if_gfe.c revision 1.51 1 /* $NetBSD: if_gfe.c,v 1.51 2019/04/22 08:36:03 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed for the NetBSD Project by
18 * Allegro Networks, Inc., and Wasabi Systems, Inc.
19 * 4. The name of Allegro Networks, Inc. may not be used to endorse
20 * or promote products derived from this software without specific prior
21 * written permission.
22 * 5. The name of Wasabi Systems, Inc. may not be used to endorse
23 * or promote products derived from this software without specific prior
24 * written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
27 * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
28 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30 * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * if_gfe.c -- GT ethernet MAC driver
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.51 2019/04/22 08:36:03 msaitoh Exp $");
46
47 #include "opt_inet.h"
48
49 #include <sys/param.h>
50 #include <sys/bus.h>
51 #include <sys/callout.h>
52 #include <sys/device.h>
53 #include <sys/errno.h>
54 #include <sys/ioctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/socket.h>
58
59 #include <uvm/uvm.h>
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #endif
69 #include <net/bpf.h>
70 #include <sys/rndsource.h>
71
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74
75 #include <dev/marvell/gtreg.h>
76 #include <dev/marvell/gtvar.h>
77 #include <dev/marvell/gtethreg.h>
78 #include <dev/marvell/if_gfevar.h>
79 #include <dev/marvell/marvellreg.h>
80 #include <dev/marvell/marvellvar.h>
81
82 #include <prop/proplib.h>
83
84 #include "locators.h"
85
86
87 #define GE_READ(sc, reg) \
88 bus_space_read_4((sc)->sc_memt, (sc)->sc_memh, (reg))
89 #define GE_WRITE(sc, reg, v) \
90 bus_space_write_4((sc)->sc_memt, (sc)->sc_memh, (reg), (v))
91
92 #define GE_DEBUG
93 #if 0
94 #define GE_NOHASH
95 #define GE_NORX
96 #endif
97
98 #ifdef GE_DEBUG
99 #define GE_DPRINTF(sc, a) \
100 do { \
101 if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG) \
102 printf a; \
103 } while (0 /* CONSTCOND */)
104 #define GE_FUNC_ENTER(sc, func) GE_DPRINTF(sc, ("[" func))
105 #define GE_FUNC_EXIT(sc, str) GE_DPRINTF(sc, (str "]"))
106 #else
107 #define GE_DPRINTF(sc, a) do { } while (0)
108 #define GE_FUNC_ENTER(sc, func) do { } while (0)
109 #define GE_FUNC_EXIT(sc, str) do { } while (0)
110 #endif
111 enum gfe_whack_op {
112 GE_WHACK_START, GE_WHACK_RESTART,
113 GE_WHACK_CHANGE, GE_WHACK_STOP
114 };
115
116 enum gfe_hash_op {
117 GE_HASH_ADD, GE_HASH_REMOVE,
118 };
119
120 #if 1
121 #define htogt32(a) htobe32(a)
122 #define gt32toh(a) be32toh(a)
123 #else
124 #define htogt32(a) htole32(a)
125 #define gt32toh(a) le32toh(a)
126 #endif
127
128 #define GE_RXDSYNC(sc, rxq, n, ops) \
129 bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \
130 (n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \
131 (ops))
132 #define GE_RXDPRESYNC(sc, rxq, n) \
133 GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
134 #define GE_RXDPOSTSYNC(sc, rxq, n) \
135 GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
136
137 #define GE_TXDSYNC(sc, txq, n, ops) \
138 bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \
139 (n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \
140 (ops))
141 #define GE_TXDPRESYNC(sc, txq, n) \
142 GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
143 #define GE_TXDPOSTSYNC(sc, txq, n) \
144 GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
145
146 #define STATIC
147
148
149 STATIC int gfec_match(device_t, cfdata_t, void *);
150 STATIC void gfec_attach(device_t, device_t, void *);
151
152 STATIC int gfec_print(void *, const char *);
153 STATIC int gfec_search(device_t, cfdata_t, const int *, void *);
154
155 STATIC int gfec_enet_phy(device_t, int);
156 STATIC int gfec_mii_read(device_t, int, int, uint16_t *);
157 STATIC int gfec_mii_write(device_t, int, int, uint16_t);
158 STATIC void gfec_mii_statchg(struct ifnet *);
159
160 STATIC int gfe_match(device_t, cfdata_t, void *);
161 STATIC void gfe_attach(device_t, device_t, void *);
162
163 STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int,
164 size_t, int);
165 STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *);
166
167 STATIC int gfe_ifioctl(struct ifnet *, u_long, void *);
168 STATIC void gfe_ifstart(struct ifnet *);
169 STATIC void gfe_ifwatchdog(struct ifnet *);
170
171 STATIC void gfe_tick(void *arg);
172
173 STATIC void gfe_tx_restart(void *);
174 STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio);
175 STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t);
176 STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int);
177 STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio);
178 STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio);
179 STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op);
180
181 STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio);
182 STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio);
183 STATIC int gfe_rx_prime(struct gfe_softc *);
184 STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t);
185 STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio);
186 STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio);
187 STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op);
188
189 STATIC int gfe_intr(void *);
190
191 STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op);
192
193 STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]);
194 STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op,
195 enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]);
196 STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *,
197 u_long);
198 STATIC int gfe_hash_fill(struct gfe_softc *);
199 STATIC int gfe_hash_alloc(struct gfe_softc *);
200
201
202 CFATTACH_DECL_NEW(gfec, sizeof(struct gfec_softc),
203 gfec_match, gfec_attach, NULL, NULL);
204 CFATTACH_DECL_NEW(gfe, sizeof(struct gfe_softc),
205 gfe_match, gfe_attach, NULL, NULL);
206
207
208 /* ARGSUSED */
209 int
210 gfec_match(device_t parent, cfdata_t cf, void *aux)
211 {
212 struct marvell_attach_args *mva = aux;
213
214 if (strcmp(mva->mva_name, cf->cf_name) != 0)
215 return 0;
216 if (mva->mva_offset == MVA_OFFSET_DEFAULT)
217 return 0;
218
219 mva->mva_size = ETHC_SIZE;
220 return 1;
221 }
222
223 /* ARGSUSED */
224 void
225 gfec_attach(device_t parent, device_t self, void *aux)
226 {
227 struct gfec_softc *sc = device_private(self);
228 struct marvell_attach_args *mva = aux, gfea;
229 static int gfe_irqs[] = { 32, 33, 34 };
230 int i;
231
232 aprint_naive("\n");
233 aprint_normal(": Ethernet Controller\n");
234
235 sc->sc_dev = self;
236 sc->sc_iot = mva->mva_iot;
237 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset,
238 mva->mva_size, &sc->sc_ioh)) {
239 aprint_error_dev(self, "Cannot map registers\n");
240 return;
241 }
242
243 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
244
245 for (i = 0; i < ETH_NUM; i++) {
246 gfea.mva_name = "gfe";
247 gfea.mva_model = mva->mva_model;
248 gfea.mva_iot = sc->sc_iot;
249 gfea.mva_ioh = sc->sc_ioh;
250 gfea.mva_unit = i;
251 gfea.mva_dmat = mva->mva_dmat;
252 gfea.mva_irq = gfe_irqs[i];
253 config_found_sm_loc(sc->sc_dev, "gfec", NULL, &gfea,
254 gfec_print, gfec_search);
255 }
256 }
257
258 int
259 gfec_print(void *aux, const char *pnp)
260 {
261 struct marvell_attach_args *gfea = aux;
262
263 if (pnp)
264 aprint_normal("%s at %s port %d",
265 gfea->mva_name, pnp, gfea->mva_unit);
266 else {
267 if (gfea->mva_unit != GFECCF_PORT_DEFAULT)
268 aprint_normal(" port %d", gfea->mva_unit);
269 if (gfea->mva_irq != GFECCF_IRQ_DEFAULT)
270 aprint_normal(" irq %d", gfea->mva_irq);
271 }
272 return UNCONF;
273 }
274
275 /* ARGSUSED */
276 int
277 gfec_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
278 {
279 struct marvell_attach_args *gfea = aux;
280
281 if (cf->cf_loc[GFECCF_PORT] == gfea->mva_unit &&
282 cf->cf_loc[GFECCF_IRQ] != GFECCF_IRQ_DEFAULT)
283 gfea->mva_irq = cf->cf_loc[GFECCF_IRQ];
284
285 return config_match(parent, cf, aux);
286 }
287
288 int
289 gfec_enet_phy(device_t dev, int unit)
290 {
291 struct gfec_softc *sc = device_private(dev);
292 uint32_t epar;
293
294 epar = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ETH_EPAR);
295 return ETH_EPAR_PhyAD_GET(epar, unit);
296 }
297
298 int
299 gfec_mii_read(device_t dev, int phy, int reg, uint16_t *val)
300 {
301 struct gfec_softc *csc = device_private(device_parent(dev));
302 uint32_t data;
303 int count = 10000;
304
305 mutex_enter(&csc->sc_mtx);
306
307 do {
308 DELAY(10);
309 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
310 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
311
312 if (count == 0) {
313 aprint_error_dev(dev,
314 "mii read for phy %d reg %d busied out\n", phy, reg);
315 mutex_exit(&csc->sc_mtx);
316 return ETIMEDOUT;
317 }
318
319 bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
320 ETH_ESMIR_READ(phy, reg));
321
322 count = 10000;
323 do {
324 DELAY(10);
325 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
326 } while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
327
328 mutex_exit(&csc->sc_mtx);
329
330 if (count == 0) {
331 aprint_error_dev(dev,
332 "mii read for phy %d reg %d timed out\n", phy, reg);
333 return ETIMEDOUT;
334 }
335 #if defined(GTMIIDEBUG)
336 aprint_normal_dev(dev, "mii_read(%d, %d): %#x data %#x\n",
337 phy, reg, data, ETH_ESMIR_Value_GET(data));
338 #endif
339 *val = ETH_ESMIR_Value_GET(data);
340 return 0;
341 }
342
343 int
344 gfec_mii_write(device_t dev, int phy, int reg, uint16_t value)
345 {
346 struct gfec_softc *csc = device_private(device_parent(dev));
347 uint32_t data;
348 int count = 10000;
349
350 mutex_enter(&csc->sc_mtx);
351
352 do {
353 DELAY(10);
354 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
355 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
356
357 if (count == 0) {
358 aprint_error_dev(dev,
359 "mii write for phy %d reg %d busied out (busy)\n",
360 phy, reg);
361 mutex_exit(&csc->sc_mtx);
362 return ETIMEDOUT;
363 }
364
365 bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
366 ETH_ESMIR_WRITE(phy, reg, value));
367
368 count = 10000;
369 do {
370 DELAY(10);
371 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
372 } while ((data & ETH_ESMIR_Busy) && count-- > 0);
373
374 mutex_exit(&csc->sc_mtx);
375
376 if (count == 0) {
377 aprint_error_dev(dev,
378 "mii write for phy %d reg %d timed out\n", phy, reg);
379 return ETIMEDOUT;
380 }
381 #if defined(GTMIIDEBUG)
382 aprint_normal_dev(dev, "mii_write(%d, %d, %#hx)\n", phy, reg, value);
383 #endif
384 return 0;
385 }
386
387 void
388 gfec_mii_statchg(struct ifnet *ifp)
389 {
390 /* struct gfe_softc *sc = ifp->if_softc; */
391 /* do nothing? */
392 }
393
394 /* ARGSUSED */
395 int
396 gfe_match(device_t parent, cfdata_t cf, void *aux)
397 {
398
399 return 1;
400 }
401
402 /* ARGSUSED */
403 void
404 gfe_attach(device_t parent, device_t self, void *aux)
405 {
406 struct marvell_attach_args *mva = aux;
407 struct gfe_softc * const sc = device_private(self);
408 struct ifnet * const ifp = &sc->sc_ec.ec_if;
409 uint32_t sdcr;
410 int phyaddr, error;
411 prop_data_t ea;
412 uint8_t enaddr[6];
413
414 aprint_naive("\n");
415 aprint_normal(": Ethernet Controller\n");
416
417 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
418 mva->mva_offset, mva->mva_size, &sc->sc_memh)) {
419 aprint_error_dev(self, "failed to map registers\n");
420 return;
421 }
422 sc->sc_dev = self;
423 sc->sc_memt = mva->mva_iot;
424 sc->sc_dmat = mva->mva_dmat;
425 sc->sc_macno = (mva->mva_offset == ETH_BASE(0)) ? 0 :
426 ((mva->mva_offset == ETH_BASE(1)) ? 1 : 2);
427
428 callout_init(&sc->sc_co, 0);
429
430 phyaddr = gfec_enet_phy(parent, sc->sc_macno);
431
432 ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr");
433 if (ea != NULL) {
434 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
435 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
436 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
437 }
438
439 sc->sc_pcr = GE_READ(sc, ETH_EPCR);
440 sc->sc_pcxr = GE_READ(sc, ETH_EPCXR);
441 sc->sc_intrmask = GE_READ(sc, ETH_EIMR) | ETH_IR_MIIPhySTC;
442
443 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
444
445 #if defined(DEBUG)
446 printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
447 #endif
448
449 sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override;
450 if (device_cfdata(self)->cf_flags & 1) {
451 aprint_normal_dev(self, "phy %d (rmii)\n", phyaddr);
452 sc->sc_pcxr |= ETH_EPCXR_RMIIEn;
453 } else {
454 aprint_normal_dev(self, "phy %d (mii)\n", phyaddr);
455 sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn;
456 }
457 if (device_cfdata(self)->cf_flags & 2)
458 sc->sc_flags |= GE_NOFREE;
459 /* Set Max Frame Length is 1536 */
460 sc->sc_pcxr &= ~ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_MASK);
461 sc->sc_pcxr |= ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_1536);
462 sc->sc_max_frame_length = 1536;
463
464 if (sc->sc_pcr & ETH_EPCR_EN) {
465 int tries = 1000;
466 /*
467 * Abort transmitter and receiver and wait for them to quiese
468 */
469 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR | ETH_ESDCMR_AT);
470 do {
471 delay(100);
472 if (tries-- <= 0) {
473 aprint_error_dev(self, "Abort TX/RX failed\n");
474 break;
475 }
476 } while (GE_READ(sc, ETH_ESDCMR) &
477 (ETH_ESDCMR_AR | ETH_ESDCMR_AT));
478 }
479
480 sc->sc_pcr &=
481 ~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF);
482
483 #if defined(DEBUG)
484 printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
485 #endif
486
487 /*
488 * Now turn off the GT. If it didn't quiese, too ***ing bad.
489 */
490 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
491 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
492 sdcr = GE_READ(sc, ETH_ESDCR);
493 ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4);
494 sdcr |= ETH_ESDCR_RIFB;
495 GE_WRITE(sc, ETH_ESDCR, sdcr);
496
497 sc->sc_mii.mii_ifp = ifp;
498 sc->sc_mii.mii_readreg = gfec_mii_read;
499 sc->sc_mii.mii_writereg = gfec_mii_write;
500 sc->sc_mii.mii_statchg = gfec_mii_statchg;
501
502 sc->sc_ec.ec_mii = &sc->sc_mii;
503 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
504 ether_mediastatus);
505
506 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, phyaddr,
507 MII_OFFSET_ANY, MIIF_NOISOLATE);
508 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
509 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
510 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
511 } else {
512 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
513 }
514
515 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
516 ifp->if_softc = sc;
517 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
518 #if 0
519 ifp->if_flags |= IFF_DEBUG;
520 #endif
521 ifp->if_ioctl = gfe_ifioctl;
522 ifp->if_start = gfe_ifstart;
523 ifp->if_watchdog = gfe_ifwatchdog;
524
525 if (sc->sc_flags & GE_NOFREE) {
526 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI);
527 if (!error)
528 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI);
529 if (!error)
530 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO);
531 if (!error)
532 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO);
533 if (!error)
534 error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI);
535 if (!error)
536 error = gfe_hash_alloc(sc);
537 if (error)
538 aprint_error_dev(self,
539 "failed to allocate resources: %d\n", error);
540 }
541
542 if_attach(ifp);
543 ether_ifattach(ifp, enaddr);
544 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
545 rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET,
546 RND_FLAG_DEFAULT);
547 marvell_intr_establish(mva->mva_irq, IPL_NET, gfe_intr, sc);
548 }
549
550 int
551 gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs,
552 size_t size, int flags)
553 {
554 int error = 0;
555 GE_FUNC_ENTER(sc, "gfe_dmamem_alloc");
556
557 KASSERT(gdm->gdm_kva == NULL);
558 gdm->gdm_size = size;
559 gdm->gdm_maxsegs = maxsegs;
560
561 error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE,
562 gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs,
563 BUS_DMA_NOWAIT);
564 if (error)
565 goto fail;
566
567 error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs,
568 gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT);
569 if (error)
570 goto fail;
571
572 error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs,
573 gdm->gdm_size, 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT, &gdm->gdm_map);
574 if (error)
575 goto fail;
576
577 error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva,
578 gdm->gdm_size, NULL, BUS_DMA_NOWAIT);
579 if (error)
580 goto fail;
581
582 /* invalidate from cache */
583 bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size,
584 BUS_DMASYNC_PREREAD);
585 fail:
586 if (error) {
587 gfe_dmamem_free(sc, gdm);
588 GE_DPRINTF(sc, (":err=%d", error));
589 }
590 GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x",
591 gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs,
592 gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len));
593 GE_FUNC_EXIT(sc, "");
594 return error;
595 }
596
597 void
598 gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm)
599 {
600 GE_FUNC_ENTER(sc, "gfe_dmamem_free");
601 if (gdm->gdm_map)
602 bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map);
603 if (gdm->gdm_kva)
604 bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size);
605 if (gdm->gdm_nsegs > 0)
606 bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs);
607 gdm->gdm_map = NULL;
608 gdm->gdm_kva = NULL;
609 gdm->gdm_nsegs = 0;
610 GE_FUNC_EXIT(sc, "");
611 }
612
613 int
614 gfe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
615 {
616 struct gfe_softc * const sc = ifp->if_softc;
617 struct ifreq *ifr = (struct ifreq *) data;
618 struct ifaddr *ifa = (struct ifaddr *) data;
619 int s, error = 0;
620
621 GE_FUNC_ENTER(sc, "gfe_ifioctl");
622 s = splnet();
623
624 switch (cmd) {
625 case SIOCINITIFADDR:
626 ifp->if_flags |= IFF_UP;
627 error = gfe_whack(sc, GE_WHACK_START);
628 switch (ifa->ifa_addr->sa_family) {
629 #ifdef INET
630 case AF_INET:
631 if (error == 0)
632 arp_ifinit(ifp, ifa);
633 break;
634 #endif
635 default:
636 break;
637 }
638 break;
639
640 case SIOCSIFFLAGS:
641 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
642 break;
643 /* XXX re-use ether_ioctl() */
644 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
645 case IFF_UP|IFF_RUNNING:/* active->active, update */
646 error = gfe_whack(sc, GE_WHACK_CHANGE);
647 break;
648 case IFF_RUNNING: /* not up, so we stop */
649 error = gfe_whack(sc, GE_WHACK_STOP);
650 break;
651 case IFF_UP: /* not running, so we start */
652 error = gfe_whack(sc, GE_WHACK_START);
653 break;
654 case 0: /* idle->idle: do nothing */
655 break;
656 }
657 break;
658
659 case SIOCSIFMTU:
660 if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) {
661 error = EINVAL;
662 break;
663 }
664 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
665 error = 0;
666 break;
667
668 default:
669 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
670 if (ifp->if_flags & IFF_RUNNING)
671 error = gfe_whack(sc, GE_WHACK_CHANGE);
672 else
673 error = 0;
674 }
675 break;
676 }
677 splx(s);
678 GE_FUNC_EXIT(sc, "");
679 return error;
680 }
681
682 void
683 gfe_ifstart(struct ifnet *ifp)
684 {
685 struct gfe_softc * const sc = ifp->if_softc;
686 struct mbuf *m;
687
688 GE_FUNC_ENTER(sc, "gfe_ifstart");
689
690 if ((ifp->if_flags & IFF_RUNNING) == 0) {
691 GE_FUNC_EXIT(sc, "$");
692 return;
693 }
694
695 for (;;) {
696 IF_DEQUEUE(&ifp->if_snd, m);
697 if (m == NULL) {
698 ifp->if_flags &= ~IFF_OACTIVE;
699 GE_FUNC_EXIT(sc, "");
700 return;
701 }
702
703 /*
704 * No space in the pending queue? try later.
705 */
706 if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq))
707 break;
708
709 /*
710 * Try to enqueue a mbuf to the device. If that fails, we
711 * can always try to map the next mbuf.
712 */
713 IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m);
714 GE_DPRINTF(sc, (">"));
715 #ifndef GE_NOTX
716 (void) gfe_tx_enqueue(sc, GE_TXPRIO_HI);
717 #endif
718 }
719
720 /*
721 * Attempt to queue the mbuf for send failed.
722 */
723 IF_PREPEND(&ifp->if_snd, m);
724 ifp->if_flags |= IFF_OACTIVE;
725 GE_FUNC_EXIT(sc, "%%");
726 }
727
728 void
729 gfe_ifwatchdog(struct ifnet *ifp)
730 {
731 struct gfe_softc * const sc = ifp->if_softc;
732 struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI];
733
734 GE_FUNC_ENTER(sc, "gfe_ifwatchdog");
735 aprint_error_dev(sc->sc_dev, "device timeout");
736 if (ifp->if_flags & IFF_RUNNING) {
737 uint32_t curtxdnum;
738
739 curtxdnum = (GE_READ(sc, txq->txq_ectdp) -
740 txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]);
741 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
742 GE_TXDPOSTSYNC(sc, txq, curtxdnum);
743 aprint_error(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ",
744 txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts,
745 txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts,
746 GE_READ(sc, ETH_EICR));
747 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
748 GE_TXDPRESYNC(sc, txq, curtxdnum);
749 }
750 aprint_error("\n");
751 ifp->if_oerrors++;
752 (void) gfe_whack(sc, GE_WHACK_RESTART);
753 GE_FUNC_EXIT(sc, "");
754 }
755
756 int
757 gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio)
758 {
759 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
760 int error;
761
762 GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc");
763 GE_DPRINTF(sc, ("(%d)", rxprio));
764
765 error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1,
766 GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE);
767 if (error) {
768 GE_FUNC_EXIT(sc, "!!");
769 return error;
770 }
771
772 error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS,
773 GE_RXBUF_MEMSIZE, 0);
774 if (error) {
775 GE_FUNC_EXIT(sc, "!!!");
776 return error;
777 }
778 GE_FUNC_EXIT(sc, "");
779 return error;
780 }
781
782 int
783 gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio)
784 {
785 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
786 volatile struct gt_eth_desc *rxd;
787 const bus_dma_segment_t *ds;
788 int idx;
789 bus_addr_t nxtaddr;
790 bus_size_t boff;
791
792 GE_FUNC_ENTER(sc, "gfe_rx_rxqinit");
793 GE_DPRINTF(sc, ("(%d)", rxprio));
794
795 if ((sc->sc_flags & GE_NOFREE) == 0) {
796 int error = gfe_rx_rxqalloc(sc, rxprio);
797 if (error) {
798 GE_FUNC_EXIT(sc, "!");
799 return error;
800 }
801 } else {
802 KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL);
803 KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL);
804 }
805
806 memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE);
807
808 rxq->rxq_descs =
809 (volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva;
810 rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr;
811 rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva;
812 rxq->rxq_fi = 0;
813 rxq->rxq_active = GE_RXDESC_MAX;
814 boff = 0;
815 ds = rxq->rxq_buf_mem.gdm_map->dm_segs;
816 nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd);
817 for (idx = 0, rxd = rxq->rxq_descs; idx < GE_RXDESC_MAX;
818 idx++, rxd++, nxtaddr += sizeof(*rxd)) {
819 rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16);
820 rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
821 rxd->ed_bufptr = htogt32(ds->ds_addr + boff);
822 /*
823 * update the nxtptr to point to the next txd.
824 */
825 if (idx == GE_RXDESC_MAX - 1)
826 nxtaddr = rxq->rxq_desc_busaddr;
827 rxd->ed_nxtptr = htogt32(nxtaddr);
828 boff += GE_RXBUF_SIZE;
829 if (boff == ds->ds_len) {
830 ds++;
831 boff = 0;
832 }
833 }
834 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0,
835 rxq->rxq_desc_mem.gdm_map->dm_mapsize,
836 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
837 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0,
838 rxq->rxq_buf_mem.gdm_map->dm_mapsize,
839 BUS_DMASYNC_PREREAD);
840
841 rxq->rxq_intrbits = ETH_IR_RxBuffer|ETH_IR_RxError;
842 switch (rxprio) {
843 case GE_RXPRIO_HI:
844 rxq->rxq_intrbits |= ETH_IR_RxBuffer_3|ETH_IR_RxError_3;
845 rxq->rxq_efrdp = ETH_EFRDP3;
846 rxq->rxq_ecrdp = ETH_ECRDP3;
847 break;
848 case GE_RXPRIO_MEDHI:
849 rxq->rxq_intrbits |= ETH_IR_RxBuffer_2|ETH_IR_RxError_2;
850 rxq->rxq_efrdp = ETH_EFRDP2;
851 rxq->rxq_ecrdp = ETH_ECRDP2;
852 break;
853 case GE_RXPRIO_MEDLO:
854 rxq->rxq_intrbits |= ETH_IR_RxBuffer_1|ETH_IR_RxError_1;
855 rxq->rxq_efrdp = ETH_EFRDP1;
856 rxq->rxq_ecrdp = ETH_ECRDP1;
857 break;
858 case GE_RXPRIO_LO:
859 rxq->rxq_intrbits |= ETH_IR_RxBuffer_0|ETH_IR_RxError_0;
860 rxq->rxq_efrdp = ETH_EFRDP0;
861 rxq->rxq_ecrdp = ETH_ECRDP0;
862 break;
863 }
864 GE_FUNC_EXIT(sc, "");
865 return 0;
866 }
867
868 void
869 gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio)
870 {
871 struct ifnet * const ifp = &sc->sc_ec.ec_if;
872 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
873 struct mbuf *m = rxq->rxq_curpkt;
874
875 GE_FUNC_ENTER(sc, "gfe_rx_get");
876 GE_DPRINTF(sc, ("(%d)", rxprio));
877
878 while (rxq->rxq_active > 0) {
879 volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi];
880 struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi];
881 const struct ether_header *eh;
882 unsigned int cmdsts;
883 size_t buflen;
884
885 GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi);
886 cmdsts = gt32toh(rxd->ed_cmdsts);
887 GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts));
888 rxq->rxq_cmdsts = cmdsts;
889 /*
890 * Sometimes the GE "forgets" to reset the ownership bit.
891 * But if the length has been rewritten, the packet is ours
892 * so pretend the O bit is set.
893 */
894 buflen = gt32toh(rxd->ed_lencnt) & 0xffff;
895 if ((cmdsts & RX_CMD_O) && buflen == 0) {
896 GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
897 break;
898 }
899
900 /*
901 * If this is not a single buffer packet with no errors
902 * or for some reason it's bigger than our frame size,
903 * ignore it and go to the next packet.
904 */
905 if ((cmdsts & (RX_CMD_F|RX_CMD_L|RX_STS_ES)) !=
906 (RX_CMD_F|RX_CMD_L) ||
907 buflen > sc->sc_max_frame_length) {
908 GE_DPRINTF(sc, ("!"));
909 --rxq->rxq_active;
910 ifp->if_ipackets++;
911 ifp->if_ierrors++;
912 goto give_it_back;
913 }
914
915 /* CRC is included with the packet; trim it off. */
916 buflen -= ETHER_CRC_LEN;
917
918 if (m == NULL) {
919 MGETHDR(m, M_DONTWAIT, MT_DATA);
920 if (m == NULL) {
921 GE_DPRINTF(sc, ("?"));
922 break;
923 }
924 }
925 if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) {
926 MCLGET(m, M_DONTWAIT);
927 if ((m->m_flags & M_EXT) == 0) {
928 GE_DPRINTF(sc, ("?"));
929 break;
930 }
931 }
932 m->m_data += 2;
933 m->m_len = 0;
934 m->m_pkthdr.len = 0;
935 m_set_rcvif(m, ifp);
936 rxq->rxq_cmdsts = cmdsts;
937 --rxq->rxq_active;
938
939 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map,
940 rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD);
941
942 KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0);
943 memcpy(m->m_data + m->m_len, rxb->rxb_data, buflen);
944 m->m_len = buflen;
945 m->m_pkthdr.len = buflen;
946
947 eh = (const struct ether_header *) m->m_data;
948 if ((ifp->if_flags & IFF_PROMISC) ||
949 (rxq->rxq_cmdsts & RX_STS_M) == 0 ||
950 (rxq->rxq_cmdsts & RX_STS_HE) ||
951 (eh->ether_dhost[0] & 1) != 0 ||
952 memcmp(eh->ether_dhost, CLLADDR(ifp->if_sadl),
953 ETHER_ADDR_LEN) == 0) {
954 if_percpuq_enqueue(ifp->if_percpuq, m);
955 m = NULL;
956 GE_DPRINTF(sc, (">"));
957 } else {
958 m->m_len = 0;
959 m->m_pkthdr.len = 0;
960 GE_DPRINTF(sc, ("+"));
961 }
962 rxq->rxq_cmdsts = 0;
963
964 give_it_back:
965 rxd->ed_lencnt &= ~0xffff; /* zero out length */
966 rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
967 #if 0
968 GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)",
969 rxq->rxq_fi,
970 ((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1],
971 ((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3]));
972 #endif
973 GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
974 if (++rxq->rxq_fi == GE_RXDESC_MAX)
975 rxq->rxq_fi = 0;
976 rxq->rxq_active++;
977 }
978 rxq->rxq_curpkt = m;
979 GE_FUNC_EXIT(sc, "");
980 }
981
982 uint32_t
983 gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask)
984 {
985 struct ifnet * const ifp = &sc->sc_ec.ec_if;
986 struct gfe_rxqueue *rxq;
987 uint32_t rxbits;
988 #define RXPRIO_DECODER 0xffffaa50
989 GE_FUNC_ENTER(sc, "gfe_rx_process");
990
991 rxbits = ETH_IR_RxBuffer_GET(cause);
992 while (rxbits) {
993 enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
994 GE_DPRINTF(sc, ("%1x", rxbits));
995 rxbits &= ~(1 << rxprio);
996 gfe_rx_get(sc, rxprio);
997 }
998
999 rxbits = ETH_IR_RxError_GET(cause);
1000 while (rxbits) {
1001 enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
1002 uint32_t masks[(GE_RXDESC_MAX + 31) / 32];
1003 int idx;
1004 rxbits &= ~(1 << rxprio);
1005 rxq = &sc->sc_rxq[rxprio];
1006 sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits);
1007 intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits);
1008 if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) {
1009 sc->sc_tickflags |= GE_TICK_RX_RESTART;
1010 callout_reset(&sc->sc_co, 1, gfe_tick, sc);
1011 }
1012 ifp->if_ierrors++;
1013 GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n",
1014 device_xname(sc->sc_dev), rxprio, rxq->rxq_fi));
1015 memset(masks, 0, sizeof(masks));
1016 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1017 0, rxq->rxq_desc_mem.gdm_size,
1018 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1019 for (idx = 0; idx < GE_RXDESC_MAX; idx++) {
1020 volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx];
1021
1022 if (RX_CMD_O & gt32toh(rxd->ed_cmdsts))
1023 masks[idx/32] |= 1 << (idx & 31);
1024 }
1025 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1026 0, rxq->rxq_desc_mem.gdm_size,
1027 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1028 #if defined(DEBUG)
1029 printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n",
1030 device_xname(sc->sc_dev), rxprio, rxq->rxq_fi,
1031 rxq->rxq_cmdsts, masks[0], masks[1]);
1032 #endif
1033 }
1034 if ((intrmask & ETH_IR_RxBits) == 0)
1035 intrmask &= ~(ETH_IR_RxBuffer|ETH_IR_RxError);
1036
1037 GE_FUNC_EXIT(sc, "");
1038 return intrmask;
1039 }
1040
1041 int
1042 gfe_rx_prime(struct gfe_softc *sc)
1043 {
1044 struct gfe_rxqueue *rxq;
1045 int error;
1046
1047 GE_FUNC_ENTER(sc, "gfe_rx_prime");
1048
1049 error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI);
1050 if (error)
1051 goto bail;
1052 rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1053 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1054 GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1055 GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1056 }
1057 sc->sc_intrmask |= rxq->rxq_intrbits;
1058
1059 error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI);
1060 if (error)
1061 goto bail;
1062 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1063 rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1064 GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1065 GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1066 sc->sc_intrmask |= rxq->rxq_intrbits;
1067 }
1068
1069 error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO);
1070 if (error)
1071 goto bail;
1072 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1073 rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1074 GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1075 GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1076 sc->sc_intrmask |= rxq->rxq_intrbits;
1077 }
1078
1079 error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO);
1080 if (error)
1081 goto bail;
1082 if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1083 rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1084 GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1085 GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1086 sc->sc_intrmask |= rxq->rxq_intrbits;
1087 }
1088
1089 bail:
1090 GE_FUNC_EXIT(sc, "");
1091 return error;
1092 }
1093
1094 void
1095 gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio)
1096 {
1097 struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio];
1098 GE_FUNC_ENTER(sc, "gfe_rx_cleanup");
1099 if (rxq == NULL) {
1100 GE_FUNC_EXIT(sc, "");
1101 return;
1102 }
1103
1104 if (rxq->rxq_curpkt)
1105 m_freem(rxq->rxq_curpkt);
1106 if ((sc->sc_flags & GE_NOFREE) == 0) {
1107 gfe_dmamem_free(sc, &rxq->rxq_desc_mem);
1108 gfe_dmamem_free(sc, &rxq->rxq_buf_mem);
1109 }
1110 GE_FUNC_EXIT(sc, "");
1111 }
1112
1113 void
1114 gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1115 {
1116 GE_FUNC_ENTER(sc, "gfe_rx_stop");
1117 sc->sc_flags &= ~GE_RXACTIVE;
1118 sc->sc_idlemask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1119 sc->sc_intrmask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1120 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1121 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR);
1122 do {
1123 delay(10);
1124 } while (GE_READ(sc, ETH_ESDCMR) & ETH_ESDCMR_AR);
1125 gfe_rx_cleanup(sc, GE_RXPRIO_HI);
1126 gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI);
1127 gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO);
1128 gfe_rx_cleanup(sc, GE_RXPRIO_LO);
1129 GE_FUNC_EXIT(sc, "");
1130 }
1131
1132 void
1133 gfe_tick(void *arg)
1134 {
1135 struct gfe_softc * const sc = arg;
1136 uint32_t intrmask;
1137 unsigned int tickflags;
1138 int s;
1139
1140 GE_FUNC_ENTER(sc, "gfe_tick");
1141
1142 s = splnet();
1143
1144 tickflags = sc->sc_tickflags;
1145 sc->sc_tickflags = 0;
1146 intrmask = sc->sc_intrmask;
1147 if (tickflags & GE_TICK_TX_IFSTART)
1148 gfe_ifstart(&sc->sc_ec.ec_if);
1149 if (tickflags & GE_TICK_RX_RESTART) {
1150 intrmask |= sc->sc_idlemask;
1151 if (sc->sc_idlemask & (ETH_IR_RxBuffer_3|ETH_IR_RxError_3)) {
1152 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1153 rxq->rxq_fi = 0;
1154 GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1155 GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1156 }
1157 if (sc->sc_idlemask & (ETH_IR_RxBuffer_2|ETH_IR_RxError_2)) {
1158 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1159 rxq->rxq_fi = 0;
1160 GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1161 GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1162 }
1163 if (sc->sc_idlemask & (ETH_IR_RxBuffer_1|ETH_IR_RxError_1)) {
1164 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1165 rxq->rxq_fi = 0;
1166 GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1167 GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1168 }
1169 if (sc->sc_idlemask & (ETH_IR_RxBuffer_0|ETH_IR_RxError_0)) {
1170 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1171 rxq->rxq_fi = 0;
1172 GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1173 GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1174 }
1175 sc->sc_idlemask = 0;
1176 }
1177 if (intrmask != sc->sc_intrmask) {
1178 sc->sc_intrmask = intrmask;
1179 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1180 }
1181 gfe_intr(sc);
1182 splx(s);
1183
1184 GE_FUNC_EXIT(sc, "");
1185 }
1186
1187 int
1188 gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio)
1189 {
1190 const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1191 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1192 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1193 volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo];
1194 uint32_t intrmask = sc->sc_intrmask;
1195 size_t buflen;
1196 struct mbuf *m;
1197
1198 GE_FUNC_ENTER(sc, "gfe_tx_enqueue");
1199
1200 /*
1201 * Anything in the pending queue to enqueue? if not, punt. Likewise
1202 * if the txq is not yet created.
1203 * otherwise grab its dmamap.
1204 */
1205 if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) {
1206 GE_FUNC_EXIT(sc, "-");
1207 return 0;
1208 }
1209
1210 /*
1211 * Have we [over]consumed our limit of descriptors?
1212 * Do we have enough free descriptors?
1213 */
1214 if (GE_TXDESC_MAX == txq->txq_nactive + 2) {
1215 volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi];
1216 uint32_t cmdsts;
1217 size_t pktlen;
1218 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1219 cmdsts = gt32toh(txd2->ed_cmdsts);
1220 if (cmdsts & TX_CMD_O) {
1221 int nextin;
1222 /*
1223 * Sometime the Discovery forgets to update the
1224 * last descriptor. See if we own the descriptor
1225 * after it (since we know we've turned that to
1226 * the discovery and if we owned it, the Discovery
1227 * gave it back). If we do, we know the Discovery
1228 * gave back this one but forgot to mark it as ours.
1229 */
1230 nextin = txq->txq_fi + 1;
1231 if (nextin == GE_TXDESC_MAX)
1232 nextin = 0;
1233 GE_TXDPOSTSYNC(sc, txq, nextin);
1234 if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1235 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1236 GE_TXDPRESYNC(sc, txq, nextin);
1237 GE_FUNC_EXIT(sc, "@");
1238 return 0;
1239 }
1240 #ifdef DEBUG
1241 printf("%s: txenqueue: transmitter resynced at %d\n",
1242 device_xname(sc->sc_dev), txq->txq_fi);
1243 #endif
1244 }
1245 if (++txq->txq_fi == GE_TXDESC_MAX)
1246 txq->txq_fi = 0;
1247 txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr;
1248 pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff;
1249 txq->txq_inptr += roundup(pktlen, dcache_line_size);
1250 txq->txq_nactive--;
1251
1252 /* statistics */
1253 ifp->if_opackets++;
1254 if (cmdsts & TX_STS_ES)
1255 ifp->if_oerrors++;
1256 GE_DPRINTF(sc, ("%%"));
1257 }
1258
1259 buflen = roundup(m->m_pkthdr.len, dcache_line_size);
1260
1261 /*
1262 * If this packet would wrap around the end of the buffer, reset back
1263 * to the beginning.
1264 */
1265 if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) {
1266 txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr;
1267 txq->txq_outptr = 0;
1268 }
1269
1270 /*
1271 * Make sure the output packet doesn't run over the beginning of
1272 * what we've already given the GT.
1273 */
1274 if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr &&
1275 txq->txq_outptr + buflen > txq->txq_inptr) {
1276 intrmask |= txq->txq_intrbits &
1277 (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow);
1278 if (sc->sc_intrmask != intrmask) {
1279 sc->sc_intrmask = intrmask;
1280 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1281 }
1282 GE_FUNC_EXIT(sc, "#");
1283 return 0;
1284 }
1285
1286 /*
1287 * The end-of-list descriptor we put on last time is the starting point
1288 * for this packet. The GT is supposed to terminate list processing on
1289 * a NULL nxtptr but that currently is broken so a CPU-owned descriptor
1290 * must terminate the list.
1291 */
1292 intrmask = sc->sc_intrmask;
1293
1294 m_copydata(m, 0, m->m_pkthdr.len,
1295 (char *)txq->txq_buf_mem.gdm_kva + (int)txq->txq_outptr);
1296 bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1297 txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE);
1298 txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr);
1299 txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16);
1300 GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1301
1302 /*
1303 * Request a buffer interrupt every 2/3 of the way thru the transmit
1304 * buffer.
1305 */
1306 txq->txq_ei_gapcount += buflen;
1307 if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) {
1308 txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST|TX_CMD_EI);
1309 txq->txq_ei_gapcount = 0;
1310 } else {
1311 txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST);
1312 }
1313 #if 0
1314 GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo,
1315 ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1316 ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1317 #endif
1318 GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1319
1320 txq->txq_outptr += buflen;
1321 /*
1322 * Tell the SDMA engine to "Fetch!"
1323 */
1324 GE_WRITE(sc, ETH_ESDCMR,
1325 txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH|ETH_ESDCMR_TXDL));
1326
1327 GE_DPRINTF(sc, ("(%d)", txq->txq_lo));
1328
1329 /*
1330 * Update the last out appropriately.
1331 */
1332 txq->txq_nactive++;
1333 if (++txq->txq_lo == GE_TXDESC_MAX)
1334 txq->txq_lo = 0;
1335
1336 /*
1337 * Move mbuf from the pending queue to the snd queue.
1338 */
1339 IF_DEQUEUE(&txq->txq_pendq, m);
1340 bpf_mtap(ifp, m, BPF_D_OUT);
1341 m_freem(m);
1342 ifp->if_flags &= ~IFF_OACTIVE;
1343
1344 /*
1345 * Since we have put an item into the packet queue, we now want
1346 * an interrupt when the transmit queue finishes processing the
1347 * list. But only update the mask if needs changing.
1348 */
1349 intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow);
1350 if (sc->sc_intrmask != intrmask) {
1351 sc->sc_intrmask = intrmask;
1352 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1353 }
1354 if (ifp->if_timer == 0)
1355 ifp->if_timer = 5;
1356 GE_FUNC_EXIT(sc, "*");
1357 return 1;
1358 }
1359
1360 uint32_t
1361 gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask)
1362 {
1363 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1364 struct ifnet * const ifp = &sc->sc_ec.ec_if;
1365
1366 GE_FUNC_ENTER(sc, "gfe_tx_done");
1367
1368 if (txq == NULL) {
1369 GE_FUNC_EXIT(sc, "");
1370 return intrmask;
1371 }
1372
1373 while (txq->txq_nactive > 0) {
1374 const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1375 volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi];
1376 uint32_t cmdsts;
1377 size_t pktlen;
1378
1379 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1380 if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) {
1381 int nextin;
1382
1383 if (txq->txq_nactive == 1) {
1384 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1385 GE_FUNC_EXIT(sc, "");
1386 return intrmask;
1387 }
1388 /*
1389 * Sometimes the Discovery forgets to update the
1390 * ownership bit in the descriptor. See if we own the
1391 * descriptor after it (since we know we've turned
1392 * that to the Discovery and if we own it now then the
1393 * Discovery gave it back). If we do, we know the
1394 * Discovery gave back this one but forgot to mark it
1395 * as ours.
1396 */
1397 nextin = txq->txq_fi + 1;
1398 if (nextin == GE_TXDESC_MAX)
1399 nextin = 0;
1400 GE_TXDPOSTSYNC(sc, txq, nextin);
1401 if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1402 GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1403 GE_TXDPRESYNC(sc, txq, nextin);
1404 GE_FUNC_EXIT(sc, "");
1405 return intrmask;
1406 }
1407 #ifdef DEBUG
1408 printf("%s: txdone: transmitter resynced at %d\n",
1409 device_xname(sc->sc_dev), txq->txq_fi);
1410 #endif
1411 }
1412 #if 0
1413 GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)",
1414 txq->txq_lo,
1415 ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1416 ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1417 #endif
1418 GE_DPRINTF(sc, ("(%d)", txq->txq_fi));
1419 if (++txq->txq_fi == GE_TXDESC_MAX)
1420 txq->txq_fi = 0;
1421 txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr;
1422 pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff;
1423 bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1424 txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE);
1425 txq->txq_inptr += roundup(pktlen, dcache_line_size);
1426
1427 /* statistics */
1428 ifp->if_opackets++;
1429 if (cmdsts & TX_STS_ES)
1430 ifp->if_oerrors++;
1431
1432 /* txd->ed_bufptr = 0; */
1433
1434 ifp->if_timer = 5;
1435 --txq->txq_nactive;
1436 }
1437 if (txq->txq_nactive != 0)
1438 panic("%s: transmit fifo%d empty but active count (%d) > 0!",
1439 device_xname(sc->sc_dev), txprio, txq->txq_nactive);
1440 ifp->if_timer = 0;
1441 intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow));
1442 intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow));
1443 GE_FUNC_EXIT(sc, "");
1444 return intrmask;
1445 }
1446
1447 int
1448 gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio)
1449 {
1450 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1451 int error;
1452
1453 GE_FUNC_ENTER(sc, "gfe_tx_txqalloc");
1454
1455 error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1,
1456 GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE);
1457 if (error) {
1458 GE_FUNC_EXIT(sc, "");
1459 return error;
1460 }
1461 error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0);
1462 if (error) {
1463 gfe_dmamem_free(sc, &txq->txq_desc_mem);
1464 GE_FUNC_EXIT(sc, "");
1465 return error;
1466 }
1467 GE_FUNC_EXIT(sc, "");
1468 return 0;
1469 }
1470
1471 int
1472 gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio)
1473 {
1474 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1475 volatile struct gt_eth_desc *txd;
1476 unsigned int i;
1477 bus_addr_t addr;
1478
1479 GE_FUNC_ENTER(sc, "gfe_tx_start");
1480
1481 sc->sc_intrmask &=
1482 ~(ETH_IR_TxEndHigh |
1483 ETH_IR_TxBufferHigh |
1484 ETH_IR_TxEndLow |
1485 ETH_IR_TxBufferLow);
1486
1487 if (sc->sc_flags & GE_NOFREE) {
1488 KASSERT(txq->txq_desc_mem.gdm_kva != NULL);
1489 KASSERT(txq->txq_buf_mem.gdm_kva != NULL);
1490 } else {
1491 int error = gfe_tx_txqalloc(sc, txprio);
1492 if (error) {
1493 GE_FUNC_EXIT(sc, "!");
1494 return error;
1495 }
1496 }
1497
1498 txq->txq_descs =
1499 (volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva;
1500 txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr;
1501 txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr;
1502
1503 txq->txq_pendq.ifq_maxlen = 10;
1504 txq->txq_ei_gapcount = 0;
1505 txq->txq_nactive = 0;
1506 txq->txq_fi = 0;
1507 txq->txq_lo = 0;
1508 txq->txq_inptr = GE_TXBUF_SIZE;
1509 txq->txq_outptr = 0;
1510 for (i = 0, txd = txq->txq_descs,
1511 addr = txq->txq_desc_busaddr + sizeof(*txd);
1512 i < GE_TXDESC_MAX - 1; i++, txd++, addr += sizeof(*txd)) {
1513 /*
1514 * update the nxtptr to point to the next txd.
1515 */
1516 txd->ed_cmdsts = 0;
1517 txd->ed_nxtptr = htogt32(addr);
1518 }
1519 txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr =
1520 htogt32(txq->txq_desc_busaddr);
1521 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0,
1522 GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1523
1524 switch (txprio) {
1525 case GE_TXPRIO_HI:
1526 txq->txq_intrbits = ETH_IR_TxEndHigh|ETH_IR_TxBufferHigh;
1527 txq->txq_esdcmrbits = ETH_ESDCMR_TXDH;
1528 txq->txq_epsrbits = ETH_EPSR_TxHigh;
1529 txq->txq_ectdp = ETH_ECTDP1;
1530 GE_WRITE(sc, ETH_ECTDP1, txq->txq_desc_busaddr);
1531 break;
1532
1533 case GE_TXPRIO_LO:
1534 txq->txq_intrbits = ETH_IR_TxEndLow|ETH_IR_TxBufferLow;
1535 txq->txq_esdcmrbits = ETH_ESDCMR_TXDL;
1536 txq->txq_epsrbits = ETH_EPSR_TxLow;
1537 txq->txq_ectdp = ETH_ECTDP0;
1538 GE_WRITE(sc, ETH_ECTDP0, txq->txq_desc_busaddr);
1539 break;
1540
1541 case GE_TXPRIO_NONE:
1542 break;
1543 }
1544 #if 0
1545 GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp));
1546 GE_WRITE(sc->sc_dev, txq->txq_ectdp, txq->txq_desc_busaddr);
1547 GE_DPRINTF(sc, (")"));
1548 #endif
1549
1550 /*
1551 * If we are restarting, there may be packets in the pending queue
1552 * waiting to be enqueued. Try enqueuing packets from both priority
1553 * queues until the pending queue is empty or there no room for them
1554 * on the device.
1555 */
1556 while (gfe_tx_enqueue(sc, txprio))
1557 continue;
1558
1559 GE_FUNC_EXIT(sc, "");
1560 return 0;
1561 }
1562
1563 void
1564 gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush)
1565 {
1566 struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1567
1568 GE_FUNC_ENTER(sc, "gfe_tx_cleanup");
1569 if (txq == NULL) {
1570 GE_FUNC_EXIT(sc, "");
1571 return;
1572 }
1573
1574 if (!flush) {
1575 GE_FUNC_EXIT(sc, "");
1576 return;
1577 }
1578
1579 if ((sc->sc_flags & GE_NOFREE) == 0) {
1580 gfe_dmamem_free(sc, &txq->txq_desc_mem);
1581 gfe_dmamem_free(sc, &txq->txq_buf_mem);
1582 }
1583 GE_FUNC_EXIT(sc, "-F");
1584 }
1585
1586 void
1587 gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1588 {
1589 GE_FUNC_ENTER(sc, "gfe_tx_stop");
1590
1591 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_STDH|ETH_ESDCMR_STDL);
1592
1593 sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask);
1594 sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask);
1595 sc->sc_intrmask &=
1596 ~(ETH_IR_TxEndHigh |
1597 ETH_IR_TxBufferHigh |
1598 ETH_IR_TxEndLow |
1599 ETH_IR_TxBufferLow);
1600
1601 gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP);
1602 gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP);
1603
1604 sc->sc_ec.ec_if.if_timer = 0;
1605 GE_FUNC_EXIT(sc, "");
1606 }
1607
1608 int
1609 gfe_intr(void *arg)
1610 {
1611 struct gfe_softc * const sc = arg;
1612 uint32_t cause;
1613 uint32_t intrmask = sc->sc_intrmask;
1614 int claim = 0;
1615 int cnt;
1616
1617 GE_FUNC_ENTER(sc, "gfe_intr");
1618
1619 for (cnt = 0; cnt < 4; cnt++) {
1620 if (sc->sc_intrmask != intrmask) {
1621 sc->sc_intrmask = intrmask;
1622 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1623 }
1624 cause = GE_READ(sc, ETH_EICR);
1625 cause &= sc->sc_intrmask;
1626 GE_DPRINTF(sc, (".%#x", cause));
1627 if (cause == 0)
1628 break;
1629
1630 claim = 1;
1631
1632 GE_WRITE(sc, ETH_EICR, ~cause);
1633 #ifndef GE_NORX
1634 if (cause & (ETH_IR_RxBuffer|ETH_IR_RxError))
1635 intrmask = gfe_rx_process(sc, cause, intrmask);
1636 #endif
1637
1638 #ifndef GE_NOTX
1639 if (cause & (ETH_IR_TxBufferHigh|ETH_IR_TxEndHigh))
1640 intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask);
1641 if (cause & (ETH_IR_TxBufferLow|ETH_IR_TxEndLow))
1642 intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask);
1643 #endif
1644 if (cause & ETH_IR_MIIPhySTC) {
1645 sc->sc_flags |= GE_PHYSTSCHG;
1646 /* intrmask &= ~ETH_IR_MIIPhySTC; */
1647 }
1648 }
1649
1650 while (gfe_tx_enqueue(sc, GE_TXPRIO_HI))
1651 continue;
1652 while (gfe_tx_enqueue(sc, GE_TXPRIO_LO))
1653 continue;
1654
1655 GE_FUNC_EXIT(sc, "");
1656 return claim;
1657 }
1658
1659 int
1660 gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op)
1661 {
1662 int error = 0;
1663 GE_FUNC_ENTER(sc, "gfe_whack");
1664
1665 switch (op) {
1666 case GE_WHACK_RESTART:
1667 #ifndef GE_NOTX
1668 gfe_tx_stop(sc, op);
1669 #endif
1670 /* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */
1671 /* FALLTHROUGH */
1672 case GE_WHACK_START:
1673 #ifndef GE_NOHASH
1674 if (error == 0 && sc->sc_hashtable == NULL) {
1675 error = gfe_hash_alloc(sc);
1676 if (error)
1677 break;
1678 }
1679 if (op != GE_WHACK_RESTART)
1680 gfe_hash_fill(sc);
1681 #endif
1682 #ifndef GE_NORX
1683 if (op != GE_WHACK_RESTART) {
1684 error = gfe_rx_prime(sc);
1685 if (error)
1686 break;
1687 }
1688 #endif
1689 #ifndef GE_NOTX
1690 error = gfe_tx_start(sc, GE_TXPRIO_HI);
1691 if (error)
1692 break;
1693 #endif
1694 sc->sc_ec.ec_if.if_flags |= IFF_RUNNING;
1695 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1696 GE_WRITE(sc, ETH_EPCXR, sc->sc_pcxr);
1697 GE_WRITE(sc, ETH_EICR, 0);
1698 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1699 #ifndef GE_NOHASH
1700 GE_WRITE(sc, ETH_EHTPR,
1701 sc->sc_hash_mem.gdm_map->dm_segs->ds_addr);
1702 #endif
1703 #ifndef GE_NORX
1704 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_ERD);
1705 sc->sc_flags |= GE_RXACTIVE;
1706 #endif
1707 /* FALLTHROUGH */
1708 case GE_WHACK_CHANGE:
1709 GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)",
1710 GE_READ(sc, ETH_EPCR), GE_READ(sc, ETH_EIMR)));
1711 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1712 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1713 gfe_ifstart(&sc->sc_ec.ec_if);
1714 GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)",
1715 GE_READ(sc, ETH_ECTDP0), GE_READ(sc, ETH_ECTDP1)));
1716 GE_FUNC_EXIT(sc, "");
1717 return error;
1718 case GE_WHACK_STOP:
1719 break;
1720 }
1721
1722 #ifdef GE_DEBUG
1723 if (error)
1724 GE_DPRINTF(sc, (" failed: %d\n", error));
1725 #endif
1726 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1727 GE_WRITE(sc, ETH_EIMR, 0);
1728 sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING;
1729 #ifndef GE_NOTX
1730 gfe_tx_stop(sc, GE_WHACK_STOP);
1731 #endif
1732 #ifndef GE_NORX
1733 gfe_rx_stop(sc, GE_WHACK_STOP);
1734 #endif
1735 #ifndef GE_NOHASH
1736 if ((sc->sc_flags & GE_NOFREE) == 0) {
1737 gfe_dmamem_free(sc, &sc->sc_hash_mem);
1738 sc->sc_hashtable = NULL;
1739 }
1740 #endif
1741
1742 GE_FUNC_EXIT(sc, "");
1743 return error;
1744 }
1745
1746 int
1747 gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN])
1748 {
1749 uint32_t w0, add0, add1;
1750 uint32_t result;
1751
1752 GE_FUNC_ENTER(sc, "gfe_hash_compute");
1753 add0 = ((uint32_t) eaddr[5] << 0) |
1754 ((uint32_t) eaddr[4] << 8) |
1755 ((uint32_t) eaddr[3] << 16);
1756
1757 add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4);
1758 add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2);
1759 add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1);
1760
1761 add1 = ((uint32_t) eaddr[2] << 0) |
1762 ((uint32_t) eaddr[1] << 8) |
1763 ((uint32_t) eaddr[0] << 16);
1764
1765 add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4);
1766 add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2);
1767 add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1);
1768
1769 GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr)));
1770 /*
1771 * hashResult is the 15 bits Hash entry address.
1772 * ethernetADD is a 48 bit number, which is derived from the Ethernet
1773 * MAC address, by nibble swapping in every byte (i.e MAC address
1774 * of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
1775 */
1776
1777 if ((sc->sc_pcr & ETH_EPCR_HM) == 0) {
1778 /*
1779 * hashResult[14:0] = hashFunc0(ethernetADD[47:0])
1780 *
1781 * hashFunc0 calculates the hashResult in the following manner:
1782 * hashResult[ 8:0] = ethernetADD[14:8,1,0]
1783 * XOR ethernetADD[23:15] XOR ethernetADD[32:24]
1784 */
1785 result = (add0 & 3) | ((add0 >> 6) & ~3);
1786 result ^= (add0 >> 15) ^ (add1 >> 0);
1787 result &= 0x1ff;
1788 /*
1789 * hashResult[14:9] = ethernetADD[7:2]
1790 */
1791 result |= (add0 & ~3) << 7; /* excess bits will be masked */
1792 GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff));
1793 } else {
1794 #define TRIBITFLIP 073516240 /* yes its in octal */
1795 /*
1796 * hashResult[14:0] = hashFunc1(ethernetADD[47:0])
1797 *
1798 * hashFunc1 calculates the hashResult in the following manner:
1799 * hashResult[08:00] = ethernetADD[06:14]
1800 * XOR ethernetADD[15:23] XOR ethernetADD[24:32]
1801 */
1802 w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff;
1803 /*
1804 * Now bitswap those 9 bits
1805 */
1806 result = 0;
1807 result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6;
1808 result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3;
1809 result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0;
1810
1811 /*
1812 * hashResult[14:09] = ethernetADD[00:05]
1813 */
1814 result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12;
1815 result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9;
1816 GE_DPRINTF(sc, ("1(%#x)", result));
1817 }
1818 GE_FUNC_EXIT(sc, "");
1819 return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff);
1820 }
1821
1822 int
1823 gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op,
1824 enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN])
1825 {
1826 uint64_t he;
1827 uint64_t *maybe_he_p = NULL;
1828 int limit;
1829 int hash;
1830 int maybe_hash = 0;
1831
1832 GE_FUNC_ENTER(sc, "gfe_hash_entry_op");
1833
1834 hash = gfe_hash_compute(sc, eaddr);
1835
1836 if (sc->sc_hashtable == NULL) {
1837 panic("%s:%d: hashtable == NULL!", device_xname(sc->sc_dev),
1838 __LINE__);
1839 }
1840
1841 /*
1842 * Assume we are going to insert so create the hash entry we
1843 * are going to insert. We also use it to match entries we
1844 * will be removing.
1845 */
1846 he = ((uint64_t) eaddr[5] << 43) |
1847 ((uint64_t) eaddr[4] << 35) |
1848 ((uint64_t) eaddr[3] << 27) |
1849 ((uint64_t) eaddr[2] << 19) |
1850 ((uint64_t) eaddr[1] << 11) |
1851 ((uint64_t) eaddr[0] << 3) |
1852 HSH_PRIO_INS(prio) | HSH_V | HSH_R;
1853
1854 /*
1855 * The GT will search upto 12 entries for a hit, so we must mimic that.
1856 */
1857 hash &= sc->sc_hashmask / sizeof(he);
1858 for (limit = HSH_LIMIT; limit > 0 ; --limit) {
1859 /*
1860 * Does the GT wrap at the end, stop at the, or overrun the
1861 * end? Assume it wraps for now. Stash a copy of the
1862 * current hash entry.
1863 */
1864 uint64_t *he_p = &sc->sc_hashtable[hash];
1865 uint64_t thishe = *he_p;
1866
1867 /*
1868 * If the hash entry isn't valid, that break the chain. And
1869 * this entry a good candidate for reuse.
1870 */
1871 if ((thishe & HSH_V) == 0) {
1872 maybe_he_p = he_p;
1873 break;
1874 }
1875
1876 /*
1877 * If the hash entry has the same address we are looking for
1878 * then ... if we are removing and the skip bit is set, its
1879 * already been removed. if are adding and the skip bit is
1880 * clear, then its already added. In either return EBUSY
1881 * indicating the op has already been done. Otherwise flip
1882 * the skip bit and return 0.
1883 */
1884 if (((he ^ thishe) & HSH_ADDR_MASK) == 0) {
1885 if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) ||
1886 ((op == GE_HASH_ADD) && (thishe & HSH_S) == 0))
1887 return EBUSY;
1888 *he_p = thishe ^ HSH_S;
1889 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1890 hash * sizeof(he), sizeof(he),
1891 BUS_DMASYNC_PREWRITE);
1892 GE_FUNC_EXIT(sc, "^");
1893 return 0;
1894 }
1895
1896 /*
1897 * If we haven't found a slot for the entry and this entry
1898 * is currently being skipped, return this entry.
1899 */
1900 if (maybe_he_p == NULL && (thishe & HSH_S)) {
1901 maybe_he_p = he_p;
1902 maybe_hash = hash;
1903 }
1904
1905 hash = (hash + 1) & (sc->sc_hashmask / sizeof(he));
1906 }
1907
1908 /*
1909 * If we got here, then there was no entry to remove.
1910 */
1911 if (op == GE_HASH_REMOVE) {
1912 GE_FUNC_EXIT(sc, "?");
1913 return ENOENT;
1914 }
1915
1916 /*
1917 * If we couldn't find a slot, return an error.
1918 */
1919 if (maybe_he_p == NULL) {
1920 GE_FUNC_EXIT(sc, "!");
1921 return ENOSPC;
1922 }
1923
1924 /* Update the entry.
1925 */
1926 *maybe_he_p = he;
1927 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1928 maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE);
1929 GE_FUNC_EXIT(sc, "+");
1930 return 0;
1931 }
1932
1933 int
1934 gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm,
1935 u_long cmd)
1936 {
1937 struct gfe_softc *sc = ec->ec_if.if_softc;
1938 int error;
1939 enum gfe_hash_op op;
1940 enum gfe_rxprio prio;
1941
1942 GE_FUNC_ENTER(sc, "hash_multichg");
1943 /*
1944 * Is this a wildcard entry? If so and its being removed, recompute.
1945 */
1946 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1947 if (cmd == SIOCDELMULTI) {
1948 GE_FUNC_EXIT(sc, "");
1949 return ENETRESET;
1950 }
1951
1952 /*
1953 * Switch in
1954 */
1955 sc->sc_flags |= GE_ALLMULTI;
1956 if ((sc->sc_pcr & ETH_EPCR_PM) == 0) {
1957 sc->sc_pcr |= ETH_EPCR_PM;
1958 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1959 GE_FUNC_EXIT(sc, "");
1960 return 0;
1961 }
1962 GE_FUNC_EXIT(sc, "");
1963 return ENETRESET;
1964 }
1965
1966 prio = GE_RXPRIO_MEDLO;
1967 op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD);
1968
1969 if (sc->sc_hashtable == NULL) {
1970 GE_FUNC_EXIT(sc, "");
1971 return 0;
1972 }
1973
1974 error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo);
1975 if (error == EBUSY) {
1976 aprint_error_dev(sc->sc_dev, "multichg: tried to %s %s again\n",
1977 cmd == SIOCDELMULTI ? "remove" : "add",
1978 ether_sprintf(enm->enm_addrlo));
1979 GE_FUNC_EXIT(sc, "");
1980 return 0;
1981 }
1982
1983 if (error == ENOENT) {
1984 aprint_error_dev(sc->sc_dev,
1985 "multichg: failed to remove %s: not in table\n",
1986 ether_sprintf(enm->enm_addrlo));
1987 GE_FUNC_EXIT(sc, "");
1988 return 0;
1989 }
1990
1991 if (error == ENOSPC) {
1992 aprint_error_dev(sc->sc_dev, "multichg:"
1993 " failed to add %s: no space; regenerating table\n",
1994 ether_sprintf(enm->enm_addrlo));
1995 GE_FUNC_EXIT(sc, "");
1996 return ENETRESET;
1997 }
1998 GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n",
1999 device_xname(sc->sc_dev),
2000 cmd == SIOCDELMULTI ? "remove" : "add",
2001 ether_sprintf(enm->enm_addrlo)));
2002 GE_FUNC_EXIT(sc, "");
2003 return 0;
2004 }
2005
2006 int
2007 gfe_hash_fill(struct gfe_softc *sc)
2008 {
2009 struct ether_multistep step;
2010 struct ether_multi *enm;
2011 int error;
2012
2013 GE_FUNC_ENTER(sc, "gfe_hash_fill");
2014
2015 error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI,
2016 CLLADDR(sc->sc_ec.ec_if.if_sadl));
2017 if (error) {
2018 GE_FUNC_EXIT(sc, "!");
2019 return error;
2020 }
2021
2022 sc->sc_flags &= ~GE_ALLMULTI;
2023 if ((sc->sc_ec.ec_if.if_flags & IFF_PROMISC) == 0)
2024 sc->sc_pcr &= ~ETH_EPCR_PM;
2025 ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
2026 while (enm != NULL) {
2027 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2028 sc->sc_flags |= GE_ALLMULTI;
2029 sc->sc_pcr |= ETH_EPCR_PM;
2030 } else {
2031 error = gfe_hash_entry_op(sc, GE_HASH_ADD,
2032 GE_RXPRIO_MEDLO, enm->enm_addrlo);
2033 if (error == ENOSPC)
2034 break;
2035 }
2036 ETHER_NEXT_MULTI(step, enm);
2037 }
2038
2039 GE_FUNC_EXIT(sc, "");
2040 return error;
2041 }
2042
2043 int
2044 gfe_hash_alloc(struct gfe_softc *sc)
2045 {
2046 int error;
2047 GE_FUNC_ENTER(sc, "gfe_hash_alloc");
2048 sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1;
2049 error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1,
2050 BUS_DMA_NOCACHE);
2051 if (error) {
2052 aprint_error_dev(sc->sc_dev,
2053 "failed to allocate %d bytes for hash table: %d\n",
2054 sc->sc_hashmask + 1, error);
2055 GE_FUNC_EXIT(sc, "");
2056 return error;
2057 }
2058 sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva;
2059 memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1);
2060 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
2061 0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE);
2062 GE_FUNC_EXIT(sc, "");
2063 return 0;
2064 }
2065