;
853 break;
854 case GE_RXPRIO_MEDLO:
855 rxq->rxq_intrbits |= ETH_IR_RxBuffer_1|ETH_IR_RxError_1;
856 rxq->rxq_efrdp = ETH_EFRDP1;
857 rxq->rxq_ecrdp = ETH_ECRDP1;
858 break;
859 case GE_RXPRIO_LO:
860 rxq->rxq_intrbits |= ETH_IR_RxBuffer_0|ETH_IR_RxError_0;
861 rxq->rxq_efrdp = ETH_EFRDP0;
862 rxq->rxq_ecrdp = ETH_ECRDP0;
863 break;
864 }
865 GE_FUNC_EXIT(sc, "");
866 return 0;
867 }
868
869 void
870 gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio)
871 {
872 struct ifnet * const ifp = &sc->sc_ec.ec_if;
873 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
874 struct mbuf *m = rxq->rxq_curpkt;
875
876 GE_FUNC_ENTER(sc, "gfe_rx_get");
877 GE_DPRINTF(sc, ("(%d)", rxprio));
878
879 while (rxq->rxq_active > 0) {
880 volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi];
881 struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi];
882 const struct ether_header *eh;
883 unsigned int cmdsts;
884 size_t buflen;
885
886 GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi);
887 cmdsts = gt32toh(rxd->ed_cmdsts);
888 GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts));
889 rxq->rxq_cmdsts = cmdsts;
890 /*
891 * Sometimes the GE "forgets" to reset the ownership bit.
892 * But if the length has been rewritten, the packet is ours
893 * so pretend the O bit is set.
894 */
895 buflen = gt32toh(rxd->ed_lencnt) & 0xffff;
896 if ((cmdsts & RX_CMD_O) && buflen == 0) {
897 GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
898 break;
899 }
900
901 /*
902 * If this is not a single buffer packet with no errors
903 * or for some reason it's bigger than our frame size,
904 * ignore it and go to the next packet.
905 */
906 if ((cmdsts & (RX_CMD_F|RX_CMD_L|RX_STS_ES)) !=
907 (RX_CMD_F|RX_CMD_L) ||
908 buflen > sc->sc_max_frame_length) {
909 GE_DPRINTF(sc, ("!"));
910 --rxq->rxq_active;
911 ifp->if_ipackets++;
912 ifp->if_ierrors++;
913 goto give_it_back;
914 }
915
916 /* CRC is included with the packet; trim it off. */
917 buflen -= ETHER_CRC_LEN;
918
919 if (m == NULL) {
920 MGETHDR(m, M_DONTWAIT, MT_DATA);
921 if (m == NULL) {
922 GE_DPRINTF(sc, ("?"));
923 break;
924 }
925 }
926 if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) {
927 MCLGET(m, M_DONTWAIT);
928 if ((m->m_flags & M_EXT) == 0) {
929 GE_DPRINTF(sc, ("?"));
930 break;
931 }
932 }
933 m->m_data += 2;
934 m->m_len = 0;
935 m->m_pkthdr.len = 0;
936 m_set_rcvif(m, ifp);
937 rxq->rxq_cmdsts = cmdsts;
938 --rxq->rxq_active;
939
940 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map,
941 rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD);
942
943 KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0);
944 memcpy(m->m_data + m->m_len, rxb->rxb_data, buflen);
945 m->m_len = buflen;
946 m->m_pkthdr.len = buflen;
947
948 eh = (const struct ether_header *) m->m_data;
949 if ((ifp->if_flags & IFF_PROMISC) ||
950 (rxq->rxq_cmdsts & RX_STS_M) == 0 ||
951 (rxq->rxq_cmdsts & RX_STS_HE) ||
952 (eh->ether_dhost[0] & 1) != 0 ||
953 memcmp(eh->ether_dhost, CLLADDR(ifp->if_sadl),
954 ETHER_ADDR_LEN) == 0) {
955 if_percpuq_enqueue(ifp->if_percpuq, m);
956 m = NULL;
957 GE_DPRINTF(sc, (">"));
958 } else {
959 m->m_len = 0;
960 m->m_pkthdr.len = 0;
961 GE_DPRINTF(sc, ("+"));
962 }
963 rxq->rxq_cmdsts = 0;
964
965 give_it_back:
966 rxd->ed_lencnt &= ~0xffff; /* zero out length */
967 rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
968 #if 0
969 GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)",
970 rxq->rxq_fi,
971 ((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1],
972 ((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3]));
973 #endif
974 GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
975 if (++rxq->rxq_fi == GE_RXDESC_MAX)
976 rxq->rxq_fi = 0;
977 rxq->rxq_active++;
978 }
979 rxq->rxq_curpkt = m;
980 GE_FUNC_EXIT(sc, "");
981 }
982
983 uint32_t
984 gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask)
985 {
986 struct ifnet * const ifp = &sc->sc_ec.ec_if;
987 struct gfe_rxqueue *rxq;
988 uint32_t rxbits;
989 #define RXPRIO_DECODER 0xffffaa50
990 GE_FUNC_ENTER(sc, "gfe_rx_process");
991
992 rxbits = ETH_IR_RxBuffer_GET(cause);
993 while (rxbits) {
994 enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
995 GE_DPRINTF(sc, ("%1x", rxbits));
996 rxbits &= ~(1 << rxprio);
997 gfe_rx_get(sc, rxprio);
998 }
999
1000 rxbits = ETH_IR_RxError_GET(cause);
1001 while (rxbits) {
1002 enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
1003 uint32_t masks[(GE_RXDESC_MAX + 31) / 32];
1004 int idx;
1005 rxbits &= ~(1 << rxprio);
1006 rxq = &sc->sc_rxq[rxprio];
1007 sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits);
1008 intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits);
1009 if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) {
1010 sc->sc_tickflags |= GE_TICK_RX_RESTART;
1011 callout_reset(&sc->sc_co, 1, gfe_tick, sc);
1012 }
1013 ifp->if_ierrors++;
1014 GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n",
1015 device_xname(sc->sc_dev), rxprio, rxq->rxq_fi));
1016 memset(masks, 0, sizeof(masks));
1017 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1018 0, rxq->rxq_desc_mem.gdm_size,
1019 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1020 for (idx = 0; idx < GE_RXDESC_MAX; idx++) {
1021 volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx];
1022
1023 if (RX_CMD_O & gt32toh(rxd->ed_cmdsts))
1024 masks[idx/32] |= 1 << (idx & 31);
1025 }
1026 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1027 0, rxq->rxq_desc_mem.gdm_size,
1028 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1029 #if defined(DEBUG)
1030 printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n",
1031 device_xname(sc->sc_dev), rxprio, rxq->rxq_fi,
1032 rxq->rxq_cmdsts, masks[0], masks[1]);
1033 #endif
1034 }
1035 if ((intrmask & ETH_IR_RxBits) == 0)
1036 intrmask &= ~(ETH_IR_RxBuffer|ETH_IR_RxError);
1037
1038 GE_FUNC_EXIT(sc, "");
1039 return intrmask;
1040 }
1041
1042 int
1043 gfe_rx_prime(struct gfe_softc *sc)
1044 {
1045 struct gfe_rxqueue *rxq;
1046 int error;
1047
1048 GE_FUNC_ENTER(sc, "gfe_rx_prime");
1049
1050 error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI);
1051 if (error)
1052 goto bail;
1053 rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1054 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1055 GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1056 GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1057 }
1058 sc->sc_intrmask |= rxq->rxq_intrbits;
1059
1060 error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI);
1061 if (error)
1062 goto bail;
1063 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1064 rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1065 GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1066 GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1067 sc->sc_intrmask |= rxq->rxq_intrbits;
1068 }
1069
1070 error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO);
1071 if (error)
1072 goto bail;
1073 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1074 rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1075 GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1076 GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1077 sc->sc_intrmask |= rxq->rxq_intrbits;
1078 }
1079
1080 error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO);
1081 if (error)
1082 goto bail;
1083 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1084 rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1085 GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1086 GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1087 sc->sc_intrmask |= rxq->rxq_intrbits;
1088 }
1089
1090 bail:
1091 GE_FUNC_EXIT(sc, "");
1092 return error;
1093 }
1094
1095 void
1096 gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio)
1097 {
1098 struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio];
1099 GE_FUNC_ENTER(sc, "gfe_rx_cleanup");
1100 if (rxq == NULL) {
1101 GE_FUNC_EXIT(sc, "");
1102 return;
1103 }
1104
1105 if (rxq->rxq_curpkt)
1106 m_freem(rxq->rxq_curpkt);
1107 if ((sc->sc_flags & GE_NOFREE) == 0) {
1108 gfe_dmamem_free(sc, &rxq->rxq_desc_mem);
1109 gfe_dmamem_free(sc, &rxq->rxq_buf_mem);
1110 }
1111 GE_FUNC_EXIT(sc, "");
1112 }
1113
1114 void
1115 gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1116 {
1117 GE_FUNC_ENTER(sc, "gfe_rx_stop");
1118 sc->sc_flags &= ~GE_RXACTIVE;
1119 sc->sc_idlemask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1120 sc->sc_intrmask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1121 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1122 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR);
1123 do {
1124 delay(10);
1125 } while (GE_READ(sc, ETH_ESDCMR) & ETH_ESDCMR_AR);
1126 gfe_rx_cleanup(sc, GE_RXPRIO_HI);
1127 gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI);
1128 gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO);
1129 gfe_rx_cleanup(sc, GE_RXPRIO_LO);
1130 GE_FUNC_EXIT(sc, "");
1131 }
1132
1133 void
1134 gfe_tick(void *arg)
1135 {
1136 struct gfe_softc * const sc = arg;
1137 uint32_t intrmask;
1138 unsigned int tickflags;
1139 int s;
1140
1141 GE_FUNC_ENTER(sc, "gfe_tick");
1142
1143 s = splnet();
1144
1145 tickflags = sc->sc_tickflags;
1146 sc->sc_tickflags = 0;
1147 intrmask = sc->sc_intrmask;
1148 if (tickflags & GE_TICK_TX_IFSTART)
1149 gfe_ifstart(&sc->sc_ec.ec_if);
1150 if (tickflags & GE_TICK_RX_RESTART) {
1151 intrmask |= sc->sc_idlemask;
1152 if (sc->sc_idlemask & (ETH_IR_RxBuffer_3|ETH_IR_RxError_3)) {
1153 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1154 rxq->rxq_fi = 0;
1155 GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1156 GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1157 }
1158 if (sc->sc_idlemask & (ETH_IR_RxBuffer_2|ETH_IR_RxError_2)) {
1159 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1160 rxq->rxq_fi = 0;
1161 GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1162 GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1163 }
1164 if (sc->sc_idlemask & (ETH_IR_RxBuffer_1|ETH_IR_RxError_1)) {
1165 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1166 rxq->rxq_fi = 0;
1167 GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1168 GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1169 }
1170 if (sc->sc_idlemask & (ETH_IR_RxBuffer_0|ETH_IR_RxError_0)) {
1171 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1172 rxq->rxq_fi = 0;
1173 GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1174 GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1175 }
1176 sc->sc_idlemask = 0;
1177 }
1178 if (intrmask != sc->sc_intrmask) {
1179 sc->sc_intrmask = intrmask;
1180 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1181 }
1182 gfe_intr(sc);
1183 splx(s);
1184
1185 GE_FUNC_EXIT(sc, "");
1186 }
1187
1188 int
1189 gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio)
1190 {
1191 const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1192 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1193 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1194 volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo];
1195 uint32_t intrmask = sc->sc_intrmask;
1196 size_t buflen;
1197 struct mbuf *m;
1198
1199 GE_FUNC_ENTER(sc, "gfe_tx_enqueue");
1200
1201 /*
1202 * Anything in the pending queue to enqueue? if not, punt. Likewise
1203 * if the txq is not yet created.
1204 * otherwise grab its dmamap.
1205 */
1206 if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) {
1207 GE_FUNC_EXIT(sc, "-");
1208 return 0;
1209 }
1210
1211 /*
1212 * Have we [over]consumed our limit of descriptors?
1213 * Do we have enough free descriptors?
1214 */
1215 if (GE_TXDESC_MAX == txq->txq_nactive + 2) {
1216 volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi];
1217 uint32_t cmdsts;
1218 size_t pktlen;
1219 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1220 cmdsts = gt32toh(txd2->ed_cmdsts);
1221 if (cmdsts & TX_CMD_O) {
1222 int nextin;
1223 /*
1224 * Sometime the Discovery forgets to update the
1225 * last descriptor. See if we own the descriptor
1226 * after it (since we know we've turned that to
1227 * the discovery and if we owned it, the Discovery
1228 * gave it back). If we do, we know the Discovery
1229 * gave back this one but forgot to mark it as ours.
1230 */
1231 nextin = txq->txq_fi + 1;
1232 if (nextin == GE_TXDESC_MAX)
1233 nextin = 0;
1234 GE_TXDPOSTSYNC(sc, txq, nextin);
1235 if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1236 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1237 GE_TXDPRESYNC(sc, txq, nextin);
1238 GE_FUNC_EXIT(sc, "@");
1239 return 0;
1240 }
1241 #ifdef DEBUG
1242 printf("%s: txenqueue: transmitter resynced at %d\n",
1243 device_xname(sc->sc_dev), txq->txq_fi);
1244 #endif
1245 }
1246 if (++txq->txq_fi == GE_TXDESC_MAX)
1247 txq->txq_fi = 0;
1248 txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr;
1249 pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff;
1250 txq->txq_inptr += roundup(pktlen, dcache_line_size);
1251 txq->txq_nactive--;
1252
1253 /* statistics */
1254 ifp->if_opackets++;
1255 if (cmdsts & TX_STS_ES)
1256 ifp->if_oerrors++;
1257 GE_DPRINTF(sc, ("%%"));
1258 }
1259
1260 buflen = roundup(m->m_pkthdr.len, dcache_line_size);
1261
1262 /*
1263 * If this packet would wrap around the end of the buffer, reset back
1264 * to the beginning.
1265 */
1266 if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) {
1267 txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr;
1268 txq->txq_outptr = 0;
1269 }
1270
1271 /*
1272 * Make sure the output packet doesn't run over the beginning of
1273 * what we've already given the GT.
1274 */
1275 if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr &&
1276 txq->txq_outptr + buflen > txq->txq_inptr) {
1277 intrmask |= txq->txq_intrbits &
1278 (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow);
1279 if (sc->sc_intrmask != intrmask) {
1280 sc->sc_intrmask = intrmask;
1281 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1282 }
1283 GE_FUNC_EXIT(sc, "#");
1284 return 0;
1285 }
1286
1287 /*
1288 * The end-of-list descriptor we put on last time is the starting point
1289 * for this packet. The GT is supposed to terminate list processing on
1290 * a NULL nxtptr but that currently is broken so a CPU-owned descriptor
1291 * must terminate the list.
1292 */
1293 intrmask = sc->sc_intrmask;
1294
1295 m_copydata(m, 0, m->m_pkthdr.len,
1296 (char *)txq->txq_buf_mem.gdm_kva + (int)txq->txq_outptr);
1297 bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1298 txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE);
1299 txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr);
1300 txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16);
1301 GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1302
1303 /*
1304 * Request a buffer interrupt every 2/3 of the way thru the transmit
1305 * buffer.
1306 */
1307 txq->txq_ei_gapcount += buflen;
1308 if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) {
1309 txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST|TX_CMD_EI);
1310 txq->txq_ei_gapcount = 0;
1311 } else {
1312 txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST);
1313 }
1314 #if 0
1315 GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo,
1316 ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1317 ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1318 #endif
1319 GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1320
1321 txq->txq_outptr += buflen;
1322 /*
1323 * Tell the SDMA engine to "Fetch!"
1324 */
1325 GE_WRITE(sc, ETH_ESDCMR,
1326 txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH|ETH_ESDCMR_TXDL));
1327
1328 GE_DPRINTF(sc, ("(%d)", txq->txq_lo));
1329
1330 /*
1331 * Update the last out appropriately.
1332 */
1333 txq->txq_nactive++;
1334 if (++txq->txq_lo == GE_TXDESC_MAX)
1335 txq->txq_lo = 0;
1336
1337 /*
1338 * Move mbuf from the pending queue to the snd queue.
1339 */
1340 IF_DEQUEUE(&txq->txq_pendq, m);
1341 bpf_mtap(ifp, m, BPF_D_OUT);
1342 m_freem(m);
1343 ifp->if_flags &= ~IFF_OACTIVE;
1344
1345 /*
1346 * Since we have put an item into the packet queue, we now want
1347 * an interrupt when the transmit queue finishes processing the
1348 * list. But only update the mask if needs changing.
1349 */
1350 intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow);
1351 if (sc->sc_intrmask != intrmask) {
1352 sc->sc_intrmask = intrmask;
1353 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1354 }
1355 if (ifp->if_timer == 0)
1356 ifp->if_timer = 5;
1357 GE_FUNC_EXIT(sc, "*");
1358 return 1;
1359 }
1360
1361 uint32_t
1362 gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask)
1363 {
1364 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1365 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1366
1367 GE_FUNC_ENTER(sc, "gfe_tx_done");
1368
1369 if (txq == NULL) {
1370 GE_FUNC_EXIT(sc, "");
1371 return intrmask;
1372 }
1373
1374 while (txq->txq_nactive > 0) {
1375 const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1376 volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi];
1377 uint32_t cmdsts;
1378 size_t pktlen;
1379
1380 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1381 if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) {
1382 int nextin;
1383
1384 if (txq->txq_nactive == 1) {
1385 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1386 GE_FUNC_EXIT(sc, "");
1387 return intrmask;
1388 }
1389 /*
1390 * Sometimes the Discovery forgets to update the
1391 * ownership bit in the descriptor. See if we own the
1392 * descriptor after it (since we know we've turned
1393 * that to the Discovery and if we own it now then the
1394 * Discovery gave it back). If we do, we know the
1395 * Discovery gave back this one but forgot to mark it
1396 * as ours.
1397 */
1398 nextin = txq->txq_fi + 1;
1399 if (nextin == GE_TXDESC_MAX)
1400 nextin = 0;
1401 GE_TXDPOSTSYNC(sc, txq, nextin);
1402 if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1403 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1404 GE_TXDPRESYNC(sc, txq, nextin);
1405 GE_FUNC_EXIT(sc, "");
1406 return intrmask;
1407 }
1408 #ifdef DEBUG
1409 printf("%s: txdone: transmitter resynced at %d\n",
1410 device_xname(sc->sc_dev), txq->txq_fi);
1411 #endif
1412 }
1413 #if 0
1414 GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)",
1415 txq->txq_lo,
1416 ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1417 ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1418 #endif
1419 GE_DPRINTF(sc, ("(%d)", txq->txq_fi));
1420 if (++txq->txq_fi == GE_TXDESC_MAX)
1421 txq->txq_fi = 0;
1422 txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr;
1423 pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff;
1424 bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1425 txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE);
1426 txq->txq_inptr += roundup(pktlen, dcache_line_size);
1427
1428 /* statistics */
1429 ifp->if_opackets++;
1430 if (cmdsts & TX_STS_ES)
1431 ifp->if_oerrors++;
1432
1433 /* txd->ed_bufptr = 0; */
1434
1435 ifp->if_timer = 5;
1436 --txq->txq_nactive;
1437 }
1438 if (txq->txq_nactive != 0)
1439 panic("%s: transmit fifo%d empty but active count (%d) > 0!",
1440 device_xname(sc->sc_dev), txprio, txq->txq_nactive);
1441 ifp->if_timer = 0;
1442 intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow));
1443 intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow));
1444 GE_FUNC_EXIT(sc, "");
1445 return intrmask;
1446 }
1447
1448 int
1449 gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio)
1450 {
1451 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1452 int error;
1453
1454 GE_FUNC_ENTER(sc, "gfe_tx_txqalloc");
1455
1456 error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1,
1457 GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE);
1458 if (error) {
1459 GE_FUNC_EXIT(sc, "");
1460 return error;
1461 }
1462 error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0);
1463 if (error) {
1464 gfe_dmamem_free(sc, &txq->txq_desc_mem);
1465 GE_FUNC_EXIT(sc, "");
1466 return error;
1467 }
1468 GE_FUNC_EXIT(sc, "");
1469 return 0;
1470 }
1471
1472 int
1473 gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio)
1474 {
1475 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1476 volatile struct gt_eth_desc *txd;
1477 unsigned int i;
1478 bus_addr_t addr;
1479
1480 GE_FUNC_ENTER(sc, "gfe_tx_start");
1481
1482 sc->sc_intrmask &=
1483 ~(ETH_IR_TxEndHigh |
1484 ETH_IR_TxBufferHigh |
1485 ETH_IR_TxEndLow |
1486 ETH_IR_TxBufferLow);
1487
1488 if (sc->sc_flags & GE_NOFREE) {
1489 KASSERT(txq->txq_desc_mem.gdm_kva != NULL);
1490 KASSERT(txq->txq_buf_mem.gdm_kva != NULL);
1491 } else {
1492 int error = gfe_tx_txqalloc(sc, txprio);
1493 if (error) {
1494 GE_FUNC_EXIT(sc, "!");
1495 return error;
1496 }
1497 }
1498
1499 txq->txq_descs =
1500 (volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva;
1501 txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr;
1502 txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr;
1503
1504 txq->txq_pendq.ifq_maxlen = 10;
1505 txq->txq_ei_gapcount = 0;
1506 txq->txq_nactive = 0;
1507 txq->txq_fi = 0;
1508 txq->txq_lo = 0;
1509 txq->txq_inptr = GE_TXBUF_SIZE;
1510 txq->txq_outptr = 0;
1511 for (i = 0, txd = txq->txq_descs,
1512 addr = txq->txq_desc_busaddr + sizeof(*txd);
1513 i < GE_TXDESC_MAX - 1; i++, txd++, addr += sizeof(*txd)) {
1514 /*
1515 * update the nxtptr to point to the next txd.
1516 */
1517 txd->ed_cmdsts = 0;
1518 txd->ed_nxtptr = htogt32(addr);
1519 }
1520 txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr =
1521 htogt32(txq->txq_desc_busaddr);
1522 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0,
1523 GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1524
1525 switch (txprio) {
1526 case GE_TXPRIO_HI:
1527 txq->txq_intrbits = ETH_IR_TxEndHigh|ETH_IR_TxBufferHigh;
1528 txq->txq_esdcmrbits = ETH_ESDCMR_TXDH;
1529 txq->txq_epsrbits = ETH_EPSR_TxHigh;
1530 txq->txq_ectdp = ETH_ECTDP1;
1531 GE_WRITE(sc, ETH_ECTDP1, txq->txq_desc_busaddr);
1532 break;
1533
1534 case GE_TXPRIO_LO:
1535 txq->txq_intrbits = ETH_IR_TxEndLow|ETH_IR_TxBufferLow;
1536 txq->txq_esdcmrbits = ETH_ESDCMR_TXDL;
1537 txq->txq_epsrbits = ETH_EPSR_TxLow;
1538 txq->txq_ectdp = ETH_ECTDP0;
1539 GE_WRITE(sc, ETH_ECTDP0, txq->txq_desc_busaddr);
1540 break;
1541
1542 case GE_TXPRIO_NONE:
1543 break;
1544 }
1545 #if 0
1546 GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp));
1547 GE_WRITE(sc->sc_dev, txq->txq_ectdp, txq->txq_desc_busaddr);
1548 GE_DPRINTF(sc, (")"));
1549 #endif
1550
1551 /*
1552 * If we are restarting, there may be packets in the pending queue
1553 * waiting to be enqueued. Try enqueuing packets from both priority
1554 * queues until the pending queue is empty or there no room for them
1555 * on the device.
1556 */
1557 while (gfe_tx_enqueue(sc, txprio))
1558 continue;
1559
1560 GE_FUNC_EXIT(sc, "");
1561 return 0;
1562 }
1563
1564 void
1565 gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush)
1566 {
1567 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1568
1569 GE_FUNC_ENTER(sc, "gfe_tx_cleanup");
1570 if (txq == NULL) {
1571 GE_FUNC_EXIT(sc, "");
1572 return;
1573 }
1574
1575 if (!flush) {
1576 GE_FUNC_EXIT(sc, "");
1577 return;
1578 }
1579
1580 if ((sc->sc_flags & GE_NOFREE) == 0) {
1581 gfe_dmamem_free(sc, &txq->txq_desc_mem);
1582 gfe_dmamem_free(sc, &txq->txq_buf_mem);
1583 }
1584 GE_FUNC_EXIT(sc, "-F");
1585 }
1586
1587 void
1588 gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1589 {
1590 GE_FUNC_ENTER(sc, "gfe_tx_stop");
1591
1592 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_STDH|ETH_ESDCMR_STDL);
1593
1594 sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask);
1595 sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask);
1596 sc->sc_intrmask &=
1597 ~(ETH_IR_TxEndHigh |
1598 ETH_IR_TxBufferHigh |
1599 ETH_IR_TxEndLow |
1600 ETH_IR_TxBufferLow);
1601
1602 gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP);
1603 gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP);
1604
1605 sc->sc_ec.ec_if.if_timer = 0;
1606 GE_FUNC_EXIT(sc, "");
1607 }
1608
1609 int
1610 gfe_intr(void *arg)
1611 {
1612 struct gfe_softc * const sc = arg;
1613 uint32_t cause;
1614 uint32_t intrmask = sc->sc_intrmask;
1615 int claim = 0;
1616 int cnt;
1617
1618 GE_FUNC_ENTER(sc, "gfe_intr");
1619
1620 for (cnt = 0; cnt < 4; cnt++) {
1621 if (sc->sc_intrmask != intrmask) {
1622 sc->sc_intrmask = intrmask;
1623 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1624 }
1625 cause = GE_READ(sc, ETH_EICR);
1626 cause &= sc->sc_intrmask;
1627 GE_DPRINTF(sc, (".%#x", cause));
1628 if (cause == 0)
1629 break;
1630
1631 claim = 1;
1632
1633 GE_WRITE(sc, ETH_EICR, ~cause);
1634 #ifndef GE_NORX
1635 if (cause & (ETH_IR_RxBuffer|ETH_IR_RxError))
1636 intrmask = gfe_rx_process(sc, cause, intrmask);
1637 #endif
1638
1639 #ifndef GE_NOTX
1640 if (cause & (ETH_IR_TxBufferHigh|ETH_IR_TxEndHigh))
1641 intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask);
1642 if (cause & (ETH_IR_TxBufferLow|ETH_IR_TxEndLow))
1643 intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask);
1644 #endif
1645 if (cause & ETH_IR_MIIPhySTC) {
1646 sc->sc_flags |= GE_PHYSTSCHG;
1647 /* intrmask &= ~ETH_IR_MIIPhySTC; */
1648 }
1649 }
1650
1651 while (gfe_tx_enqueue(sc, GE_TXPRIO_HI))
1652 continue;
1653 while (gfe_tx_enqueue(sc, GE_TXPRIO_LO))
1654 continue;
1655
1656 GE_FUNC_EXIT(sc, "");
1657 return claim;
1658 }
1659
1660 int
1661 gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op)
1662 {
1663 int error = 0;
1664 GE_FUNC_ENTER(sc, "gfe_whack");
1665
1666 switch (op) {
1667 case GE_WHACK_RESTART:
1668 #ifndef GE_NOTX
1669 gfe_tx_stop(sc, op);
1670 #endif
1671 /* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */
1672 /* FALLTHROUGH */
1673 case GE_WHACK_START:
1674 #ifndef GE_NOHASH
1675 if (error == 0 && sc->sc_hashtable == NULL) {
1676 error = gfe_hash_alloc(sc);
1677 if (error)
1678 break;
1679 }
1680 if (op != GE_WHACK_RESTART)
1681 gfe_hash_fill(sc);
1682 #endif
1683 #ifndef GE_NORX
1684 if (op != GE_WHACK_RESTART) {
1685 error = gfe_rx_prime(sc);
1686 if (error)
1687 break;
1688 }
1689 #endif
1690 #ifndef GE_NOTX
1691 error = gfe_tx_start(sc, GE_TXPRIO_HI);
1692 if (error)
1693 break;
1694 #endif
1695 sc->sc_ec.ec_if.if_flags |= IFF_RUNNING;
1696 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1697 GE_WRITE(sc, ETH_EPCXR, sc->sc_pcxr);
1698 GE_WRITE(sc, ETH_EICR, 0);
1699 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1700 #ifndef GE_NOHASH
1701 GE_WRITE(sc, ETH_EHTPR,
1702 sc->sc_hash_mem.gdm_map->dm_segs->ds_addr);
1703 #endif
1704 #ifndef GE_NORX
1705 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_ERD);
1706 sc->sc_flags |= GE_RXACTIVE;
1707 #endif
1708 /* FALLTHROUGH */
1709 case GE_WHACK_CHANGE:
1710 GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)",
1711 GE_READ(sc, ETH_EPCR), GE_READ(sc, ETH_EIMR)));
1712 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1713 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1714 gfe_ifstart(&sc->sc_ec.ec_if);
1715 GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)",
1716 GE_READ(sc, ETH_ECTDP0), GE_READ(sc, ETH_ECTDP1)));
1717 GE_FUNC_EXIT(sc, "");
1718 return error;
1719 case GE_WHACK_STOP:
1720 break;
1721 }
1722
1723 #ifdef GE_DEBUG
1724 if (error)
1725 GE_DPRINTF(sc, (" failed: %d\n", error));
1726 #endif
1727 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1728 GE_WRITE(sc, ETH_EIMR, 0);
1729 sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING;
1730 #ifndef GE_NOTX
1731 gfe_tx_stop(sc, GE_WHACK_STOP);
1732 #endif
1733 #ifndef GE_NORX
1734 gfe_rx_stop(sc, GE_WHACK_STOP);
1735 #endif
1736 #ifndef GE_NOHASH
1737 if ((sc->sc_flags & GE_NOFREE) == 0) {
1738 gfe_dmamem_free(sc, &sc->sc_hash_mem);
1739 sc->sc_hashtable = NULL;
1740 }
1741 #endif
1742
1743 GE_FUNC_EXIT(sc, "");
1744 return error;
1745 }
1746
1747 int
1748 gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN])
1749 {
1750 uint32_t w0, add0, add1;
1751 uint32_t result;
1752
1753 GE_FUNC_ENTER(sc, "gfe_hash_compute");
1754 add0 = ((uint32_t) eaddr[5] << 0) |
1755 ((uint32_t) eaddr[4] << 8) |
1756 ((uint32_t) eaddr[3] << 16);
1757
1758 add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4);
1759 add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2);
1760 add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1);
1761
1762 add1 = ((uint32_t) eaddr[2] << 0) |
1763 ((uint32_t) eaddr[1] << 8) |
1764 ((uint32_t) eaddr[0] << 16);
1765
1766 add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4);
1767 add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2);
1768 add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1);
1769
1770 GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr)));
1771 /*
1772 * hashResult is the 15 bits Hash entry address.
1773 * ethernetADD is a 48 bit number, which is derived from the Ethernet
1774 * MAC address, by nibble swapping in every byte (i.e MAC address
1775 * of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
1776 */
1777
1778 if ((sc->sc_pcr & ETH_EPCR_HM) == 0) {
1779 /*
1780 * hashResult[14:0] = hashFunc0(ethernetADD[47:0])
1781 *
1782 * hashFunc0 calculates the hashResult in the following manner:
1783 * hashResult[ 8:0] = ethernetADD[14:8,1,0]
1784 * XOR ethernetADD[23:15] XOR ethernetADD[32:24]
1785 */
1786 result = (add0 & 3) | ((add0 >> 6) & ~3);
1787 result ^= (add0 >> 15) ^ (add1 >> 0);
1788 result &= 0x1ff;
1789 /*
1790 * hashResult[14:9] = ethernetADD[7:2]
1791 */
1792 result |= (add0 & ~3) << 7; /* excess bits will be masked */
1793 GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff));
1794 } else {
1795 #define TRIBITFLIP 073516240 /* yes its in octal */
1796 /*
1797 * hashResult[14:0] = hashFunc1(ethernetADD[47:0])
1798 *
1799 * hashFunc1 calculates the hashResult in the following manner:
1800 * hashResult[08:00] = ethernetADD[06:14]
1801 * XOR ethernetADD[15:23] XOR ethernetADD[24:32]
1802 */
1803 w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff;
1804 /*
1805 * Now bitswap those 9 bits
1806 */
1807 result = 0;
1808 result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6;
1809 result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3;
1810 result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0;
1811
1812 /*
1813 * hashResult[14:09] = ethernetADD[00:05]
1814 */
1815 result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12;
1816 result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9;
1817 GE_DPRINTF(sc, ("1(%#x)", result));
1818 }
1819 GE_FUNC_EXIT(sc, "");
1820 return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff);
1821 }
1822
1823 int
1824 gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op,
1825 enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN])
1826 {
1827 uint64_t he;
1828 uint64_t *maybe_he_p = NULL;
1829 int limit;
1830 int hash;
1831 int maybe_hash = 0;
1832
1833 GE_FUNC_ENTER(sc, "gfe_hash_entry_op");
1834
1835 hash = gfe_hash_compute(sc, eaddr);
1836
1837 if (sc->sc_hashtable == NULL) {
1838 panic("%s:%d: hashtable == NULL!", device_xname(sc->sc_dev),
1839 __LINE__);
1840 }
1841
1842 /*
1843 * Assume we are going to insert so create the hash entry we
1844 * are going to insert. We also use it to match entries we
1845 * will be removing.
1846 */
1847 he = ((uint64_t) eaddr[5] << 43) |
1848 ((uint64_t) eaddr[4] << 35) |
1849 ((uint64_t) eaddr[3] << 27) |
1850 ((uint64_t) eaddr[2] << 19) |
1851 ((uint64_t) eaddr[1] << 11) |
1852 ((uint64_t) eaddr[0] << 3) |
1853 HSH_PRIO_INS(prio) | HSH_V | HSH_R;
1854
1855 /*
1856 * The GT will search upto 12 entries for a hit, so we must mimic that.
1857 */
1858 hash &= sc->sc_hashmask / sizeof(he);
1859 for (limit = HSH_LIMIT; limit > 0 ; --limit) {
1860 /*
1861 * Does the GT wrap at the end, stop at the, or overrun the
1862 * end? Assume it wraps for now. Stash a copy of the
1863 * current hash entry.
1864 */
1865 uint64_t *he_p = &sc->sc_hashtable[hash];
1866 uint64_t thishe = *he_p;
1867
1868 /*
1869 * If the hash entry isn't valid, that break the chain. And
1870 * this entry a good candidate for reuse.
1871 */
1872 if ((thishe & HSH_V) == 0) {
1873 maybe_he_p = he_p;
1874 break;
1875 }
1876
1877 /*
1878 * If the hash entry has the same address we are looking for
1879 * then ... if we are removing and the skip bit is set, its
1880 * already been removed. if are adding and the skip bit is
1881 * clear, then its already added. In either return EBUSY
1882 * indicating the op has already been done. Otherwise flip
1883 * the skip bit and return 0.
1884 */
1885 if (((he ^ thishe) & HSH_ADDR_MASK) == 0) {
1886 if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) ||
1887 ((op == GE_HASH_ADD) && (thishe & HSH_S) == 0))
1888 return EBUSY;
1889 *he_p = thishe ^ HSH_S;
1890 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1891 hash * sizeof(he), sizeof(he),
1892 BUS_DMASYNC_PREWRITE);
1893 GE_FUNC_EXIT(sc, "^");
1894 return 0;
1895 }
1896
1897 /*
1898 * If we haven't found a slot for the entry and this entry
1899 * is currently being skipped, return this entry.
1900 */
1901 if (maybe_he_p == NULL && (thishe & HSH_S)) {
1902 maybe_he_p = he_p;
1903 maybe_hash = hash;
1904 }
1905
1906 hash = (hash + 1) & (sc->sc_hashmask / sizeof(he));
1907 }
1908
1909 /*
1910 * If we got here, then there was no entry to remove.
1911 */
1912 if (op == GE_HASH_REMOVE) {
1913 GE_FUNC_EXIT(sc, "?");
1914 return ENOENT;
1915 }
1916
1917 /*
1918 * If we couldn't find a slot, return an error.
1919 */
1920 if (maybe_he_p == NULL) {
1921 GE_FUNC_EXIT(sc, "!");
1922 return ENOSPC;
1923 }
1924
1925 /* Update the entry.
1926 */
1927 *maybe_he_p = he;
1928 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1929 maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE);
1930 GE_FUNC_EXIT(sc, "+");
1931 return 0;
1932 }
1933
1934 int
1935 gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm,
1936 u_long cmd)
1937 {
1938 struct gfe_softc *sc = ec->ec_if.if_softc;
1939 int error;
1940 enum gfe_hash_op op;
1941 enum gfe_rxprio prio;
1942
1943 GE_FUNC_ENTER(sc, "hash_multichg");
1944 /*
1945 * Is this a wildcard entry? If so and its being removed, recompute.
1946 */
1947 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1948 if (cmd == SIOCDELMULTI) {
1949 GE_FUNC_EXIT(sc, "");
1950 return ENETRESET;
1951 }
1952
1953 /*
1954 * Switch in
1955 */
1956 sc->sc_flags |= GE_ALLMULTI;
1957 if ((sc->sc_pcr & ETH_EPCR_PM) == 0) {
1958 sc->sc_pcr |= ETH_EPCR_PM;
1959 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1960 GE_FUNC_EXIT(sc, "");
1961 return 0;
1962 }
1963 GE_FUNC_EXIT(sc, "");
1964 return ENETRESET;
1965 }
1966
1967 prio = GE_RXPRIO_MEDLO;
1968 op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD);
1969
1970 if (sc->sc_hashtable == NULL) {
1971 GE_FUNC_EXIT(sc, "");
1972 return 0;
1973 }
1974
1975 error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo);
1976 if (error == EBUSY) {
1977 aprint_error_dev(sc->sc_dev, "multichg: tried to %s %s again\n",
1978 cmd == SIOCDELMULTI ? "remove" : "add",
1979 ether_sprintf(enm->enm_addrlo));
1980 GE_FUNC_EXIT(sc, "");
1981 return 0;
1982 }
1983
1984 if (error == ENOENT) {
1985 aprint_error_dev(sc->sc_dev,
1986 "multichg: failed to remove %s: not in table\n",
1987 ether_sprintf(enm->enm_addrlo));
1988 GE_FUNC_EXIT(sc, "");
1989 return 0;
1990 }
1991
1992 if (error == ENOSPC) {
1993 aprint_error_dev(sc->sc_dev, "multichg:"
1994 " failed to add %s: no space; regenerating table\n",
1995 ether_sprintf(enm->enm_addrlo));
1996 GE_FUNC_EXIT(sc, "");
1997 return ENETRESET;
1998 }
1999 GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n",
2000 device_xname(sc->sc_dev),
2001 cmd == SIOCDELMULTI ? "remove" : "add",
2002 ether_sprintf(enm->enm_addrlo)));
2003 GE_FUNC_EXIT(sc, "");
2004 return 0;
2005 }
2006
2007 int
2008 gfe_hash_fill(struct gfe_softc *sc)
2009 {
2010 struct ether_multistep step;
2011 struct ether_multi *enm;
2012 int error;
2013
2014 GE_FUNC_ENTER(sc, "gfe_hash_fill");
2015
2016 error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI,
2017 CLLADDR(sc->sc_ec.ec_if.if_sadl));
2018 if (error) {
2019 GE_FUNC_EXIT(sc, "!");
2020 return error;
2021 }
2022
2023 sc->sc_flags &= ~GE_ALLMULTI;
2024 if ((sc->sc_ec.ec_if.if_flags & IFF_PROMISC) == 0)
2025 sc->sc_pcr &= ~ETH_EPCR_PM;
2026 ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
2027 while (enm != NULL) {
2028 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2029 sc->sc_flags |= GE_ALLMULTI;
2030 sc->sc_pcr |= ETH_EPCR_PM;
2031 } else {
2032 error = gfe_hash_entry_op(sc, GE_HASH_ADD,
2033 GE_RXPRIO_MEDLO, enm->enm_addrlo);
2034 if (error == ENOSPC)
2035 break;
2036 }
2037 ETHER_NEXT_MULTI(step, enm);
2038 }
2039
2040 GE_FUNC_EXIT(sc, "");
2041 return error;
2042 }
2043
2044 int
2045 gfe_hash_alloc(struct gfe_softc *sc)
2046 {
2047 int error;
2048 GE_FUNC_ENTER(sc, "gfe_hash_alloc");
2049 sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1;
2050 error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1,
2051 BUS_DMA_NOCACHE);
2052 if (error) {
2053 aprint_error_dev(sc->sc_dev,
2054 "failed to allocate %d bytes for hash table: %d\n",
2055 sc->sc_hashmask + 1, error);
2056 GE_FUNC_EXIT(sc, "");
2057 return error;
2058 }
2059 sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva;
2060 memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1);
2061 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
2062 0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE);
2063 GE_FUNC_EXIT(sc, "");
2064 return 0;
2065 }
2066