if_mvxpe.c revision 1.16 1 /* $NetBSD: if_mvxpe.c,v 1.16 2016/12/08 01:12:01 ozaki-r Exp $ */
2 /*
3 * Copyright (c) 2015 Internet Initiative Japan Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: if_mvxpe.c,v 1.16 2016/12/08 01:12:01 ozaki-r Exp $");
29
30 #include "opt_multiprocessor.h"
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/callout.h>
35 #include <sys/device.h>
36 #include <sys/endian.h>
37 #include <sys/errno.h>
38 #include <sys/evcnt.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/mutex.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/syslog.h>
45 #include <sys/rndsource.h>
46
47 #include <net/if.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/bpf.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55
56 #include <dev/mii/mii.h>
57 #include <dev/mii/miivar.h>
58
59 #include <dev/marvell/marvellreg.h>
60 #include <dev/marvell/marvellvar.h>
61 #include <dev/marvell/mvxpbmvar.h>
62 #include <dev/marvell/if_mvxpereg.h>
63 #include <dev/marvell/if_mvxpevar.h>
64
65 #include "locators.h"
66
67 #if BYTE_ORDER == BIG_ENDIAN
68 #error "BIG ENDIAN not supported"
69 #endif
70
71 #ifdef MVXPE_DEBUG
72 #define STATIC /* nothing */
73 #else
74 #define STATIC static
75 #endif
76
77 /* autoconf(9) */
78 STATIC int mvxpe_match(device_t, struct cfdata *, void *);
79 STATIC void mvxpe_attach(device_t, device_t, void *);
80 STATIC int mvxpe_evcnt_attach(struct mvxpe_softc *);
81 CFATTACH_DECL_NEW(mvxpe_mbus, sizeof(struct mvxpe_softc),
82 mvxpe_match, mvxpe_attach, NULL, NULL);
83 STATIC void mvxpe_sc_lock(struct mvxpe_softc *);
84 STATIC void mvxpe_sc_unlock(struct mvxpe_softc *);
85
86 /* MII */
87 STATIC int mvxpe_miibus_readreg(device_t, int, int);
88 STATIC void mvxpe_miibus_writereg(device_t, int, int, int);
89 STATIC void mvxpe_miibus_statchg(struct ifnet *);
90
91 /* Addres Decoding Window */
92 STATIC void mvxpe_wininit(struct mvxpe_softc *, enum marvell_tags *);
93
94 /* Device Register Initialization */
95 STATIC int mvxpe_initreg(struct ifnet *);
96
97 /* Descriptor Ring Control for each of queues */
98 STATIC void *mvxpe_dma_memalloc(struct mvxpe_softc *, bus_dmamap_t *, size_t);
99 STATIC int mvxpe_ring_alloc_queue(struct mvxpe_softc *, int);
100 STATIC void mvxpe_ring_dealloc_queue(struct mvxpe_softc *, int);
101 STATIC void mvxpe_ring_init_queue(struct mvxpe_softc *, int);
102 STATIC void mvxpe_ring_flush_queue(struct mvxpe_softc *, int);
103 STATIC void mvxpe_ring_sync_rx(struct mvxpe_softc *, int, int, int, int);
104 STATIC void mvxpe_ring_sync_tx(struct mvxpe_softc *, int, int, int, int);
105
106 /* Rx/Tx Queue Control */
107 STATIC int mvxpe_rx_queue_init(struct ifnet *, int);
108 STATIC int mvxpe_tx_queue_init(struct ifnet *, int);
109 STATIC int mvxpe_rx_queue_enable(struct ifnet *, int);
110 STATIC int mvxpe_tx_queue_enable(struct ifnet *, int);
111 STATIC void mvxpe_rx_lockq(struct mvxpe_softc *, int);
112 STATIC void mvxpe_rx_unlockq(struct mvxpe_softc *, int);
113 STATIC void mvxpe_tx_lockq(struct mvxpe_softc *, int);
114 STATIC void mvxpe_tx_unlockq(struct mvxpe_softc *, int);
115
116 /* Interrupt Handlers */
117 STATIC void mvxpe_disable_intr(struct mvxpe_softc *);
118 STATIC void mvxpe_enable_intr(struct mvxpe_softc *);
119 STATIC int mvxpe_rxtxth_intr(void *);
120 STATIC int mvxpe_misc_intr(void *);
121 STATIC int mvxpe_rxtx_intr(void *);
122 STATIC void mvxpe_tick(void *);
123
124 /* struct ifnet and mii callbacks*/
125 STATIC void mvxpe_start(struct ifnet *);
126 STATIC int mvxpe_ioctl(struct ifnet *, u_long, void *);
127 STATIC int mvxpe_init(struct ifnet *);
128 STATIC void mvxpe_stop(struct ifnet *, int);
129 STATIC void mvxpe_watchdog(struct ifnet *);
130 STATIC int mvxpe_ifflags_cb(struct ethercom *);
131 STATIC int mvxpe_mediachange(struct ifnet *);
132 STATIC void mvxpe_mediastatus(struct ifnet *, struct ifmediareq *);
133
134 /* Link State Notify */
135 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc);
136 STATIC void mvxpe_linkup(struct mvxpe_softc *);
137 STATIC void mvxpe_linkdown(struct mvxpe_softc *);
138 STATIC void mvxpe_linkreset(struct mvxpe_softc *);
139
140 /* Tx Subroutines */
141 STATIC int mvxpe_tx_queue_select(struct mvxpe_softc *, struct mbuf *);
142 STATIC int mvxpe_tx_queue(struct mvxpe_softc *, struct mbuf *, int);
143 STATIC void mvxpe_tx_set_csumflag(struct ifnet *,
144 struct mvxpe_tx_desc *, struct mbuf *);
145 STATIC void mvxpe_tx_complete(struct mvxpe_softc *, uint32_t);
146 STATIC void mvxpe_tx_queue_complete(struct mvxpe_softc *, int);
147
148 /* Rx Subroutines */
149 STATIC void mvxpe_rx(struct mvxpe_softc *, uint32_t);
150 STATIC void mvxpe_rx_queue(struct mvxpe_softc *, int, int);
151 STATIC int mvxpe_rx_queue_select(struct mvxpe_softc *, uint32_t, int *);
152 STATIC void mvxpe_rx_refill(struct mvxpe_softc *, uint32_t);
153 STATIC void mvxpe_rx_queue_refill(struct mvxpe_softc *, int);
154 STATIC int mvxpe_rx_queue_add(struct mvxpe_softc *, int);
155 STATIC void mvxpe_rx_set_csumflag(struct ifnet *,
156 struct mvxpe_rx_desc *, struct mbuf *);
157
158 /* MAC address filter */
159 STATIC uint8_t mvxpe_crc8(const uint8_t *, size_t);
160 STATIC void mvxpe_filter_setup(struct mvxpe_softc *);
161
162 /* sysctl(9) */
163 STATIC int sysctl_read_mib(SYSCTLFN_PROTO);
164 STATIC int sysctl_clear_mib(SYSCTLFN_PROTO);
165 STATIC int sysctl_set_queue_length(SYSCTLFN_PROTO);
166 STATIC int sysctl_set_queue_rxthtime(SYSCTLFN_PROTO);
167 STATIC void sysctl_mvxpe_init(struct mvxpe_softc *);
168
169 /* MIB */
170 STATIC void mvxpe_clear_mib(struct mvxpe_softc *);
171 STATIC void mvxpe_update_mib(struct mvxpe_softc *);
172
173 /* for Debug */
174 STATIC void mvxpe_dump_txdesc(struct mvxpe_tx_desc *, int) __attribute__((__unused__));
175 STATIC void mvxpe_dump_rxdesc(struct mvxpe_rx_desc *, int) __attribute__((__unused__));
176
177 STATIC int mvxpe_root_num;
178 STATIC kmutex_t mii_mutex;
179 STATIC int mii_init = 0;
180 #ifdef MVXPE_DEBUG
181 STATIC int mvxpe_debug = MVXPE_DEBUG;
182 #endif
183
184 /*
185 * List of MIB register and names
186 */
187 STATIC struct mvxpe_mib_def {
188 uint32_t regnum;
189 int reg64;
190 const char *sysctl_name;
191 const char *desc;
192 int ext;
193 #define MVXPE_MIBEXT_IF_OERRORS 1
194 #define MVXPE_MIBEXT_IF_IERRORS 2
195 #define MVXPE_MIBEXT_IF_COLLISIONS 3
196 } mvxpe_mib_list[] = {
197 {MVXPE_MIB_RX_GOOD_OCT, 1, "rx_good_oct",
198 "Good Octets Rx", 0},
199 {MVXPE_MIB_RX_BAD_OCT, 0, "rx_bad_oct",
200 "Bad Octets Rx", 0},
201 {MVXPE_MIB_TX_MAC_TRNS_ERR, 0, "tx_mac_err",
202 "MAC Transmit Error", MVXPE_MIBEXT_IF_OERRORS},
203 {MVXPE_MIB_RX_GOOD_FRAME, 0, "rx_good_frame",
204 "Good Frames Rx", 0},
205 {MVXPE_MIB_RX_BAD_FRAME, 0, "rx_bad_frame",
206 "Bad Frames Rx", 0},
207 {MVXPE_MIB_RX_BCAST_FRAME, 0, "rx_bcast_frame",
208 "Broadcast Frames Rx", 0},
209 {MVXPE_MIB_RX_MCAST_FRAME, 0, "rx_mcast_frame",
210 "Multicast Frames Rx", 0},
211 {MVXPE_MIB_RX_FRAME64_OCT, 0, "rx_frame_1_64",
212 "Frame Size 1 - 64", 0},
213 {MVXPE_MIB_RX_FRAME127_OCT, 0, "rx_frame_65_127",
214 "Frame Size 65 - 127", 0},
215 {MVXPE_MIB_RX_FRAME255_OCT, 0, "rx_frame_128_255",
216 "Frame Size 128 - 255", 0},
217 {MVXPE_MIB_RX_FRAME511_OCT, 0, "rx_frame_256_511",
218 "Frame Size 256 - 511"},
219 {MVXPE_MIB_RX_FRAME1023_OCT, 0, "rx_frame_512_1023",
220 "Frame Size 512 - 1023", 0},
221 {MVXPE_MIB_RX_FRAMEMAX_OCT, 0, "rx_fame_1024_max",
222 "Frame Size 1024 - Max", 0},
223 {MVXPE_MIB_TX_GOOD_OCT, 1, "tx_good_oct",
224 "Good Octets Tx", 0},
225 {MVXPE_MIB_TX_GOOD_FRAME, 0, "tx_good_frame",
226 "Good Frames Tx", 0},
227 {MVXPE_MIB_TX_EXCES_COL, 0, "tx_exces_collision",
228 "Excessive Collision", MVXPE_MIBEXT_IF_OERRORS},
229 {MVXPE_MIB_TX_MCAST_FRAME, 0, "tx_mcast_frame",
230 "Multicast Frames Tx"},
231 {MVXPE_MIB_TX_BCAST_FRAME, 0, "tx_bcast_frame",
232 "Broadcast Frames Tx"},
233 {MVXPE_MIB_TX_MAC_CTL_ERR, 0, "tx_mac_err",
234 "Unknown MAC Control", 0},
235 {MVXPE_MIB_FC_SENT, 0, "fc_tx",
236 "Flow Control Tx", 0},
237 {MVXPE_MIB_FC_GOOD, 0, "fc_rx_good",
238 "Good Flow Control Rx", 0},
239 {MVXPE_MIB_FC_BAD, 0, "fc_rx_bad",
240 "Bad Flow Control Rx", 0},
241 {MVXPE_MIB_PKT_UNDERSIZE, 0, "pkt_undersize",
242 "Undersized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
243 {MVXPE_MIB_PKT_FRAGMENT, 0, "pkt_fragment",
244 "Fragmented Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
245 {MVXPE_MIB_PKT_OVERSIZE, 0, "pkt_oversize",
246 "Oversized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
247 {MVXPE_MIB_PKT_JABBER, 0, "pkt_jabber",
248 "Jabber Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
249 {MVXPE_MIB_MAC_RX_ERR, 0, "mac_rx_err",
250 "MAC Rx Errors", MVXPE_MIBEXT_IF_IERRORS},
251 {MVXPE_MIB_MAC_CRC_ERR, 0, "mac_crc_err",
252 "MAC CRC Errors", MVXPE_MIBEXT_IF_IERRORS},
253 {MVXPE_MIB_MAC_COL, 0, "mac_collision",
254 "MAC Collision", MVXPE_MIBEXT_IF_COLLISIONS},
255 {MVXPE_MIB_MAC_LATE_COL, 0, "mac_late_collision",
256 "MAC Late Collision", MVXPE_MIBEXT_IF_OERRORS},
257 };
258
259 /*
260 * autoconf(9)
261 */
262 /* ARGSUSED */
263 STATIC int
264 mvxpe_match(device_t parent, cfdata_t match, void *aux)
265 {
266 struct marvell_attach_args *mva = aux;
267 bus_size_t pv_off;
268 uint32_t pv;
269
270 if (strcmp(mva->mva_name, match->cf_name) != 0)
271 return 0;
272 if (mva->mva_offset == MVA_OFFSET_DEFAULT)
273 return 0;
274
275 /* check port version */
276 pv_off = mva->mva_offset + MVXPE_PV;
277 pv = bus_space_read_4(mva->mva_iot, mva->mva_ioh, pv_off);
278 if (MVXPE_PV_GET_VERSION(pv) < 0x10)
279 return 0; /* old version is not supported */
280
281 return 1;
282 }
283
284 /* ARGSUSED */
285 STATIC void
286 mvxpe_attach(device_t parent, device_t self, void *aux)
287 {
288 struct mvxpe_softc *sc = device_private(self);
289 struct mii_softc *mii;
290 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
291 struct marvell_attach_args *mva = aux;
292 prop_dictionary_t dict;
293 prop_data_t enaddrp = NULL;
294 uint32_t phyaddr, maddrh, maddrl;
295 uint8_t enaddr[ETHER_ADDR_LEN];
296 int q;
297
298 aprint_naive("\n");
299 aprint_normal(": Marvell ARMADA GbE Controller\n");
300 memset(sc, 0, sizeof(*sc));
301 sc->sc_dev = self;
302 sc->sc_port = mva->mva_unit;
303 sc->sc_iot = mva->mva_iot;
304 sc->sc_dmat = mva->mva_dmat;
305 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
306 callout_init(&sc->sc_tick_ch, 0);
307 callout_setfunc(&sc->sc_tick_ch, mvxpe_tick, sc);
308
309 /*
310 * BUS space
311 */
312 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
313 mva->mva_offset, mva->mva_size, &sc->sc_ioh)) {
314 aprint_error_dev(self, "Cannot map registers\n");
315 goto fail;
316 }
317 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
318 mva->mva_offset + MVXPE_PORTMIB_BASE, MVXPE_PORTMIB_SIZE,
319 &sc->sc_mibh)) {
320 aprint_error_dev(self,
321 "Cannot map destination address filter registers\n");
322 goto fail;
323 }
324 sc->sc_version = MVXPE_READ(sc, MVXPE_PV);
325 aprint_normal_dev(self, "Port Version %#x\n", sc->sc_version);
326
327 /*
328 * Buffer Manager(BM) subsystem.
329 */
330 sc->sc_bm = mvxpbm_device(mva);
331 if (sc->sc_bm == NULL) {
332 aprint_error_dev(self, "no Buffer Manager.\n");
333 goto fail;
334 }
335 aprint_normal_dev(self,
336 "Using Buffer Manager: %s\n", mvxpbm_xname(sc->sc_bm));
337 aprint_normal_dev(sc->sc_dev,
338 "%zu kbytes managed buffer, %zu bytes * %u entries allocated.\n",
339 mvxpbm_buf_size(sc->sc_bm) / 1024,
340 mvxpbm_chunk_size(sc->sc_bm), mvxpbm_chunk_count(sc->sc_bm));
341
342 /*
343 * make sure DMA engines are in reset state
344 */
345 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
346 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
347
348 /*
349 * Address decoding window
350 */
351 mvxpe_wininit(sc, mva->mva_tags);
352
353 /*
354 * MAC address
355 */
356 dict = device_properties(self);
357 if (dict)
358 enaddrp = prop_dictionary_get(dict, "mac-address");
359 if (enaddrp) {
360 memcpy(enaddr, prop_data_data_nocopy(enaddrp), ETHER_ADDR_LEN);
361 maddrh = enaddr[0] << 24;
362 maddrh |= enaddr[1] << 16;
363 maddrh |= enaddr[2] << 8;
364 maddrh |= enaddr[3];
365 maddrl = enaddr[4] << 8;
366 maddrl |= enaddr[5];
367 MVXPE_WRITE(sc, MVXPE_MACAH, maddrh);
368 MVXPE_WRITE(sc, MVXPE_MACAL, maddrl);
369 }
370 else {
371 /*
372 * even if enaddr is not found in dictionary,
373 * the port may be initialized by IPL program such as U-BOOT.
374 */
375 maddrh = MVXPE_READ(sc, MVXPE_MACAH);
376 maddrl = MVXPE_READ(sc, MVXPE_MACAL);
377 if ((maddrh | maddrl) == 0) {
378 aprint_error_dev(self, "No Ethernet address\n");
379 return;
380 }
381 }
382 sc->sc_enaddr[0] = maddrh >> 24;
383 sc->sc_enaddr[1] = maddrh >> 16;
384 sc->sc_enaddr[2] = maddrh >> 8;
385 sc->sc_enaddr[3] = maddrh >> 0;
386 sc->sc_enaddr[4] = maddrl >> 8;
387 sc->sc_enaddr[5] = maddrl >> 0;
388 aprint_normal_dev(self, "Ethernet address %s\n",
389 ether_sprintf(sc->sc_enaddr));
390
391 /*
392 * Register interrupt handlers
393 * XXX: handle Ethernet unit intr. and Error intr.
394 */
395 mvxpe_disable_intr(sc);
396 marvell_intr_establish(mva->mva_irq, IPL_NET, mvxpe_rxtxth_intr, sc);
397
398 /*
399 * MIB buffer allocation
400 */
401 sc->sc_sysctl_mib_size =
402 __arraycount(mvxpe_mib_list) * sizeof(struct mvxpe_sysctl_mib);
403 sc->sc_sysctl_mib = kmem_alloc(sc->sc_sysctl_mib_size, KM_NOSLEEP);
404 if (sc->sc_sysctl_mib == NULL)
405 goto fail;
406 memset(sc->sc_sysctl_mib, 0, sc->sc_sysctl_mib_size);
407
408 /*
409 * Device DMA Buffer allocation
410 */
411 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
412 if (mvxpe_ring_alloc_queue(sc, q) != 0)
413 goto fail;
414 mvxpe_ring_init_queue(sc, q);
415 }
416
417 /*
418 * We can support 802.1Q VLAN-sized frames and jumbo
419 * Ethernet frames.
420 */
421 sc->sc_ethercom.ec_capabilities |=
422 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
423 ifp->if_softc = sc;
424 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
425 ifp->if_start = mvxpe_start;
426 ifp->if_ioctl = mvxpe_ioctl;
427 ifp->if_init = mvxpe_init;
428 ifp->if_stop = mvxpe_stop;
429 ifp->if_watchdog = mvxpe_watchdog;
430
431 /*
432 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
433 */
434 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
435 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
436 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
437 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
438 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx;
439 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx;
440 ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Tx;
441 ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Rx;
442 ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Tx;
443 ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Rx;
444
445 /*
446 * Initialize struct ifnet
447 */
448 IFQ_SET_MAXLEN(&ifp->if_snd, max(MVXPE_TX_RING_CNT - 1, IFQ_MAXLEN));
449 IFQ_SET_READY(&ifp->if_snd);
450 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
451
452 /*
453 * Enable DMA engines and Initiazlie Device Registers.
454 */
455 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
456 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
457 MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
458 mvxpe_sc_lock(sc); /* XXX */
459 mvxpe_filter_setup(sc);
460 mvxpe_sc_unlock(sc);
461 mvxpe_initreg(ifp);
462
463 /*
464 * Now MAC is working, setup MII.
465 */
466 if (mii_init == 0) {
467 /*
468 * MII bus is shared by all MACs and all PHYs in SoC.
469 * serializing the bus access should be safe.
470 */
471 mutex_init(&mii_mutex, MUTEX_DEFAULT, IPL_NET);
472 mii_init = 1;
473 }
474 sc->sc_mii.mii_ifp = ifp;
475 sc->sc_mii.mii_readreg = mvxpe_miibus_readreg;
476 sc->sc_mii.mii_writereg = mvxpe_miibus_writereg;
477 sc->sc_mii.mii_statchg = mvxpe_miibus_statchg;
478
479 sc->sc_ethercom.ec_mii = &sc->sc_mii;
480 ifmedia_init(&sc->sc_mii.mii_media, 0,
481 mvxpe_mediachange, mvxpe_mediastatus);
482 /*
483 * XXX: phy addressing highly depends on Board Design.
484 * we assume phyaddress == MAC unit number here,
485 * but some boards may not.
486 */
487 mii_attach(self, &sc->sc_mii, 0xffffffff,
488 MII_PHY_ANY, sc->sc_dev->dv_unit, 0);
489 mii = LIST_FIRST(&sc->sc_mii.mii_phys);
490 if (mii == NULL) {
491 aprint_error_dev(self, "no PHY found!\n");
492 ifmedia_add(&sc->sc_mii.mii_media,
493 IFM_ETHER|IFM_MANUAL, 0, NULL);
494 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
495 } else {
496 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
497 phyaddr = MVXPE_PHYADDR_PHYAD(mii->mii_phy);
498 MVXPE_WRITE(sc, MVXPE_PHYADDR, phyaddr);
499 DPRINTSC(sc, 1, "PHYADDR: %#x\n", MVXPE_READ(sc, MVXPE_PHYADDR));
500 }
501
502 /*
503 * Call MI attach routines.
504 */
505 if_attach(ifp);
506 if_deferred_start_init(ifp, NULL);
507
508 ether_ifattach(ifp, sc->sc_enaddr);
509 ether_set_ifflags_cb(&sc->sc_ethercom, mvxpe_ifflags_cb);
510
511 sysctl_mvxpe_init(sc);
512 mvxpe_evcnt_attach(sc);
513 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
514 RND_TYPE_NET, RND_FLAG_DEFAULT);
515
516 return;
517
518 fail:
519 for (q = 0; q < MVXPE_QUEUE_SIZE; q++)
520 mvxpe_ring_dealloc_queue(sc, q);
521 if (sc->sc_sysctl_mib)
522 kmem_free(sc->sc_sysctl_mib, sc->sc_sysctl_mib_size);
523
524 return;
525 }
526
527 STATIC int
528 mvxpe_evcnt_attach(struct mvxpe_softc *sc)
529 {
530 #ifdef MVXPE_EVENT_COUNTERS
531 int q;
532
533 /* Master Interrupt Handler */
534 evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtxth, EVCNT_TYPE_INTR,
535 NULL, device_xname(sc->sc_dev), "RxTxTH Intr.");
536 evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtx, EVCNT_TYPE_INTR,
537 NULL, device_xname(sc->sc_dev), "RxTx Intr.");
538 evcnt_attach_dynamic(&sc->sc_ev.ev_i_misc, EVCNT_TYPE_INTR,
539 NULL, device_xname(sc->sc_dev), "MISC Intr.");
540
541 /* RXTXTH Interrupt */
542 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtxth_txerr, EVCNT_TYPE_INTR,
543 NULL, device_xname(sc->sc_dev), "RxTxTH Tx error summary");
544
545 /* MISC Interrupt */
546 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_phystatuschng, EVCNT_TYPE_INTR,
547 NULL, device_xname(sc->sc_dev), "MISC phy status changed");
548 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_linkchange, EVCNT_TYPE_INTR,
549 NULL, device_xname(sc->sc_dev), "MISC link status changed");
550 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_iae, EVCNT_TYPE_INTR,
551 NULL, device_xname(sc->sc_dev), "MISC internal address error");
552 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxoverrun, EVCNT_TYPE_INTR,
553 NULL, device_xname(sc->sc_dev), "MISC Rx FIFO overrun");
554 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxcrc, EVCNT_TYPE_INTR,
555 NULL, device_xname(sc->sc_dev), "MISC Rx CRC error");
556 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxlargepacket, EVCNT_TYPE_INTR,
557 NULL, device_xname(sc->sc_dev), "MISC Rx too large frame");
558 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txunderrun, EVCNT_TYPE_INTR,
559 NULL, device_xname(sc->sc_dev), "MISC Tx FIFO underrun");
560 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_prbserr, EVCNT_TYPE_INTR,
561 NULL, device_xname(sc->sc_dev), "MISC SERDES loopback test err");
562 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_srse, EVCNT_TYPE_INTR,
563 NULL, device_xname(sc->sc_dev), "MISC SERDES sync error");
564 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txreq, EVCNT_TYPE_INTR,
565 NULL, device_xname(sc->sc_dev), "MISC Tx resource erorr");
566
567 /* RxTx Interrupt */
568 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rreq, EVCNT_TYPE_INTR,
569 NULL, device_xname(sc->sc_dev), "RxTx Rx resource erorr");
570 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rpq, EVCNT_TYPE_INTR,
571 NULL, device_xname(sc->sc_dev), "RxTx Rx pakcet");
572 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_tbrq, EVCNT_TYPE_INTR,
573 NULL, device_xname(sc->sc_dev), "RxTx Tx complete");
574 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rxtxth, EVCNT_TYPE_INTR,
575 NULL, device_xname(sc->sc_dev), "RxTx RxTxTH summary");
576 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_txerr, EVCNT_TYPE_INTR,
577 NULL, device_xname(sc->sc_dev), "RxTx Tx error summary");
578 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_misc, EVCNT_TYPE_INTR,
579 NULL, device_xname(sc->sc_dev), "RxTx MISC summary");
580
581 /* Link */
582 evcnt_attach_dynamic(&sc->sc_ev.ev_link_up, EVCNT_TYPE_MISC,
583 NULL, device_xname(sc->sc_dev), "link up");
584 evcnt_attach_dynamic(&sc->sc_ev.ev_link_down, EVCNT_TYPE_MISC,
585 NULL, device_xname(sc->sc_dev), "link down");
586
587 /* Rx Descriptor */
588 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_ce, EVCNT_TYPE_MISC,
589 NULL, device_xname(sc->sc_dev), "Rx CRC error counter");
590 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_or, EVCNT_TYPE_MISC,
591 NULL, device_xname(sc->sc_dev), "Rx FIFO overrun counter");
592 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_mf, EVCNT_TYPE_MISC,
593 NULL, device_xname(sc->sc_dev), "Rx too large frame counter");
594 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_re, EVCNT_TYPE_MISC,
595 NULL, device_xname(sc->sc_dev), "Rx resource error counter");
596 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_scat, EVCNT_TYPE_MISC,
597 NULL, device_xname(sc->sc_dev), "Rx unexpected scatter bufs");
598
599 /* Tx Descriptor */
600 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_lc, EVCNT_TYPE_MISC,
601 NULL, device_xname(sc->sc_dev), "Tx late collision counter");
602 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_rl, EVCNT_TYPE_MISC,
603 NULL, device_xname(sc->sc_dev), "Tx excess. collision counter");
604 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_ur, EVCNT_TYPE_MISC,
605 NULL, device_xname(sc->sc_dev), "Tx FIFO underrun counter");
606 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_oth, EVCNT_TYPE_MISC,
607 NULL, device_xname(sc->sc_dev), "Tx unkonwn erorr counter");
608
609 /* Status Registers */
610 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pdfc, EVCNT_TYPE_MISC,
611 NULL, device_xname(sc->sc_dev), "Rx discard counter");
612 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pofc, EVCNT_TYPE_MISC,
613 NULL, device_xname(sc->sc_dev), "Rx overrun counter");
614 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txbadfcs, EVCNT_TYPE_MISC,
615 NULL, device_xname(sc->sc_dev), "Tx bad FCS counter");
616 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txdropped, EVCNT_TYPE_MISC,
617 NULL, device_xname(sc->sc_dev), "Tx dorpped counter");
618 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_lpic, EVCNT_TYPE_MISC,
619 NULL, device_xname(sc->sc_dev), "LP_IDLE counter");
620
621 /* Device Driver Errors */
622 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_wdogsoft, EVCNT_TYPE_MISC,
623 NULL, device_xname(sc->sc_dev), "watchdog timer expired");
624 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txerr, EVCNT_TYPE_MISC,
625 NULL, device_xname(sc->sc_dev), "Tx descriptor alloc failed");
626 #define MVXPE_QUEUE_DESC(q) "Rx success in queue " # q
627 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
628 static const char *rxq_desc[] = {
629 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
630 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
631 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
632 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
633 };
634 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxq[q], EVCNT_TYPE_MISC,
635 NULL, device_xname(sc->sc_dev), rxq_desc[q]);
636 }
637 #undef MVXPE_QUEUE_DESC
638 #define MVXPE_QUEUE_DESC(q) "Tx success in queue " # q
639 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
640 static const char *txq_desc[] = {
641 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
642 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
643 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
644 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
645 };
646 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txq[q], EVCNT_TYPE_MISC,
647 NULL, device_xname(sc->sc_dev), txq_desc[q]);
648 }
649 #undef MVXPE_QUEUE_DESC
650 #define MVXPE_QUEUE_DESC(q) "Rx error in queue " # q
651 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
652 static const char *rxqe_desc[] = {
653 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
654 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
655 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
656 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
657 };
658 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxqe[q], EVCNT_TYPE_MISC,
659 NULL, device_xname(sc->sc_dev), rxqe_desc[q]);
660 }
661 #undef MVXPE_QUEUE_DESC
662 #define MVXPE_QUEUE_DESC(q) "Tx error in queue " # q
663 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
664 static const char *txqe_desc[] = {
665 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
666 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
667 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
668 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
669 };
670 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txqe[q], EVCNT_TYPE_MISC,
671 NULL, device_xname(sc->sc_dev), txqe_desc[q]);
672 }
673 #undef MVXPE_QUEUE_DESC
674
675 #endif /* MVXPE_EVENT_COUNTERS */
676 return 0;
677 }
678
679 STATIC void
680 mvxpe_sc_lock(struct mvxpe_softc *sc)
681 {
682 mutex_enter(&sc->sc_mtx);
683 }
684
685 STATIC void
686 mvxpe_sc_unlock(struct mvxpe_softc *sc)
687 {
688 mutex_exit(&sc->sc_mtx);
689 }
690
691 /*
692 * MII
693 */
694 STATIC int
695 mvxpe_miibus_readreg(device_t dev, int phy, int reg)
696 {
697 struct mvxpe_softc *sc = device_private(dev);
698 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
699 uint32_t smi, val;
700 int i;
701
702 mutex_enter(&mii_mutex);
703
704 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
705 DELAY(1);
706 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
707 break;
708 }
709 if (i == MVXPE_PHY_TIMEOUT) {
710 aprint_error_ifnet(ifp, "SMI busy timeout\n");
711 mutex_exit(&mii_mutex);
712 return -1;
713 }
714
715 smi =
716 MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) | MVXPE_SMI_OPCODE_READ;
717 MVXPE_WRITE(sc, MVXPE_SMI, smi);
718
719 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
720 DELAY(1);
721 smi = MVXPE_READ(sc, MVXPE_SMI);
722 if (smi & MVXPE_SMI_READVALID)
723 break;
724 }
725
726 mutex_exit(&mii_mutex);
727
728 DPRINTDEV(dev, 9, "i=%d, timeout=%d\n", i, MVXPE_PHY_TIMEOUT);
729
730 val = smi & MVXPE_SMI_DATA_MASK;
731
732 DPRINTDEV(dev, 9, "phy=%d, reg=%#x, val=%#x\n", phy, reg, val);
733
734 return val;
735 }
736
737 STATIC void
738 mvxpe_miibus_writereg(device_t dev, int phy, int reg, int val)
739 {
740 struct mvxpe_softc *sc = device_private(dev);
741 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
742 uint32_t smi;
743 int i;
744
745 DPRINTDEV(dev, 9, "phy=%d reg=%#x val=%#x\n", phy, reg, val);
746
747 mutex_enter(&mii_mutex);
748
749 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
750 DELAY(1);
751 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
752 break;
753 }
754 if (i == MVXPE_PHY_TIMEOUT) {
755 aprint_error_ifnet(ifp, "SMI busy timeout\n");
756 mutex_exit(&mii_mutex);
757 return;
758 }
759
760 smi = MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) |
761 MVXPE_SMI_OPCODE_WRITE | (val & MVXPE_SMI_DATA_MASK);
762 MVXPE_WRITE(sc, MVXPE_SMI, smi);
763
764 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
765 DELAY(1);
766 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
767 break;
768 }
769
770 mutex_exit(&mii_mutex);
771
772 if (i == MVXPE_PHY_TIMEOUT)
773 aprint_error_ifnet(ifp, "phy write timed out\n");
774 }
775
776 STATIC void
777 mvxpe_miibus_statchg(struct ifnet *ifp)
778 {
779
780 /* nothing to do */
781 }
782
783 /*
784 * Address Decoding Window
785 */
786 STATIC void
787 mvxpe_wininit(struct mvxpe_softc *sc, enum marvell_tags *tags)
788 {
789 device_t pdev = device_parent(sc->sc_dev);
790 uint64_t base;
791 uint32_t en, ac, size;
792 int window, target, attr, rv, i;
793
794 /* First disable all address decode windows */
795 en = MVXPE_BARE_EN_MASK;
796 MVXPE_WRITE(sc, MVXPE_BARE, en);
797
798 ac = 0;
799 for (window = 0, i = 0;
800 tags[i] != MARVELL_TAG_UNDEFINED && window < MVXPE_NWINDOW; i++) {
801 rv = marvell_winparams_by_tag(pdev, tags[i],
802 &target, &attr, &base, &size);
803 if (rv != 0 || size == 0)
804 continue;
805
806 if (base > 0xffffffffULL) {
807 if (window >= MVXPE_NREMAP) {
808 aprint_error_dev(sc->sc_dev,
809 "can't remap window %d\n", window);
810 continue;
811 }
812 MVXPE_WRITE(sc, MVXPE_HA(window),
813 (base >> 32) & 0xffffffff);
814 }
815
816 MVXPE_WRITE(sc, MVXPE_BASEADDR(window),
817 MVXPE_BASEADDR_TARGET(target) |
818 MVXPE_BASEADDR_ATTR(attr) |
819 MVXPE_BASEADDR_BASE(base));
820 MVXPE_WRITE(sc, MVXPE_S(window), MVXPE_S_SIZE(size));
821
822 DPRINTSC(sc, 1, "Window %d Base 0x%016llx: Size 0x%08x\n",
823 window, base, size);
824
825 en &= ~(1 << window);
826 /* set full access (r/w) */
827 ac |= MVXPE_EPAP_EPAR(window, MVXPE_EPAP_AC_FA);
828 window++;
829 }
830 /* allow to access decode window */
831 MVXPE_WRITE(sc, MVXPE_EPAP, ac);
832
833 MVXPE_WRITE(sc, MVXPE_BARE, en);
834 }
835
836 /*
837 * Device Register Initialization
838 * reset device registers to device driver default value.
839 * the device is not enabled here.
840 */
841 STATIC int
842 mvxpe_initreg(struct ifnet *ifp)
843 {
844 struct mvxpe_softc *sc = ifp->if_softc;
845 int serdes = 0;
846 uint32_t reg;
847 int q, i;
848
849 DPRINTIFNET(ifp, 1, "initializing device register\n");
850
851 /* Init TX/RX Queue Registers */
852 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
853 mvxpe_rx_lockq(sc, q);
854 if (mvxpe_rx_queue_init(ifp, q) != 0) {
855 aprint_error_ifnet(ifp,
856 "initialization failed: cannot initialize queue\n");
857 mvxpe_rx_unlockq(sc, q);
858 return ENOBUFS;
859 }
860 mvxpe_rx_unlockq(sc, q);
861
862 mvxpe_tx_lockq(sc, q);
863 if (mvxpe_tx_queue_init(ifp, q) != 0) {
864 aprint_error_ifnet(ifp,
865 "initialization failed: cannot initialize queue\n");
866 mvxpe_tx_unlockq(sc, q);
867 return ENOBUFS;
868 }
869 mvxpe_tx_unlockq(sc, q);
870 }
871
872 /* Tx MTU Limit */
873 MVXPE_WRITE(sc, MVXPE_TXMTU, MVXPE_MTU);
874
875 /* Check SGMII or SERDES(asume IPL/U-BOOT initialize this) */
876 reg = MVXPE_READ(sc, MVXPE_PMACC0);
877 if ((reg & MVXPE_PMACC0_PORTTYPE) != 0)
878 serdes = 1;
879
880 /* Ethernet Unit Control */
881 reg = MVXPE_READ(sc, MVXPE_EUC);
882 reg |= MVXPE_EUC_POLLING;
883 MVXPE_WRITE(sc, MVXPE_EUC, reg);
884
885 /* Auto Negotiation */
886 reg = MVXPE_PANC_MUSTSET; /* must write 0x1 */
887 reg |= MVXPE_PANC_FORCELINKFAIL;/* force link state down */
888 reg |= MVXPE_PANC_ANSPEEDEN; /* interface speed negotiation */
889 reg |= MVXPE_PANC_ANDUPLEXEN; /* negotiate duplex mode */
890 if (serdes) {
891 reg |= MVXPE_PANC_INBANDANEN; /* In Band negotiation */
892 reg |= MVXPE_PANC_INBANDANBYPASSEN; /* bypass negotiation */
893 reg |= MVXPE_PANC_SETFULLDX; /* set full-duplex on failure */
894 }
895 MVXPE_WRITE(sc, MVXPE_PANC, reg);
896
897 /* EEE: Low Power Idle */
898 reg = MVXPE_LPIC0_LILIMIT(MVXPE_LPI_LI);
899 reg |= MVXPE_LPIC0_TSLIMIT(MVXPE_LPI_TS);
900 MVXPE_WRITE(sc, MVXPE_LPIC0, reg);
901
902 reg = MVXPE_LPIC1_TWLIMIT(MVXPE_LPI_TS);
903 MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
904
905 reg = MVXPE_LPIC2_MUSTSET;
906 MVXPE_WRITE(sc, MVXPE_LPIC2, reg);
907
908 /* Port MAC Control set 0 */
909 reg = MVXPE_PMACC0_MUSTSET; /* must write 0x1 */
910 reg &= ~MVXPE_PMACC0_PORTEN; /* port is still disabled */
911 reg |= MVXPE_PMACC0_FRAMESIZELIMIT(MVXPE_MRU);
912 if (serdes)
913 reg |= MVXPE_PMACC0_PORTTYPE;
914 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
915
916 /* Port MAC Control set 1 is only used for loop-back test */
917
918 /* Port MAC Control set 2 */
919 reg = MVXPE_READ(sc, MVXPE_PMACC2);
920 reg &= (MVXPE_PMACC2_PCSEN | MVXPE_PMACC2_RGMIIEN);
921 reg |= MVXPE_PMACC2_MUSTSET;
922 MVXPE_WRITE(sc, MVXPE_PMACC2, reg);
923
924 /* Port MAC Control set 3 is used for IPG tune */
925
926 /* Port MAC Control set 4 is not used */
927
928 /* Port Configuration */
929 /* Use queue 0 only */
930 reg = MVXPE_READ(sc, MVXPE_PXC);
931 reg &= ~(MVXPE_PXC_RXQ_MASK | MVXPE_PXC_RXQARP_MASK |
932 MVXPE_PXC_TCPQ_MASK | MVXPE_PXC_UDPQ_MASK | MVXPE_PXC_BPDUQ_MASK);
933 MVXPE_WRITE(sc, MVXPE_PXC, reg);
934
935 /* Port Configuration Extended: enable Tx CRC generation */
936 reg = MVXPE_READ(sc, MVXPE_PXCX);
937 reg &= ~MVXPE_PXCX_TXCRCDIS;
938 MVXPE_WRITE(sc, MVXPE_PXCX, reg);
939
940 /* clear MIB counter registers(clear by read) */
941 for (i = 0; i < __arraycount(mvxpe_mib_list); i++)
942 MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum));
943
944 /* Set SDC register except IPGINT bits */
945 reg = MVXPE_SDC_RXBSZ_16_64BITWORDS;
946 reg |= MVXPE_SDC_TXBSZ_16_64BITWORDS;
947 reg |= MVXPE_SDC_BLMR;
948 reg |= MVXPE_SDC_BLMT;
949 MVXPE_WRITE(sc, MVXPE_SDC, reg);
950
951 return 0;
952 }
953
954 /*
955 * Descriptor Ring Controls for each of queues
956 */
957 STATIC void *
958 mvxpe_dma_memalloc(struct mvxpe_softc *sc, bus_dmamap_t *map, size_t size)
959 {
960 bus_dma_segment_t segs;
961 void *kva = NULL;
962 int nsegs;
963
964 /*
965 * Allocate the descriptor queues.
966 * struct mvxpe_ring_data contians array of descriptor per queue.
967 */
968 if (bus_dmamem_alloc(sc->sc_dmat,
969 size, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) {
970 aprint_error_dev(sc->sc_dev,
971 "can't alloc device memory (%zu bytes)\n", size);
972 return NULL;
973 }
974 if (bus_dmamem_map(sc->sc_dmat,
975 &segs, nsegs, size, &kva, BUS_DMA_NOWAIT)) {
976 aprint_error_dev(sc->sc_dev,
977 "can't map dma buffers (%zu bytes)\n", size);
978 goto fail1;
979 }
980
981 if (bus_dmamap_create(sc->sc_dmat,
982 size, 1, size, 0, BUS_DMA_NOWAIT, map)) {
983 aprint_error_dev(sc->sc_dev, "can't create dma map\n");
984 goto fail2;
985 }
986 if (bus_dmamap_load(sc->sc_dmat,
987 *map, kva, size, NULL, BUS_DMA_NOWAIT)) {
988 aprint_error_dev(sc->sc_dev, "can't load dma map\n");
989 goto fail3;
990 }
991 memset(kva, 0, size);
992 return kva;
993
994 fail3:
995 bus_dmamap_destroy(sc->sc_dmat, *map);
996 memset(map, 0, sizeof(*map));
997 fail2:
998 bus_dmamem_unmap(sc->sc_dmat, kva, size);
999 fail1:
1000 bus_dmamem_free(sc->sc_dmat, &segs, nsegs);
1001 return NULL;
1002 }
1003
1004 STATIC int
1005 mvxpe_ring_alloc_queue(struct mvxpe_softc *sc, int q)
1006 {
1007 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1008 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1009
1010 /*
1011 * MVXPE_RX_RING_CNT and MVXPE_TX_RING_CNT is a hard limit of
1012 * queue length. real queue length is limited by
1013 * sc->sc_rx_ring[q].rx_queue_len and sc->sc_tx_ring[q].tx_queue_len.
1014 *
1015 * because descriptor ring reallocation needs reprogramming of
1016 * DMA registers, we allocate enough descriptor for hard limit
1017 * of queue length.
1018 */
1019 rx->rx_descriptors =
1020 mvxpe_dma_memalloc(sc, &rx->rx_descriptors_map,
1021 (sizeof(struct mvxpe_rx_desc) * MVXPE_RX_RING_CNT));
1022 if (rx->rx_descriptors == NULL)
1023 goto fail;
1024
1025 tx->tx_descriptors =
1026 mvxpe_dma_memalloc(sc, &tx->tx_descriptors_map,
1027 (sizeof(struct mvxpe_tx_desc) * MVXPE_TX_RING_CNT));
1028 if (tx->tx_descriptors == NULL)
1029 goto fail;
1030
1031 return 0;
1032 fail:
1033 mvxpe_ring_dealloc_queue(sc, q);
1034 aprint_error_dev(sc->sc_dev, "DMA Ring buffer allocation failure.\n");
1035 return ENOMEM;
1036 }
1037
1038 STATIC void
1039 mvxpe_ring_dealloc_queue(struct mvxpe_softc *sc, int q)
1040 {
1041 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1042 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1043 bus_dma_segment_t *segs;
1044 bus_size_t size;
1045 void *kva;
1046 int nsegs;
1047
1048 /* Rx */
1049 kva = (void *)MVXPE_RX_RING_MEM_VA(sc, q);
1050 if (kva) {
1051 segs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_segs;
1052 nsegs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_nsegs;
1053 size = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_mapsize;
1054
1055 bus_dmamap_unload(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1056 bus_dmamap_destroy(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1057 bus_dmamem_unmap(sc->sc_dmat, kva, size);
1058 bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1059 }
1060
1061 /* Tx */
1062 kva = (void *)MVXPE_TX_RING_MEM_VA(sc, q);
1063 if (kva) {
1064 segs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_segs;
1065 nsegs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_nsegs;
1066 size = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_mapsize;
1067
1068 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1069 bus_dmamap_destroy(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1070 bus_dmamem_unmap(sc->sc_dmat, kva, size);
1071 bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1072 }
1073
1074 /* Clear doungling pointers all */
1075 memset(rx, 0, sizeof(*rx));
1076 memset(tx, 0, sizeof(*tx));
1077 }
1078
1079 STATIC void
1080 mvxpe_ring_init_queue(struct mvxpe_softc *sc, int q)
1081 {
1082 struct mvxpe_rx_desc *rxd = MVXPE_RX_RING_MEM_VA(sc, q);
1083 struct mvxpe_tx_desc *txd = MVXPE_TX_RING_MEM_VA(sc, q);
1084 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1085 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1086 static const int rx_default_queue_len[] = {
1087 MVXPE_RX_QUEUE_LIMIT_0, MVXPE_RX_QUEUE_LIMIT_1,
1088 MVXPE_RX_QUEUE_LIMIT_2, MVXPE_RX_QUEUE_LIMIT_3,
1089 MVXPE_RX_QUEUE_LIMIT_4, MVXPE_RX_QUEUE_LIMIT_5,
1090 MVXPE_RX_QUEUE_LIMIT_6, MVXPE_RX_QUEUE_LIMIT_7,
1091 };
1092 static const int tx_default_queue_len[] = {
1093 MVXPE_TX_QUEUE_LIMIT_0, MVXPE_TX_QUEUE_LIMIT_1,
1094 MVXPE_TX_QUEUE_LIMIT_2, MVXPE_TX_QUEUE_LIMIT_3,
1095 MVXPE_TX_QUEUE_LIMIT_4, MVXPE_TX_QUEUE_LIMIT_5,
1096 MVXPE_TX_QUEUE_LIMIT_6, MVXPE_TX_QUEUE_LIMIT_7,
1097 };
1098 extern uint32_t mvTclk;
1099 int i;
1100
1101 /* Rx handle */
1102 for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1103 MVXPE_RX_DESC(sc, q, i) = &rxd[i];
1104 MVXPE_RX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_rx_desc) * i;
1105 MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1106 }
1107 mutex_init(&rx->rx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1108 rx->rx_dma = rx->rx_cpu = 0;
1109 rx->rx_queue_len = rx_default_queue_len[q];
1110 if (rx->rx_queue_len > MVXPE_RX_RING_CNT)
1111 rx->rx_queue_len = MVXPE_RX_RING_CNT;
1112 rx->rx_queue_th_received = rx->rx_queue_len / MVXPE_RXTH_RATIO;
1113 rx->rx_queue_th_free = rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
1114 rx->rx_queue_th_time = (mvTclk / 1000) / 2; /* 0.5 [ms] */
1115
1116 /* Tx handle */
1117 for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1118 MVXPE_TX_DESC(sc, q, i) = &txd[i];
1119 MVXPE_TX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_tx_desc) * i;
1120 MVXPE_TX_MBUF(sc, q, i) = NULL;
1121 /* Tx handle needs DMA map for busdma_load_mbuf() */
1122 if (bus_dmamap_create(sc->sc_dmat,
1123 mvxpbm_chunk_size(sc->sc_bm),
1124 MVXPE_TX_SEGLIMIT, mvxpbm_chunk_size(sc->sc_bm), 0,
1125 BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
1126 &MVXPE_TX_MAP(sc, q, i))) {
1127 aprint_error_dev(sc->sc_dev,
1128 "can't create dma map (tx ring %d)\n", i);
1129 }
1130 }
1131 mutex_init(&tx->tx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1132 tx->tx_dma = tx->tx_cpu = 0;
1133 tx->tx_queue_len = tx_default_queue_len[q];
1134 if (tx->tx_queue_len > MVXPE_TX_RING_CNT)
1135 tx->tx_queue_len = MVXPE_TX_RING_CNT;
1136 tx->tx_used = 0;
1137 tx->tx_queue_th_free = tx->tx_queue_len / MVXPE_TXTH_RATIO;
1138 }
1139
1140 STATIC void
1141 mvxpe_ring_flush_queue(struct mvxpe_softc *sc, int q)
1142 {
1143 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1144 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1145 struct mbuf *m;
1146 int i;
1147
1148 KASSERT_RX_MTX(sc, q);
1149 KASSERT_TX_MTX(sc, q);
1150
1151 /* Rx handle */
1152 for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1153 if (MVXPE_RX_PKTBUF(sc, q, i) == NULL)
1154 continue;
1155 mvxpbm_free_chunk(MVXPE_RX_PKTBUF(sc, q, i));
1156 MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1157 }
1158 rx->rx_dma = rx->rx_cpu = 0;
1159
1160 /* Tx handle */
1161 for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1162 m = MVXPE_TX_MBUF(sc, q, i);
1163 if (m == NULL)
1164 continue;
1165 MVXPE_TX_MBUF(sc, q, i) = NULL;
1166 bus_dmamap_sync(sc->sc_dmat,
1167 MVXPE_TX_MAP(sc, q, i), 0, m->m_pkthdr.len,
1168 BUS_DMASYNC_POSTWRITE);
1169 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, i));
1170 m_freem(m);
1171 }
1172 tx->tx_dma = tx->tx_cpu = 0;
1173 tx->tx_used = 0;
1174 }
1175
1176 STATIC void
1177 mvxpe_ring_sync_rx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1178 {
1179 int wrap;
1180
1181 KASSERT_RX_MTX(sc, q);
1182 KASSERT(count > 0 && count <= MVXPE_RX_RING_CNT);
1183 KASSERT(idx >= 0 && idx < MVXPE_RX_RING_CNT);
1184
1185 wrap = (idx + count) - MVXPE_RX_RING_CNT;
1186 if (wrap > 0) {
1187 count -= wrap;
1188 KASSERT(count > 0);
1189 bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1190 0, sizeof(struct mvxpe_rx_desc) * wrap, ops);
1191 }
1192 bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1193 MVXPE_RX_DESC_OFF(sc, q, idx),
1194 sizeof(struct mvxpe_rx_desc) * count, ops);
1195 }
1196
1197 STATIC void
1198 mvxpe_ring_sync_tx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1199 {
1200 int wrap = 0;
1201
1202 KASSERT_TX_MTX(sc, q);
1203 KASSERT(count > 0 && count <= MVXPE_TX_RING_CNT);
1204 KASSERT(idx >= 0 && idx < MVXPE_TX_RING_CNT);
1205
1206 wrap = (idx + count) - MVXPE_TX_RING_CNT;
1207 if (wrap > 0) {
1208 count -= wrap;
1209 bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1210 0, sizeof(struct mvxpe_tx_desc) * wrap, ops);
1211 }
1212 bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1213 MVXPE_TX_DESC_OFF(sc, q, idx),
1214 sizeof(struct mvxpe_tx_desc) * count, ops);
1215 }
1216
1217 /*
1218 * Rx/Tx Queue Control
1219 */
1220 STATIC int
1221 mvxpe_rx_queue_init(struct ifnet *ifp, int q)
1222 {
1223 struct mvxpe_softc *sc = ifp->if_softc;
1224 uint32_t reg;
1225
1226 KASSERT_RX_MTX(sc, q);
1227 KASSERT(MVXPE_RX_RING_MEM_PA(sc, q) != 0);
1228
1229 /* descriptor address */
1230 MVXPE_WRITE(sc, MVXPE_PRXDQA(q), MVXPE_RX_RING_MEM_PA(sc, q));
1231
1232 /* Rx buffer size and descriptor ring size */
1233 reg = MVXPE_PRXDQS_BUFFERSIZE(mvxpbm_chunk_size(sc->sc_bm) >> 3);
1234 reg |= MVXPE_PRXDQS_DESCRIPTORSQUEUESIZE(MVXPE_RX_RING_CNT);
1235 MVXPE_WRITE(sc, MVXPE_PRXDQS(q), reg);
1236 DPRINTIFNET(ifp, 1, "PRXDQS(%d): %#x\n",
1237 q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
1238
1239 /* Rx packet offset address */
1240 reg = MVXPE_PRXC_PACKETOFFSET(mvxpbm_packet_offset(sc->sc_bm) >> 3);
1241 MVXPE_WRITE(sc, MVXPE_PRXC(q), reg);
1242 DPRINTIFNET(ifp, 1, "PRXC(%d): %#x\n",
1243 q, MVXPE_READ(sc, MVXPE_PRXC(q)));
1244
1245 /* Rx DMA SNOOP */
1246 reg = MVXPE_PRXSNP_SNOOPNOOFBYTES(MVXPE_MRU);
1247 reg |= MVXPE_PRXSNP_L2DEPOSITNOOFBYTES(MVXPE_MRU);
1248 MVXPE_WRITE(sc, MVXPE_PRXSNP(q), reg);
1249
1250 /* if DMA is not working, register is not updated */
1251 KASSERT(MVXPE_READ(sc, MVXPE_PRXDQA(q)) == MVXPE_RX_RING_MEM_PA(sc, q));
1252 return 0;
1253 }
1254
1255 STATIC int
1256 mvxpe_tx_queue_init(struct ifnet *ifp, int q)
1257 {
1258 struct mvxpe_softc *sc = ifp->if_softc;
1259 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1260 uint32_t reg;
1261
1262 KASSERT_TX_MTX(sc, q);
1263 KASSERT(MVXPE_TX_RING_MEM_PA(sc, q) != 0);
1264
1265 /* descriptor address */
1266 MVXPE_WRITE(sc, MVXPE_PTXDQA(q), MVXPE_TX_RING_MEM_PA(sc, q));
1267
1268 /* Tx threshold, and descriptor ring size */
1269 reg = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1270 reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
1271 MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1272 DPRINTIFNET(ifp, 1, "PTXDQS(%d): %#x\n",
1273 q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
1274
1275 /* if DMA is not working, register is not updated */
1276 KASSERT(MVXPE_READ(sc, MVXPE_PTXDQA(q)) == MVXPE_TX_RING_MEM_PA(sc, q));
1277 return 0;
1278 }
1279
1280 STATIC int
1281 mvxpe_rx_queue_enable(struct ifnet *ifp, int q)
1282 {
1283 struct mvxpe_softc *sc = ifp->if_softc;
1284 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1285 uint32_t reg;
1286
1287 KASSERT_RX_MTX(sc, q);
1288
1289 /* Set Rx interrupt threshold */
1290 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1291 reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
1292 MVXPE_WRITE(sc, MVXPE_PRXDQTH(q), reg);
1293
1294 reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
1295 MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1296
1297 /* Unmask RXTX_TH Intr. */
1298 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1299 reg |= MVXPE_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1300 reg |= MVXPE_PRXTXTI_RDTAQ(q); /* Rx Descriptor Alart */
1301 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1302
1303 /* Enable Rx queue */
1304 reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1305 reg |= MVXPE_RQC_ENQ(q);
1306 MVXPE_WRITE(sc, MVXPE_RQC, reg);
1307
1308 return 0;
1309 }
1310
1311 STATIC int
1312 mvxpe_tx_queue_enable(struct ifnet *ifp, int q)
1313 {
1314 struct mvxpe_softc *sc = ifp->if_softc;
1315 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1316 uint32_t reg;
1317
1318 KASSERT_TX_MTX(sc, q);
1319
1320 /* Set Tx interrupt threshold */
1321 reg = MVXPE_READ(sc, MVXPE_PTXDQS(q));
1322 reg &= ~MVXPE_PTXDQS_TBT_MASK; /* keep queue size */
1323 reg |= MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1324 MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1325
1326 /* Unmask RXTX_TH Intr. */
1327 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1328 reg |= MVXPE_PRXTXTI_TBTCQ(q); /* Tx Threshold cross */
1329 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1330
1331 /* Don't update MVXPE_TQC here, there is no packet yet. */
1332 return 0;
1333 }
1334
1335 STATIC void
1336 mvxpe_rx_lockq(struct mvxpe_softc *sc, int q)
1337 {
1338 KASSERT(q >= 0);
1339 KASSERT(q < MVXPE_QUEUE_SIZE);
1340 mutex_enter(&sc->sc_rx_ring[q].rx_ring_mtx);
1341 }
1342
1343 STATIC void
1344 mvxpe_rx_unlockq(struct mvxpe_softc *sc, int q)
1345 {
1346 KASSERT(q >= 0);
1347 KASSERT(q < MVXPE_QUEUE_SIZE);
1348 mutex_exit(&sc->sc_rx_ring[q].rx_ring_mtx);
1349 }
1350
1351 STATIC void
1352 mvxpe_tx_lockq(struct mvxpe_softc *sc, int q)
1353 {
1354 KASSERT(q >= 0);
1355 KASSERT(q < MVXPE_QUEUE_SIZE);
1356 mutex_enter(&sc->sc_tx_ring[q].tx_ring_mtx);
1357 }
1358
1359 STATIC void
1360 mvxpe_tx_unlockq(struct mvxpe_softc *sc, int q)
1361 {
1362 KASSERT(q >= 0);
1363 KASSERT(q < MVXPE_QUEUE_SIZE);
1364 mutex_exit(&sc->sc_tx_ring[q].tx_ring_mtx);
1365 }
1366
1367 /*
1368 * Interrupt Handlers
1369 */
1370 STATIC void
1371 mvxpe_disable_intr(struct mvxpe_softc *sc)
1372 {
1373 MVXPE_WRITE(sc, MVXPE_EUIM, 0);
1374 MVXPE_WRITE(sc, MVXPE_EUIC, 0);
1375 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, 0);
1376 MVXPE_WRITE(sc, MVXPE_PRXTXTIC, 0);
1377 MVXPE_WRITE(sc, MVXPE_PRXTXIM, 0);
1378 MVXPE_WRITE(sc, MVXPE_PRXTXIC, 0);
1379 MVXPE_WRITE(sc, MVXPE_PMIM, 0);
1380 MVXPE_WRITE(sc, MVXPE_PMIC, 0);
1381 MVXPE_WRITE(sc, MVXPE_PIE, 0);
1382 }
1383
1384 STATIC void
1385 mvxpe_enable_intr(struct mvxpe_softc *sc)
1386 {
1387 uint32_t reg;
1388
1389 /* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1390 reg = MVXPE_READ(sc, MVXPE_PMIM);
1391 reg |= MVXPE_PMI_PHYSTATUSCHNG;
1392 reg |= MVXPE_PMI_LINKCHANGE;
1393 reg |= MVXPE_PMI_IAE;
1394 reg |= MVXPE_PMI_RXOVERRUN;
1395 reg |= MVXPE_PMI_RXCRCERROR;
1396 reg |= MVXPE_PMI_RXLARGEPACKET;
1397 reg |= MVXPE_PMI_TXUNDRN;
1398 #if 0
1399 /*
1400 * The device may raise false interrupts for SERDES even if the device
1401 * is not configured to use SERDES connection.
1402 */
1403 reg |= MVXPE_PMI_PRBSERROR;
1404 reg |= MVXPE_PMI_SRSE;
1405 #else
1406 reg &= ~MVXPE_PMI_PRBSERROR;
1407 reg &= ~MVXPE_PMI_SRSE;
1408 #endif
1409 reg |= MVXPE_PMI_TREQ_MASK;
1410 MVXPE_WRITE(sc, MVXPE_PMIM, reg);
1411
1412 /* Enable Summary Bit to check all interrupt cause. */
1413 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1414 reg |= MVXPE_PRXTXTI_PMISCICSUMMARY;
1415 reg |= MVXPE_PRXTXTI_PTXERRORSUMMARY;
1416 reg |= MVXPE_PRXTXTI_PRXTXICSUMMARY;
1417 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1418
1419 /* Enable All Queue Interrupt */
1420 reg = MVXPE_READ(sc, MVXPE_PIE);
1421 reg |= MVXPE_PIE_RXPKTINTRPTENB_MASK;
1422 reg |= MVXPE_PIE_TXPKTINTRPTENB_MASK;
1423 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1424 }
1425
1426 STATIC int
1427 mvxpe_rxtxth_intr(void *arg)
1428 {
1429 struct mvxpe_softc *sc = arg;
1430 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1431 uint32_t ic, queues, datum = 0;
1432
1433 DPRINTSC(sc, 2, "got RXTX_TH_Intr\n");
1434 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtxth);
1435
1436 mvxpe_sc_lock(sc);
1437 ic = MVXPE_READ(sc, MVXPE_PRXTXTIC);
1438 if (ic == 0) {
1439 mvxpe_sc_unlock(sc);
1440 return 0;
1441 }
1442 MVXPE_WRITE(sc, MVXPE_PRXTXTIC, ~ic);
1443 datum = datum ^ ic;
1444
1445 DPRINTIFNET(ifp, 2, "PRXTXTIC: %#x\n", ic);
1446
1447 /* ack maintance interrupt first */
1448 if (ic & MVXPE_PRXTXTI_PTXERRORSUMMARY) {
1449 DPRINTIFNET(ifp, 1, "PRXTXTIC: +PTXERRORSUMMARY\n");
1450 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtxth_txerr);
1451 }
1452 if ((ic & MVXPE_PRXTXTI_PMISCICSUMMARY)) {
1453 DPRINTIFNET(ifp, 2, "PTXTXTIC: +PMISCICSUMMARY\n");
1454 mvxpe_misc_intr(sc);
1455 }
1456 if (ic & MVXPE_PRXTXTI_PRXTXICSUMMARY) {
1457 DPRINTIFNET(ifp, 2, "PTXTXTIC: +PRXTXICSUMMARY\n");
1458 mvxpe_rxtx_intr(sc);
1459 }
1460 if (!(ifp->if_flags & IFF_RUNNING)) {
1461 mvxpe_sc_unlock(sc);
1462 return 1;
1463 }
1464
1465 /* RxTxTH interrupt */
1466 queues = MVXPE_PRXTXTI_GET_RBICTAPQ(ic);
1467 if (queues) {
1468 DPRINTIFNET(ifp, 2, "PRXTXTIC: +RXEOF\n");
1469 mvxpe_rx(sc, queues);
1470 }
1471 queues = MVXPE_PRXTXTI_GET_TBTCQ(ic);
1472 if (queues) {
1473 DPRINTIFNET(ifp, 2, "PRXTXTIC: +TBTCQ\n");
1474 mvxpe_tx_complete(sc, queues);
1475 }
1476 queues = MVXPE_PRXTXTI_GET_RDTAQ(ic);
1477 if (queues) {
1478 DPRINTIFNET(ifp, 2, "PRXTXTIC: +RDTAQ\n");
1479 mvxpe_rx_refill(sc, queues);
1480 }
1481 mvxpe_sc_unlock(sc);
1482
1483 if_schedule_deferred_start(ifp);
1484
1485 rnd_add_uint32(&sc->sc_rnd_source, datum);
1486
1487 return 1;
1488 }
1489
1490 STATIC int
1491 mvxpe_misc_intr(void *arg)
1492 {
1493 struct mvxpe_softc *sc = arg;
1494 #ifdef MVXPE_DEBUG
1495 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1496 #endif
1497 uint32_t ic;
1498 uint32_t datum = 0;
1499 int claimed = 0;
1500
1501 DPRINTSC(sc, 2, "got MISC_INTR\n");
1502 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_misc);
1503
1504 KASSERT_SC_MTX(sc);
1505
1506 for (;;) {
1507 ic = MVXPE_READ(sc, MVXPE_PMIC);
1508 ic &= MVXPE_READ(sc, MVXPE_PMIM);
1509 if (ic == 0)
1510 break;
1511 MVXPE_WRITE(sc, MVXPE_PMIC, ~ic);
1512 datum = datum ^ ic;
1513 claimed = 1;
1514
1515 DPRINTIFNET(ifp, 2, "PMIC=%#x\n", ic);
1516 if (ic & MVXPE_PMI_PHYSTATUSCHNG) {
1517 DPRINTIFNET(ifp, 2, "+PHYSTATUSCHNG\n");
1518 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_phystatuschng);
1519 }
1520 if (ic & MVXPE_PMI_LINKCHANGE) {
1521 DPRINTIFNET(ifp, 2, "+LINKCHANGE\n");
1522 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_linkchange);
1523 mvxpe_linkupdate(sc);
1524 }
1525 if (ic & MVXPE_PMI_IAE) {
1526 DPRINTIFNET(ifp, 2, "+IAE\n");
1527 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_iae);
1528 }
1529 if (ic & MVXPE_PMI_RXOVERRUN) {
1530 DPRINTIFNET(ifp, 2, "+RXOVERRUN\n");
1531 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxoverrun);
1532 }
1533 if (ic & MVXPE_PMI_RXCRCERROR) {
1534 DPRINTIFNET(ifp, 2, "+RXCRCERROR\n");
1535 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxcrc);
1536 }
1537 if (ic & MVXPE_PMI_RXLARGEPACKET) {
1538 DPRINTIFNET(ifp, 2, "+RXLARGEPACKET\n");
1539 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxlargepacket);
1540 }
1541 if (ic & MVXPE_PMI_TXUNDRN) {
1542 DPRINTIFNET(ifp, 2, "+TXUNDRN\n");
1543 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txunderrun);
1544 }
1545 if (ic & MVXPE_PMI_PRBSERROR) {
1546 DPRINTIFNET(ifp, 2, "+PRBSERROR\n");
1547 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_prbserr);
1548 }
1549 if (ic & MVXPE_PMI_TREQ_MASK) {
1550 DPRINTIFNET(ifp, 2, "+TREQ\n");
1551 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txreq);
1552 }
1553 }
1554 if (datum)
1555 rnd_add_uint32(&sc->sc_rnd_source, datum);
1556
1557 return claimed;
1558 }
1559
1560 STATIC int
1561 mvxpe_rxtx_intr(void *arg)
1562 {
1563 struct mvxpe_softc *sc = arg;
1564 #ifdef MVXPE_DEBUG
1565 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1566 #endif
1567 uint32_t datum = 0;
1568 uint32_t prxtxic;
1569 int claimed = 0;
1570
1571 DPRINTSC(sc, 2, "got RXTX_Intr\n");
1572 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtx);
1573
1574 KASSERT_SC_MTX(sc);
1575
1576 for (;;) {
1577 prxtxic = MVXPE_READ(sc, MVXPE_PRXTXIC);
1578 prxtxic &= MVXPE_READ(sc, MVXPE_PRXTXIM);
1579 if (prxtxic == 0)
1580 break;
1581 MVXPE_WRITE(sc, MVXPE_PRXTXIC, ~prxtxic);
1582 datum = datum ^ prxtxic;
1583 claimed = 1;
1584
1585 DPRINTSC(sc, 2, "PRXTXIC: %#x\n", prxtxic);
1586
1587 if (prxtxic & MVXPE_PRXTXI_RREQ_MASK) {
1588 DPRINTIFNET(ifp, 1, "Rx Resource Error.\n");
1589 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rreq);
1590 }
1591 if (prxtxic & MVXPE_PRXTXI_RPQ_MASK) {
1592 DPRINTIFNET(ifp, 1, "Rx Packet in Queue.\n");
1593 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rpq);
1594 }
1595 if (prxtxic & MVXPE_PRXTXI_TBRQ_MASK) {
1596 DPRINTIFNET(ifp, 1, "Tx Buffer Return.\n");
1597 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_tbrq);
1598 }
1599 if (prxtxic & MVXPE_PRXTXI_PRXTXTHICSUMMARY) {
1600 DPRINTIFNET(ifp, 1, "PRXTXTHIC Sumary\n");
1601 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rxtxth);
1602 }
1603 if (prxtxic & MVXPE_PRXTXI_PTXERRORSUMMARY) {
1604 DPRINTIFNET(ifp, 1, "PTXERROR Sumary\n");
1605 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_txerr);
1606 }
1607 if (prxtxic & MVXPE_PRXTXI_PMISCICSUMMARY) {
1608 DPRINTIFNET(ifp, 1, "PMISCIC Sumary\n");
1609 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_misc);
1610 }
1611 }
1612 if (datum)
1613 rnd_add_uint32(&sc->sc_rnd_source, datum);
1614
1615 return claimed;
1616 }
1617
1618 STATIC void
1619 mvxpe_tick(void *arg)
1620 {
1621 struct mvxpe_softc *sc = arg;
1622 struct mii_data *mii = &sc->sc_mii;
1623
1624 mvxpe_sc_lock(sc);
1625
1626 mii_tick(mii);
1627 mii_pollstat(&sc->sc_mii);
1628
1629 /* read mib registers(clear by read) */
1630 mvxpe_update_mib(sc);
1631
1632 /* read counter registers(clear by read) */
1633 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pdfc,
1634 MVXPE_READ(sc, MVXPE_PDFC));
1635 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pofc,
1636 MVXPE_READ(sc, MVXPE_POFC));
1637 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txbadfcs,
1638 MVXPE_READ(sc, MVXPE_TXBADFCS));
1639 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txdropped,
1640 MVXPE_READ(sc, MVXPE_TXDROPPED));
1641 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_lpic,
1642 MVXPE_READ(sc, MVXPE_LPIC));
1643
1644 mvxpe_sc_unlock(sc);
1645
1646 callout_schedule(&sc->sc_tick_ch, hz);
1647 }
1648
1649
1650 /*
1651 * struct ifnet and mii callbacks
1652 */
1653 STATIC void
1654 mvxpe_start(struct ifnet *ifp)
1655 {
1656 struct mvxpe_softc *sc = ifp->if_softc;
1657 struct mbuf *m;
1658 int q;
1659
1660 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1661 DPRINTIFNET(ifp, 1, "not running\n");
1662 return;
1663 }
1664
1665 mvxpe_sc_lock(sc);
1666 if (!MVXPE_IS_LINKUP(sc)) {
1667 /* If Link is DOWN, can't start TX */
1668 DPRINTIFNET(ifp, 1, "link fail\n");
1669 for (;;) {
1670 /*
1671 * discard stale packets all.
1672 * these may confuse DAD, ARP or timer based protocols.
1673 */
1674 IFQ_DEQUEUE(&ifp->if_snd, m);
1675 if (m == NULL)
1676 break;
1677 m_freem(m);
1678 }
1679 mvxpe_sc_unlock(sc);
1680 return;
1681 }
1682 for (;;) {
1683 /*
1684 * don't use IFQ_POLL().
1685 * there is lock problem between IFQ_POLL and IFQ_DEQUEUE
1686 * on SMP enabled networking stack.
1687 */
1688 IFQ_DEQUEUE(&ifp->if_snd, m);
1689 if (m == NULL)
1690 break;
1691
1692 q = mvxpe_tx_queue_select(sc, m);
1693 if (q < 0)
1694 break;
1695 /* mutex is held in mvxpe_tx_queue_select() */
1696
1697 if (mvxpe_tx_queue(sc, m, q) != 0) {
1698 DPRINTIFNET(ifp, 1, "cannot add packet to tx ring\n");
1699 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txerr);
1700 mvxpe_tx_unlockq(sc, q);
1701 break;
1702 }
1703 mvxpe_tx_unlockq(sc, q);
1704 KASSERT(sc->sc_tx_ring[q].tx_used >= 0);
1705 KASSERT(sc->sc_tx_ring[q].tx_used <=
1706 sc->sc_tx_ring[q].tx_queue_len);
1707 DPRINTIFNET(ifp, 1, "a packet is added to tx ring\n");
1708 sc->sc_tx_pending++;
1709 ifp->if_opackets++;
1710 ifp->if_timer = 1;
1711 sc->sc_wdogsoft = 1;
1712 bpf_mtap(ifp, m);
1713 }
1714 mvxpe_sc_unlock(sc);
1715
1716 return;
1717 }
1718
1719 STATIC int
1720 mvxpe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1721 {
1722 struct mvxpe_softc *sc = ifp->if_softc;
1723 struct ifreq *ifr = data;
1724 int error = 0;
1725 int s;
1726
1727 switch (cmd) {
1728 case SIOCGIFMEDIA:
1729 case SIOCSIFMEDIA:
1730 DPRINTIFNET(ifp, 2, "mvxpe_ioctl MEDIA\n");
1731 s = splnet(); /* XXX: is there suitable mutex? */
1732 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1733 splx(s);
1734 break;
1735 default:
1736 DPRINTIFNET(ifp, 2, "mvxpe_ioctl ETHER\n");
1737 error = ether_ioctl(ifp, cmd, data);
1738 if (error == ENETRESET) {
1739 if (ifp->if_flags & IFF_RUNNING) {
1740 mvxpe_sc_lock(sc);
1741 mvxpe_filter_setup(sc);
1742 mvxpe_sc_unlock(sc);
1743 }
1744 error = 0;
1745 }
1746 break;
1747 }
1748
1749 return error;
1750 }
1751
1752 STATIC int
1753 mvxpe_init(struct ifnet *ifp)
1754 {
1755 struct mvxpe_softc *sc = ifp->if_softc;
1756 struct mii_data *mii = &sc->sc_mii;
1757 uint32_t reg;
1758 int q;
1759
1760 mvxpe_sc_lock(sc);
1761
1762 /* Start DMA Engine */
1763 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
1764 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
1765 MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
1766
1767 /* Enable port */
1768 reg = MVXPE_READ(sc, MVXPE_PMACC0);
1769 reg |= MVXPE_PMACC0_PORTEN;
1770 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1771
1772 /* Link up */
1773 mvxpe_linkup(sc);
1774
1775 /* Enable All Queue and interrupt of each Queue */
1776 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1777 mvxpe_rx_lockq(sc, q);
1778 mvxpe_rx_queue_enable(ifp, q);
1779 mvxpe_rx_queue_refill(sc, q);
1780 mvxpe_rx_unlockq(sc, q);
1781
1782 mvxpe_tx_lockq(sc, q);
1783 mvxpe_tx_queue_enable(ifp, q);
1784 mvxpe_tx_unlockq(sc, q);
1785 }
1786
1787 /* Enable interrupt */
1788 mvxpe_enable_intr(sc);
1789
1790 /* Set Counter */
1791 callout_schedule(&sc->sc_tick_ch, hz);
1792
1793 /* Media check */
1794 mii_mediachg(mii);
1795
1796 ifp->if_flags |= IFF_RUNNING;
1797 ifp->if_flags &= ~IFF_OACTIVE;
1798
1799 mvxpe_sc_unlock(sc);
1800 return 0;
1801 }
1802
1803 /* ARGSUSED */
1804 STATIC void
1805 mvxpe_stop(struct ifnet *ifp, int disable)
1806 {
1807 struct mvxpe_softc *sc = ifp->if_softc;
1808 uint32_t reg;
1809 int q, cnt;
1810
1811 DPRINTIFNET(ifp, 1, "stop device dma and interrupts.\n");
1812
1813 mvxpe_sc_lock(sc);
1814
1815 callout_stop(&sc->sc_tick_ch);
1816
1817 /* Link down */
1818 mvxpe_linkdown(sc);
1819
1820 /* Disable Rx interrupt */
1821 reg = MVXPE_READ(sc, MVXPE_PIE);
1822 reg &= ~MVXPE_PIE_RXPKTINTRPTENB_MASK;
1823 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1824
1825 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1826 reg &= ~MVXPE_PRXTXTI_RBICTAPQ_MASK;
1827 reg &= ~MVXPE_PRXTXTI_RDTAQ_MASK;
1828 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1829
1830 /* Wait for all Rx activity to terminate. */
1831 reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1832 reg = MVXPE_RQC_DIS(reg);
1833 MVXPE_WRITE(sc, MVXPE_RQC, reg);
1834 cnt = 0;
1835 do {
1836 if (cnt >= RX_DISABLE_TIMEOUT) {
1837 aprint_error_ifnet(ifp,
1838 "timeout for RX stopped. rqc 0x%x\n", reg);
1839 break;
1840 }
1841 cnt++;
1842 reg = MVXPE_READ(sc, MVXPE_RQC);
1843 } while (reg & MVXPE_RQC_EN_MASK);
1844
1845 /* Wait for all Tx activety to terminate. */
1846 reg = MVXPE_READ(sc, MVXPE_PIE);
1847 reg &= ~MVXPE_PIE_TXPKTINTRPTENB_MASK;
1848 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1849
1850 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1851 reg &= ~MVXPE_PRXTXTI_TBTCQ_MASK;
1852 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1853
1854 reg = MVXPE_READ(sc, MVXPE_TQC) & MVXPE_TQC_EN_MASK;
1855 reg = MVXPE_TQC_DIS(reg);
1856 MVXPE_WRITE(sc, MVXPE_TQC, reg);
1857 cnt = 0;
1858 do {
1859 if (cnt >= TX_DISABLE_TIMEOUT) {
1860 aprint_error_ifnet(ifp,
1861 "timeout for TX stopped. tqc 0x%x\n", reg);
1862 break;
1863 }
1864 cnt++;
1865 reg = MVXPE_READ(sc, MVXPE_TQC);
1866 } while (reg & MVXPE_TQC_EN_MASK);
1867
1868 /* Wait for all Tx FIFO is empty */
1869 cnt = 0;
1870 do {
1871 if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1872 aprint_error_ifnet(ifp,
1873 "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1874 break;
1875 }
1876 cnt++;
1877 reg = MVXPE_READ(sc, MVXPE_PS0);
1878 } while (!(reg & MVXPE_PS0_TXFIFOEMP) && (reg & MVXPE_PS0_TXINPROG));
1879
1880 /* Reset the MAC Port Enable bit */
1881 reg = MVXPE_READ(sc, MVXPE_PMACC0);
1882 reg &= ~MVXPE_PMACC0_PORTEN;
1883 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1884
1885 /* Disable each of queue */
1886 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1887 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1888
1889 mvxpe_rx_lockq(sc, q);
1890 mvxpe_tx_lockq(sc, q);
1891
1892 /* Disable Rx packet buffer refill request */
1893 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1894 reg |= MVXPE_PRXDQTH_NODT(0);
1895 MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1896
1897 if (disable) {
1898 /*
1899 * Hold Reset state of DMA Engine
1900 * (must write 0x0 to restart it)
1901 */
1902 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
1903 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
1904 mvxpe_ring_flush_queue(sc, q);
1905 }
1906
1907 mvxpe_tx_unlockq(sc, q);
1908 mvxpe_rx_unlockq(sc, q);
1909 }
1910
1911 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1912
1913 mvxpe_sc_unlock(sc);
1914 }
1915
1916 STATIC void
1917 mvxpe_watchdog(struct ifnet *ifp)
1918 {
1919 struct mvxpe_softc *sc = ifp->if_softc;
1920 int q;
1921
1922 mvxpe_sc_lock(sc);
1923
1924 /*
1925 * Reclaim first as there is a possibility of losing Tx completion
1926 * interrupts.
1927 */
1928 mvxpe_tx_complete(sc, 0xff);
1929 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1930 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1931
1932 if (tx->tx_dma != tx->tx_cpu) {
1933 if (sc->sc_wdogsoft) {
1934 /*
1935 * There is race condition between CPU and DMA
1936 * engine. When DMA engine encounters queue end,
1937 * it clears MVXPE_TQC_ENQ bit.
1938 * XXX: how about enhanced mode?
1939 */
1940 MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
1941 ifp->if_timer = 5;
1942 sc->sc_wdogsoft = 0;
1943 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_wdogsoft);
1944 } else {
1945 aprint_error_ifnet(ifp, "watchdog timeout\n");
1946 ifp->if_oerrors++;
1947 mvxpe_linkreset(sc);
1948 mvxpe_sc_unlock(sc);
1949
1950 /* trigger reinitialize sequence */
1951 mvxpe_stop(ifp, 1);
1952 mvxpe_init(ifp);
1953
1954 mvxpe_sc_lock(sc);
1955 }
1956 }
1957 }
1958 mvxpe_sc_unlock(sc);
1959 }
1960
1961 STATIC int
1962 mvxpe_ifflags_cb(struct ethercom *ec)
1963 {
1964 struct ifnet *ifp = &ec->ec_if;
1965 struct mvxpe_softc *sc = ifp->if_softc;
1966 int change = ifp->if_flags ^ sc->sc_if_flags;
1967
1968 mvxpe_sc_lock(sc);
1969
1970 if (change != 0)
1971 sc->sc_if_flags = ifp->if_flags;
1972
1973 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) {
1974 mvxpe_sc_unlock(sc);
1975 return ENETRESET;
1976 }
1977
1978 if ((change & IFF_PROMISC) != 0)
1979 mvxpe_filter_setup(sc);
1980
1981 if ((change & IFF_UP) != 0)
1982 mvxpe_linkreset(sc);
1983
1984 mvxpe_sc_unlock(sc);
1985 return 0;
1986 }
1987
1988 STATIC int
1989 mvxpe_mediachange(struct ifnet *ifp)
1990 {
1991 return ether_mediachange(ifp);
1992 }
1993
1994 STATIC void
1995 mvxpe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1996 {
1997 ether_mediastatus(ifp, ifmr);
1998 }
1999
2000 /*
2001 * Link State Notify
2002 */
2003 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc)
2004 {
2005 int linkup; /* bool */
2006
2007 KASSERT_SC_MTX(sc);
2008
2009 /* tell miibus */
2010 mii_pollstat(&sc->sc_mii);
2011
2012 /* syslog */
2013 linkup = MVXPE_IS_LINKUP(sc);
2014 if (sc->sc_linkstate == linkup)
2015 return;
2016
2017 #ifdef DEBUG
2018 log(LOG_DEBUG,
2019 "%s: link %s\n", device_xname(sc->sc_dev), linkup ? "up" : "down");
2020 #endif
2021 if (linkup)
2022 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_up);
2023 else
2024 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_down);
2025
2026 sc->sc_linkstate = linkup;
2027 }
2028
2029 STATIC void
2030 mvxpe_linkup(struct mvxpe_softc *sc)
2031 {
2032 uint32_t reg;
2033
2034 KASSERT_SC_MTX(sc);
2035
2036 /* set EEE parameters */
2037 reg = MVXPE_READ(sc, MVXPE_LPIC1);
2038 if (sc->sc_cf.cf_lpi)
2039 reg |= MVXPE_LPIC1_LPIRE;
2040 else
2041 reg &= ~MVXPE_LPIC1_LPIRE;
2042 MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
2043
2044 /* set auto-negotiation parameters */
2045 reg = MVXPE_READ(sc, MVXPE_PANC);
2046 if (sc->sc_cf.cf_fc) {
2047 /* flow control negotiation */
2048 reg |= MVXPE_PANC_PAUSEADV;
2049 reg |= MVXPE_PANC_ANFCEN;
2050 }
2051 else {
2052 reg &= ~MVXPE_PANC_PAUSEADV;
2053 reg &= ~MVXPE_PANC_ANFCEN;
2054 }
2055 reg &= ~MVXPE_PANC_FORCELINKFAIL;
2056 reg &= ~MVXPE_PANC_FORCELINKPASS;
2057 MVXPE_WRITE(sc, MVXPE_PANC, reg);
2058
2059 mii_mediachg(&sc->sc_mii);
2060 }
2061
2062 STATIC void
2063 mvxpe_linkdown(struct mvxpe_softc *sc)
2064 {
2065 struct mii_softc *mii;
2066 uint32_t reg;
2067
2068 KASSERT_SC_MTX(sc);
2069 return;
2070
2071 reg = MVXPE_READ(sc, MVXPE_PANC);
2072 reg |= MVXPE_PANC_FORCELINKFAIL;
2073 reg &= MVXPE_PANC_FORCELINKPASS;
2074 MVXPE_WRITE(sc, MVXPE_PANC, reg);
2075
2076 mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2077 if (mii)
2078 mii_phy_down(mii);
2079 }
2080
2081 STATIC void
2082 mvxpe_linkreset(struct mvxpe_softc *sc)
2083 {
2084 struct mii_softc *mii;
2085
2086 KASSERT_SC_MTX(sc);
2087
2088 /* force reset PHY first */
2089 mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2090 if (mii)
2091 mii_phy_reset(mii);
2092
2093 /* reinit MAC and PHY */
2094 mvxpe_linkdown(sc);
2095 if ((sc->sc_if_flags & IFF_UP) != 0)
2096 mvxpe_linkup(sc);
2097 }
2098
2099 /*
2100 * Tx Subroutines
2101 */
2102 STATIC int
2103 mvxpe_tx_queue_select(struct mvxpe_softc *sc, struct mbuf *m)
2104 {
2105 int q = 0;
2106
2107 /* XXX: get attribute from ALTQ framework? */
2108 mvxpe_tx_lockq(sc, q);
2109 return 0;
2110 }
2111
2112 STATIC int
2113 mvxpe_tx_queue(struct mvxpe_softc *sc, struct mbuf *m, int q)
2114 {
2115 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2116 bus_dma_segment_t *txsegs;
2117 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2118 struct mvxpe_tx_desc *t = NULL;
2119 uint32_t ptxsu;
2120 int txnsegs;
2121 int start, used;
2122 int i;
2123
2124 KASSERT_TX_MTX(sc, q);
2125 KASSERT(tx->tx_used >= 0);
2126 KASSERT(tx->tx_used <= tx->tx_queue_len);
2127
2128 /* load mbuf using dmamap of 1st descriptor */
2129 if (bus_dmamap_load_mbuf(sc->sc_dmat,
2130 MVXPE_TX_MAP(sc, q, tx->tx_cpu), m, BUS_DMA_NOWAIT) != 0) {
2131 m_freem(m);
2132 return ENOBUFS;
2133 }
2134 txsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_segs;
2135 txnsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_nsegs;
2136 if (txnsegs <= 0 || (txnsegs + tx->tx_used) > tx->tx_queue_len) {
2137 /* we have no enough descriptors or mbuf is broken */
2138 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, tx->tx_cpu));
2139 m_freem(m);
2140 return ENOBUFS;
2141 }
2142 DPRINTSC(sc, 2, "send packet %p descriptor %d\n", m, tx->tx_cpu);
2143 KASSERT(MVXPE_TX_MBUF(sc, q, tx->tx_cpu) == NULL);
2144
2145 /* remember mbuf using 1st descriptor */
2146 MVXPE_TX_MBUF(sc, q, tx->tx_cpu) = m;
2147 bus_dmamap_sync(sc->sc_dmat,
2148 MVXPE_TX_MAP(sc, q, tx->tx_cpu), 0, m->m_pkthdr.len,
2149 BUS_DMASYNC_PREWRITE);
2150
2151 /* load to tx descriptors */
2152 start = tx->tx_cpu;
2153 used = 0;
2154 for (i = 0; i < txnsegs; i++) {
2155 if (__predict_false(txsegs[i].ds_len == 0))
2156 continue;
2157 t = MVXPE_TX_DESC(sc, q, tx->tx_cpu);
2158 t->command = 0;
2159 t->l4ichk = 0;
2160 t->flags = 0;
2161 if (i == 0) {
2162 /* 1st descriptor */
2163 t->command |= MVXPE_TX_CMD_W_PACKET_OFFSET(0);
2164 t->command |= MVXPE_TX_CMD_PADDING;
2165 t->command |= MVXPE_TX_CMD_F;
2166 mvxpe_tx_set_csumflag(ifp, t, m);
2167 }
2168 t->bufptr = txsegs[i].ds_addr;
2169 t->bytecnt = txsegs[i].ds_len;
2170 tx->tx_cpu = tx_counter_adv(tx->tx_cpu, 1);
2171 tx->tx_used++;
2172 used++;
2173 }
2174 /* t is last descriptor here */
2175 KASSERT(t != NULL);
2176 t->command |= MVXPE_TX_CMD_L;
2177
2178 DPRINTSC(sc, 2, "queue %d, %d descriptors used\n", q, used);
2179 #ifdef MVXPE_DEBUG
2180 if (mvxpe_debug > 2)
2181 for (i = start; i <= tx->tx_cpu; i++) {
2182 t = MVXPE_TX_DESC(sc, q, i);
2183 mvxpe_dump_txdesc(t, i);
2184 }
2185 #endif
2186 mvxpe_ring_sync_tx(sc, q, start, used,
2187 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2188
2189 while (used > 255) {
2190 ptxsu = MVXPE_PTXSU_NOWD(255);
2191 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2192 used -= 255;
2193 }
2194 if (used > 0) {
2195 ptxsu = MVXPE_PTXSU_NOWD(used);
2196 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2197 }
2198 MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
2199
2200 DPRINTSC(sc, 2,
2201 "PTXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQA(q)));
2202 DPRINTSC(sc, 2,
2203 "PTXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
2204 DPRINTSC(sc, 2,
2205 "PTXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXS(q)));
2206 DPRINTSC(sc, 2,
2207 "PTXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PTXDI(q)));
2208 DPRINTSC(sc, 2, "TQC: %#x\n", MVXPE_READ(sc, MVXPE_TQC));
2209 DPRINTIFNET(ifp, 2,
2210 "Tx: tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2211 tx->tx_cpu, tx->tx_dma, tx->tx_used);
2212 return 0;
2213 }
2214
2215 STATIC void
2216 mvxpe_tx_set_csumflag(struct ifnet *ifp,
2217 struct mvxpe_tx_desc *t, struct mbuf *m)
2218 {
2219 struct ether_header *eh;
2220 int csum_flags;
2221 uint32_t iphl = 0, ipoff = 0;
2222
2223
2224 csum_flags = ifp->if_csum_flags_tx & m->m_pkthdr.csum_flags;
2225
2226 eh = mtod(m, struct ether_header *);
2227 switch (htons(eh->ether_type)) {
2228 case ETHERTYPE_IP:
2229 case ETHERTYPE_IPV6:
2230 ipoff = ETHER_HDR_LEN;
2231 break;
2232 case ETHERTYPE_VLAN:
2233 ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2234 break;
2235 }
2236
2237 if (csum_flags & (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2238 iphl = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2239 t->command |= MVXPE_TX_CMD_L3_IP4;
2240 }
2241 else if (csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
2242 iphl = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
2243 t->command |= MVXPE_TX_CMD_L3_IP6;
2244 }
2245 else {
2246 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2247 return;
2248 }
2249
2250
2251 /* L3 */
2252 if (csum_flags & M_CSUM_IPv4) {
2253 t->command |= MVXPE_TX_CMD_IP4_CHECKSUM;
2254 }
2255
2256 /* L4 */
2257 if ((csum_flags &
2258 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0) {
2259 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2260 }
2261 else if (csum_flags & M_CSUM_TCPv4) {
2262 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2263 t->command |= MVXPE_TX_CMD_L4_TCP;
2264 }
2265 else if (csum_flags & M_CSUM_UDPv4) {
2266 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2267 t->command |= MVXPE_TX_CMD_L4_UDP;
2268 }
2269 else if (csum_flags & M_CSUM_TCPv6) {
2270 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2271 t->command |= MVXPE_TX_CMD_L4_TCP;
2272 }
2273 else if (csum_flags & M_CSUM_UDPv6) {
2274 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2275 t->command |= MVXPE_TX_CMD_L4_UDP;
2276 }
2277
2278 t->l4ichk = 0;
2279 t->command |= MVXPE_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2280 t->command |= MVXPE_TX_CMD_L3_OFFSET(ipoff);
2281 }
2282
2283 STATIC void
2284 mvxpe_tx_complete(struct mvxpe_softc *sc, uint32_t queues)
2285 {
2286 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2287 int q;
2288
2289 DPRINTSC(sc, 2, "tx completed.\n");
2290
2291 KASSERT_SC_MTX(sc);
2292
2293 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2294 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2295 continue;
2296 mvxpe_tx_lockq(sc, q);
2297 mvxpe_tx_queue_complete(sc, q);
2298 mvxpe_tx_unlockq(sc, q);
2299 }
2300 KASSERT(sc->sc_tx_pending >= 0);
2301 if (sc->sc_tx_pending == 0)
2302 ifp->if_timer = 0;
2303 }
2304
2305 STATIC void
2306 mvxpe_tx_queue_complete(struct mvxpe_softc *sc, int q)
2307 {
2308 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2309 struct mvxpe_tx_desc *t;
2310 struct mbuf *m;
2311 uint32_t ptxs, ptxsu, ndesc;
2312 int i;
2313
2314 KASSERT_TX_MTX(sc, q);
2315
2316 ptxs = MVXPE_READ(sc, MVXPE_PTXS(q));
2317 ndesc = MVXPE_PTXS_GET_TBC(ptxs);
2318 if (ndesc == 0)
2319 return;
2320
2321 DPRINTSC(sc, 2,
2322 "tx complete queue %d, %d descriptors.\n", q, ndesc);
2323
2324 mvxpe_ring_sync_tx(sc, q, tx->tx_dma, ndesc,
2325 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2326
2327 for (i = 0; i < ndesc; i++) {
2328 int error = 0;
2329
2330 t = MVXPE_TX_DESC(sc, q, tx->tx_dma);
2331 if (t->flags & MVXPE_TX_F_ES) {
2332 DPRINTSC(sc, 1,
2333 "tx error queue %d desc %d\n",
2334 q, tx->tx_dma);
2335 switch (t->flags & MVXPE_TX_F_EC_MASK) {
2336 case MVXPE_TX_F_EC_LC:
2337 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_lc);
2338 break;
2339 case MVXPE_TX_F_EC_UR:
2340 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_ur);
2341 break;
2342 case MVXPE_TX_F_EC_RL:
2343 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_rl);
2344 break;
2345 default:
2346 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_oth);
2347 break;
2348 }
2349 error = 1;
2350 }
2351 m = MVXPE_TX_MBUF(sc, q, tx->tx_dma);
2352 if (m != NULL) {
2353 KASSERT((t->command & MVXPE_TX_CMD_F) != 0);
2354 MVXPE_TX_MBUF(sc, q, tx->tx_dma) = NULL;
2355 bus_dmamap_sync(sc->sc_dmat,
2356 MVXPE_TX_MAP(sc, q, tx->tx_dma), 0, m->m_pkthdr.len,
2357 BUS_DMASYNC_POSTWRITE);
2358 bus_dmamap_unload(sc->sc_dmat,
2359 MVXPE_TX_MAP(sc, q, tx->tx_dma));
2360 m_freem(m);
2361 sc->sc_tx_pending--;
2362 }
2363 else
2364 KASSERT((t->flags & MVXPE_TX_CMD_F) == 0);
2365 tx->tx_dma = tx_counter_adv(tx->tx_dma, 1);
2366 tx->tx_used--;
2367 if (error)
2368 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txqe[q]);
2369 else
2370 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txq[q]);
2371 }
2372 KASSERT(tx->tx_used >= 0);
2373 KASSERT(tx->tx_used <= tx->tx_queue_len);
2374 while (ndesc > 255) {
2375 ptxsu = MVXPE_PTXSU_NORB(255);
2376 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2377 ndesc -= 255;
2378 }
2379 if (ndesc > 0) {
2380 ptxsu = MVXPE_PTXSU_NORB(ndesc);
2381 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2382 }
2383 DPRINTSC(sc, 2,
2384 "Tx complete q %d, tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2385 q, tx->tx_cpu, tx->tx_dma, tx->tx_used);
2386 }
2387
2388 /*
2389 * Rx Subroutines
2390 */
2391 STATIC void
2392 mvxpe_rx(struct mvxpe_softc *sc, uint32_t queues)
2393 {
2394 int q, npkt;
2395
2396 KASSERT_SC_MTX(sc);
2397
2398 while ( (npkt = mvxpe_rx_queue_select(sc, queues, &q))) {
2399 /* mutex is held by rx_queue_select */
2400 mvxpe_rx_queue(sc, q, npkt);
2401 mvxpe_rx_unlockq(sc, q);
2402 }
2403 }
2404
2405 STATIC void
2406 mvxpe_rx_queue(struct mvxpe_softc *sc, int q, int npkt)
2407 {
2408 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2409 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2410 struct mvxpe_rx_desc *r;
2411 struct mvxpbm_chunk *chunk;
2412 struct mbuf *m;
2413 uint32_t prxsu;
2414 int error = 0;
2415 int i;
2416
2417 KASSERT_RX_MTX(sc, q);
2418
2419 mvxpe_ring_sync_rx(sc, q, rx->rx_dma, npkt,
2420 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2421
2422 for (i = 0; i < npkt; i++) {
2423 /* get descriptor and packet */
2424 chunk = MVXPE_RX_PKTBUF(sc, q, rx->rx_dma);
2425 MVXPE_RX_PKTBUF(sc, q, rx->rx_dma) = NULL;
2426 r = MVXPE_RX_DESC(sc, q, rx->rx_dma);
2427 mvxpbm_dmamap_sync(chunk, r->bytecnt, BUS_DMASYNC_POSTREAD);
2428
2429 /* check errors */
2430 if (r->status & MVXPE_RX_ES) {
2431 switch (r->status & MVXPE_RX_EC_MASK) {
2432 case MVXPE_RX_EC_CE:
2433 DPRINTIFNET(ifp, 1, "CRC error\n");
2434 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_ce);
2435 break;
2436 case MVXPE_RX_EC_OR:
2437 DPRINTIFNET(ifp, 1, "Rx FIFO overrun\n");
2438 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_or);
2439 break;
2440 case MVXPE_RX_EC_MF:
2441 DPRINTIFNET(ifp, 1, "Rx too large frame\n");
2442 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_mf);
2443 break;
2444 case MVXPE_RX_EC_RE:
2445 DPRINTIFNET(ifp, 1, "Rx resource error\n");
2446 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_re);
2447 break;
2448 }
2449 error = 1;
2450 goto rx_done;
2451 }
2452 if (!(r->status & MVXPE_RX_F) || !(r->status & MVXPE_RX_L)) {
2453 DPRINTIFNET(ifp, 1, "not support scatter buf\n");
2454 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_scat);
2455 error = 1;
2456 goto rx_done;
2457 }
2458
2459 if (chunk == NULL) {
2460 device_printf(sc->sc_dev,
2461 "got rx interrupt, but no chunk\n");
2462 error = 1;
2463 goto rx_done;
2464 }
2465
2466 /* extract packet buffer */
2467 if (mvxpbm_init_mbuf_hdr(chunk) != 0) {
2468 error = 1;
2469 goto rx_done;
2470 }
2471 m = chunk->m;
2472 m_set_rcvif(m, ifp);
2473 m->m_pkthdr.len = m->m_len = r->bytecnt - ETHER_CRC_LEN;
2474 m_adj(m, MVXPE_HWHEADER_SIZE); /* strip MH */
2475 mvxpe_rx_set_csumflag(ifp, r, m);
2476 ifp->if_ipackets++;
2477 bpf_mtap(ifp, m);
2478 if_percpuq_enqueue(ifp->if_percpuq, m);
2479 chunk = NULL; /* the BM chunk goes to networking stack now */
2480 rx_done:
2481 if (chunk) {
2482 /* rx error. just return the chunk to BM. */
2483 mvxpbm_free_chunk(chunk);
2484 }
2485 if (error)
2486 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxqe[q]);
2487 else
2488 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxq[q]);
2489 rx->rx_dma = rx_counter_adv(rx->rx_dma, 1);
2490 }
2491 /* DMA status update */
2492 DPRINTSC(sc, 2, "%d packets received from queue %d\n", npkt, q);
2493 while (npkt > 255) {
2494 prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2495 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2496 npkt -= 255;
2497 }
2498 if (npkt > 0) {
2499 prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(npkt);
2500 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2501 }
2502
2503 DPRINTSC(sc, 2,
2504 "PRXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQA(q)));
2505 DPRINTSC(sc, 2,
2506 "PRXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
2507 DPRINTSC(sc, 2,
2508 "PRXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXS(q)));
2509 DPRINTSC(sc, 2,
2510 "PRXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PRXDI(q)));
2511 DPRINTSC(sc, 2, "RQC: %#x\n", MVXPE_READ(sc, MVXPE_RQC));
2512 DPRINTIFNET(ifp, 2, "Rx: rx_cpu = %d, rx_dma = %d\n",
2513 rx->rx_cpu, rx->rx_dma);
2514 }
2515
2516 STATIC int
2517 mvxpe_rx_queue_select(struct mvxpe_softc *sc, uint32_t queues, int *queue)
2518 {
2519 uint32_t prxs, npkt;
2520 int q;
2521
2522 KASSERT_SC_MTX(sc);
2523 KASSERT(queue != NULL);
2524 DPRINTSC(sc, 2, "selecting rx queue\n");
2525
2526 for (q = MVXPE_QUEUE_SIZE - 1; q >= 0; q--) {
2527 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2528 continue;
2529
2530 prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2531 npkt = MVXPE_PRXS_GET_ODC(prxs);
2532 if (npkt == 0)
2533 continue;
2534
2535 DPRINTSC(sc, 2,
2536 "queue %d selected: prxs=%#x, %u pakcet received.\n",
2537 q, prxs, npkt);
2538 *queue = q;
2539 mvxpe_rx_lockq(sc, q);
2540 return npkt;
2541 }
2542
2543 return 0;
2544 }
2545
2546 STATIC void
2547 mvxpe_rx_refill(struct mvxpe_softc *sc, uint32_t queues)
2548 {
2549 int q;
2550
2551 KASSERT_SC_MTX(sc);
2552
2553 /* XXX: check rx bit array */
2554 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2555 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2556 continue;
2557
2558 mvxpe_rx_lockq(sc, q);
2559 mvxpe_rx_queue_refill(sc, q);
2560 mvxpe_rx_unlockq(sc, q);
2561 }
2562 }
2563
2564 STATIC void
2565 mvxpe_rx_queue_refill(struct mvxpe_softc *sc, int q)
2566 {
2567 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2568 uint32_t prxs, prxsu, ndesc;
2569 int idx, refill = 0;
2570 int npkt;
2571
2572 KASSERT_RX_MTX(sc, q);
2573
2574 prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2575 ndesc = MVXPE_PRXS_GET_NODC(prxs) + MVXPE_PRXS_GET_ODC(prxs);
2576 refill = rx->rx_queue_len - ndesc;
2577 if (refill <= 0)
2578 return;
2579 DPRINTPRXS(2, q);
2580 DPRINTSC(sc, 2, "%d buffers to refill.\n", refill);
2581
2582 idx = rx->rx_cpu;
2583 for (npkt = 0; npkt < refill; npkt++)
2584 if (mvxpe_rx_queue_add(sc, q) != 0)
2585 break;
2586 DPRINTSC(sc, 2, "queue %d, %d buffer refilled.\n", q, npkt);
2587 if (npkt == 0)
2588 return;
2589
2590 mvxpe_ring_sync_rx(sc, q, idx, npkt,
2591 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2592
2593 while (npkt > 255) {
2594 prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(255);
2595 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2596 npkt -= 255;
2597 }
2598 if (npkt > 0) {
2599 prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(npkt);
2600 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2601 }
2602 DPRINTPRXS(2, q);
2603 return;
2604 }
2605
2606 STATIC int
2607 mvxpe_rx_queue_add(struct mvxpe_softc *sc, int q)
2608 {
2609 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2610 struct mvxpe_rx_desc *r;
2611 struct mvxpbm_chunk *chunk = NULL;
2612
2613 KASSERT_RX_MTX(sc, q);
2614
2615 /* Allocate the packet buffer */
2616 chunk = mvxpbm_alloc(sc->sc_bm);
2617 if (chunk == NULL) {
2618 DPRINTSC(sc, 1, "BM chunk allocation failed.\n");
2619 return ENOBUFS;
2620 }
2621
2622 /* Add the packet to descritor */
2623 KASSERT(MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) == NULL);
2624 MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) = chunk;
2625 mvxpbm_dmamap_sync(chunk, BM_SYNC_ALL, BUS_DMASYNC_PREREAD);
2626
2627 r = MVXPE_RX_DESC(sc, q, rx->rx_cpu);
2628 r->bufptr = chunk->buf_pa;
2629 DPRINTSC(sc, 9, "chunk added to index %d\n", rx->rx_cpu);
2630 rx->rx_cpu = rx_counter_adv(rx->rx_cpu, 1);
2631 return 0;
2632 }
2633
2634 STATIC void
2635 mvxpe_rx_set_csumflag(struct ifnet *ifp,
2636 struct mvxpe_rx_desc *r, struct mbuf *m0)
2637 {
2638 uint32_t csum_flags = 0;
2639
2640 if ((r->status & (MVXPE_RX_IP_HEADER_OK|MVXPE_RX_L3_IP)) == 0)
2641 return; /* not a IP packet */
2642
2643 /* L3 */
2644 if (r->status & MVXPE_RX_L3_IP) {
2645 csum_flags |= M_CSUM_IPv4 & ifp->if_csum_flags_rx;
2646 if ((r->status & MVXPE_RX_IP_HEADER_OK) == 0 &&
2647 (csum_flags & M_CSUM_IPv4) != 0) {
2648 csum_flags |= M_CSUM_IPv4_BAD;
2649 goto finish;
2650 }
2651 else if (r->status & MVXPE_RX_IPV4_FRAGMENT) {
2652 /*
2653 * r->l4chk has partial checksum of each framgment.
2654 * but there is no way to use it in NetBSD.
2655 */
2656 return;
2657 }
2658 }
2659
2660 /* L4 */
2661 switch (r->status & MVXPE_RX_L4_MASK) {
2662 case MVXPE_RX_L4_TCP:
2663 if (r->status & MVXPE_RX_L3_IP)
2664 csum_flags |= M_CSUM_TCPv4 & ifp->if_csum_flags_rx;
2665 else
2666 csum_flags |= M_CSUM_TCPv6 & ifp->if_csum_flags_rx;
2667 break;
2668 case MVXPE_RX_L4_UDP:
2669 if (r->status & MVXPE_RX_L3_IP)
2670 csum_flags |= M_CSUM_UDPv4 & ifp->if_csum_flags_rx;
2671 else
2672 csum_flags |= M_CSUM_UDPv6 & ifp->if_csum_flags_rx;
2673 break;
2674 case MVXPE_RX_L4_OTH:
2675 default:
2676 break;
2677 }
2678 if ((r->status & MVXPE_RX_L4_CHECKSUM_OK) == 0 && (csum_flags &
2679 (M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2680 csum_flags |= M_CSUM_TCP_UDP_BAD;
2681 finish:
2682 m0->m_pkthdr.csum_flags = csum_flags;
2683 }
2684
2685 /*
2686 * MAC address filter
2687 */
2688 STATIC uint8_t
2689 mvxpe_crc8(const uint8_t *data, size_t size)
2690 {
2691 int bit;
2692 uint8_t byte;
2693 uint8_t crc = 0;
2694 const uint8_t poly = 0x07;
2695
2696 while(size--)
2697 for (byte = *data++, bit = NBBY-1; bit >= 0; bit--)
2698 crc = (crc << 1) ^ ((((crc >> 7) ^ (byte >> bit)) & 1) ? poly : 0);
2699
2700 return crc;
2701 }
2702
2703 CTASSERT(MVXPE_NDFSMT == MVXPE_NDFOMT);
2704
2705 STATIC void
2706 mvxpe_filter_setup(struct mvxpe_softc *sc)
2707 {
2708 struct ethercom *ec = &sc->sc_ethercom;
2709 struct ifnet *ifp= &sc->sc_ethercom.ec_if;
2710 struct ether_multi *enm;
2711 struct ether_multistep step;
2712 uint32_t dfut[MVXPE_NDFUT], dfsmt[MVXPE_NDFSMT], dfomt[MVXPE_NDFOMT];
2713 uint32_t pxc;
2714 int i;
2715 const uint8_t special[ETHER_ADDR_LEN] = {0x01,0x00,0x5e,0x00,0x00,0x00};
2716
2717 KASSERT_SC_MTX(sc);
2718
2719 memset(dfut, 0, sizeof(dfut));
2720 memset(dfsmt, 0, sizeof(dfsmt));
2721 memset(dfomt, 0, sizeof(dfomt));
2722
2723 if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
2724 goto allmulti;
2725 }
2726
2727 ETHER_FIRST_MULTI(step, ec, enm);
2728 while (enm != NULL) {
2729 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2730 /* ranges are complex and somewhat rare */
2731 goto allmulti;
2732 }
2733 /* chip handles some IPv4 multicast specially */
2734 if (memcmp(enm->enm_addrlo, special, 5) == 0) {
2735 i = enm->enm_addrlo[5];
2736 dfsmt[i>>2] |=
2737 MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2738 } else {
2739 i = mvxpe_crc8(enm->enm_addrlo, ETHER_ADDR_LEN);
2740 dfomt[i>>2] |=
2741 MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2742 }
2743
2744 ETHER_NEXT_MULTI(step, enm);
2745 }
2746 goto set;
2747
2748 allmulti:
2749 if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
2750 for (i = 0; i < MVXPE_NDFSMT; i++) {
2751 dfsmt[i] = dfomt[i] =
2752 MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2753 MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2754 MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2755 MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2756 }
2757 }
2758
2759 set:
2760 pxc = MVXPE_READ(sc, MVXPE_PXC);
2761 pxc &= ~MVXPE_PXC_UPM;
2762 pxc |= MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP;
2763 if (ifp->if_flags & IFF_BROADCAST) {
2764 pxc &= ~(MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP);
2765 }
2766 if (ifp->if_flags & IFF_PROMISC) {
2767 pxc |= MVXPE_PXC_UPM;
2768 }
2769 MVXPE_WRITE(sc, MVXPE_PXC, pxc);
2770
2771 /* Set Destination Address Filter Unicast Table */
2772 if (ifp->if_flags & IFF_PROMISC) {
2773 /* pass all unicast addresses */
2774 for (i = 0; i < MVXPE_NDFUT; i++) {
2775 dfut[i] =
2776 MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2777 MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2778 MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2779 MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2780 }
2781 }
2782 else {
2783 i = sc->sc_enaddr[5] & 0xf; /* last nibble */
2784 dfut[i>>2] = MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2785 }
2786 MVXPE_WRITE_REGION(sc, MVXPE_DFUT(0), dfut, MVXPE_NDFUT);
2787
2788 /* Set Destination Address Filter Multicast Tables */
2789 MVXPE_WRITE_REGION(sc, MVXPE_DFSMT(0), dfsmt, MVXPE_NDFSMT);
2790 MVXPE_WRITE_REGION(sc, MVXPE_DFOMT(0), dfomt, MVXPE_NDFOMT);
2791 }
2792
2793 /*
2794 * sysctl(9)
2795 */
2796 SYSCTL_SETUP(sysctl_mvxpe, "sysctl mvxpe subtree setup")
2797 {
2798 int rc;
2799 const struct sysctlnode *node;
2800
2801 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2802 0, CTLTYPE_NODE, "mvxpe",
2803 SYSCTL_DESCR("mvxpe interface controls"),
2804 NULL, 0, NULL, 0,
2805 CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2806 goto err;
2807 }
2808
2809 mvxpe_root_num = node->sysctl_num;
2810 return;
2811
2812 err:
2813 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2814 }
2815
2816 STATIC int
2817 sysctl_read_mib(SYSCTLFN_ARGS)
2818 {
2819 struct mvxpe_sysctl_mib *arg;
2820 struct mvxpe_softc *sc;
2821 struct sysctlnode node;
2822 uint64_t val;
2823 int err;
2824
2825 node = *rnode;
2826 arg = (struct mvxpe_sysctl_mib *)rnode->sysctl_data;
2827 if (arg == NULL)
2828 return EINVAL;
2829
2830 sc = arg->sc;
2831 if (sc == NULL)
2832 return EINVAL;
2833 if (arg->index < 0 || arg->index > __arraycount(mvxpe_mib_list))
2834 return EINVAL;
2835
2836 mvxpe_sc_lock(sc);
2837 val = arg->counter;
2838 mvxpe_sc_unlock(sc);
2839
2840 node.sysctl_data = &val;
2841 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2842 if (err)
2843 return err;
2844 if (newp)
2845 return EINVAL;
2846
2847 return 0;
2848 }
2849
2850
2851 STATIC int
2852 sysctl_clear_mib(SYSCTLFN_ARGS)
2853 {
2854 struct mvxpe_softc *sc;
2855 struct sysctlnode node;
2856 int val;
2857 int err;
2858
2859 node = *rnode;
2860 sc = (struct mvxpe_softc *)rnode->sysctl_data;
2861 if (sc == NULL)
2862 return EINVAL;
2863
2864 val = 0;
2865 node.sysctl_data = &val;
2866 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2867 if (err || newp == NULL)
2868 return err;
2869 if (val < 0 || val > 1)
2870 return EINVAL;
2871 if (val == 1) {
2872 mvxpe_sc_lock(sc);
2873 mvxpe_clear_mib(sc);
2874 mvxpe_sc_unlock(sc);
2875 }
2876
2877 return 0;
2878 }
2879
2880 STATIC int
2881 sysctl_set_queue_length(SYSCTLFN_ARGS)
2882 {
2883 struct mvxpe_sysctl_queue *arg;
2884 struct mvxpe_rx_ring *rx = NULL;
2885 struct mvxpe_tx_ring *tx = NULL;
2886 struct mvxpe_softc *sc;
2887 struct sysctlnode node;
2888 uint32_t reg;
2889 int val;
2890 int err;
2891
2892 node = *rnode;
2893
2894 arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2895 if (arg == NULL)
2896 return EINVAL;
2897 if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2898 return EINVAL;
2899 if (arg->rxtx != MVXPE_SYSCTL_RX && arg->rxtx != MVXPE_SYSCTL_TX)
2900 return EINVAL;
2901
2902 sc = arg->sc;
2903 if (sc == NULL)
2904 return EINVAL;
2905
2906 /* read queue length */
2907 mvxpe_sc_lock(sc);
2908 switch (arg->rxtx) {
2909 case MVXPE_SYSCTL_RX:
2910 mvxpe_rx_lockq(sc, arg->queue);
2911 rx = MVXPE_RX_RING(sc, arg->queue);
2912 val = rx->rx_queue_len;
2913 mvxpe_rx_unlockq(sc, arg->queue);
2914 break;
2915 case MVXPE_SYSCTL_TX:
2916 mvxpe_tx_lockq(sc, arg->queue);
2917 tx = MVXPE_TX_RING(sc, arg->queue);
2918 val = tx->tx_queue_len;
2919 mvxpe_tx_unlockq(sc, arg->queue);
2920 break;
2921 }
2922
2923 node.sysctl_data = &val;
2924 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2925 if (err || newp == NULL) {
2926 mvxpe_sc_unlock(sc);
2927 return err;
2928 }
2929
2930 /* update queue length */
2931 if (val < 8 || val > MVXPE_RX_RING_CNT) {
2932 mvxpe_sc_unlock(sc);
2933 return EINVAL;
2934 }
2935 switch (arg->rxtx) {
2936 case MVXPE_SYSCTL_RX:
2937 mvxpe_rx_lockq(sc, arg->queue);
2938 rx->rx_queue_len = val;
2939 rx->rx_queue_th_received =
2940 rx->rx_queue_len / MVXPE_RXTH_RATIO;
2941 rx->rx_queue_th_free =
2942 rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
2943
2944 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
2945 reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
2946 MVXPE_WRITE(sc, MVXPE_PRXDQTH(arg->queue), reg);
2947
2948 mvxpe_rx_unlockq(sc, arg->queue);
2949 break;
2950 case MVXPE_SYSCTL_TX:
2951 mvxpe_tx_lockq(sc, arg->queue);
2952 tx->tx_queue_len = val;
2953 tx->tx_queue_th_free =
2954 tx->tx_queue_len / MVXPE_TXTH_RATIO;
2955
2956 reg = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
2957 reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
2958 MVXPE_WRITE(sc, MVXPE_PTXDQS(arg->queue), reg);
2959
2960 mvxpe_tx_unlockq(sc, arg->queue);
2961 break;
2962 }
2963 mvxpe_sc_unlock(sc);
2964
2965 return 0;
2966 }
2967
2968 STATIC int
2969 sysctl_set_queue_rxthtime(SYSCTLFN_ARGS)
2970 {
2971 struct mvxpe_sysctl_queue *arg;
2972 struct mvxpe_rx_ring *rx = NULL;
2973 struct mvxpe_softc *sc;
2974 struct sysctlnode node;
2975 extern uint32_t mvTclk;
2976 uint32_t reg, time_mvtclk;
2977 int time_us;
2978 int err;
2979
2980 node = *rnode;
2981
2982 arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2983 if (arg == NULL)
2984 return EINVAL;
2985 if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2986 return EINVAL;
2987 if (arg->rxtx != MVXPE_SYSCTL_RX)
2988 return EINVAL;
2989
2990 sc = arg->sc;
2991 if (sc == NULL)
2992 return EINVAL;
2993
2994 /* read queue length */
2995 mvxpe_sc_lock(sc);
2996 mvxpe_rx_lockq(sc, arg->queue);
2997 rx = MVXPE_RX_RING(sc, arg->queue);
2998 time_mvtclk = rx->rx_queue_th_time;
2999 time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvTclk;
3000 node.sysctl_data = &time_us;
3001 DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n",
3002 arg->queue, MVXPE_READ(sc, MVXPE_PRXITTH(arg->queue)));
3003 err = sysctl_lookup(SYSCTLFN_CALL(&node));
3004 if (err || newp == NULL) {
3005 mvxpe_rx_unlockq(sc, arg->queue);
3006 mvxpe_sc_unlock(sc);
3007 return err;
3008 }
3009
3010 /* update queue length (0[sec] - 1[sec]) */
3011 if (time_us < 0 || time_us > (1000 * 1000)) {
3012 mvxpe_rx_unlockq(sc, arg->queue);
3013 mvxpe_sc_unlock(sc);
3014 return EINVAL;
3015 }
3016 time_mvtclk =
3017 (uint64_t)mvTclk * (uint64_t)time_us / (1000ULL * 1000ULL);
3018 rx->rx_queue_th_time = time_mvtclk;
3019 reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
3020 MVXPE_WRITE(sc, MVXPE_PRXITTH(arg->queue), reg);
3021 DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n", arg->queue, reg);
3022 mvxpe_rx_unlockq(sc, arg->queue);
3023 mvxpe_sc_unlock(sc);
3024
3025 return 0;
3026 }
3027
3028
3029 STATIC void
3030 sysctl_mvxpe_init(struct mvxpe_softc *sc)
3031 {
3032 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3033 const struct sysctlnode *node;
3034 int mvxpe_nodenum;
3035 int mvxpe_mibnum;
3036 int mvxpe_rxqueuenum;
3037 int mvxpe_txqueuenum;
3038 int q, i;
3039
3040 /* hw.mvxpe.mvxpe[unit] */
3041 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3042 0, CTLTYPE_NODE, ifp->if_xname,
3043 SYSCTL_DESCR("mvxpe per-controller controls"),
3044 NULL, 0, NULL, 0,
3045 CTL_HW, mvxpe_root_num, CTL_CREATE,
3046 CTL_EOL) != 0) {
3047 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3048 return;
3049 }
3050 mvxpe_nodenum = node->sysctl_num;
3051
3052 /* hw.mvxpe.mvxpe[unit].mib */
3053 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3054 0, CTLTYPE_NODE, "mib",
3055 SYSCTL_DESCR("mvxpe per-controller MIB counters"),
3056 NULL, 0, NULL, 0,
3057 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3058 CTL_EOL) != 0) {
3059 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3060 return;
3061 }
3062 mvxpe_mibnum = node->sysctl_num;
3063
3064 /* hw.mvxpe.mvxpe[unit].rx */
3065 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3066 0, CTLTYPE_NODE, "rx",
3067 SYSCTL_DESCR("Rx Queues"),
3068 NULL, 0, NULL, 0,
3069 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3070 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3071 return;
3072 }
3073 mvxpe_rxqueuenum = node->sysctl_num;
3074
3075 /* hw.mvxpe.mvxpe[unit].tx */
3076 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3077 0, CTLTYPE_NODE, "tx",
3078 SYSCTL_DESCR("Tx Queues"),
3079 NULL, 0, NULL, 0,
3080 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3081 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3082 return;
3083 }
3084 mvxpe_txqueuenum = node->sysctl_num;
3085
3086 #ifdef MVXPE_DEBUG
3087 /* hw.mvxpe.debug */
3088 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3089 CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
3090 SYSCTL_DESCR("mvxpe device driver debug control"),
3091 NULL, 0, &mvxpe_debug, 0,
3092 CTL_HW, mvxpe_root_num, CTL_CREATE, CTL_EOL) != 0) {
3093 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3094 return;
3095 }
3096 #endif
3097 /*
3098 * MIB access
3099 */
3100 /* hw.mvxpe.mvxpe[unit].mib.<mibs> */
3101 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3102 const char *name = mvxpe_mib_list[i].sysctl_name;
3103 const char *desc = mvxpe_mib_list[i].desc;
3104 struct mvxpe_sysctl_mib *mib_arg = &sc->sc_sysctl_mib[i];
3105
3106 mib_arg->sc = sc;
3107 mib_arg->index = i;
3108 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3109 CTLFLAG_READONLY, CTLTYPE_QUAD, name, desc,
3110 sysctl_read_mib, 0, (void *)mib_arg, 0,
3111 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_mibnum,
3112 CTL_CREATE, CTL_EOL) != 0) {
3113 aprint_normal_dev(sc->sc_dev,
3114 "couldn't create sysctl node\n");
3115 break;
3116 }
3117 }
3118
3119 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
3120 struct mvxpe_sysctl_queue *rxarg = &sc->sc_sysctl_rx_queue[q];
3121 struct mvxpe_sysctl_queue *txarg = &sc->sc_sysctl_tx_queue[q];
3122 #define MVXPE_SYSCTL_NAME(num) "queue" # num
3123 static const char *sysctl_queue_names[] = {
3124 MVXPE_SYSCTL_NAME(0), MVXPE_SYSCTL_NAME(1),
3125 MVXPE_SYSCTL_NAME(2), MVXPE_SYSCTL_NAME(3),
3126 MVXPE_SYSCTL_NAME(4), MVXPE_SYSCTL_NAME(5),
3127 MVXPE_SYSCTL_NAME(6), MVXPE_SYSCTL_NAME(7),
3128 };
3129 #undef MVXPE_SYSCTL_NAME
3130 #ifdef SYSCTL_INCLUDE_DESCR
3131 #define MVXPE_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3132 static const char *sysctl_queue_descrs[] = {
3133 MVXPE_SYSCTL_DESCR(0), MVXPE_SYSCTL_DESCR(1),
3134 MVXPE_SYSCTL_DESCR(2), MVXPE_SYSCTL_DESCR(3),
3135 MVXPE_SYSCTL_DESCR(4), MVXPE_SYSCTL_DESCR(5),
3136 MVXPE_SYSCTL_DESCR(6), MVXPE_SYSCTL_DESCR(7),
3137 };
3138 #undef MVXPE_SYSCTL_DESCR
3139 #endif /* SYSCTL_INCLUDE_DESCR */
3140 int mvxpe_curnum;
3141
3142 rxarg->sc = txarg->sc = sc;
3143 rxarg->queue = txarg->queue = q;
3144 rxarg->rxtx = MVXPE_SYSCTL_RX;
3145 txarg->rxtx = MVXPE_SYSCTL_TX;
3146
3147 /* hw.mvxpe.mvxpe[unit].rx.[queue] */
3148 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3149 0, CTLTYPE_NODE,
3150 sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descrs[q]),
3151 NULL, 0, NULL, 0,
3152 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3153 CTL_CREATE, CTL_EOL) != 0) {
3154 aprint_normal_dev(sc->sc_dev,
3155 "couldn't create sysctl node\n");
3156 break;
3157 }
3158 mvxpe_curnum = node->sysctl_num;
3159
3160 /* hw.mvxpe.mvxpe[unit].rx.[queue].length */
3161 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3162 CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3163 SYSCTL_DESCR("maximum length of the queue"),
3164 sysctl_set_queue_length, 0, (void *)rxarg, 0,
3165 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3166 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3167 aprint_normal_dev(sc->sc_dev,
3168 "couldn't create sysctl node\n");
3169 break;
3170 }
3171
3172 /* hw.mvxpe.mvxpe[unit].rx.[queue].threshold_timer_us */
3173 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3174 CTLFLAG_READWRITE, CTLTYPE_INT, "threshold_timer_us",
3175 SYSCTL_DESCR("interrupt coalescing threshold timer [us]"),
3176 sysctl_set_queue_rxthtime, 0, (void *)rxarg, 0,
3177 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3178 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3179 aprint_normal_dev(sc->sc_dev,
3180 "couldn't create sysctl node\n");
3181 break;
3182 }
3183
3184 /* hw.mvxpe.mvxpe[unit].tx.[queue] */
3185 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3186 0, CTLTYPE_NODE,
3187 sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descs[q]),
3188 NULL, 0, NULL, 0,
3189 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3190 CTL_CREATE, CTL_EOL) != 0) {
3191 aprint_normal_dev(sc->sc_dev,
3192 "couldn't create sysctl node\n");
3193 break;
3194 }
3195 mvxpe_curnum = node->sysctl_num;
3196
3197 /* hw.mvxpe.mvxpe[unit].tx.length[queue] */
3198 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3199 CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3200 SYSCTL_DESCR("maximum length of the queue"),
3201 sysctl_set_queue_length, 0, (void *)txarg, 0,
3202 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3203 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3204 aprint_normal_dev(sc->sc_dev,
3205 "couldn't create sysctl node\n");
3206 break;
3207 }
3208 }
3209
3210 /* hw.mvxpe.mvxpe[unit].clear_mib */
3211 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3212 CTLFLAG_READWRITE, CTLTYPE_INT, "clear_mib",
3213 SYSCTL_DESCR("mvxpe device driver debug control"),
3214 sysctl_clear_mib, 0, (void *)sc, 0,
3215 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3216 CTL_EOL) != 0) {
3217 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3218 return;
3219 }
3220
3221 }
3222
3223 /*
3224 * MIB
3225 */
3226 STATIC void
3227 mvxpe_clear_mib(struct mvxpe_softc *sc)
3228 {
3229 int i;
3230
3231 KASSERT_SC_MTX(sc);
3232
3233 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3234 if (mvxpe_mib_list[i].reg64)
3235 MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum + 4));
3236 MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3237 sc->sc_sysctl_mib[i].counter = 0;
3238 }
3239 }
3240
3241 STATIC void
3242 mvxpe_update_mib(struct mvxpe_softc *sc)
3243 {
3244 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3245 int i;
3246
3247 KASSERT_SC_MTX(sc);
3248
3249 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3250 uint32_t val_hi;
3251 uint32_t val_lo;
3252 uint64_t val;
3253
3254 if (mvxpe_mib_list[i].reg64) {
3255 /* XXX: implement bus_space_read_8() */
3256 val_lo = MVXPE_READ_MIB(sc,
3257 (mvxpe_mib_list[i].regnum + 4));
3258 val_hi = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3259 }
3260 else {
3261 val_lo = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3262 val_hi = 0;
3263 }
3264
3265 if ((val_lo | val_hi) == 0)
3266 continue;
3267
3268 val = ((uint64_t)val_hi << 32) | (uint64_t)val_lo;
3269 sc->sc_sysctl_mib[i].counter += val;
3270
3271 switch (mvxpe_mib_list[i].ext) {
3272 case MVXPE_MIBEXT_IF_OERRORS:
3273 ifp->if_oerrors += val;
3274 break;
3275 case MVXPE_MIBEXT_IF_IERRORS:
3276 ifp->if_ierrors += val;
3277 break;
3278 case MVXPE_MIBEXT_IF_COLLISIONS:
3279 ifp->if_collisions += val;
3280 break;
3281 default:
3282 break;
3283 }
3284
3285 }
3286 }
3287
3288 /*
3289 * for Debug
3290 */
3291 STATIC void
3292 mvxpe_dump_txdesc(struct mvxpe_tx_desc *desc, int idx)
3293 {
3294 #define DESC_PRINT(X) \
3295 if (X) \
3296 printf("txdesc[%d]." #X "=%#x\n", idx, X);
3297
3298 DESC_PRINT(desc->command);
3299 DESC_PRINT(desc->l4ichk);
3300 DESC_PRINT(desc->bytecnt);
3301 DESC_PRINT(desc->bufptr);
3302 DESC_PRINT(desc->flags);
3303 #undef DESC_PRINT
3304 }
3305
3306 STATIC void
3307 mvxpe_dump_rxdesc(struct mvxpe_rx_desc *desc, int idx)
3308 {
3309 #define DESC_PRINT(X) \
3310 if (X) \
3311 printf("rxdesc[%d]." #X "=%#x\n", idx, X);
3312
3313 DESC_PRINT(desc->status);
3314 DESC_PRINT(desc->bytecnt);
3315 DESC_PRINT(desc->bufptr);
3316 DESC_PRINT(desc->l4chk);
3317 #undef DESC_PRINT
3318 }
3319