if_mvxpe.c revision 1.15 1 /* $NetBSD: if_mvxpe.c,v 1.15 2016/10/20 09:53:08 skrll Exp $ */
2 /*
3 * Copyright (c) 2015 Internet Initiative Japan Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: if_mvxpe.c,v 1.15 2016/10/20 09:53:08 skrll Exp $");
29
30 #include "opt_multiprocessor.h"
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/callout.h>
35 #include <sys/device.h>
36 #include <sys/endian.h>
37 #include <sys/errno.h>
38 #include <sys/evcnt.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/mutex.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/syslog.h>
45 #include <sys/rndsource.h>
46
47 #include <net/if.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/bpf.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55
56 #include <dev/mii/mii.h>
57 #include <dev/mii/miivar.h>
58
59 #include <dev/marvell/marvellreg.h>
60 #include <dev/marvell/marvellvar.h>
61 #include <dev/marvell/mvxpbmvar.h>
62 #include <dev/marvell/if_mvxpereg.h>
63 #include <dev/marvell/if_mvxpevar.h>
64
65 #include "locators.h"
66
67 #if BYTE_ORDER == BIG_ENDIAN
68 #error "BIG ENDIAN not supported"
69 #endif
70
71 #ifdef MVXPE_DEBUG
72 #define STATIC /* nothing */
73 #else
74 #define STATIC static
75 #endif
76
77 /* autoconf(9) */
78 STATIC int mvxpe_match(device_t, struct cfdata *, void *);
79 STATIC void mvxpe_attach(device_t, device_t, void *);
80 STATIC int mvxpe_evcnt_attach(struct mvxpe_softc *);
81 CFATTACH_DECL_NEW(mvxpe_mbus, sizeof(struct mvxpe_softc),
82 mvxpe_match, mvxpe_attach, NULL, NULL);
83 STATIC void mvxpe_sc_lock(struct mvxpe_softc *);
84 STATIC void mvxpe_sc_unlock(struct mvxpe_softc *);
85
86 /* MII */
87 STATIC int mvxpe_miibus_readreg(device_t, int, int);
88 STATIC void mvxpe_miibus_writereg(device_t, int, int, int);
89 STATIC void mvxpe_miibus_statchg(struct ifnet *);
90
91 /* Addres Decoding Window */
92 STATIC void mvxpe_wininit(struct mvxpe_softc *, enum marvell_tags *);
93
94 /* Device Register Initialization */
95 STATIC int mvxpe_initreg(struct ifnet *);
96
97 /* Descriptor Ring Control for each of queues */
98 STATIC void *mvxpe_dma_memalloc(struct mvxpe_softc *, bus_dmamap_t *, size_t);
99 STATIC int mvxpe_ring_alloc_queue(struct mvxpe_softc *, int);
100 STATIC void mvxpe_ring_dealloc_queue(struct mvxpe_softc *, int);
101 STATIC void mvxpe_ring_init_queue(struct mvxpe_softc *, int);
102 STATIC void mvxpe_ring_flush_queue(struct mvxpe_softc *, int);
103 STATIC void mvxpe_ring_sync_rx(struct mvxpe_softc *, int, int, int, int);
104 STATIC void mvxpe_ring_sync_tx(struct mvxpe_softc *, int, int, int, int);
105
106 /* Rx/Tx Queue Control */
107 STATIC int mvxpe_rx_queue_init(struct ifnet *, int);
108 STATIC int mvxpe_tx_queue_init(struct ifnet *, int);
109 STATIC int mvxpe_rx_queue_enable(struct ifnet *, int);
110 STATIC int mvxpe_tx_queue_enable(struct ifnet *, int);
111 STATIC void mvxpe_rx_lockq(struct mvxpe_softc *, int);
112 STATIC void mvxpe_rx_unlockq(struct mvxpe_softc *, int);
113 STATIC void mvxpe_tx_lockq(struct mvxpe_softc *, int);
114 STATIC void mvxpe_tx_unlockq(struct mvxpe_softc *, int);
115
116 /* Interrupt Handlers */
117 STATIC void mvxpe_disable_intr(struct mvxpe_softc *);
118 STATIC void mvxpe_enable_intr(struct mvxpe_softc *);
119 STATIC int mvxpe_rxtxth_intr(void *);
120 STATIC int mvxpe_misc_intr(void *);
121 STATIC int mvxpe_rxtx_intr(void *);
122 STATIC void mvxpe_tick(void *);
123
124 /* struct ifnet and mii callbacks*/
125 STATIC void mvxpe_start(struct ifnet *);
126 STATIC int mvxpe_ioctl(struct ifnet *, u_long, void *);
127 STATIC int mvxpe_init(struct ifnet *);
128 STATIC void mvxpe_stop(struct ifnet *, int);
129 STATIC void mvxpe_watchdog(struct ifnet *);
130 STATIC int mvxpe_ifflags_cb(struct ethercom *);
131 STATIC int mvxpe_mediachange(struct ifnet *);
132 STATIC void mvxpe_mediastatus(struct ifnet *, struct ifmediareq *);
133
134 /* Link State Notify */
135 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc);
136 STATIC void mvxpe_linkup(struct mvxpe_softc *);
137 STATIC void mvxpe_linkdown(struct mvxpe_softc *);
138 STATIC void mvxpe_linkreset(struct mvxpe_softc *);
139
140 /* Tx Subroutines */
141 STATIC int mvxpe_tx_queue_select(struct mvxpe_softc *, struct mbuf *);
142 STATIC int mvxpe_tx_queue(struct mvxpe_softc *, struct mbuf *, int);
143 STATIC void mvxpe_tx_set_csumflag(struct ifnet *,
144 struct mvxpe_tx_desc *, struct mbuf *);
145 STATIC void mvxpe_tx_complete(struct mvxpe_softc *, uint32_t);
146 STATIC void mvxpe_tx_queue_complete(struct mvxpe_softc *, int);
147
148 /* Rx Subroutines */
149 STATIC void mvxpe_rx(struct mvxpe_softc *, uint32_t);
150 STATIC void mvxpe_rx_queue(struct mvxpe_softc *, int, int);
151 STATIC int mvxpe_rx_queue_select(struct mvxpe_softc *, uint32_t, int *);
152 STATIC void mvxpe_rx_refill(struct mvxpe_softc *, uint32_t);
153 STATIC void mvxpe_rx_queue_refill(struct mvxpe_softc *, int);
154 STATIC int mvxpe_rx_queue_add(struct mvxpe_softc *, int);
155 STATIC void mvxpe_rx_set_csumflag(struct ifnet *,
156 struct mvxpe_rx_desc *, struct mbuf *);
157
158 /* MAC address filter */
159 STATIC uint8_t mvxpe_crc8(const uint8_t *, size_t);
160 STATIC void mvxpe_filter_setup(struct mvxpe_softc *);
161
162 /* sysctl(9) */
163 STATIC int sysctl_read_mib(SYSCTLFN_PROTO);
164 STATIC int sysctl_clear_mib(SYSCTLFN_PROTO);
165 STATIC int sysctl_set_queue_length(SYSCTLFN_PROTO);
166 STATIC int sysctl_set_queue_rxthtime(SYSCTLFN_PROTO);
167 STATIC void sysctl_mvxpe_init(struct mvxpe_softc *);
168
169 /* MIB */
170 STATIC void mvxpe_clear_mib(struct mvxpe_softc *);
171 STATIC void mvxpe_update_mib(struct mvxpe_softc *);
172
173 /* for Debug */
174 STATIC void mvxpe_dump_txdesc(struct mvxpe_tx_desc *, int) __attribute__((__unused__));
175 STATIC void mvxpe_dump_rxdesc(struct mvxpe_rx_desc *, int) __attribute__((__unused__));
176
177 STATIC int mvxpe_root_num;
178 STATIC kmutex_t mii_mutex;
179 STATIC int mii_init = 0;
180 #ifdef MVXPE_DEBUG
181 STATIC int mvxpe_debug = MVXPE_DEBUG;
182 #endif
183
184 /*
185 * List of MIB register and names
186 */
187 STATIC struct mvxpe_mib_def {
188 uint32_t regnum;
189 int reg64;
190 const char *sysctl_name;
191 const char *desc;
192 int ext;
193 #define MVXPE_MIBEXT_IF_OERRORS 1
194 #define MVXPE_MIBEXT_IF_IERRORS 2
195 #define MVXPE_MIBEXT_IF_COLLISIONS 3
196 } mvxpe_mib_list[] = {
197 {MVXPE_MIB_RX_GOOD_OCT, 1, "rx_good_oct",
198 "Good Octets Rx", 0},
199 {MVXPE_MIB_RX_BAD_OCT, 0, "rx_bad_oct",
200 "Bad Octets Rx", 0},
201 {MVXPE_MIB_TX_MAC_TRNS_ERR, 0, "tx_mac_err",
202 "MAC Transmit Error", MVXPE_MIBEXT_IF_OERRORS},
203 {MVXPE_MIB_RX_GOOD_FRAME, 0, "rx_good_frame",
204 "Good Frames Rx", 0},
205 {MVXPE_MIB_RX_BAD_FRAME, 0, "rx_bad_frame",
206 "Bad Frames Rx", 0},
207 {MVXPE_MIB_RX_BCAST_FRAME, 0, "rx_bcast_frame",
208 "Broadcast Frames Rx", 0},
209 {MVXPE_MIB_RX_MCAST_FRAME, 0, "rx_mcast_frame",
210 "Multicast Frames Rx", 0},
211 {MVXPE_MIB_RX_FRAME64_OCT, 0, "rx_frame_1_64",
212 "Frame Size 1 - 64", 0},
213 {MVXPE_MIB_RX_FRAME127_OCT, 0, "rx_frame_65_127",
214 "Frame Size 65 - 127", 0},
215 {MVXPE_MIB_RX_FRAME255_OCT, 0, "rx_frame_128_255",
216 "Frame Size 128 - 255", 0},
217 {MVXPE_MIB_RX_FRAME511_OCT, 0, "rx_frame_256_511",
218 "Frame Size 256 - 511"},
219 {MVXPE_MIB_RX_FRAME1023_OCT, 0, "rx_frame_512_1023",
220 "Frame Size 512 - 1023", 0},
221 {MVXPE_MIB_RX_FRAMEMAX_OCT, 0, "rx_fame_1024_max",
222 "Frame Size 1024 - Max", 0},
223 {MVXPE_MIB_TX_GOOD_OCT, 1, "tx_good_oct",
224 "Good Octets Tx", 0},
225 {MVXPE_MIB_TX_GOOD_FRAME, 0, "tx_good_frame",
226 "Good Frames Tx", 0},
227 {MVXPE_MIB_TX_EXCES_COL, 0, "tx_exces_collision",
228 "Excessive Collision", MVXPE_MIBEXT_IF_OERRORS},
229 {MVXPE_MIB_TX_MCAST_FRAME, 0, "tx_mcast_frame",
230 "Multicast Frames Tx"},
231 {MVXPE_MIB_TX_BCAST_FRAME, 0, "tx_bcast_frame",
232 "Broadcast Frames Tx"},
233 {MVXPE_MIB_TX_MAC_CTL_ERR, 0, "tx_mac_err",
234 "Unknown MAC Control", 0},
235 {MVXPE_MIB_FC_SENT, 0, "fc_tx",
236 "Flow Control Tx", 0},
237 {MVXPE_MIB_FC_GOOD, 0, "fc_rx_good",
238 "Good Flow Control Rx", 0},
239 {MVXPE_MIB_FC_BAD, 0, "fc_rx_bad",
240 "Bad Flow Control Rx", 0},
241 {MVXPE_MIB_PKT_UNDERSIZE, 0, "pkt_undersize",
242 "Undersized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
243 {MVXPE_MIB_PKT_FRAGMENT, 0, "pkt_fragment",
244 "Fragmented Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
245 {MVXPE_MIB_PKT_OVERSIZE, 0, "pkt_oversize",
246 "Oversized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
247 {MVXPE_MIB_PKT_JABBER, 0, "pkt_jabber",
248 "Jabber Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
249 {MVXPE_MIB_MAC_RX_ERR, 0, "mac_rx_err",
250 "MAC Rx Errors", MVXPE_MIBEXT_IF_IERRORS},
251 {MVXPE_MIB_MAC_CRC_ERR, 0, "mac_crc_err",
252 "MAC CRC Errors", MVXPE_MIBEXT_IF_IERRORS},
253 {MVXPE_MIB_MAC_COL, 0, "mac_collision",
254 "MAC Collision", MVXPE_MIBEXT_IF_COLLISIONS},
255 {MVXPE_MIB_MAC_LATE_COL, 0, "mac_late_collision",
256 "MAC Late Collision", MVXPE_MIBEXT_IF_OERRORS},
257 };
258
259 /*
260 * autoconf(9)
261 */
262 /* ARGSUSED */
263 STATIC int
264 mvxpe_match(device_t parent, cfdata_t match, void *aux)
265 {
266 struct marvell_attach_args *mva = aux;
267 bus_size_t pv_off;
268 uint32_t pv;
269
270 if (strcmp(mva->mva_name, match->cf_name) != 0)
271 return 0;
272 if (mva->mva_offset == MVA_OFFSET_DEFAULT)
273 return 0;
274
275 /* check port version */
276 pv_off = mva->mva_offset + MVXPE_PV;
277 pv = bus_space_read_4(mva->mva_iot, mva->mva_ioh, pv_off);
278 if (MVXPE_PV_GET_VERSION(pv) < 0x10)
279 return 0; /* old version is not supported */
280
281 return 1;
282 }
283
284 /* ARGSUSED */
285 STATIC void
286 mvxpe_attach(device_t parent, device_t self, void *aux)
287 {
288 struct mvxpe_softc *sc = device_private(self);
289 struct mii_softc *mii;
290 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
291 struct marvell_attach_args *mva = aux;
292 prop_dictionary_t dict;
293 prop_data_t enaddrp = NULL;
294 uint32_t phyaddr, maddrh, maddrl;
295 uint8_t enaddr[ETHER_ADDR_LEN];
296 int q;
297
298 aprint_naive("\n");
299 aprint_normal(": Marvell ARMADA GbE Controller\n");
300 memset(sc, 0, sizeof(*sc));
301 sc->sc_dev = self;
302 sc->sc_port = mva->mva_unit;
303 sc->sc_iot = mva->mva_iot;
304 sc->sc_dmat = mva->mva_dmat;
305 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
306 callout_init(&sc->sc_tick_ch, 0);
307 callout_setfunc(&sc->sc_tick_ch, mvxpe_tick, sc);
308
309 /*
310 * BUS space
311 */
312 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
313 mva->mva_offset, mva->mva_size, &sc->sc_ioh)) {
314 aprint_error_dev(self, "Cannot map registers\n");
315 goto fail;
316 }
317 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
318 mva->mva_offset + MVXPE_PORTMIB_BASE, MVXPE_PORTMIB_SIZE,
319 &sc->sc_mibh)) {
320 aprint_error_dev(self,
321 "Cannot map destination address filter registers\n");
322 goto fail;
323 }
324 sc->sc_version = MVXPE_READ(sc, MVXPE_PV);
325 aprint_normal_dev(self, "Port Version %#x\n", sc->sc_version);
326
327 /*
328 * Buffer Manager(BM) subsystem.
329 */
330 sc->sc_bm = mvxpbm_device(mva);
331 if (sc->sc_bm == NULL) {
332 aprint_error_dev(self, "no Buffer Manager.\n");
333 goto fail;
334 }
335 aprint_normal_dev(self,
336 "Using Buffer Manager: %s\n", mvxpbm_xname(sc->sc_bm));
337 aprint_normal_dev(sc->sc_dev,
338 "%zu kbytes managed buffer, %zu bytes * %u entries allocated.\n",
339 mvxpbm_buf_size(sc->sc_bm) / 1024,
340 mvxpbm_chunk_size(sc->sc_bm), mvxpbm_chunk_count(sc->sc_bm));
341
342 /*
343 * make sure DMA engines are in reset state
344 */
345 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
346 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
347
348 /*
349 * Address decoding window
350 */
351 mvxpe_wininit(sc, mva->mva_tags);
352
353 /*
354 * MAC address
355 */
356 dict = device_properties(self);
357 if (dict)
358 enaddrp = prop_dictionary_get(dict, "mac-address");
359 if (enaddrp) {
360 memcpy(enaddr, prop_data_data_nocopy(enaddrp), ETHER_ADDR_LEN);
361 maddrh = enaddr[0] << 24;
362 maddrh |= enaddr[1] << 16;
363 maddrh |= enaddr[2] << 8;
364 maddrh |= enaddr[3];
365 maddrl = enaddr[4] << 8;
366 maddrl |= enaddr[5];
367 MVXPE_WRITE(sc, MVXPE_MACAH, maddrh);
368 MVXPE_WRITE(sc, MVXPE_MACAL, maddrl);
369 }
370 else {
371 /*
372 * even if enaddr is not found in dictionary,
373 * the port may be initialized by IPL program such as U-BOOT.
374 */
375 maddrh = MVXPE_READ(sc, MVXPE_MACAH);
376 maddrl = MVXPE_READ(sc, MVXPE_MACAL);
377 if ((maddrh | maddrl) == 0) {
378 aprint_error_dev(self, "No Ethernet address\n");
379 return;
380 }
381 }
382 sc->sc_enaddr[0] = maddrh >> 24;
383 sc->sc_enaddr[1] = maddrh >> 16;
384 sc->sc_enaddr[2] = maddrh >> 8;
385 sc->sc_enaddr[3] = maddrh >> 0;
386 sc->sc_enaddr[4] = maddrl >> 8;
387 sc->sc_enaddr[5] = maddrl >> 0;
388 aprint_normal_dev(self, "Ethernet address %s\n",
389 ether_sprintf(sc->sc_enaddr));
390
391 /*
392 * Register interrupt handlers
393 * XXX: handle Ethernet unit intr. and Error intr.
394 */
395 mvxpe_disable_intr(sc);
396 marvell_intr_establish(mva->mva_irq, IPL_NET, mvxpe_rxtxth_intr, sc);
397
398 /*
399 * MIB buffer allocation
400 */
401 sc->sc_sysctl_mib_size =
402 __arraycount(mvxpe_mib_list) * sizeof(struct mvxpe_sysctl_mib);
403 sc->sc_sysctl_mib = kmem_alloc(sc->sc_sysctl_mib_size, KM_NOSLEEP);
404 if (sc->sc_sysctl_mib == NULL)
405 goto fail;
406 memset(sc->sc_sysctl_mib, 0, sc->sc_sysctl_mib_size);
407
408 /*
409 * Device DMA Buffer allocation
410 */
411 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
412 if (mvxpe_ring_alloc_queue(sc, q) != 0)
413 goto fail;
414 mvxpe_ring_init_queue(sc, q);
415 }
416
417 /*
418 * We can support 802.1Q VLAN-sized frames and jumbo
419 * Ethernet frames.
420 */
421 sc->sc_ethercom.ec_capabilities |=
422 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
423 ifp->if_softc = sc;
424 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
425 ifp->if_start = mvxpe_start;
426 ifp->if_ioctl = mvxpe_ioctl;
427 ifp->if_init = mvxpe_init;
428 ifp->if_stop = mvxpe_stop;
429 ifp->if_watchdog = mvxpe_watchdog;
430
431 /*
432 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
433 */
434 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
435 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
436 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
437 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
438 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx;
439 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx;
440 ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Tx;
441 ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Rx;
442 ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Tx;
443 ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Rx;
444
445 /*
446 * Initialize struct ifnet
447 */
448 IFQ_SET_MAXLEN(&ifp->if_snd, max(MVXPE_TX_RING_CNT - 1, IFQ_MAXLEN));
449 IFQ_SET_READY(&ifp->if_snd);
450 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
451
452 /*
453 * Enable DMA engines and Initiazlie Device Registers.
454 */
455 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
456 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
457 MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
458 mvxpe_sc_lock(sc); /* XXX */
459 mvxpe_filter_setup(sc);
460 mvxpe_sc_unlock(sc);
461 mvxpe_initreg(ifp);
462
463 /*
464 * Now MAC is working, setup MII.
465 */
466 if (mii_init == 0) {
467 /*
468 * MII bus is shared by all MACs and all PHYs in SoC.
469 * serializing the bus access should be safe.
470 */
471 mutex_init(&mii_mutex, MUTEX_DEFAULT, IPL_NET);
472 mii_init = 1;
473 }
474 sc->sc_mii.mii_ifp = ifp;
475 sc->sc_mii.mii_readreg = mvxpe_miibus_readreg;
476 sc->sc_mii.mii_writereg = mvxpe_miibus_writereg;
477 sc->sc_mii.mii_statchg = mvxpe_miibus_statchg;
478
479 sc->sc_ethercom.ec_mii = &sc->sc_mii;
480 ifmedia_init(&sc->sc_mii.mii_media, 0,
481 mvxpe_mediachange, mvxpe_mediastatus);
482 /*
483 * XXX: phy addressing highly depends on Board Design.
484 * we assume phyaddress == MAC unit number here,
485 * but some boards may not.
486 */
487 mii_attach(self, &sc->sc_mii, 0xffffffff,
488 MII_PHY_ANY, sc->sc_dev->dv_unit, 0);
489 mii = LIST_FIRST(&sc->sc_mii.mii_phys);
490 if (mii == NULL) {
491 aprint_error_dev(self, "no PHY found!\n");
492 ifmedia_add(&sc->sc_mii.mii_media,
493 IFM_ETHER|IFM_MANUAL, 0, NULL);
494 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
495 } else {
496 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
497 phyaddr = MVXPE_PHYADDR_PHYAD(mii->mii_phy);
498 MVXPE_WRITE(sc, MVXPE_PHYADDR, phyaddr);
499 DPRINTSC(sc, 1, "PHYADDR: %#x\n", MVXPE_READ(sc, MVXPE_PHYADDR));
500 }
501
502 /*
503 * Call MI attach routines.
504 */
505 if_attach(ifp);
506
507 ether_ifattach(ifp, sc->sc_enaddr);
508 ether_set_ifflags_cb(&sc->sc_ethercom, mvxpe_ifflags_cb);
509
510 sysctl_mvxpe_init(sc);
511 mvxpe_evcnt_attach(sc);
512 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
513 RND_TYPE_NET, RND_FLAG_DEFAULT);
514
515 return;
516
517 fail:
518 for (q = 0; q < MVXPE_QUEUE_SIZE; q++)
519 mvxpe_ring_dealloc_queue(sc, q);
520 if (sc->sc_sysctl_mib)
521 kmem_free(sc->sc_sysctl_mib, sc->sc_sysctl_mib_size);
522
523 return;
524 }
525
526 STATIC int
527 mvxpe_evcnt_attach(struct mvxpe_softc *sc)
528 {
529 #ifdef MVXPE_EVENT_COUNTERS
530 int q;
531
532 /* Master Interrupt Handler */
533 evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtxth, EVCNT_TYPE_INTR,
534 NULL, device_xname(sc->sc_dev), "RxTxTH Intr.");
535 evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtx, EVCNT_TYPE_INTR,
536 NULL, device_xname(sc->sc_dev), "RxTx Intr.");
537 evcnt_attach_dynamic(&sc->sc_ev.ev_i_misc, EVCNT_TYPE_INTR,
538 NULL, device_xname(sc->sc_dev), "MISC Intr.");
539
540 /* RXTXTH Interrupt */
541 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtxth_txerr, EVCNT_TYPE_INTR,
542 NULL, device_xname(sc->sc_dev), "RxTxTH Tx error summary");
543
544 /* MISC Interrupt */
545 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_phystatuschng, EVCNT_TYPE_INTR,
546 NULL, device_xname(sc->sc_dev), "MISC phy status changed");
547 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_linkchange, EVCNT_TYPE_INTR,
548 NULL, device_xname(sc->sc_dev), "MISC link status changed");
549 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_iae, EVCNT_TYPE_INTR,
550 NULL, device_xname(sc->sc_dev), "MISC internal address error");
551 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxoverrun, EVCNT_TYPE_INTR,
552 NULL, device_xname(sc->sc_dev), "MISC Rx FIFO overrun");
553 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxcrc, EVCNT_TYPE_INTR,
554 NULL, device_xname(sc->sc_dev), "MISC Rx CRC error");
555 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxlargepacket, EVCNT_TYPE_INTR,
556 NULL, device_xname(sc->sc_dev), "MISC Rx too large frame");
557 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txunderrun, EVCNT_TYPE_INTR,
558 NULL, device_xname(sc->sc_dev), "MISC Tx FIFO underrun");
559 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_prbserr, EVCNT_TYPE_INTR,
560 NULL, device_xname(sc->sc_dev), "MISC SERDES loopback test err");
561 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_srse, EVCNT_TYPE_INTR,
562 NULL, device_xname(sc->sc_dev), "MISC SERDES sync error");
563 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txreq, EVCNT_TYPE_INTR,
564 NULL, device_xname(sc->sc_dev), "MISC Tx resource erorr");
565
566 /* RxTx Interrupt */
567 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rreq, EVCNT_TYPE_INTR,
568 NULL, device_xname(sc->sc_dev), "RxTx Rx resource erorr");
569 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rpq, EVCNT_TYPE_INTR,
570 NULL, device_xname(sc->sc_dev), "RxTx Rx pakcet");
571 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_tbrq, EVCNT_TYPE_INTR,
572 NULL, device_xname(sc->sc_dev), "RxTx Tx complete");
573 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rxtxth, EVCNT_TYPE_INTR,
574 NULL, device_xname(sc->sc_dev), "RxTx RxTxTH summary");
575 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_txerr, EVCNT_TYPE_INTR,
576 NULL, device_xname(sc->sc_dev), "RxTx Tx error summary");
577 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_misc, EVCNT_TYPE_INTR,
578 NULL, device_xname(sc->sc_dev), "RxTx MISC summary");
579
580 /* Link */
581 evcnt_attach_dynamic(&sc->sc_ev.ev_link_up, EVCNT_TYPE_MISC,
582 NULL, device_xname(sc->sc_dev), "link up");
583 evcnt_attach_dynamic(&sc->sc_ev.ev_link_down, EVCNT_TYPE_MISC,
584 NULL, device_xname(sc->sc_dev), "link down");
585
586 /* Rx Descriptor */
587 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_ce, EVCNT_TYPE_MISC,
588 NULL, device_xname(sc->sc_dev), "Rx CRC error counter");
589 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_or, EVCNT_TYPE_MISC,
590 NULL, device_xname(sc->sc_dev), "Rx FIFO overrun counter");
591 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_mf, EVCNT_TYPE_MISC,
592 NULL, device_xname(sc->sc_dev), "Rx too large frame counter");
593 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_re, EVCNT_TYPE_MISC,
594 NULL, device_xname(sc->sc_dev), "Rx resource error counter");
595 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_scat, EVCNT_TYPE_MISC,
596 NULL, device_xname(sc->sc_dev), "Rx unexpected scatter bufs");
597
598 /* Tx Descriptor */
599 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_lc, EVCNT_TYPE_MISC,
600 NULL, device_xname(sc->sc_dev), "Tx late collision counter");
601 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_rl, EVCNT_TYPE_MISC,
602 NULL, device_xname(sc->sc_dev), "Tx excess. collision counter");
603 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_ur, EVCNT_TYPE_MISC,
604 NULL, device_xname(sc->sc_dev), "Tx FIFO underrun counter");
605 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_oth, EVCNT_TYPE_MISC,
606 NULL, device_xname(sc->sc_dev), "Tx unkonwn erorr counter");
607
608 /* Status Registers */
609 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pdfc, EVCNT_TYPE_MISC,
610 NULL, device_xname(sc->sc_dev), "Rx discard counter");
611 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pofc, EVCNT_TYPE_MISC,
612 NULL, device_xname(sc->sc_dev), "Rx overrun counter");
613 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txbadfcs, EVCNT_TYPE_MISC,
614 NULL, device_xname(sc->sc_dev), "Tx bad FCS counter");
615 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txdropped, EVCNT_TYPE_MISC,
616 NULL, device_xname(sc->sc_dev), "Tx dorpped counter");
617 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_lpic, EVCNT_TYPE_MISC,
618 NULL, device_xname(sc->sc_dev), "LP_IDLE counter");
619
620 /* Device Driver Errors */
621 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_wdogsoft, EVCNT_TYPE_MISC,
622 NULL, device_xname(sc->sc_dev), "watchdog timer expired");
623 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txerr, EVCNT_TYPE_MISC,
624 NULL, device_xname(sc->sc_dev), "Tx descriptor alloc failed");
625 #define MVXPE_QUEUE_DESC(q) "Rx success in queue " # q
626 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
627 static const char *rxq_desc[] = {
628 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
629 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
630 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
631 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
632 };
633 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxq[q], EVCNT_TYPE_MISC,
634 NULL, device_xname(sc->sc_dev), rxq_desc[q]);
635 }
636 #undef MVXPE_QUEUE_DESC
637 #define MVXPE_QUEUE_DESC(q) "Tx success in queue " # q
638 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
639 static const char *txq_desc[] = {
640 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
641 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
642 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
643 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
644 };
645 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txq[q], EVCNT_TYPE_MISC,
646 NULL, device_xname(sc->sc_dev), txq_desc[q]);
647 }
648 #undef MVXPE_QUEUE_DESC
649 #define MVXPE_QUEUE_DESC(q) "Rx error in queue " # q
650 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
651 static const char *rxqe_desc[] = {
652 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
653 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
654 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
655 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
656 };
657 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxqe[q], EVCNT_TYPE_MISC,
658 NULL, device_xname(sc->sc_dev), rxqe_desc[q]);
659 }
660 #undef MVXPE_QUEUE_DESC
661 #define MVXPE_QUEUE_DESC(q) "Tx error in queue " # q
662 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
663 static const char *txqe_desc[] = {
664 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
665 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
666 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
667 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
668 };
669 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txqe[q], EVCNT_TYPE_MISC,
670 NULL, device_xname(sc->sc_dev), txqe_desc[q]);
671 }
672 #undef MVXPE_QUEUE_DESC
673
674 #endif /* MVXPE_EVENT_COUNTERS */
675 return 0;
676 }
677
678 STATIC void
679 mvxpe_sc_lock(struct mvxpe_softc *sc)
680 {
681 mutex_enter(&sc->sc_mtx);
682 }
683
684 STATIC void
685 mvxpe_sc_unlock(struct mvxpe_softc *sc)
686 {
687 mutex_exit(&sc->sc_mtx);
688 }
689
690 /*
691 * MII
692 */
693 STATIC int
694 mvxpe_miibus_readreg(device_t dev, int phy, int reg)
695 {
696 struct mvxpe_softc *sc = device_private(dev);
697 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
698 uint32_t smi, val;
699 int i;
700
701 mutex_enter(&mii_mutex);
702
703 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
704 DELAY(1);
705 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
706 break;
707 }
708 if (i == MVXPE_PHY_TIMEOUT) {
709 aprint_error_ifnet(ifp, "SMI busy timeout\n");
710 mutex_exit(&mii_mutex);
711 return -1;
712 }
713
714 smi =
715 MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) | MVXPE_SMI_OPCODE_READ;
716 MVXPE_WRITE(sc, MVXPE_SMI, smi);
717
718 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
719 DELAY(1);
720 smi = MVXPE_READ(sc, MVXPE_SMI);
721 if (smi & MVXPE_SMI_READVALID)
722 break;
723 }
724
725 mutex_exit(&mii_mutex);
726
727 DPRINTDEV(dev, 9, "i=%d, timeout=%d\n", i, MVXPE_PHY_TIMEOUT);
728
729 val = smi & MVXPE_SMI_DATA_MASK;
730
731 DPRINTDEV(dev, 9, "phy=%d, reg=%#x, val=%#x\n", phy, reg, val);
732
733 return val;
734 }
735
736 STATIC void
737 mvxpe_miibus_writereg(device_t dev, int phy, int reg, int val)
738 {
739 struct mvxpe_softc *sc = device_private(dev);
740 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
741 uint32_t smi;
742 int i;
743
744 DPRINTDEV(dev, 9, "phy=%d reg=%#x val=%#x\n", phy, reg, val);
745
746 mutex_enter(&mii_mutex);
747
748 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
749 DELAY(1);
750 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
751 break;
752 }
753 if (i == MVXPE_PHY_TIMEOUT) {
754 aprint_error_ifnet(ifp, "SMI busy timeout\n");
755 mutex_exit(&mii_mutex);
756 return;
757 }
758
759 smi = MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) |
760 MVXPE_SMI_OPCODE_WRITE | (val & MVXPE_SMI_DATA_MASK);
761 MVXPE_WRITE(sc, MVXPE_SMI, smi);
762
763 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
764 DELAY(1);
765 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
766 break;
767 }
768
769 mutex_exit(&mii_mutex);
770
771 if (i == MVXPE_PHY_TIMEOUT)
772 aprint_error_ifnet(ifp, "phy write timed out\n");
773 }
774
775 STATIC void
776 mvxpe_miibus_statchg(struct ifnet *ifp)
777 {
778
779 /* nothing to do */
780 }
781
782 /*
783 * Address Decoding Window
784 */
785 STATIC void
786 mvxpe_wininit(struct mvxpe_softc *sc, enum marvell_tags *tags)
787 {
788 device_t pdev = device_parent(sc->sc_dev);
789 uint64_t base;
790 uint32_t en, ac, size;
791 int window, target, attr, rv, i;
792
793 /* First disable all address decode windows */
794 en = MVXPE_BARE_EN_MASK;
795 MVXPE_WRITE(sc, MVXPE_BARE, en);
796
797 ac = 0;
798 for (window = 0, i = 0;
799 tags[i] != MARVELL_TAG_UNDEFINED && window < MVXPE_NWINDOW; i++) {
800 rv = marvell_winparams_by_tag(pdev, tags[i],
801 &target, &attr, &base, &size);
802 if (rv != 0 || size == 0)
803 continue;
804
805 if (base > 0xffffffffULL) {
806 if (window >= MVXPE_NREMAP) {
807 aprint_error_dev(sc->sc_dev,
808 "can't remap window %d\n", window);
809 continue;
810 }
811 MVXPE_WRITE(sc, MVXPE_HA(window),
812 (base >> 32) & 0xffffffff);
813 }
814
815 MVXPE_WRITE(sc, MVXPE_BASEADDR(window),
816 MVXPE_BASEADDR_TARGET(target) |
817 MVXPE_BASEADDR_ATTR(attr) |
818 MVXPE_BASEADDR_BASE(base));
819 MVXPE_WRITE(sc, MVXPE_S(window), MVXPE_S_SIZE(size));
820
821 DPRINTSC(sc, 1, "Window %d Base 0x%016llx: Size 0x%08x\n",
822 window, base, size);
823
824 en &= ~(1 << window);
825 /* set full access (r/w) */
826 ac |= MVXPE_EPAP_EPAR(window, MVXPE_EPAP_AC_FA);
827 window++;
828 }
829 /* allow to access decode window */
830 MVXPE_WRITE(sc, MVXPE_EPAP, ac);
831
832 MVXPE_WRITE(sc, MVXPE_BARE, en);
833 }
834
835 /*
836 * Device Register Initialization
837 * reset device registers to device driver default value.
838 * the device is not enabled here.
839 */
840 STATIC int
841 mvxpe_initreg(struct ifnet *ifp)
842 {
843 struct mvxpe_softc *sc = ifp->if_softc;
844 int serdes = 0;
845 uint32_t reg;
846 int q, i;
847
848 DPRINTIFNET(ifp, 1, "initializing device register\n");
849
850 /* Init TX/RX Queue Registers */
851 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
852 mvxpe_rx_lockq(sc, q);
853 if (mvxpe_rx_queue_init(ifp, q) != 0) {
854 aprint_error_ifnet(ifp,
855 "initialization failed: cannot initialize queue\n");
856 mvxpe_rx_unlockq(sc, q);
857 return ENOBUFS;
858 }
859 mvxpe_rx_unlockq(sc, q);
860
861 mvxpe_tx_lockq(sc, q);
862 if (mvxpe_tx_queue_init(ifp, q) != 0) {
863 aprint_error_ifnet(ifp,
864 "initialization failed: cannot initialize queue\n");
865 mvxpe_tx_unlockq(sc, q);
866 return ENOBUFS;
867 }
868 mvxpe_tx_unlockq(sc, q);
869 }
870
871 /* Tx MTU Limit */
872 MVXPE_WRITE(sc, MVXPE_TXMTU, MVXPE_MTU);
873
874 /* Check SGMII or SERDES(asume IPL/U-BOOT initialize this) */
875 reg = MVXPE_READ(sc, MVXPE_PMACC0);
876 if ((reg & MVXPE_PMACC0_PORTTYPE) != 0)
877 serdes = 1;
878
879 /* Ethernet Unit Control */
880 reg = MVXPE_READ(sc, MVXPE_EUC);
881 reg |= MVXPE_EUC_POLLING;
882 MVXPE_WRITE(sc, MVXPE_EUC, reg);
883
884 /* Auto Negotiation */
885 reg = MVXPE_PANC_MUSTSET; /* must write 0x1 */
886 reg |= MVXPE_PANC_FORCELINKFAIL;/* force link state down */
887 reg |= MVXPE_PANC_ANSPEEDEN; /* interface speed negotiation */
888 reg |= MVXPE_PANC_ANDUPLEXEN; /* negotiate duplex mode */
889 if (serdes) {
890 reg |= MVXPE_PANC_INBANDANEN; /* In Band negotiation */
891 reg |= MVXPE_PANC_INBANDANBYPASSEN; /* bypass negotiation */
892 reg |= MVXPE_PANC_SETFULLDX; /* set full-duplex on failure */
893 }
894 MVXPE_WRITE(sc, MVXPE_PANC, reg);
895
896 /* EEE: Low Power Idle */
897 reg = MVXPE_LPIC0_LILIMIT(MVXPE_LPI_LI);
898 reg |= MVXPE_LPIC0_TSLIMIT(MVXPE_LPI_TS);
899 MVXPE_WRITE(sc, MVXPE_LPIC0, reg);
900
901 reg = MVXPE_LPIC1_TWLIMIT(MVXPE_LPI_TS);
902 MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
903
904 reg = MVXPE_LPIC2_MUSTSET;
905 MVXPE_WRITE(sc, MVXPE_LPIC2, reg);
906
907 /* Port MAC Control set 0 */
908 reg = MVXPE_PMACC0_MUSTSET; /* must write 0x1 */
909 reg &= ~MVXPE_PMACC0_PORTEN; /* port is still disabled */
910 reg |= MVXPE_PMACC0_FRAMESIZELIMIT(MVXPE_MRU);
911 if (serdes)
912 reg |= MVXPE_PMACC0_PORTTYPE;
913 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
914
915 /* Port MAC Control set 1 is only used for loop-back test */
916
917 /* Port MAC Control set 2 */
918 reg = MVXPE_READ(sc, MVXPE_PMACC2);
919 reg &= (MVXPE_PMACC2_PCSEN | MVXPE_PMACC2_RGMIIEN);
920 reg |= MVXPE_PMACC2_MUSTSET;
921 MVXPE_WRITE(sc, MVXPE_PMACC2, reg);
922
923 /* Port MAC Control set 3 is used for IPG tune */
924
925 /* Port MAC Control set 4 is not used */
926
927 /* Port Configuration */
928 /* Use queue 0 only */
929 reg = MVXPE_READ(sc, MVXPE_PXC);
930 reg &= ~(MVXPE_PXC_RXQ_MASK | MVXPE_PXC_RXQARP_MASK |
931 MVXPE_PXC_TCPQ_MASK | MVXPE_PXC_UDPQ_MASK | MVXPE_PXC_BPDUQ_MASK);
932 MVXPE_WRITE(sc, MVXPE_PXC, reg);
933
934 /* Port Configuration Extended: enable Tx CRC generation */
935 reg = MVXPE_READ(sc, MVXPE_PXCX);
936 reg &= ~MVXPE_PXCX_TXCRCDIS;
937 MVXPE_WRITE(sc, MVXPE_PXCX, reg);
938
939 /* clear MIB counter registers(clear by read) */
940 for (i = 0; i < __arraycount(mvxpe_mib_list); i++)
941 MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum));
942
943 /* Set SDC register except IPGINT bits */
944 reg = MVXPE_SDC_RXBSZ_16_64BITWORDS;
945 reg |= MVXPE_SDC_TXBSZ_16_64BITWORDS;
946 reg |= MVXPE_SDC_BLMR;
947 reg |= MVXPE_SDC_BLMT;
948 MVXPE_WRITE(sc, MVXPE_SDC, reg);
949
950 return 0;
951 }
952
953 /*
954 * Descriptor Ring Controls for each of queues
955 */
956 STATIC void *
957 mvxpe_dma_memalloc(struct mvxpe_softc *sc, bus_dmamap_t *map, size_t size)
958 {
959 bus_dma_segment_t segs;
960 void *kva = NULL;
961 int nsegs;
962
963 /*
964 * Allocate the descriptor queues.
965 * struct mvxpe_ring_data contians array of descriptor per queue.
966 */
967 if (bus_dmamem_alloc(sc->sc_dmat,
968 size, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) {
969 aprint_error_dev(sc->sc_dev,
970 "can't alloc device memory (%zu bytes)\n", size);
971 return NULL;
972 }
973 if (bus_dmamem_map(sc->sc_dmat,
974 &segs, nsegs, size, &kva, BUS_DMA_NOWAIT)) {
975 aprint_error_dev(sc->sc_dev,
976 "can't map dma buffers (%zu bytes)\n", size);
977 goto fail1;
978 }
979
980 if (bus_dmamap_create(sc->sc_dmat,
981 size, 1, size, 0, BUS_DMA_NOWAIT, map)) {
982 aprint_error_dev(sc->sc_dev, "can't create dma map\n");
983 goto fail2;
984 }
985 if (bus_dmamap_load(sc->sc_dmat,
986 *map, kva, size, NULL, BUS_DMA_NOWAIT)) {
987 aprint_error_dev(sc->sc_dev, "can't load dma map\n");
988 goto fail3;
989 }
990 memset(kva, 0, size);
991 return kva;
992
993 fail3:
994 bus_dmamap_destroy(sc->sc_dmat, *map);
995 memset(map, 0, sizeof(*map));
996 fail2:
997 bus_dmamem_unmap(sc->sc_dmat, kva, size);
998 fail1:
999 bus_dmamem_free(sc->sc_dmat, &segs, nsegs);
1000 return NULL;
1001 }
1002
1003 STATIC int
1004 mvxpe_ring_alloc_queue(struct mvxpe_softc *sc, int q)
1005 {
1006 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1007 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1008
1009 /*
1010 * MVXPE_RX_RING_CNT and MVXPE_TX_RING_CNT is a hard limit of
1011 * queue length. real queue length is limited by
1012 * sc->sc_rx_ring[q].rx_queue_len and sc->sc_tx_ring[q].tx_queue_len.
1013 *
1014 * because descriptor ring reallocation needs reprogramming of
1015 * DMA registers, we allocate enough descriptor for hard limit
1016 * of queue length.
1017 */
1018 rx->rx_descriptors =
1019 mvxpe_dma_memalloc(sc, &rx->rx_descriptors_map,
1020 (sizeof(struct mvxpe_rx_desc) * MVXPE_RX_RING_CNT));
1021 if (rx->rx_descriptors == NULL)
1022 goto fail;
1023
1024 tx->tx_descriptors =
1025 mvxpe_dma_memalloc(sc, &tx->tx_descriptors_map,
1026 (sizeof(struct mvxpe_tx_desc) * MVXPE_TX_RING_CNT));
1027 if (tx->tx_descriptors == NULL)
1028 goto fail;
1029
1030 return 0;
1031 fail:
1032 mvxpe_ring_dealloc_queue(sc, q);
1033 aprint_error_dev(sc->sc_dev, "DMA Ring buffer allocation failure.\n");
1034 return ENOMEM;
1035 }
1036
1037 STATIC void
1038 mvxpe_ring_dealloc_queue(struct mvxpe_softc *sc, int q)
1039 {
1040 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1041 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1042 bus_dma_segment_t *segs;
1043 bus_size_t size;
1044 void *kva;
1045 int nsegs;
1046
1047 /* Rx */
1048 kva = (void *)MVXPE_RX_RING_MEM_VA(sc, q);
1049 if (kva) {
1050 segs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_segs;
1051 nsegs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_nsegs;
1052 size = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_mapsize;
1053
1054 bus_dmamap_unload(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1055 bus_dmamap_destroy(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1056 bus_dmamem_unmap(sc->sc_dmat, kva, size);
1057 bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1058 }
1059
1060 /* Tx */
1061 kva = (void *)MVXPE_TX_RING_MEM_VA(sc, q);
1062 if (kva) {
1063 segs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_segs;
1064 nsegs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_nsegs;
1065 size = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_mapsize;
1066
1067 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1068 bus_dmamap_destroy(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1069 bus_dmamem_unmap(sc->sc_dmat, kva, size);
1070 bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1071 }
1072
1073 /* Clear doungling pointers all */
1074 memset(rx, 0, sizeof(*rx));
1075 memset(tx, 0, sizeof(*tx));
1076 }
1077
1078 STATIC void
1079 mvxpe_ring_init_queue(struct mvxpe_softc *sc, int q)
1080 {
1081 struct mvxpe_rx_desc *rxd = MVXPE_RX_RING_MEM_VA(sc, q);
1082 struct mvxpe_tx_desc *txd = MVXPE_TX_RING_MEM_VA(sc, q);
1083 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1084 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1085 static const int rx_default_queue_len[] = {
1086 MVXPE_RX_QUEUE_LIMIT_0, MVXPE_RX_QUEUE_LIMIT_1,
1087 MVXPE_RX_QUEUE_LIMIT_2, MVXPE_RX_QUEUE_LIMIT_3,
1088 MVXPE_RX_QUEUE_LIMIT_4, MVXPE_RX_QUEUE_LIMIT_5,
1089 MVXPE_RX_QUEUE_LIMIT_6, MVXPE_RX_QUEUE_LIMIT_7,
1090 };
1091 static const int tx_default_queue_len[] = {
1092 MVXPE_TX_QUEUE_LIMIT_0, MVXPE_TX_QUEUE_LIMIT_1,
1093 MVXPE_TX_QUEUE_LIMIT_2, MVXPE_TX_QUEUE_LIMIT_3,
1094 MVXPE_TX_QUEUE_LIMIT_4, MVXPE_TX_QUEUE_LIMIT_5,
1095 MVXPE_TX_QUEUE_LIMIT_6, MVXPE_TX_QUEUE_LIMIT_7,
1096 };
1097 extern uint32_t mvTclk;
1098 int i;
1099
1100 /* Rx handle */
1101 for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1102 MVXPE_RX_DESC(sc, q, i) = &rxd[i];
1103 MVXPE_RX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_rx_desc) * i;
1104 MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1105 }
1106 mutex_init(&rx->rx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1107 rx->rx_dma = rx->rx_cpu = 0;
1108 rx->rx_queue_len = rx_default_queue_len[q];
1109 if (rx->rx_queue_len > MVXPE_RX_RING_CNT)
1110 rx->rx_queue_len = MVXPE_RX_RING_CNT;
1111 rx->rx_queue_th_received = rx->rx_queue_len / MVXPE_RXTH_RATIO;
1112 rx->rx_queue_th_free = rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
1113 rx->rx_queue_th_time = (mvTclk / 1000) / 2; /* 0.5 [ms] */
1114
1115 /* Tx handle */
1116 for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1117 MVXPE_TX_DESC(sc, q, i) = &txd[i];
1118 MVXPE_TX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_tx_desc) * i;
1119 MVXPE_TX_MBUF(sc, q, i) = NULL;
1120 /* Tx handle needs DMA map for busdma_load_mbuf() */
1121 if (bus_dmamap_create(sc->sc_dmat,
1122 mvxpbm_chunk_size(sc->sc_bm),
1123 MVXPE_TX_SEGLIMIT, mvxpbm_chunk_size(sc->sc_bm), 0,
1124 BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
1125 &MVXPE_TX_MAP(sc, q, i))) {
1126 aprint_error_dev(sc->sc_dev,
1127 "can't create dma map (tx ring %d)\n", i);
1128 }
1129 }
1130 mutex_init(&tx->tx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1131 tx->tx_dma = tx->tx_cpu = 0;
1132 tx->tx_queue_len = tx_default_queue_len[q];
1133 if (tx->tx_queue_len > MVXPE_TX_RING_CNT)
1134 tx->tx_queue_len = MVXPE_TX_RING_CNT;
1135 tx->tx_used = 0;
1136 tx->tx_queue_th_free = tx->tx_queue_len / MVXPE_TXTH_RATIO;
1137 }
1138
1139 STATIC void
1140 mvxpe_ring_flush_queue(struct mvxpe_softc *sc, int q)
1141 {
1142 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1143 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1144 struct mbuf *m;
1145 int i;
1146
1147 KASSERT_RX_MTX(sc, q);
1148 KASSERT_TX_MTX(sc, q);
1149
1150 /* Rx handle */
1151 for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1152 if (MVXPE_RX_PKTBUF(sc, q, i) == NULL)
1153 continue;
1154 mvxpbm_free_chunk(MVXPE_RX_PKTBUF(sc, q, i));
1155 MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1156 }
1157 rx->rx_dma = rx->rx_cpu = 0;
1158
1159 /* Tx handle */
1160 for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1161 m = MVXPE_TX_MBUF(sc, q, i);
1162 if (m == NULL)
1163 continue;
1164 MVXPE_TX_MBUF(sc, q, i) = NULL;
1165 bus_dmamap_sync(sc->sc_dmat,
1166 MVXPE_TX_MAP(sc, q, i), 0, m->m_pkthdr.len,
1167 BUS_DMASYNC_POSTWRITE);
1168 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, i));
1169 m_freem(m);
1170 }
1171 tx->tx_dma = tx->tx_cpu = 0;
1172 tx->tx_used = 0;
1173 }
1174
1175 STATIC void
1176 mvxpe_ring_sync_rx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1177 {
1178 int wrap;
1179
1180 KASSERT_RX_MTX(sc, q);
1181 KASSERT(count > 0 && count <= MVXPE_RX_RING_CNT);
1182 KASSERT(idx >= 0 && idx < MVXPE_RX_RING_CNT);
1183
1184 wrap = (idx + count) - MVXPE_RX_RING_CNT;
1185 if (wrap > 0) {
1186 count -= wrap;
1187 KASSERT(count > 0);
1188 bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1189 0, sizeof(struct mvxpe_rx_desc) * wrap, ops);
1190 }
1191 bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1192 MVXPE_RX_DESC_OFF(sc, q, idx),
1193 sizeof(struct mvxpe_rx_desc) * count, ops);
1194 }
1195
1196 STATIC void
1197 mvxpe_ring_sync_tx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1198 {
1199 int wrap = 0;
1200
1201 KASSERT_TX_MTX(sc, q);
1202 KASSERT(count > 0 && count <= MVXPE_TX_RING_CNT);
1203 KASSERT(idx >= 0 && idx < MVXPE_TX_RING_CNT);
1204
1205 wrap = (idx + count) - MVXPE_TX_RING_CNT;
1206 if (wrap > 0) {
1207 count -= wrap;
1208 bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1209 0, sizeof(struct mvxpe_tx_desc) * wrap, ops);
1210 }
1211 bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1212 MVXPE_TX_DESC_OFF(sc, q, idx),
1213 sizeof(struct mvxpe_tx_desc) * count, ops);
1214 }
1215
1216 /*
1217 * Rx/Tx Queue Control
1218 */
1219 STATIC int
1220 mvxpe_rx_queue_init(struct ifnet *ifp, int q)
1221 {
1222 struct mvxpe_softc *sc = ifp->if_softc;
1223 uint32_t reg;
1224
1225 KASSERT_RX_MTX(sc, q);
1226 KASSERT(MVXPE_RX_RING_MEM_PA(sc, q) != 0);
1227
1228 /* descriptor address */
1229 MVXPE_WRITE(sc, MVXPE_PRXDQA(q), MVXPE_RX_RING_MEM_PA(sc, q));
1230
1231 /* Rx buffer size and descriptor ring size */
1232 reg = MVXPE_PRXDQS_BUFFERSIZE(mvxpbm_chunk_size(sc->sc_bm) >> 3);
1233 reg |= MVXPE_PRXDQS_DESCRIPTORSQUEUESIZE(MVXPE_RX_RING_CNT);
1234 MVXPE_WRITE(sc, MVXPE_PRXDQS(q), reg);
1235 DPRINTIFNET(ifp, 1, "PRXDQS(%d): %#x\n",
1236 q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
1237
1238 /* Rx packet offset address */
1239 reg = MVXPE_PRXC_PACKETOFFSET(mvxpbm_packet_offset(sc->sc_bm) >> 3);
1240 MVXPE_WRITE(sc, MVXPE_PRXC(q), reg);
1241 DPRINTIFNET(ifp, 1, "PRXC(%d): %#x\n",
1242 q, MVXPE_READ(sc, MVXPE_PRXC(q)));
1243
1244 /* Rx DMA SNOOP */
1245 reg = MVXPE_PRXSNP_SNOOPNOOFBYTES(MVXPE_MRU);
1246 reg |= MVXPE_PRXSNP_L2DEPOSITNOOFBYTES(MVXPE_MRU);
1247 MVXPE_WRITE(sc, MVXPE_PRXSNP(q), reg);
1248
1249 /* if DMA is not working, register is not updated */
1250 KASSERT(MVXPE_READ(sc, MVXPE_PRXDQA(q)) == MVXPE_RX_RING_MEM_PA(sc, q));
1251 return 0;
1252 }
1253
1254 STATIC int
1255 mvxpe_tx_queue_init(struct ifnet *ifp, int q)
1256 {
1257 struct mvxpe_softc *sc = ifp->if_softc;
1258 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1259 uint32_t reg;
1260
1261 KASSERT_TX_MTX(sc, q);
1262 KASSERT(MVXPE_TX_RING_MEM_PA(sc, q) != 0);
1263
1264 /* descriptor address */
1265 MVXPE_WRITE(sc, MVXPE_PTXDQA(q), MVXPE_TX_RING_MEM_PA(sc, q));
1266
1267 /* Tx threshold, and descriptor ring size */
1268 reg = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1269 reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
1270 MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1271 DPRINTIFNET(ifp, 1, "PTXDQS(%d): %#x\n",
1272 q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
1273
1274 /* if DMA is not working, register is not updated */
1275 KASSERT(MVXPE_READ(sc, MVXPE_PTXDQA(q)) == MVXPE_TX_RING_MEM_PA(sc, q));
1276 return 0;
1277 }
1278
1279 STATIC int
1280 mvxpe_rx_queue_enable(struct ifnet *ifp, int q)
1281 {
1282 struct mvxpe_softc *sc = ifp->if_softc;
1283 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1284 uint32_t reg;
1285
1286 KASSERT_RX_MTX(sc, q);
1287
1288 /* Set Rx interrupt threshold */
1289 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1290 reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
1291 MVXPE_WRITE(sc, MVXPE_PRXDQTH(q), reg);
1292
1293 reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
1294 MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1295
1296 /* Unmask RXTX_TH Intr. */
1297 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1298 reg |= MVXPE_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1299 reg |= MVXPE_PRXTXTI_RDTAQ(q); /* Rx Descriptor Alart */
1300 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1301
1302 /* Enable Rx queue */
1303 reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1304 reg |= MVXPE_RQC_ENQ(q);
1305 MVXPE_WRITE(sc, MVXPE_RQC, reg);
1306
1307 return 0;
1308 }
1309
1310 STATIC int
1311 mvxpe_tx_queue_enable(struct ifnet *ifp, int q)
1312 {
1313 struct mvxpe_softc *sc = ifp->if_softc;
1314 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1315 uint32_t reg;
1316
1317 KASSERT_TX_MTX(sc, q);
1318
1319 /* Set Tx interrupt threshold */
1320 reg = MVXPE_READ(sc, MVXPE_PTXDQS(q));
1321 reg &= ~MVXPE_PTXDQS_TBT_MASK; /* keep queue size */
1322 reg |= MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1323 MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1324
1325 /* Unmask RXTX_TH Intr. */
1326 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1327 reg |= MVXPE_PRXTXTI_TBTCQ(q); /* Tx Threshold cross */
1328 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1329
1330 /* Don't update MVXPE_TQC here, there is no packet yet. */
1331 return 0;
1332 }
1333
1334 STATIC void
1335 mvxpe_rx_lockq(struct mvxpe_softc *sc, int q)
1336 {
1337 KASSERT(q >= 0);
1338 KASSERT(q < MVXPE_QUEUE_SIZE);
1339 mutex_enter(&sc->sc_rx_ring[q].rx_ring_mtx);
1340 }
1341
1342 STATIC void
1343 mvxpe_rx_unlockq(struct mvxpe_softc *sc, int q)
1344 {
1345 KASSERT(q >= 0);
1346 KASSERT(q < MVXPE_QUEUE_SIZE);
1347 mutex_exit(&sc->sc_rx_ring[q].rx_ring_mtx);
1348 }
1349
1350 STATIC void
1351 mvxpe_tx_lockq(struct mvxpe_softc *sc, int q)
1352 {
1353 KASSERT(q >= 0);
1354 KASSERT(q < MVXPE_QUEUE_SIZE);
1355 mutex_enter(&sc->sc_tx_ring[q].tx_ring_mtx);
1356 }
1357
1358 STATIC void
1359 mvxpe_tx_unlockq(struct mvxpe_softc *sc, int q)
1360 {
1361 KASSERT(q >= 0);
1362 KASSERT(q < MVXPE_QUEUE_SIZE);
1363 mutex_exit(&sc->sc_tx_ring[q].tx_ring_mtx);
1364 }
1365
1366 /*
1367 * Interrupt Handlers
1368 */
1369 STATIC void
1370 mvxpe_disable_intr(struct mvxpe_softc *sc)
1371 {
1372 MVXPE_WRITE(sc, MVXPE_EUIM, 0);
1373 MVXPE_WRITE(sc, MVXPE_EUIC, 0);
1374 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, 0);
1375 MVXPE_WRITE(sc, MVXPE_PRXTXTIC, 0);
1376 MVXPE_WRITE(sc, MVXPE_PRXTXIM, 0);
1377 MVXPE_WRITE(sc, MVXPE_PRXTXIC, 0);
1378 MVXPE_WRITE(sc, MVXPE_PMIM, 0);
1379 MVXPE_WRITE(sc, MVXPE_PMIC, 0);
1380 MVXPE_WRITE(sc, MVXPE_PIE, 0);
1381 }
1382
1383 STATIC void
1384 mvxpe_enable_intr(struct mvxpe_softc *sc)
1385 {
1386 uint32_t reg;
1387
1388 /* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1389 reg = MVXPE_READ(sc, MVXPE_PMIM);
1390 reg |= MVXPE_PMI_PHYSTATUSCHNG;
1391 reg |= MVXPE_PMI_LINKCHANGE;
1392 reg |= MVXPE_PMI_IAE;
1393 reg |= MVXPE_PMI_RXOVERRUN;
1394 reg |= MVXPE_PMI_RXCRCERROR;
1395 reg |= MVXPE_PMI_RXLARGEPACKET;
1396 reg |= MVXPE_PMI_TXUNDRN;
1397 #if 0
1398 /*
1399 * The device may raise false interrupts for SERDES even if the device
1400 * is not configured to use SERDES connection.
1401 */
1402 reg |= MVXPE_PMI_PRBSERROR;
1403 reg |= MVXPE_PMI_SRSE;
1404 #else
1405 reg &= ~MVXPE_PMI_PRBSERROR;
1406 reg &= ~MVXPE_PMI_SRSE;
1407 #endif
1408 reg |= MVXPE_PMI_TREQ_MASK;
1409 MVXPE_WRITE(sc, MVXPE_PMIM, reg);
1410
1411 /* Enable Summary Bit to check all interrupt cause. */
1412 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1413 reg |= MVXPE_PRXTXTI_PMISCICSUMMARY;
1414 reg |= MVXPE_PRXTXTI_PTXERRORSUMMARY;
1415 reg |= MVXPE_PRXTXTI_PRXTXICSUMMARY;
1416 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1417
1418 /* Enable All Queue Interrupt */
1419 reg = MVXPE_READ(sc, MVXPE_PIE);
1420 reg |= MVXPE_PIE_RXPKTINTRPTENB_MASK;
1421 reg |= MVXPE_PIE_TXPKTINTRPTENB_MASK;
1422 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1423 }
1424
1425 STATIC int
1426 mvxpe_rxtxth_intr(void *arg)
1427 {
1428 struct mvxpe_softc *sc = arg;
1429 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1430 uint32_t ic, queues, datum = 0;
1431
1432 DPRINTSC(sc, 2, "got RXTX_TH_Intr\n");
1433 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtxth);
1434
1435 mvxpe_sc_lock(sc);
1436 ic = MVXPE_READ(sc, MVXPE_PRXTXTIC);
1437 if (ic == 0) {
1438 mvxpe_sc_unlock(sc);
1439 return 0;
1440 }
1441 MVXPE_WRITE(sc, MVXPE_PRXTXTIC, ~ic);
1442 datum = datum ^ ic;
1443
1444 DPRINTIFNET(ifp, 2, "PRXTXTIC: %#x\n", ic);
1445
1446 /* ack maintance interrupt first */
1447 if (ic & MVXPE_PRXTXTI_PTXERRORSUMMARY) {
1448 DPRINTIFNET(ifp, 1, "PRXTXTIC: +PTXERRORSUMMARY\n");
1449 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtxth_txerr);
1450 }
1451 if ((ic & MVXPE_PRXTXTI_PMISCICSUMMARY)) {
1452 DPRINTIFNET(ifp, 2, "PTXTXTIC: +PMISCICSUMMARY\n");
1453 mvxpe_misc_intr(sc);
1454 }
1455 if (ic & MVXPE_PRXTXTI_PRXTXICSUMMARY) {
1456 DPRINTIFNET(ifp, 2, "PTXTXTIC: +PRXTXICSUMMARY\n");
1457 mvxpe_rxtx_intr(sc);
1458 }
1459 if (!(ifp->if_flags & IFF_RUNNING)) {
1460 mvxpe_sc_unlock(sc);
1461 return 1;
1462 }
1463
1464 /* RxTxTH interrupt */
1465 queues = MVXPE_PRXTXTI_GET_RBICTAPQ(ic);
1466 if (queues) {
1467 DPRINTIFNET(ifp, 2, "PRXTXTIC: +RXEOF\n");
1468 mvxpe_rx(sc, queues);
1469 }
1470 queues = MVXPE_PRXTXTI_GET_TBTCQ(ic);
1471 if (queues) {
1472 DPRINTIFNET(ifp, 2, "PRXTXTIC: +TBTCQ\n");
1473 mvxpe_tx_complete(sc, queues);
1474 }
1475 queues = MVXPE_PRXTXTI_GET_RDTAQ(ic);
1476 if (queues) {
1477 DPRINTIFNET(ifp, 2, "PRXTXTIC: +RDTAQ\n");
1478 mvxpe_rx_refill(sc, queues);
1479 }
1480 mvxpe_sc_unlock(sc);
1481
1482 if (!IFQ_IS_EMPTY(&ifp->if_snd))
1483 mvxpe_start(ifp);
1484
1485 rnd_add_uint32(&sc->sc_rnd_source, datum);
1486
1487 return 1;
1488 }
1489
1490 STATIC int
1491 mvxpe_misc_intr(void *arg)
1492 {
1493 struct mvxpe_softc *sc = arg;
1494 #ifdef MVXPE_DEBUG
1495 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1496 #endif
1497 uint32_t ic;
1498 uint32_t datum = 0;
1499 int claimed = 0;
1500
1501 DPRINTSC(sc, 2, "got MISC_INTR\n");
1502 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_misc);
1503
1504 KASSERT_SC_MTX(sc);
1505
1506 for (;;) {
1507 ic = MVXPE_READ(sc, MVXPE_PMIC);
1508 ic &= MVXPE_READ(sc, MVXPE_PMIM);
1509 if (ic == 0)
1510 break;
1511 MVXPE_WRITE(sc, MVXPE_PMIC, ~ic);
1512 datum = datum ^ ic;
1513 claimed = 1;
1514
1515 DPRINTIFNET(ifp, 2, "PMIC=%#x\n", ic);
1516 if (ic & MVXPE_PMI_PHYSTATUSCHNG) {
1517 DPRINTIFNET(ifp, 2, "+PHYSTATUSCHNG\n");
1518 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_phystatuschng);
1519 }
1520 if (ic & MVXPE_PMI_LINKCHANGE) {
1521 DPRINTIFNET(ifp, 2, "+LINKCHANGE\n");
1522 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_linkchange);
1523 mvxpe_linkupdate(sc);
1524 }
1525 if (ic & MVXPE_PMI_IAE) {
1526 DPRINTIFNET(ifp, 2, "+IAE\n");
1527 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_iae);
1528 }
1529 if (ic & MVXPE_PMI_RXOVERRUN) {
1530 DPRINTIFNET(ifp, 2, "+RXOVERRUN\n");
1531 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxoverrun);
1532 }
1533 if (ic & MVXPE_PMI_RXCRCERROR) {
1534 DPRINTIFNET(ifp, 2, "+RXCRCERROR\n");
1535 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxcrc);
1536 }
1537 if (ic & MVXPE_PMI_RXLARGEPACKET) {
1538 DPRINTIFNET(ifp, 2, "+RXLARGEPACKET\n");
1539 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxlargepacket);
1540 }
1541 if (ic & MVXPE_PMI_TXUNDRN) {
1542 DPRINTIFNET(ifp, 2, "+TXUNDRN\n");
1543 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txunderrun);
1544 }
1545 if (ic & MVXPE_PMI_PRBSERROR) {
1546 DPRINTIFNET(ifp, 2, "+PRBSERROR\n");
1547 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_prbserr);
1548 }
1549 if (ic & MVXPE_PMI_TREQ_MASK) {
1550 DPRINTIFNET(ifp, 2, "+TREQ\n");
1551 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txreq);
1552 }
1553 }
1554 if (datum)
1555 rnd_add_uint32(&sc->sc_rnd_source, datum);
1556
1557 return claimed;
1558 }
1559
1560 STATIC int
1561 mvxpe_rxtx_intr(void *arg)
1562 {
1563 struct mvxpe_softc *sc = arg;
1564 #ifdef MVXPE_DEBUG
1565 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1566 #endif
1567 uint32_t datum = 0;
1568 uint32_t prxtxic;
1569 int claimed = 0;
1570
1571 DPRINTSC(sc, 2, "got RXTX_Intr\n");
1572 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtx);
1573
1574 KASSERT_SC_MTX(sc);
1575
1576 for (;;) {
1577 prxtxic = MVXPE_READ(sc, MVXPE_PRXTXIC);
1578 prxtxic &= MVXPE_READ(sc, MVXPE_PRXTXIM);
1579 if (prxtxic == 0)
1580 break;
1581 MVXPE_WRITE(sc, MVXPE_PRXTXIC, ~prxtxic);
1582 datum = datum ^ prxtxic;
1583 claimed = 1;
1584
1585 DPRINTSC(sc, 2, "PRXTXIC: %#x\n", prxtxic);
1586
1587 if (prxtxic & MVXPE_PRXTXI_RREQ_MASK) {
1588 DPRINTIFNET(ifp, 1, "Rx Resource Error.\n");
1589 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rreq);
1590 }
1591 if (prxtxic & MVXPE_PRXTXI_RPQ_MASK) {
1592 DPRINTIFNET(ifp, 1, "Rx Packet in Queue.\n");
1593 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rpq);
1594 }
1595 if (prxtxic & MVXPE_PRXTXI_TBRQ_MASK) {
1596 DPRINTIFNET(ifp, 1, "Tx Buffer Return.\n");
1597 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_tbrq);
1598 }
1599 if (prxtxic & MVXPE_PRXTXI_PRXTXTHICSUMMARY) {
1600 DPRINTIFNET(ifp, 1, "PRXTXTHIC Sumary\n");
1601 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rxtxth);
1602 }
1603 if (prxtxic & MVXPE_PRXTXI_PTXERRORSUMMARY) {
1604 DPRINTIFNET(ifp, 1, "PTXERROR Sumary\n");
1605 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_txerr);
1606 }
1607 if (prxtxic & MVXPE_PRXTXI_PMISCICSUMMARY) {
1608 DPRINTIFNET(ifp, 1, "PMISCIC Sumary\n");
1609 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_misc);
1610 }
1611 }
1612 if (datum)
1613 rnd_add_uint32(&sc->sc_rnd_source, datum);
1614
1615 return claimed;
1616 }
1617
1618 STATIC void
1619 mvxpe_tick(void *arg)
1620 {
1621 struct mvxpe_softc *sc = arg;
1622 struct mii_data *mii = &sc->sc_mii;
1623
1624 mvxpe_sc_lock(sc);
1625
1626 mii_tick(mii);
1627 mii_pollstat(&sc->sc_mii);
1628
1629 /* read mib registers(clear by read) */
1630 mvxpe_update_mib(sc);
1631
1632 /* read counter registers(clear by read) */
1633 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pdfc,
1634 MVXPE_READ(sc, MVXPE_PDFC));
1635 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pofc,
1636 MVXPE_READ(sc, MVXPE_POFC));
1637 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txbadfcs,
1638 MVXPE_READ(sc, MVXPE_TXBADFCS));
1639 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txdropped,
1640 MVXPE_READ(sc, MVXPE_TXDROPPED));
1641 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_lpic,
1642 MVXPE_READ(sc, MVXPE_LPIC));
1643
1644 mvxpe_sc_unlock(sc);
1645
1646 callout_schedule(&sc->sc_tick_ch, hz);
1647 }
1648
1649
1650 /*
1651 * struct ifnet and mii callbacks
1652 */
1653 STATIC void
1654 mvxpe_start(struct ifnet *ifp)
1655 {
1656 struct mvxpe_softc *sc = ifp->if_softc;
1657 struct mbuf *m;
1658 int q;
1659
1660 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1661 DPRINTIFNET(ifp, 1, "not running\n");
1662 return;
1663 }
1664
1665 mvxpe_sc_lock(sc);
1666 if (!MVXPE_IS_LINKUP(sc)) {
1667 /* If Link is DOWN, can't start TX */
1668 DPRINTIFNET(ifp, 1, "link fail\n");
1669 for (;;) {
1670 /*
1671 * discard stale packets all.
1672 * these may confuse DAD, ARP or timer based protocols.
1673 */
1674 IFQ_DEQUEUE(&ifp->if_snd, m);
1675 if (m == NULL)
1676 break;
1677 m_freem(m);
1678 }
1679 mvxpe_sc_unlock(sc);
1680 return;
1681 }
1682 for (;;) {
1683 /*
1684 * don't use IFQ_POLL().
1685 * there is lock problem between IFQ_POLL and IFQ_DEQUEUE
1686 * on SMP enabled networking stack.
1687 */
1688 IFQ_DEQUEUE(&ifp->if_snd, m);
1689 if (m == NULL)
1690 break;
1691
1692 q = mvxpe_tx_queue_select(sc, m);
1693 if (q < 0)
1694 break;
1695 /* mutex is held in mvxpe_tx_queue_select() */
1696
1697 if (mvxpe_tx_queue(sc, m, q) != 0) {
1698 DPRINTIFNET(ifp, 1, "cannot add packet to tx ring\n");
1699 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txerr);
1700 mvxpe_tx_unlockq(sc, q);
1701 break;
1702 }
1703 mvxpe_tx_unlockq(sc, q);
1704 KASSERT(sc->sc_tx_ring[q].tx_used >= 0);
1705 KASSERT(sc->sc_tx_ring[q].tx_used <=
1706 sc->sc_tx_ring[q].tx_queue_len);
1707 DPRINTIFNET(ifp, 1, "a packet is added to tx ring\n");
1708 sc->sc_tx_pending++;
1709 ifp->if_opackets++;
1710 ifp->if_timer = 1;
1711 sc->sc_wdogsoft = 1;
1712 bpf_mtap(ifp, m);
1713 }
1714 mvxpe_sc_unlock(sc);
1715
1716 return;
1717 }
1718
1719 STATIC int
1720 mvxpe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1721 {
1722 struct mvxpe_softc *sc = ifp->if_softc;
1723 struct ifreq *ifr = data;
1724 int error = 0;
1725 int s;
1726
1727 switch (cmd) {
1728 case SIOCGIFMEDIA:
1729 case SIOCSIFMEDIA:
1730 DPRINTIFNET(ifp, 2, "mvxpe_ioctl MEDIA\n");
1731 s = splnet(); /* XXX: is there suitable mutex? */
1732 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1733 splx(s);
1734 break;
1735 default:
1736 DPRINTIFNET(ifp, 2, "mvxpe_ioctl ETHER\n");
1737 error = ether_ioctl(ifp, cmd, data);
1738 if (error == ENETRESET) {
1739 if (ifp->if_flags & IFF_RUNNING) {
1740 mvxpe_sc_lock(sc);
1741 mvxpe_filter_setup(sc);
1742 mvxpe_sc_unlock(sc);
1743 }
1744 error = 0;
1745 }
1746 break;
1747 }
1748
1749 return error;
1750 }
1751
1752 STATIC int
1753 mvxpe_init(struct ifnet *ifp)
1754 {
1755 struct mvxpe_softc *sc = ifp->if_softc;
1756 struct mii_data *mii = &sc->sc_mii;
1757 uint32_t reg;
1758 int q;
1759
1760 mvxpe_sc_lock(sc);
1761
1762 /* Start DMA Engine */
1763 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
1764 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
1765 MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
1766
1767 /* Enable port */
1768 reg = MVXPE_READ(sc, MVXPE_PMACC0);
1769 reg |= MVXPE_PMACC0_PORTEN;
1770 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1771
1772 /* Link up */
1773 mvxpe_linkup(sc);
1774
1775 /* Enable All Queue and interrupt of each Queue */
1776 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1777 mvxpe_rx_lockq(sc, q);
1778 mvxpe_rx_queue_enable(ifp, q);
1779 mvxpe_rx_queue_refill(sc, q);
1780 mvxpe_rx_unlockq(sc, q);
1781
1782 mvxpe_tx_lockq(sc, q);
1783 mvxpe_tx_queue_enable(ifp, q);
1784 mvxpe_tx_unlockq(sc, q);
1785 }
1786
1787 /* Enable interrupt */
1788 mvxpe_enable_intr(sc);
1789
1790 /* Set Counter */
1791 callout_schedule(&sc->sc_tick_ch, hz);
1792
1793 /* Media check */
1794 mii_mediachg(mii);
1795
1796 ifp->if_flags |= IFF_RUNNING;
1797 ifp->if_flags &= ~IFF_OACTIVE;
1798
1799 mvxpe_sc_unlock(sc);
1800 return 0;
1801 }
1802
1803 /* ARGSUSED */
1804 STATIC void
1805 mvxpe_stop(struct ifnet *ifp, int disable)
1806 {
1807 struct mvxpe_softc *sc = ifp->if_softc;
1808 uint32_t reg;
1809 int q, cnt;
1810
1811 DPRINTIFNET(ifp, 1, "stop device dma and interrupts.\n");
1812
1813 mvxpe_sc_lock(sc);
1814
1815 callout_stop(&sc->sc_tick_ch);
1816
1817 /* Link down */
1818 mvxpe_linkdown(sc);
1819
1820 /* Disable Rx interrupt */
1821 reg = MVXPE_READ(sc, MVXPE_PIE);
1822 reg &= ~MVXPE_PIE_RXPKTINTRPTENB_MASK;
1823 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1824
1825 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1826 reg &= ~MVXPE_PRXTXTI_RBICTAPQ_MASK;
1827 reg &= ~MVXPE_PRXTXTI_RDTAQ_MASK;
1828 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1829
1830 /* Wait for all Rx activity to terminate. */
1831 reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1832 reg = MVXPE_RQC_DIS(reg);
1833 MVXPE_WRITE(sc, MVXPE_RQC, reg);
1834 cnt = 0;
1835 do {
1836 if (cnt >= RX_DISABLE_TIMEOUT) {
1837 aprint_error_ifnet(ifp,
1838 "timeout for RX stopped. rqc 0x%x\n", reg);
1839 break;
1840 }
1841 cnt++;
1842 reg = MVXPE_READ(sc, MVXPE_RQC);
1843 } while (reg & MVXPE_RQC_EN_MASK);
1844
1845 /* Wait for all Tx activety to terminate. */
1846 reg = MVXPE_READ(sc, MVXPE_PIE);
1847 reg &= ~MVXPE_PIE_TXPKTINTRPTENB_MASK;
1848 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1849
1850 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1851 reg &= ~MVXPE_PRXTXTI_TBTCQ_MASK;
1852 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1853
1854 reg = MVXPE_READ(sc, MVXPE_TQC) & MVXPE_TQC_EN_MASK;
1855 reg = MVXPE_TQC_DIS(reg);
1856 MVXPE_WRITE(sc, MVXPE_TQC, reg);
1857 cnt = 0;
1858 do {
1859 if (cnt >= TX_DISABLE_TIMEOUT) {
1860 aprint_error_ifnet(ifp,
1861 "timeout for TX stopped. tqc 0x%x\n", reg);
1862 break;
1863 }
1864 cnt++;
1865 reg = MVXPE_READ(sc, MVXPE_TQC);
1866 } while (reg & MVXPE_TQC_EN_MASK);
1867
1868 /* Wait for all Tx FIFO is empty */
1869 cnt = 0;
1870 do {
1871 if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1872 aprint_error_ifnet(ifp,
1873 "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1874 break;
1875 }
1876 cnt++;
1877 reg = MVXPE_READ(sc, MVXPE_PS0);
1878 } while (!(reg & MVXPE_PS0_TXFIFOEMP) && (reg & MVXPE_PS0_TXINPROG));
1879
1880 /* Reset the MAC Port Enable bit */
1881 reg = MVXPE_READ(sc, MVXPE_PMACC0);
1882 reg &= ~MVXPE_PMACC0_PORTEN;
1883 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1884
1885 /* Disable each of queue */
1886 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1887 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1888
1889 mvxpe_rx_lockq(sc, q);
1890 mvxpe_tx_lockq(sc, q);
1891
1892 /* Disable Rx packet buffer refill request */
1893 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1894 reg |= MVXPE_PRXDQTH_NODT(0);
1895 MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1896
1897 if (disable) {
1898 /*
1899 * Hold Reset state of DMA Engine
1900 * (must write 0x0 to restart it)
1901 */
1902 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
1903 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
1904 mvxpe_ring_flush_queue(sc, q);
1905 }
1906
1907 mvxpe_tx_unlockq(sc, q);
1908 mvxpe_rx_unlockq(sc, q);
1909 }
1910
1911 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1912
1913 mvxpe_sc_unlock(sc);
1914 }
1915
1916 STATIC void
1917 mvxpe_watchdog(struct ifnet *ifp)
1918 {
1919 struct mvxpe_softc *sc = ifp->if_softc;
1920 int q;
1921
1922 mvxpe_sc_lock(sc);
1923
1924 /*
1925 * Reclaim first as there is a possibility of losing Tx completion
1926 * interrupts.
1927 */
1928 mvxpe_tx_complete(sc, 0xff);
1929 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1930 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1931
1932 if (tx->tx_dma != tx->tx_cpu) {
1933 if (sc->sc_wdogsoft) {
1934 /*
1935 * There is race condition between CPU and DMA
1936 * engine. When DMA engine encounters queue end,
1937 * it clears MVXPE_TQC_ENQ bit.
1938 * XXX: how about enhanced mode?
1939 */
1940 MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
1941 ifp->if_timer = 5;
1942 sc->sc_wdogsoft = 0;
1943 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_wdogsoft);
1944 } else {
1945 aprint_error_ifnet(ifp, "watchdog timeout\n");
1946 ifp->if_oerrors++;
1947 mvxpe_linkreset(sc);
1948 mvxpe_sc_unlock(sc);
1949
1950 /* trigger reinitialize sequence */
1951 mvxpe_stop(ifp, 1);
1952 mvxpe_init(ifp);
1953
1954 mvxpe_sc_lock(sc);
1955 }
1956 }
1957 }
1958 mvxpe_sc_unlock(sc);
1959 }
1960
1961 STATIC int
1962 mvxpe_ifflags_cb(struct ethercom *ec)
1963 {
1964 struct ifnet *ifp = &ec->ec_if;
1965 struct mvxpe_softc *sc = ifp->if_softc;
1966 int change = ifp->if_flags ^ sc->sc_if_flags;
1967
1968 mvxpe_sc_lock(sc);
1969
1970 if (change != 0)
1971 sc->sc_if_flags = ifp->if_flags;
1972
1973 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) {
1974 mvxpe_sc_unlock(sc);
1975 return ENETRESET;
1976 }
1977
1978 if ((change & IFF_PROMISC) != 0)
1979 mvxpe_filter_setup(sc);
1980
1981 if ((change & IFF_UP) != 0)
1982 mvxpe_linkreset(sc);
1983
1984 mvxpe_sc_unlock(sc);
1985 return 0;
1986 }
1987
1988 STATIC int
1989 mvxpe_mediachange(struct ifnet *ifp)
1990 {
1991 return ether_mediachange(ifp);
1992 }
1993
1994 STATIC void
1995 mvxpe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1996 {
1997 ether_mediastatus(ifp, ifmr);
1998 }
1999
2000 /*
2001 * Link State Notify
2002 */
2003 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc)
2004 {
2005 int linkup; /* bool */
2006
2007 KASSERT_SC_MTX(sc);
2008
2009 /* tell miibus */
2010 mii_pollstat(&sc->sc_mii);
2011
2012 /* syslog */
2013 linkup = MVXPE_IS_LINKUP(sc);
2014 if (sc->sc_linkstate == linkup)
2015 return;
2016
2017 #ifdef DEBUG
2018 log(LOG_DEBUG,
2019 "%s: link %s\n", device_xname(sc->sc_dev), linkup ? "up" : "down");
2020 #endif
2021 if (linkup)
2022 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_up);
2023 else
2024 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_down);
2025
2026 sc->sc_linkstate = linkup;
2027 }
2028
2029 STATIC void
2030 mvxpe_linkup(struct mvxpe_softc *sc)
2031 {
2032 uint32_t reg;
2033
2034 KASSERT_SC_MTX(sc);
2035
2036 /* set EEE parameters */
2037 reg = MVXPE_READ(sc, MVXPE_LPIC1);
2038 if (sc->sc_cf.cf_lpi)
2039 reg |= MVXPE_LPIC1_LPIRE;
2040 else
2041 reg &= ~MVXPE_LPIC1_LPIRE;
2042 MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
2043
2044 /* set auto-negotiation parameters */
2045 reg = MVXPE_READ(sc, MVXPE_PANC);
2046 if (sc->sc_cf.cf_fc) {
2047 /* flow control negotiation */
2048 reg |= MVXPE_PANC_PAUSEADV;
2049 reg |= MVXPE_PANC_ANFCEN;
2050 }
2051 else {
2052 reg &= ~MVXPE_PANC_PAUSEADV;
2053 reg &= ~MVXPE_PANC_ANFCEN;
2054 }
2055 reg &= ~MVXPE_PANC_FORCELINKFAIL;
2056 reg &= ~MVXPE_PANC_FORCELINKPASS;
2057 MVXPE_WRITE(sc, MVXPE_PANC, reg);
2058
2059 mii_mediachg(&sc->sc_mii);
2060 }
2061
2062 STATIC void
2063 mvxpe_linkdown(struct mvxpe_softc *sc)
2064 {
2065 struct mii_softc *mii;
2066 uint32_t reg;
2067
2068 KASSERT_SC_MTX(sc);
2069 return;
2070
2071 reg = MVXPE_READ(sc, MVXPE_PANC);
2072 reg |= MVXPE_PANC_FORCELINKFAIL;
2073 reg &= MVXPE_PANC_FORCELINKPASS;
2074 MVXPE_WRITE(sc, MVXPE_PANC, reg);
2075
2076 mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2077 if (mii)
2078 mii_phy_down(mii);
2079 }
2080
2081 STATIC void
2082 mvxpe_linkreset(struct mvxpe_softc *sc)
2083 {
2084 struct mii_softc *mii;
2085
2086 KASSERT_SC_MTX(sc);
2087
2088 /* force reset PHY first */
2089 mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2090 if (mii)
2091 mii_phy_reset(mii);
2092
2093 /* reinit MAC and PHY */
2094 mvxpe_linkdown(sc);
2095 if ((sc->sc_if_flags & IFF_UP) != 0)
2096 mvxpe_linkup(sc);
2097 }
2098
2099 /*
2100 * Tx Subroutines
2101 */
2102 STATIC int
2103 mvxpe_tx_queue_select(struct mvxpe_softc *sc, struct mbuf *m)
2104 {
2105 int q = 0;
2106
2107 /* XXX: get attribute from ALTQ framework? */
2108 mvxpe_tx_lockq(sc, q);
2109 return 0;
2110 }
2111
2112 STATIC int
2113 mvxpe_tx_queue(struct mvxpe_softc *sc, struct mbuf *m, int q)
2114 {
2115 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2116 bus_dma_segment_t *txsegs;
2117 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2118 struct mvxpe_tx_desc *t = NULL;
2119 uint32_t ptxsu;
2120 int txnsegs;
2121 int start, used;
2122 int i;
2123
2124 KASSERT_TX_MTX(sc, q);
2125 KASSERT(tx->tx_used >= 0);
2126 KASSERT(tx->tx_used <= tx->tx_queue_len);
2127
2128 /* load mbuf using dmamap of 1st descriptor */
2129 if (bus_dmamap_load_mbuf(sc->sc_dmat,
2130 MVXPE_TX_MAP(sc, q, tx->tx_cpu), m, BUS_DMA_NOWAIT) != 0) {
2131 m_freem(m);
2132 return ENOBUFS;
2133 }
2134 txsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_segs;
2135 txnsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_nsegs;
2136 if (txnsegs <= 0 || (txnsegs + tx->tx_used) > tx->tx_queue_len) {
2137 /* we have no enough descriptors or mbuf is broken */
2138 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, tx->tx_cpu));
2139 m_freem(m);
2140 return ENOBUFS;
2141 }
2142 DPRINTSC(sc, 2, "send packet %p descriptor %d\n", m, tx->tx_cpu);
2143 KASSERT(MVXPE_TX_MBUF(sc, q, tx->tx_cpu) == NULL);
2144
2145 /* remember mbuf using 1st descriptor */
2146 MVXPE_TX_MBUF(sc, q, tx->tx_cpu) = m;
2147 bus_dmamap_sync(sc->sc_dmat,
2148 MVXPE_TX_MAP(sc, q, tx->tx_cpu), 0, m->m_pkthdr.len,
2149 BUS_DMASYNC_PREWRITE);
2150
2151 /* load to tx descriptors */
2152 start = tx->tx_cpu;
2153 used = 0;
2154 for (i = 0; i < txnsegs; i++) {
2155 if (__predict_false(txsegs[i].ds_len == 0))
2156 continue;
2157 t = MVXPE_TX_DESC(sc, q, tx->tx_cpu);
2158 t->command = 0;
2159 t->l4ichk = 0;
2160 t->flags = 0;
2161 if (i == 0) {
2162 /* 1st descriptor */
2163 t->command |= MVXPE_TX_CMD_W_PACKET_OFFSET(0);
2164 t->command |= MVXPE_TX_CMD_PADDING;
2165 t->command |= MVXPE_TX_CMD_F;
2166 mvxpe_tx_set_csumflag(ifp, t, m);
2167 }
2168 t->bufptr = txsegs[i].ds_addr;
2169 t->bytecnt = txsegs[i].ds_len;
2170 tx->tx_cpu = tx_counter_adv(tx->tx_cpu, 1);
2171 tx->tx_used++;
2172 used++;
2173 }
2174 /* t is last descriptor here */
2175 KASSERT(t != NULL);
2176 t->command |= MVXPE_TX_CMD_L;
2177
2178 DPRINTSC(sc, 2, "queue %d, %d descriptors used\n", q, used);
2179 #ifdef MVXPE_DEBUG
2180 if (mvxpe_debug > 2)
2181 for (i = start; i <= tx->tx_cpu; i++) {
2182 t = MVXPE_TX_DESC(sc, q, i);
2183 mvxpe_dump_txdesc(t, i);
2184 }
2185 #endif
2186 mvxpe_ring_sync_tx(sc, q, start, used,
2187 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2188
2189 while (used > 255) {
2190 ptxsu = MVXPE_PTXSU_NOWD(255);
2191 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2192 used -= 255;
2193 }
2194 if (used > 0) {
2195 ptxsu = MVXPE_PTXSU_NOWD(used);
2196 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2197 }
2198 MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
2199
2200 DPRINTSC(sc, 2,
2201 "PTXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQA(q)));
2202 DPRINTSC(sc, 2,
2203 "PTXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
2204 DPRINTSC(sc, 2,
2205 "PTXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXS(q)));
2206 DPRINTSC(sc, 2,
2207 "PTXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PTXDI(q)));
2208 DPRINTSC(sc, 2, "TQC: %#x\n", MVXPE_READ(sc, MVXPE_TQC));
2209 DPRINTIFNET(ifp, 2,
2210 "Tx: tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2211 tx->tx_cpu, tx->tx_dma, tx->tx_used);
2212 return 0;
2213 }
2214
2215 STATIC void
2216 mvxpe_tx_set_csumflag(struct ifnet *ifp,
2217 struct mvxpe_tx_desc *t, struct mbuf *m)
2218 {
2219 struct ether_header *eh;
2220 int csum_flags;
2221 uint32_t iphl = 0, ipoff = 0;
2222
2223
2224 csum_flags = ifp->if_csum_flags_tx & m->m_pkthdr.csum_flags;
2225
2226 eh = mtod(m, struct ether_header *);
2227 switch (htons(eh->ether_type)) {
2228 case ETHERTYPE_IP:
2229 case ETHERTYPE_IPV6:
2230 ipoff = ETHER_HDR_LEN;
2231 break;
2232 case ETHERTYPE_VLAN:
2233 ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2234 break;
2235 }
2236
2237 if (csum_flags & (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2238 iphl = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2239 t->command |= MVXPE_TX_CMD_L3_IP4;
2240 }
2241 else if (csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
2242 iphl = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
2243 t->command |= MVXPE_TX_CMD_L3_IP6;
2244 }
2245 else {
2246 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2247 return;
2248 }
2249
2250
2251 /* L3 */
2252 if (csum_flags & M_CSUM_IPv4) {
2253 t->command |= MVXPE_TX_CMD_IP4_CHECKSUM;
2254 }
2255
2256 /* L4 */
2257 if ((csum_flags &
2258 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0) {
2259 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2260 }
2261 else if (csum_flags & M_CSUM_TCPv4) {
2262 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2263 t->command |= MVXPE_TX_CMD_L4_TCP;
2264 }
2265 else if (csum_flags & M_CSUM_UDPv4) {
2266 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2267 t->command |= MVXPE_TX_CMD_L4_UDP;
2268 }
2269 else if (csum_flags & M_CSUM_TCPv6) {
2270 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2271 t->command |= MVXPE_TX_CMD_L4_TCP;
2272 }
2273 else if (csum_flags & M_CSUM_UDPv6) {
2274 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2275 t->command |= MVXPE_TX_CMD_L4_UDP;
2276 }
2277
2278 t->l4ichk = 0;
2279 t->command |= MVXPE_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2280 t->command |= MVXPE_TX_CMD_L3_OFFSET(ipoff);
2281 }
2282
2283 STATIC void
2284 mvxpe_tx_complete(struct mvxpe_softc *sc, uint32_t queues)
2285 {
2286 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2287 int q;
2288
2289 DPRINTSC(sc, 2, "tx completed.\n");
2290
2291 KASSERT_SC_MTX(sc);
2292
2293 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2294 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2295 continue;
2296 mvxpe_tx_lockq(sc, q);
2297 mvxpe_tx_queue_complete(sc, q);
2298 mvxpe_tx_unlockq(sc, q);
2299 }
2300 KASSERT(sc->sc_tx_pending >= 0);
2301 if (sc->sc_tx_pending == 0)
2302 ifp->if_timer = 0;
2303 }
2304
2305 STATIC void
2306 mvxpe_tx_queue_complete(struct mvxpe_softc *sc, int q)
2307 {
2308 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2309 struct mvxpe_tx_desc *t;
2310 struct mbuf *m;
2311 uint32_t ptxs, ptxsu, ndesc;
2312 int i;
2313
2314 KASSERT_TX_MTX(sc, q);
2315
2316 ptxs = MVXPE_READ(sc, MVXPE_PTXS(q));
2317 ndesc = MVXPE_PTXS_GET_TBC(ptxs);
2318 if (ndesc == 0)
2319 return;
2320
2321 DPRINTSC(sc, 2,
2322 "tx complete queue %d, %d descriptors.\n", q, ndesc);
2323
2324 mvxpe_ring_sync_tx(sc, q, tx->tx_dma, ndesc,
2325 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2326
2327 for (i = 0; i < ndesc; i++) {
2328 int error = 0;
2329
2330 t = MVXPE_TX_DESC(sc, q, tx->tx_dma);
2331 if (t->flags & MVXPE_TX_F_ES) {
2332 DPRINTSC(sc, 1,
2333 "tx error queue %d desc %d\n",
2334 q, tx->tx_dma);
2335 switch (t->flags & MVXPE_TX_F_EC_MASK) {
2336 case MVXPE_TX_F_EC_LC:
2337 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_lc);
2338 break;
2339 case MVXPE_TX_F_EC_UR:
2340 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_ur);
2341 break;
2342 case MVXPE_TX_F_EC_RL:
2343 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_rl);
2344 break;
2345 default:
2346 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_oth);
2347 break;
2348 }
2349 error = 1;
2350 }
2351 m = MVXPE_TX_MBUF(sc, q, tx->tx_dma);
2352 if (m != NULL) {
2353 KASSERT((t->command & MVXPE_TX_CMD_F) != 0);
2354 MVXPE_TX_MBUF(sc, q, tx->tx_dma) = NULL;
2355 bus_dmamap_sync(sc->sc_dmat,
2356 MVXPE_TX_MAP(sc, q, tx->tx_dma), 0, m->m_pkthdr.len,
2357 BUS_DMASYNC_POSTWRITE);
2358 bus_dmamap_unload(sc->sc_dmat,
2359 MVXPE_TX_MAP(sc, q, tx->tx_dma));
2360 m_freem(m);
2361 sc->sc_tx_pending--;
2362 }
2363 else
2364 KASSERT((t->flags & MVXPE_TX_CMD_F) == 0);
2365 tx->tx_dma = tx_counter_adv(tx->tx_dma, 1);
2366 tx->tx_used--;
2367 if (error)
2368 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txqe[q]);
2369 else
2370 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txq[q]);
2371 }
2372 KASSERT(tx->tx_used >= 0);
2373 KASSERT(tx->tx_used <= tx->tx_queue_len);
2374 while (ndesc > 255) {
2375 ptxsu = MVXPE_PTXSU_NORB(255);
2376 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2377 ndesc -= 255;
2378 }
2379 if (ndesc > 0) {
2380 ptxsu = MVXPE_PTXSU_NORB(ndesc);
2381 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2382 }
2383 DPRINTSC(sc, 2,
2384 "Tx complete q %d, tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2385 q, tx->tx_cpu, tx->tx_dma, tx->tx_used);
2386 }
2387
2388 /*
2389 * Rx Subroutines
2390 */
2391 STATIC void
2392 mvxpe_rx(struct mvxpe_softc *sc, uint32_t queues)
2393 {
2394 int q, npkt;
2395
2396 KASSERT_SC_MTX(sc);
2397
2398 while ( (npkt = mvxpe_rx_queue_select(sc, queues, &q))) {
2399 /* mutex is held by rx_queue_select */
2400 mvxpe_rx_queue(sc, q, npkt);
2401 mvxpe_rx_unlockq(sc, q);
2402 }
2403 }
2404
2405 STATIC void
2406 mvxpe_rx_queue(struct mvxpe_softc *sc, int q, int npkt)
2407 {
2408 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2409 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2410 struct mvxpe_rx_desc *r;
2411 struct mvxpbm_chunk *chunk;
2412 struct mbuf *m;
2413 uint32_t prxsu;
2414 int error = 0;
2415 int i;
2416
2417 KASSERT_RX_MTX(sc, q);
2418
2419 mvxpe_ring_sync_rx(sc, q, rx->rx_dma, npkt,
2420 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2421
2422 for (i = 0; i < npkt; i++) {
2423 /* get descriptor and packet */
2424 chunk = MVXPE_RX_PKTBUF(sc, q, rx->rx_dma);
2425 MVXPE_RX_PKTBUF(sc, q, rx->rx_dma) = NULL;
2426 r = MVXPE_RX_DESC(sc, q, rx->rx_dma);
2427 mvxpbm_dmamap_sync(chunk, r->bytecnt, BUS_DMASYNC_POSTREAD);
2428
2429 /* check errors */
2430 if (r->status & MVXPE_RX_ES) {
2431 switch (r->status & MVXPE_RX_EC_MASK) {
2432 case MVXPE_RX_EC_CE:
2433 DPRINTIFNET(ifp, 1, "CRC error\n");
2434 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_ce);
2435 break;
2436 case MVXPE_RX_EC_OR:
2437 DPRINTIFNET(ifp, 1, "Rx FIFO overrun\n");
2438 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_or);
2439 break;
2440 case MVXPE_RX_EC_MF:
2441 DPRINTIFNET(ifp, 1, "Rx too large frame\n");
2442 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_mf);
2443 break;
2444 case MVXPE_RX_EC_RE:
2445 DPRINTIFNET(ifp, 1, "Rx resource error\n");
2446 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_re);
2447 break;
2448 }
2449 error = 1;
2450 goto rx_done;
2451 }
2452 if (!(r->status & MVXPE_RX_F) || !(r->status & MVXPE_RX_L)) {
2453 DPRINTIFNET(ifp, 1, "not support scatter buf\n");
2454 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_scat);
2455 error = 1;
2456 goto rx_done;
2457 }
2458
2459 if (chunk == NULL) {
2460 device_printf(sc->sc_dev,
2461 "got rx interrupt, but no chunk\n");
2462 error = 1;
2463 goto rx_done;
2464 }
2465
2466 /* extract packet buffer */
2467 if (mvxpbm_init_mbuf_hdr(chunk) != 0) {
2468 error = 1;
2469 goto rx_done;
2470 }
2471 m = chunk->m;
2472 m_set_rcvif(m, ifp);
2473 m->m_pkthdr.len = m->m_len = r->bytecnt - ETHER_CRC_LEN;
2474 m_adj(m, MVXPE_HWHEADER_SIZE); /* strip MH */
2475 mvxpe_rx_set_csumflag(ifp, r, m);
2476 ifp->if_ipackets++;
2477 bpf_mtap(ifp, m);
2478 if_percpuq_enqueue(ifp->if_percpuq, m);
2479 chunk = NULL; /* the BM chunk goes to networking stack now */
2480 rx_done:
2481 if (chunk) {
2482 /* rx error. just return the chunk to BM. */
2483 mvxpbm_free_chunk(chunk);
2484 }
2485 if (error)
2486 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxqe[q]);
2487 else
2488 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxq[q]);
2489 rx->rx_dma = rx_counter_adv(rx->rx_dma, 1);
2490 }
2491 /* DMA status update */
2492 DPRINTSC(sc, 2, "%d packets received from queue %d\n", npkt, q);
2493 while (npkt > 255) {
2494 prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2495 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2496 npkt -= 255;
2497 }
2498 if (npkt > 0) {
2499 prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(npkt);
2500 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2501 }
2502
2503 DPRINTSC(sc, 2,
2504 "PRXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQA(q)));
2505 DPRINTSC(sc, 2,
2506 "PRXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
2507 DPRINTSC(sc, 2,
2508 "PRXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXS(q)));
2509 DPRINTSC(sc, 2,
2510 "PRXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PRXDI(q)));
2511 DPRINTSC(sc, 2, "RQC: %#x\n", MVXPE_READ(sc, MVXPE_RQC));
2512 DPRINTIFNET(ifp, 2, "Rx: rx_cpu = %d, rx_dma = %d\n",
2513 rx->rx_cpu, rx->rx_dma);
2514 }
2515
2516 STATIC int
2517 mvxpe_rx_queue_select(struct mvxpe_softc *sc, uint32_t queues, int *queue)
2518 {
2519 uint32_t prxs, npkt;
2520 int q;
2521
2522 KASSERT_SC_MTX(sc);
2523 KASSERT(queue != NULL);
2524 DPRINTSC(sc, 2, "selecting rx queue\n");
2525
2526 for (q = MVXPE_QUEUE_SIZE - 1; q >= 0; q--) {
2527 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2528 continue;
2529
2530 prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2531 npkt = MVXPE_PRXS_GET_ODC(prxs);
2532 if (npkt == 0)
2533 continue;
2534
2535 DPRINTSC(sc, 2,
2536 "queue %d selected: prxs=%#x, %u pakcet received.\n",
2537 q, prxs, npkt);
2538 *queue = q;
2539 mvxpe_rx_lockq(sc, q);
2540 return npkt;
2541 }
2542
2543 return 0;
2544 }
2545
2546 STATIC void
2547 mvxpe_rx_refill(struct mvxpe_softc *sc, uint32_t queues)
2548 {
2549 int q;
2550
2551 KASSERT_SC_MTX(sc);
2552
2553 /* XXX: check rx bit array */
2554 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2555 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2556 continue;
2557
2558 mvxpe_rx_lockq(sc, q);
2559 mvxpe_rx_queue_refill(sc, q);
2560 mvxpe_rx_unlockq(sc, q);
2561 }
2562 }
2563
2564 STATIC void
2565 mvxpe_rx_queue_refill(struct mvxpe_softc *sc, int q)
2566 {
2567 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2568 uint32_t prxs, prxsu, ndesc;
2569 int idx, refill = 0;
2570 int npkt;
2571
2572 KASSERT_RX_MTX(sc, q);
2573
2574 prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2575 ndesc = MVXPE_PRXS_GET_NODC(prxs) + MVXPE_PRXS_GET_ODC(prxs);
2576 refill = rx->rx_queue_len - ndesc;
2577 if (refill <= 0)
2578 return;
2579 DPRINTPRXS(2, q);
2580 DPRINTSC(sc, 2, "%d buffers to refill.\n", refill);
2581
2582 idx = rx->rx_cpu;
2583 for (npkt = 0; npkt < refill; npkt++)
2584 if (mvxpe_rx_queue_add(sc, q) != 0)
2585 break;
2586 DPRINTSC(sc, 2, "queue %d, %d buffer refilled.\n", q, npkt);
2587 if (npkt == 0)
2588 return;
2589
2590 mvxpe_ring_sync_rx(sc, q, idx, npkt,
2591 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2592
2593 while (npkt > 255) {
2594 prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(255);
2595 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2596 npkt -= 255;
2597 }
2598 if (npkt > 0) {
2599 prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(npkt);
2600 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2601 }
2602 DPRINTPRXS(2, q);
2603 return;
2604 }
2605
2606 STATIC int
2607 mvxpe_rx_queue_add(struct mvxpe_softc *sc, int q)
2608 {
2609 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2610 struct mvxpe_rx_desc *r;
2611 struct mvxpbm_chunk *chunk = NULL;
2612
2613 KASSERT_RX_MTX(sc, q);
2614
2615 /* Allocate the packet buffer */
2616 chunk = mvxpbm_alloc(sc->sc_bm);
2617 if (chunk == NULL) {
2618 DPRINTSC(sc, 1, "BM chunk allocation failed.\n");
2619 return ENOBUFS;
2620 }
2621
2622 /* Add the packet to descritor */
2623 KASSERT(MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) == NULL);
2624 MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) = chunk;
2625 mvxpbm_dmamap_sync(chunk, BM_SYNC_ALL, BUS_DMASYNC_PREREAD);
2626
2627 r = MVXPE_RX_DESC(sc, q, rx->rx_cpu);
2628 r->bufptr = chunk->buf_pa;
2629 DPRINTSC(sc, 9, "chunk added to index %d\n", rx->rx_cpu);
2630 rx->rx_cpu = rx_counter_adv(rx->rx_cpu, 1);
2631 return 0;
2632 }
2633
2634 STATIC void
2635 mvxpe_rx_set_csumflag(struct ifnet *ifp,
2636 struct mvxpe_rx_desc *r, struct mbuf *m0)
2637 {
2638 uint32_t csum_flags = 0;
2639
2640 if ((r->status & (MVXPE_RX_IP_HEADER_OK|MVXPE_RX_L3_IP)) == 0)
2641 return; /* not a IP packet */
2642
2643 /* L3 */
2644 if (r->status & MVXPE_RX_L3_IP) {
2645 csum_flags |= M_CSUM_IPv4 & ifp->if_csum_flags_rx;
2646 if ((r->status & MVXPE_RX_IP_HEADER_OK) == 0 &&
2647 (csum_flags & M_CSUM_IPv4) != 0) {
2648 csum_flags |= M_CSUM_IPv4_BAD;
2649 goto finish;
2650 }
2651 else if (r->status & MVXPE_RX_IPV4_FRAGMENT) {
2652 /*
2653 * r->l4chk has partial checksum of each framgment.
2654 * but there is no way to use it in NetBSD.
2655 */
2656 return;
2657 }
2658 }
2659
2660 /* L4 */
2661 switch (r->status & MVXPE_RX_L4_MASK) {
2662 case MVXPE_RX_L4_TCP:
2663 if (r->status & MVXPE_RX_L3_IP)
2664 csum_flags |= M_CSUM_TCPv4 & ifp->if_csum_flags_rx;
2665 else
2666 csum_flags |= M_CSUM_TCPv6 & ifp->if_csum_flags_rx;
2667 break;
2668 case MVXPE_RX_L4_UDP:
2669 if (r->status & MVXPE_RX_L3_IP)
2670 csum_flags |= M_CSUM_UDPv4 & ifp->if_csum_flags_rx;
2671 else
2672 csum_flags |= M_CSUM_UDPv6 & ifp->if_csum_flags_rx;
2673 break;
2674 case MVXPE_RX_L4_OTH:
2675 default:
2676 break;
2677 }
2678 if ((r->status & MVXPE_RX_L4_CHECKSUM_OK) == 0 && (csum_flags &
2679 (M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2680 csum_flags |= M_CSUM_TCP_UDP_BAD;
2681 finish:
2682 m0->m_pkthdr.csum_flags = csum_flags;
2683 }
2684
2685 /*
2686 * MAC address filter
2687 */
2688 STATIC uint8_t
2689 mvxpe_crc8(const uint8_t *data, size_t size)
2690 {
2691 int bit;
2692 uint8_t byte;
2693 uint8_t crc = 0;
2694 const uint8_t poly = 0x07;
2695
2696 while(size--)
2697 for (byte = *data++, bit = NBBY-1; bit >= 0; bit--)
2698 crc = (crc << 1) ^ ((((crc >> 7) ^ (byte >> bit)) & 1) ? poly : 0);
2699
2700 return crc;
2701 }
2702
2703 CTASSERT(MVXPE_NDFSMT == MVXPE_NDFOMT);
2704
2705 STATIC void
2706 mvxpe_filter_setup(struct mvxpe_softc *sc)
2707 {
2708 struct ethercom *ec = &sc->sc_ethercom;
2709 struct ifnet *ifp= &sc->sc_ethercom.ec_if;
2710 struct ether_multi *enm;
2711 struct ether_multistep step;
2712 uint32_t dfut[MVXPE_NDFUT], dfsmt[MVXPE_NDFSMT], dfomt[MVXPE_NDFOMT];
2713 uint32_t pxc;
2714 int i;
2715 const uint8_t special[ETHER_ADDR_LEN] = {0x01,0x00,0x5e,0x00,0x00,0x00};
2716
2717 KASSERT_SC_MTX(sc);
2718
2719 memset(dfut, 0, sizeof(dfut));
2720 memset(dfsmt, 0, sizeof(dfsmt));
2721 memset(dfomt, 0, sizeof(dfomt));
2722
2723 if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
2724 goto allmulti;
2725 }
2726
2727 ETHER_FIRST_MULTI(step, ec, enm);
2728 while (enm != NULL) {
2729 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2730 /* ranges are complex and somewhat rare */
2731 goto allmulti;
2732 }
2733 /* chip handles some IPv4 multicast specially */
2734 if (memcmp(enm->enm_addrlo, special, 5) == 0) {
2735 i = enm->enm_addrlo[5];
2736 dfsmt[i>>2] |=
2737 MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2738 } else {
2739 i = mvxpe_crc8(enm->enm_addrlo, ETHER_ADDR_LEN);
2740 dfomt[i>>2] |=
2741 MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2742 }
2743
2744 ETHER_NEXT_MULTI(step, enm);
2745 }
2746 goto set;
2747
2748 allmulti:
2749 if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
2750 for (i = 0; i < MVXPE_NDFSMT; i++) {
2751 dfsmt[i] = dfomt[i] =
2752 MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2753 MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2754 MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2755 MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2756 }
2757 }
2758
2759 set:
2760 pxc = MVXPE_READ(sc, MVXPE_PXC);
2761 pxc &= ~MVXPE_PXC_UPM;
2762 pxc |= MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP;
2763 if (ifp->if_flags & IFF_BROADCAST) {
2764 pxc &= ~(MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP);
2765 }
2766 if (ifp->if_flags & IFF_PROMISC) {
2767 pxc |= MVXPE_PXC_UPM;
2768 }
2769 MVXPE_WRITE(sc, MVXPE_PXC, pxc);
2770
2771 /* Set Destination Address Filter Unicast Table */
2772 if (ifp->if_flags & IFF_PROMISC) {
2773 /* pass all unicast addresses */
2774 for (i = 0; i < MVXPE_NDFUT; i++) {
2775 dfut[i] =
2776 MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2777 MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2778 MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2779 MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2780 }
2781 }
2782 else {
2783 i = sc->sc_enaddr[5] & 0xf; /* last nibble */
2784 dfut[i>>2] = MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2785 }
2786 MVXPE_WRITE_REGION(sc, MVXPE_DFUT(0), dfut, MVXPE_NDFUT);
2787
2788 /* Set Destination Address Filter Multicast Tables */
2789 MVXPE_WRITE_REGION(sc, MVXPE_DFSMT(0), dfsmt, MVXPE_NDFSMT);
2790 MVXPE_WRITE_REGION(sc, MVXPE_DFOMT(0), dfomt, MVXPE_NDFOMT);
2791 }
2792
2793 /*
2794 * sysctl(9)
2795 */
2796 SYSCTL_SETUP(sysctl_mvxpe, "sysctl mvxpe subtree setup")
2797 {
2798 int rc;
2799 const struct sysctlnode *node;
2800
2801 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2802 0, CTLTYPE_NODE, "mvxpe",
2803 SYSCTL_DESCR("mvxpe interface controls"),
2804 NULL, 0, NULL, 0,
2805 CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2806 goto err;
2807 }
2808
2809 mvxpe_root_num = node->sysctl_num;
2810 return;
2811
2812 err:
2813 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2814 }
2815
2816 STATIC int
2817 sysctl_read_mib(SYSCTLFN_ARGS)
2818 {
2819 struct mvxpe_sysctl_mib *arg;
2820 struct mvxpe_softc *sc;
2821 struct sysctlnode node;
2822 uint64_t val;
2823 int err;
2824
2825 node = *rnode;
2826 arg = (struct mvxpe_sysctl_mib *)rnode->sysctl_data;
2827 if (arg == NULL)
2828 return EINVAL;
2829
2830 sc = arg->sc;
2831 if (sc == NULL)
2832 return EINVAL;
2833 if (arg->index < 0 || arg->index > __arraycount(mvxpe_mib_list))
2834 return EINVAL;
2835
2836 mvxpe_sc_lock(sc);
2837 val = arg->counter;
2838 mvxpe_sc_unlock(sc);
2839
2840 node.sysctl_data = &val;
2841 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2842 if (err)
2843 return err;
2844 if (newp)
2845 return EINVAL;
2846
2847 return 0;
2848 }
2849
2850
2851 STATIC int
2852 sysctl_clear_mib(SYSCTLFN_ARGS)
2853 {
2854 struct mvxpe_softc *sc;
2855 struct sysctlnode node;
2856 int val;
2857 int err;
2858
2859 node = *rnode;
2860 sc = (struct mvxpe_softc *)rnode->sysctl_data;
2861 if (sc == NULL)
2862 return EINVAL;
2863
2864 val = 0;
2865 node.sysctl_data = &val;
2866 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2867 if (err || newp == NULL)
2868 return err;
2869 if (val < 0 || val > 1)
2870 return EINVAL;
2871 if (val == 1) {
2872 mvxpe_sc_lock(sc);
2873 mvxpe_clear_mib(sc);
2874 mvxpe_sc_unlock(sc);
2875 }
2876
2877 return 0;
2878 }
2879
2880 STATIC int
2881 sysctl_set_queue_length(SYSCTLFN_ARGS)
2882 {
2883 struct mvxpe_sysctl_queue *arg;
2884 struct mvxpe_rx_ring *rx = NULL;
2885 struct mvxpe_tx_ring *tx = NULL;
2886 struct mvxpe_softc *sc;
2887 struct sysctlnode node;
2888 uint32_t reg;
2889 int val;
2890 int err;
2891
2892 node = *rnode;
2893
2894 arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2895 if (arg == NULL)
2896 return EINVAL;
2897 if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2898 return EINVAL;
2899 if (arg->rxtx != MVXPE_SYSCTL_RX && arg->rxtx != MVXPE_SYSCTL_TX)
2900 return EINVAL;
2901
2902 sc = arg->sc;
2903 if (sc == NULL)
2904 return EINVAL;
2905
2906 /* read queue length */
2907 mvxpe_sc_lock(sc);
2908 switch (arg->rxtx) {
2909 case MVXPE_SYSCTL_RX:
2910 mvxpe_rx_lockq(sc, arg->queue);
2911 rx = MVXPE_RX_RING(sc, arg->queue);
2912 val = rx->rx_queue_len;
2913 mvxpe_rx_unlockq(sc, arg->queue);
2914 break;
2915 case MVXPE_SYSCTL_TX:
2916 mvxpe_tx_lockq(sc, arg->queue);
2917 tx = MVXPE_TX_RING(sc, arg->queue);
2918 val = tx->tx_queue_len;
2919 mvxpe_tx_unlockq(sc, arg->queue);
2920 break;
2921 }
2922
2923 node.sysctl_data = &val;
2924 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2925 if (err || newp == NULL) {
2926 mvxpe_sc_unlock(sc);
2927 return err;
2928 }
2929
2930 /* update queue length */
2931 if (val < 8 || val > MVXPE_RX_RING_CNT) {
2932 mvxpe_sc_unlock(sc);
2933 return EINVAL;
2934 }
2935 switch (arg->rxtx) {
2936 case MVXPE_SYSCTL_RX:
2937 mvxpe_rx_lockq(sc, arg->queue);
2938 rx->rx_queue_len = val;
2939 rx->rx_queue_th_received =
2940 rx->rx_queue_len / MVXPE_RXTH_RATIO;
2941 rx->rx_queue_th_free =
2942 rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
2943
2944 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
2945 reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
2946 MVXPE_WRITE(sc, MVXPE_PRXDQTH(arg->queue), reg);
2947
2948 mvxpe_rx_unlockq(sc, arg->queue);
2949 break;
2950 case MVXPE_SYSCTL_TX:
2951 mvxpe_tx_lockq(sc, arg->queue);
2952 tx->tx_queue_len = val;
2953 tx->tx_queue_th_free =
2954 tx->tx_queue_len / MVXPE_TXTH_RATIO;
2955
2956 reg = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
2957 reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
2958 MVXPE_WRITE(sc, MVXPE_PTXDQS(arg->queue), reg);
2959
2960 mvxpe_tx_unlockq(sc, arg->queue);
2961 break;
2962 }
2963 mvxpe_sc_unlock(sc);
2964
2965 return 0;
2966 }
2967
2968 STATIC int
2969 sysctl_set_queue_rxthtime(SYSCTLFN_ARGS)
2970 {
2971 struct mvxpe_sysctl_queue *arg;
2972 struct mvxpe_rx_ring *rx = NULL;
2973 struct mvxpe_softc *sc;
2974 struct sysctlnode node;
2975 extern uint32_t mvTclk;
2976 uint32_t reg, time_mvtclk;
2977 int time_us;
2978 int err;
2979
2980 node = *rnode;
2981
2982 arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2983 if (arg == NULL)
2984 return EINVAL;
2985 if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2986 return EINVAL;
2987 if (arg->rxtx != MVXPE_SYSCTL_RX)
2988 return EINVAL;
2989
2990 sc = arg->sc;
2991 if (sc == NULL)
2992 return EINVAL;
2993
2994 /* read queue length */
2995 mvxpe_sc_lock(sc);
2996 mvxpe_rx_lockq(sc, arg->queue);
2997 rx = MVXPE_RX_RING(sc, arg->queue);
2998 time_mvtclk = rx->rx_queue_th_time;
2999 time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvTclk;
3000 node.sysctl_data = &time_us;
3001 DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n",
3002 arg->queue, MVXPE_READ(sc, MVXPE_PRXITTH(arg->queue)));
3003 err = sysctl_lookup(SYSCTLFN_CALL(&node));
3004 if (err || newp == NULL) {
3005 mvxpe_rx_unlockq(sc, arg->queue);
3006 mvxpe_sc_unlock(sc);
3007 return err;
3008 }
3009
3010 /* update queue length (0[sec] - 1[sec]) */
3011 if (time_us < 0 || time_us > (1000 * 1000)) {
3012 mvxpe_rx_unlockq(sc, arg->queue);
3013 mvxpe_sc_unlock(sc);
3014 return EINVAL;
3015 }
3016 time_mvtclk =
3017 (uint64_t)mvTclk * (uint64_t)time_us / (1000ULL * 1000ULL);
3018 rx->rx_queue_th_time = time_mvtclk;
3019 reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
3020 MVXPE_WRITE(sc, MVXPE_PRXITTH(arg->queue), reg);
3021 DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n", arg->queue, reg);
3022 mvxpe_rx_unlockq(sc, arg->queue);
3023 mvxpe_sc_unlock(sc);
3024
3025 return 0;
3026 }
3027
3028
3029 STATIC void
3030 sysctl_mvxpe_init(struct mvxpe_softc *sc)
3031 {
3032 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3033 const struct sysctlnode *node;
3034 int mvxpe_nodenum;
3035 int mvxpe_mibnum;
3036 int mvxpe_rxqueuenum;
3037 int mvxpe_txqueuenum;
3038 int q, i;
3039
3040 /* hw.mvxpe.mvxpe[unit] */
3041 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3042 0, CTLTYPE_NODE, ifp->if_xname,
3043 SYSCTL_DESCR("mvxpe per-controller controls"),
3044 NULL, 0, NULL, 0,
3045 CTL_HW, mvxpe_root_num, CTL_CREATE,
3046 CTL_EOL) != 0) {
3047 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3048 return;
3049 }
3050 mvxpe_nodenum = node->sysctl_num;
3051
3052 /* hw.mvxpe.mvxpe[unit].mib */
3053 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3054 0, CTLTYPE_NODE, "mib",
3055 SYSCTL_DESCR("mvxpe per-controller MIB counters"),
3056 NULL, 0, NULL, 0,
3057 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3058 CTL_EOL) != 0) {
3059 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3060 return;
3061 }
3062 mvxpe_mibnum = node->sysctl_num;
3063
3064 /* hw.mvxpe.mvxpe[unit].rx */
3065 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3066 0, CTLTYPE_NODE, "rx",
3067 SYSCTL_DESCR("Rx Queues"),
3068 NULL, 0, NULL, 0,
3069 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3070 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3071 return;
3072 }
3073 mvxpe_rxqueuenum = node->sysctl_num;
3074
3075 /* hw.mvxpe.mvxpe[unit].tx */
3076 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3077 0, CTLTYPE_NODE, "tx",
3078 SYSCTL_DESCR("Tx Queues"),
3079 NULL, 0, NULL, 0,
3080 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3081 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3082 return;
3083 }
3084 mvxpe_txqueuenum = node->sysctl_num;
3085
3086 #ifdef MVXPE_DEBUG
3087 /* hw.mvxpe.debug */
3088 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3089 CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
3090 SYSCTL_DESCR("mvxpe device driver debug control"),
3091 NULL, 0, &mvxpe_debug, 0,
3092 CTL_HW, mvxpe_root_num, CTL_CREATE, CTL_EOL) != 0) {
3093 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3094 return;
3095 }
3096 #endif
3097 /*
3098 * MIB access
3099 */
3100 /* hw.mvxpe.mvxpe[unit].mib.<mibs> */
3101 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3102 const char *name = mvxpe_mib_list[i].sysctl_name;
3103 const char *desc = mvxpe_mib_list[i].desc;
3104 struct mvxpe_sysctl_mib *mib_arg = &sc->sc_sysctl_mib[i];
3105
3106 mib_arg->sc = sc;
3107 mib_arg->index = i;
3108 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3109 CTLFLAG_READONLY, CTLTYPE_QUAD, name, desc,
3110 sysctl_read_mib, 0, (void *)mib_arg, 0,
3111 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_mibnum,
3112 CTL_CREATE, CTL_EOL) != 0) {
3113 aprint_normal_dev(sc->sc_dev,
3114 "couldn't create sysctl node\n");
3115 break;
3116 }
3117 }
3118
3119 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
3120 struct mvxpe_sysctl_queue *rxarg = &sc->sc_sysctl_rx_queue[q];
3121 struct mvxpe_sysctl_queue *txarg = &sc->sc_sysctl_tx_queue[q];
3122 #define MVXPE_SYSCTL_NAME(num) "queue" # num
3123 static const char *sysctl_queue_names[] = {
3124 MVXPE_SYSCTL_NAME(0), MVXPE_SYSCTL_NAME(1),
3125 MVXPE_SYSCTL_NAME(2), MVXPE_SYSCTL_NAME(3),
3126 MVXPE_SYSCTL_NAME(4), MVXPE_SYSCTL_NAME(5),
3127 MVXPE_SYSCTL_NAME(6), MVXPE_SYSCTL_NAME(7),
3128 };
3129 #undef MVXPE_SYSCTL_NAME
3130 #ifdef SYSCTL_INCLUDE_DESCR
3131 #define MVXPE_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3132 static const char *sysctl_queue_descrs[] = {
3133 MVXPE_SYSCTL_DESCR(0), MVXPE_SYSCTL_DESCR(1),
3134 MVXPE_SYSCTL_DESCR(2), MVXPE_SYSCTL_DESCR(3),
3135 MVXPE_SYSCTL_DESCR(4), MVXPE_SYSCTL_DESCR(5),
3136 MVXPE_SYSCTL_DESCR(6), MVXPE_SYSCTL_DESCR(7),
3137 };
3138 #undef MVXPE_SYSCTL_DESCR
3139 #endif /* SYSCTL_INCLUDE_DESCR */
3140 int mvxpe_curnum;
3141
3142 rxarg->sc = txarg->sc = sc;
3143 rxarg->queue = txarg->queue = q;
3144 rxarg->rxtx = MVXPE_SYSCTL_RX;
3145 txarg->rxtx = MVXPE_SYSCTL_TX;
3146
3147 /* hw.mvxpe.mvxpe[unit].rx.[queue] */
3148 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3149 0, CTLTYPE_NODE,
3150 sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descrs[q]),
3151 NULL, 0, NULL, 0,
3152 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3153 CTL_CREATE, CTL_EOL) != 0) {
3154 aprint_normal_dev(sc->sc_dev,
3155 "couldn't create sysctl node\n");
3156 break;
3157 }
3158 mvxpe_curnum = node->sysctl_num;
3159
3160 /* hw.mvxpe.mvxpe[unit].rx.[queue].length */
3161 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3162 CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3163 SYSCTL_DESCR("maximum length of the queue"),
3164 sysctl_set_queue_length, 0, (void *)rxarg, 0,
3165 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3166 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3167 aprint_normal_dev(sc->sc_dev,
3168 "couldn't create sysctl node\n");
3169 break;
3170 }
3171
3172 /* hw.mvxpe.mvxpe[unit].rx.[queue].threshold_timer_us */
3173 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3174 CTLFLAG_READWRITE, CTLTYPE_INT, "threshold_timer_us",
3175 SYSCTL_DESCR("interrupt coalescing threshold timer [us]"),
3176 sysctl_set_queue_rxthtime, 0, (void *)rxarg, 0,
3177 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3178 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3179 aprint_normal_dev(sc->sc_dev,
3180 "couldn't create sysctl node\n");
3181 break;
3182 }
3183
3184 /* hw.mvxpe.mvxpe[unit].tx.[queue] */
3185 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3186 0, CTLTYPE_NODE,
3187 sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descs[q]),
3188 NULL, 0, NULL, 0,
3189 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3190 CTL_CREATE, CTL_EOL) != 0) {
3191 aprint_normal_dev(sc->sc_dev,
3192 "couldn't create sysctl node\n");
3193 break;
3194 }
3195 mvxpe_curnum = node->sysctl_num;
3196
3197 /* hw.mvxpe.mvxpe[unit].tx.length[queue] */
3198 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3199 CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3200 SYSCTL_DESCR("maximum length of the queue"),
3201 sysctl_set_queue_length, 0, (void *)txarg, 0,
3202 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3203 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3204 aprint_normal_dev(sc->sc_dev,
3205 "couldn't create sysctl node\n");
3206 break;
3207 }
3208 }
3209
3210 /* hw.mvxpe.mvxpe[unit].clear_mib */
3211 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3212 CTLFLAG_READWRITE, CTLTYPE_INT, "clear_mib",
3213 SYSCTL_DESCR("mvxpe device driver debug control"),
3214 sysctl_clear_mib, 0, (void *)sc, 0,
3215 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3216 CTL_EOL) != 0) {
3217 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3218 return;
3219 }
3220
3221 }
3222
3223 /*
3224 * MIB
3225 */
3226 STATIC void
3227 mvxpe_clear_mib(struct mvxpe_softc *sc)
3228 {
3229 int i;
3230
3231 KASSERT_SC_MTX(sc);
3232
3233 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3234 if (mvxpe_mib_list[i].reg64)
3235 MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum + 4));
3236 MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3237 sc->sc_sysctl_mib[i].counter = 0;
3238 }
3239 }
3240
3241 STATIC void
3242 mvxpe_update_mib(struct mvxpe_softc *sc)
3243 {
3244 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3245 int i;
3246
3247 KASSERT_SC_MTX(sc);
3248
3249 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3250 uint32_t val_hi;
3251 uint32_t val_lo;
3252 uint64_t val;
3253
3254 if (mvxpe_mib_list[i].reg64) {
3255 /* XXX: implement bus_space_read_8() */
3256 val_lo = MVXPE_READ_MIB(sc,
3257 (mvxpe_mib_list[i].regnum + 4));
3258 val_hi = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3259 }
3260 else {
3261 val_lo = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3262 val_hi = 0;
3263 }
3264
3265 if ((val_lo | val_hi) == 0)
3266 continue;
3267
3268 val = ((uint64_t)val_hi << 32) | (uint64_t)val_lo;
3269 sc->sc_sysctl_mib[i].counter += val;
3270
3271 switch (mvxpe_mib_list[i].ext) {
3272 case MVXPE_MIBEXT_IF_OERRORS:
3273 ifp->if_oerrors += val;
3274 break;
3275 case MVXPE_MIBEXT_IF_IERRORS:
3276 ifp->if_ierrors += val;
3277 break;
3278 case MVXPE_MIBEXT_IF_COLLISIONS:
3279 ifp->if_collisions += val;
3280 break;
3281 default:
3282 break;
3283 }
3284
3285 }
3286 }
3287
3288 /*
3289 * for Debug
3290 */
3291 STATIC void
3292 mvxpe_dump_txdesc(struct mvxpe_tx_desc *desc, int idx)
3293 {
3294 #define DESC_PRINT(X) \
3295 if (X) \
3296 printf("txdesc[%d]." #X "=%#x\n", idx, X);
3297
3298 DESC_PRINT(desc->command);
3299 DESC_PRINT(desc->l4ichk);
3300 DESC_PRINT(desc->bytecnt);
3301 DESC_PRINT(desc->bufptr);
3302 DESC_PRINT(desc->flags);
3303 #undef DESC_PRINT
3304 }
3305
3306 STATIC void
3307 mvxpe_dump_rxdesc(struct mvxpe_rx_desc *desc, int idx)
3308 {
3309 #define DESC_PRINT(X) \
3310 if (X) \
3311 printf("rxdesc[%d]." #X "=%#x\n", idx, X);
3312
3313 DESC_PRINT(desc->status);
3314 DESC_PRINT(desc->bytecnt);
3315 DESC_PRINT(desc->bufptr);
3316 DESC_PRINT(desc->l4chk);
3317 #undef DESC_PRINT
3318 }
3319