Home | History | Annotate | Line # | Download | only in marvell
if_mvxpe.c revision 1.22
      1 /*	$NetBSD: if_mvxpe.c,v 1.22 2019/03/18 11:38:03 msaitoh Exp $	*/
      2 /*
      3  * Copyright (c) 2015 Internet Initiative Japan Inc.
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     25  * POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 #include <sys/cdefs.h>
     28 __KERNEL_RCSID(0, "$NetBSD: if_mvxpe.c,v 1.22 2019/03/18 11:38:03 msaitoh Exp $");
     29 
     30 #include "opt_multiprocessor.h"
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/callout.h>
     35 #include <sys/device.h>
     36 #include <sys/endian.h>
     37 #include <sys/errno.h>
     38 #include <sys/evcnt.h>
     39 #include <sys/kernel.h>
     40 #include <sys/kmem.h>
     41 #include <sys/mutex.h>
     42 #include <sys/sockio.h>
     43 #include <sys/sysctl.h>
     44 #include <sys/syslog.h>
     45 #include <sys/rndsource.h>
     46 
     47 #include <net/if.h>
     48 #include <net/if_ether.h>
     49 #include <net/if_media.h>
     50 #include <net/bpf.h>
     51 
     52 #include <netinet/in.h>
     53 #include <netinet/in_systm.h>
     54 #include <netinet/ip.h>
     55 
     56 #include <dev/mii/mii.h>
     57 #include <dev/mii/miivar.h>
     58 
     59 #include <dev/marvell/marvellreg.h>
     60 #include <dev/marvell/marvellvar.h>
     61 #include <dev/marvell/mvxpbmvar.h>
     62 #include <dev/marvell/if_mvxpereg.h>
     63 #include <dev/marvell/if_mvxpevar.h>
     64 
     65 #include "locators.h"
     66 
     67 #if BYTE_ORDER == BIG_ENDIAN
     68 #error "BIG ENDIAN not supported"
     69 #endif
     70 
     71 #ifdef MVXPE_DEBUG
     72 #define STATIC /* nothing */
     73 #else
     74 #define STATIC static
     75 #endif
     76 
     77 /* autoconf(9) */
     78 STATIC int mvxpe_match(device_t, struct cfdata *, void *);
     79 STATIC void mvxpe_attach(device_t, device_t, void *);
     80 STATIC int mvxpe_evcnt_attach(struct mvxpe_softc *);
     81 CFATTACH_DECL_NEW(mvxpe_mbus, sizeof(struct mvxpe_softc),
     82     mvxpe_match, mvxpe_attach, NULL, NULL);
     83 STATIC void mvxpe_sc_lock(struct mvxpe_softc *);
     84 STATIC void mvxpe_sc_unlock(struct mvxpe_softc *);
     85 
     86 /* MII */
     87 STATIC int mvxpe_miibus_readreg(device_t, int, int, uint16_t *);
     88 STATIC int mvxpe_miibus_writereg(device_t, int, int, uint16_t);
     89 STATIC void mvxpe_miibus_statchg(struct ifnet *);
     90 
     91 /* Addres Decoding Window */
     92 STATIC void mvxpe_wininit(struct mvxpe_softc *, enum marvell_tags *);
     93 
     94 /* Device Register Initialization */
     95 STATIC int mvxpe_initreg(struct ifnet *);
     96 
     97 /* Descriptor Ring Control for each of queues */
     98 STATIC void *mvxpe_dma_memalloc(struct mvxpe_softc *, bus_dmamap_t *, size_t);
     99 STATIC int mvxpe_ring_alloc_queue(struct mvxpe_softc *, int);
    100 STATIC void mvxpe_ring_dealloc_queue(struct mvxpe_softc *, int);
    101 STATIC void mvxpe_ring_init_queue(struct mvxpe_softc *, int);
    102 STATIC void mvxpe_ring_flush_queue(struct mvxpe_softc *, int);
    103 STATIC void mvxpe_ring_sync_rx(struct mvxpe_softc *, int, int, int, int);
    104 STATIC void mvxpe_ring_sync_tx(struct mvxpe_softc *, int, int, int, int);
    105 
    106 /* Rx/Tx Queue Control */
    107 STATIC int mvxpe_rx_queue_init(struct ifnet *, int);
    108 STATIC int mvxpe_tx_queue_init(struct ifnet *, int);
    109 STATIC int mvxpe_rx_queue_enable(struct ifnet *, int);
    110 STATIC int mvxpe_tx_queue_enable(struct ifnet *, int);
    111 STATIC void mvxpe_rx_lockq(struct mvxpe_softc *, int);
    112 STATIC void mvxpe_rx_unlockq(struct mvxpe_softc *, int);
    113 STATIC void mvxpe_tx_lockq(struct mvxpe_softc *, int);
    114 STATIC void mvxpe_tx_unlockq(struct mvxpe_softc *, int);
    115 
    116 /* Interrupt Handlers */
    117 STATIC void mvxpe_disable_intr(struct mvxpe_softc *);
    118 STATIC void mvxpe_enable_intr(struct mvxpe_softc *);
    119 STATIC int mvxpe_rxtxth_intr(void *);
    120 STATIC int mvxpe_misc_intr(void *);
    121 STATIC int mvxpe_rxtx_intr(void *);
    122 STATIC void mvxpe_tick(void *);
    123 
    124 /* struct ifnet and mii callbacks*/
    125 STATIC void mvxpe_start(struct ifnet *);
    126 STATIC int mvxpe_ioctl(struct ifnet *, u_long, void *);
    127 STATIC int mvxpe_init(struct ifnet *);
    128 STATIC void mvxpe_stop(struct ifnet *, int);
    129 STATIC void mvxpe_watchdog(struct ifnet *);
    130 STATIC int mvxpe_ifflags_cb(struct ethercom *);
    131 STATIC int mvxpe_mediachange(struct ifnet *);
    132 STATIC void mvxpe_mediastatus(struct ifnet *, struct ifmediareq *);
    133 
    134 /* Link State Notify */
    135 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc);
    136 STATIC void mvxpe_linkup(struct mvxpe_softc *);
    137 STATIC void mvxpe_linkdown(struct mvxpe_softc *);
    138 STATIC void mvxpe_linkreset(struct mvxpe_softc *);
    139 
    140 /* Tx Subroutines */
    141 STATIC int mvxpe_tx_queue_select(struct mvxpe_softc *, struct mbuf *);
    142 STATIC int mvxpe_tx_queue(struct mvxpe_softc *, struct mbuf *, int);
    143 STATIC void mvxpe_tx_set_csumflag(struct ifnet *,
    144     struct mvxpe_tx_desc *, struct mbuf *);
    145 STATIC void mvxpe_tx_complete(struct mvxpe_softc *, uint32_t);
    146 STATIC void mvxpe_tx_queue_complete(struct mvxpe_softc *, int);
    147 
    148 /* Rx Subroutines */
    149 STATIC void mvxpe_rx(struct mvxpe_softc *, uint32_t);
    150 STATIC void mvxpe_rx_queue(struct mvxpe_softc *, int, int);
    151 STATIC int mvxpe_rx_queue_select(struct mvxpe_softc *, uint32_t, int *);
    152 STATIC void mvxpe_rx_refill(struct mvxpe_softc *, uint32_t);
    153 STATIC void mvxpe_rx_queue_refill(struct mvxpe_softc *, int);
    154 STATIC int mvxpe_rx_queue_add(struct mvxpe_softc *, int);
    155 STATIC void mvxpe_rx_set_csumflag(struct ifnet *,
    156     struct mvxpe_rx_desc *, struct mbuf *);
    157 
    158 /* MAC address filter */
    159 STATIC uint8_t mvxpe_crc8(const uint8_t *, size_t);
    160 STATIC void mvxpe_filter_setup(struct mvxpe_softc *);
    161 
    162 /* sysctl(9) */
    163 STATIC int sysctl_read_mib(SYSCTLFN_PROTO);
    164 STATIC int sysctl_clear_mib(SYSCTLFN_PROTO);
    165 STATIC int sysctl_set_queue_length(SYSCTLFN_PROTO);
    166 STATIC int sysctl_set_queue_rxthtime(SYSCTLFN_PROTO);
    167 STATIC void sysctl_mvxpe_init(struct mvxpe_softc *);
    168 
    169 /* MIB */
    170 STATIC void mvxpe_clear_mib(struct mvxpe_softc *);
    171 STATIC void mvxpe_update_mib(struct mvxpe_softc *);
    172 
    173 /* for Debug */
    174 STATIC void mvxpe_dump_txdesc(struct mvxpe_tx_desc *, int) __attribute__((__unused__));
    175 STATIC void mvxpe_dump_rxdesc(struct mvxpe_rx_desc *, int) __attribute__((__unused__));
    176 
    177 STATIC int mvxpe_root_num;
    178 STATIC kmutex_t mii_mutex;
    179 STATIC int mii_init = 0;
    180 #ifdef MVXPE_DEBUG
    181 STATIC int mvxpe_debug = MVXPE_DEBUG;
    182 #endif
    183 
    184 /*
    185  * List of MIB register and names
    186  */
    187 STATIC struct mvxpe_mib_def {
    188 	uint32_t regnum;
    189 	int reg64;
    190 	const char *sysctl_name;
    191 	const char *desc;
    192 	int ext;
    193 #define MVXPE_MIBEXT_IF_OERRORS	1
    194 #define MVXPE_MIBEXT_IF_IERRORS	2
    195 #define MVXPE_MIBEXT_IF_COLLISIONS	3
    196 } mvxpe_mib_list[] = {
    197 	{MVXPE_MIB_RX_GOOD_OCT, 1,	"rx_good_oct",
    198 	    "Good Octets Rx", 0},
    199 	{MVXPE_MIB_RX_BAD_OCT, 0,	"rx_bad_oct",
    200 	    "Bad  Octets Rx", 0},
    201 	{MVXPE_MIB_TX_MAC_TRNS_ERR, 0,	"tx_mac_err",
    202 	    "MAC Transmit Error", MVXPE_MIBEXT_IF_OERRORS},
    203 	{MVXPE_MIB_RX_GOOD_FRAME, 0,	"rx_good_frame",
    204 	    "Good Frames Rx", 0},
    205 	{MVXPE_MIB_RX_BAD_FRAME, 0,	"rx_bad_frame",
    206 	    "Bad Frames Rx", 0},
    207 	{MVXPE_MIB_RX_BCAST_FRAME, 0,	"rx_bcast_frame",
    208 	    "Broadcast Frames Rx", 0},
    209 	{MVXPE_MIB_RX_MCAST_FRAME, 0,	"rx_mcast_frame",
    210 	    "Multicast Frames Rx", 0},
    211 	{MVXPE_MIB_RX_FRAME64_OCT, 0,	"rx_frame_1_64",
    212 	    "Frame Size    1 -   64", 0},
    213 	{MVXPE_MIB_RX_FRAME127_OCT, 0,	"rx_frame_65_127",
    214 	    "Frame Size   65 -  127", 0},
    215 	{MVXPE_MIB_RX_FRAME255_OCT, 0,	"rx_frame_128_255",
    216 	    "Frame Size  128 -  255", 0},
    217 	{MVXPE_MIB_RX_FRAME511_OCT, 0,	"rx_frame_256_511",
    218 	    "Frame Size  256 -  511"},
    219 	{MVXPE_MIB_RX_FRAME1023_OCT, 0,	"rx_frame_512_1023",
    220 	    "Frame Size  512 - 1023", 0},
    221 	{MVXPE_MIB_RX_FRAMEMAX_OCT, 0,	"rx_fame_1024_max",
    222 	    "Frame Size 1024 -  Max", 0},
    223 	{MVXPE_MIB_TX_GOOD_OCT, 1,	"tx_good_oct",
    224 	    "Good Octets Tx", 0},
    225 	{MVXPE_MIB_TX_GOOD_FRAME, 0,	"tx_good_frame",
    226 	    "Good Frames Tx", 0},
    227 	{MVXPE_MIB_TX_EXCES_COL, 0,	"tx_exces_collision",
    228 	    "Excessive Collision", MVXPE_MIBEXT_IF_OERRORS},
    229 	{MVXPE_MIB_TX_MCAST_FRAME, 0,	"tx_mcast_frame",
    230 	    "Multicast Frames Tx"},
    231 	{MVXPE_MIB_TX_BCAST_FRAME, 0,	"tx_bcast_frame",
    232 	    "Broadcast Frames Tx"},
    233 	{MVXPE_MIB_TX_MAC_CTL_ERR, 0,	"tx_mac_err",
    234 	    "Unknown MAC Control", 0},
    235 	{MVXPE_MIB_FC_SENT, 0,		"fc_tx",
    236 	    "Flow Control Tx", 0},
    237 	{MVXPE_MIB_FC_GOOD, 0,		"fc_rx_good",
    238 	    "Good Flow Control Rx", 0},
    239 	{MVXPE_MIB_FC_BAD, 0,		"fc_rx_bad",
    240 	    "Bad Flow Control Rx", 0},
    241 	{MVXPE_MIB_PKT_UNDERSIZE, 0,	"pkt_undersize",
    242 	    "Undersized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
    243 	{MVXPE_MIB_PKT_FRAGMENT, 0,	"pkt_fragment",
    244 	    "Fragmented Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
    245 	{MVXPE_MIB_PKT_OVERSIZE, 0,	"pkt_oversize",
    246 	    "Oversized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
    247 	{MVXPE_MIB_PKT_JABBER, 0,	"pkt_jabber",
    248 	    "Jabber Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
    249 	{MVXPE_MIB_MAC_RX_ERR, 0,	"mac_rx_err",
    250 	    "MAC Rx Errors", MVXPE_MIBEXT_IF_IERRORS},
    251 	{MVXPE_MIB_MAC_CRC_ERR, 0,	"mac_crc_err",
    252 	    "MAC CRC Errors", MVXPE_MIBEXT_IF_IERRORS},
    253 	{MVXPE_MIB_MAC_COL, 0,		"mac_collision",
    254 	    "MAC Collision", MVXPE_MIBEXT_IF_COLLISIONS},
    255 	{MVXPE_MIB_MAC_LATE_COL, 0,	"mac_late_collision",
    256 	    "MAC Late Collision", MVXPE_MIBEXT_IF_OERRORS},
    257 };
    258 
    259 /*
    260  * autoconf(9)
    261  */
    262 /* ARGSUSED */
    263 STATIC int
    264 mvxpe_match(device_t parent, cfdata_t match, void *aux)
    265 {
    266 	struct marvell_attach_args *mva = aux;
    267 	bus_size_t pv_off;
    268 	uint32_t pv;
    269 
    270 	if (strcmp(mva->mva_name, match->cf_name) != 0)
    271 		return 0;
    272 	if (mva->mva_offset == MVA_OFFSET_DEFAULT)
    273 		return 0;
    274 
    275 	/* check port version */
    276 	pv_off = mva->mva_offset + MVXPE_PV;
    277 	pv = bus_space_read_4(mva->mva_iot, mva->mva_ioh, pv_off);
    278 	if (MVXPE_PV_GET_VERSION(pv) < 0x10)
    279 		return 0; /* old version is not supported */
    280 
    281 	return 1;
    282 }
    283 
    284 /* ARGSUSED */
    285 STATIC void
    286 mvxpe_attach(device_t parent, device_t self, void *aux)
    287 {
    288 	struct mvxpe_softc *sc = device_private(self);
    289 	struct mii_softc *mii;
    290 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    291 	struct marvell_attach_args *mva = aux;
    292 	prop_dictionary_t dict;
    293 	prop_data_t enaddrp = NULL;
    294 	uint32_t phyaddr, maddrh, maddrl;
    295 	uint8_t enaddr[ETHER_ADDR_LEN];
    296 	int q;
    297 
    298 	aprint_naive("\n");
    299 	aprint_normal(": Marvell ARMADA GbE Controller\n");
    300 	memset(sc, 0, sizeof(*sc));
    301 	sc->sc_dev = self;
    302 	sc->sc_port = mva->mva_unit;
    303 	sc->sc_iot = mva->mva_iot;
    304 	sc->sc_dmat = mva->mva_dmat;
    305 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
    306 	callout_init(&sc->sc_tick_ch, 0);
    307 	callout_setfunc(&sc->sc_tick_ch, mvxpe_tick, sc);
    308 
    309 	/*
    310 	 * BUS space
    311 	 */
    312 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
    313 	    mva->mva_offset, mva->mva_size, &sc->sc_ioh)) {
    314 		aprint_error_dev(self, "Cannot map registers\n");
    315 		goto fail;
    316 	}
    317 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
    318 	    mva->mva_offset + MVXPE_PORTMIB_BASE, MVXPE_PORTMIB_SIZE,
    319 	    &sc->sc_mibh)) {
    320 		aprint_error_dev(self,
    321 		    "Cannot map destination address filter registers\n");
    322 		goto fail;
    323 	}
    324 	sc->sc_version = MVXPE_READ(sc, MVXPE_PV);
    325 	aprint_normal_dev(self, "Port Version %#x\n", sc->sc_version);
    326 
    327 	/*
    328 	 * Buffer Manager(BM) subsystem.
    329 	 */
    330 	sc->sc_bm = mvxpbm_device(mva);
    331 	if (sc->sc_bm == NULL) {
    332 		aprint_error_dev(self, "no Buffer Manager.\n");
    333 		goto fail;
    334 	}
    335 	aprint_normal_dev(self,
    336 	    "Using Buffer Manager: %s\n", mvxpbm_xname(sc->sc_bm));
    337 	aprint_normal_dev(sc->sc_dev,
    338 	    "%zu kbytes managed buffer, %zu bytes * %u entries allocated.\n",
    339 	    mvxpbm_buf_size(sc->sc_bm) / 1024,
    340 	    mvxpbm_chunk_size(sc->sc_bm), mvxpbm_chunk_count(sc->sc_bm));
    341 
    342 	/*
    343 	 * make sure DMA engines are in reset state
    344 	 */
    345 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
    346 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
    347 
    348 	/*
    349 	 * Address decoding window
    350 	 */
    351 	mvxpe_wininit(sc, mva->mva_tags);
    352 
    353 	/*
    354 	 * MAC address
    355 	 */
    356 	dict = device_properties(self);
    357 	if (dict)
    358 		enaddrp = prop_dictionary_get(dict, "mac-address");
    359 	if (enaddrp) {
    360 		memcpy(enaddr, prop_data_data_nocopy(enaddrp), ETHER_ADDR_LEN);
    361 		maddrh  = enaddr[0] << 24;
    362 		maddrh |= enaddr[1] << 16;
    363 		maddrh |= enaddr[2] << 8;
    364 		maddrh |= enaddr[3];
    365 		maddrl  = enaddr[4] << 8;
    366 		maddrl |= enaddr[5];
    367 		MVXPE_WRITE(sc, MVXPE_MACAH, maddrh);
    368 		MVXPE_WRITE(sc, MVXPE_MACAL, maddrl);
    369 	}
    370 	else {
    371 		/*
    372 		 * even if enaddr is not found in dictionary,
    373 		 * the port may be initialized by IPL program such as U-BOOT.
    374 		 */
    375 		maddrh = MVXPE_READ(sc, MVXPE_MACAH);
    376 		maddrl = MVXPE_READ(sc, MVXPE_MACAL);
    377 		if ((maddrh | maddrl) == 0) {
    378 			aprint_error_dev(self, "No Ethernet address\n");
    379 			return;
    380 		}
    381 	}
    382 	sc->sc_enaddr[0] = maddrh >> 24;
    383 	sc->sc_enaddr[1] = maddrh >> 16;
    384 	sc->sc_enaddr[2] = maddrh >> 8;
    385 	sc->sc_enaddr[3] = maddrh >> 0;
    386 	sc->sc_enaddr[4] = maddrl >> 8;
    387 	sc->sc_enaddr[5] = maddrl >> 0;
    388 	aprint_normal_dev(self, "Ethernet address %s\n",
    389 	    ether_sprintf(sc->sc_enaddr));
    390 
    391 	/*
    392 	 * Register interrupt handlers
    393 	 * XXX: handle Ethernet unit intr. and Error intr.
    394 	 */
    395 	mvxpe_disable_intr(sc);
    396 	marvell_intr_establish(mva->mva_irq, IPL_NET, mvxpe_rxtxth_intr, sc);
    397 
    398 	/*
    399 	 * MIB buffer allocation
    400 	 */
    401 	sc->sc_sysctl_mib_size =
    402 	    __arraycount(mvxpe_mib_list) * sizeof(struct mvxpe_sysctl_mib);
    403 	sc->sc_sysctl_mib = kmem_alloc(sc->sc_sysctl_mib_size, KM_NOSLEEP);
    404 	if (sc->sc_sysctl_mib == NULL)
    405 		goto fail;
    406 	memset(sc->sc_sysctl_mib, 0, sc->sc_sysctl_mib_size);
    407 
    408 	/*
    409 	 * Device DMA Buffer allocation
    410 	 */
    411 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    412 		if (mvxpe_ring_alloc_queue(sc, q) != 0)
    413 			goto fail;
    414 		mvxpe_ring_init_queue(sc, q);
    415 	}
    416 
    417 	/*
    418 	 * We can support 802.1Q VLAN-sized frames and jumbo
    419 	 * Ethernet frames.
    420 	 */
    421 	sc->sc_ethercom.ec_capabilities |=
    422 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    423 	ifp->if_softc = sc;
    424 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    425 	ifp->if_start = mvxpe_start;
    426 	ifp->if_ioctl = mvxpe_ioctl;
    427 	ifp->if_init = mvxpe_init;
    428 	ifp->if_stop = mvxpe_stop;
    429 	ifp->if_watchdog = mvxpe_watchdog;
    430 
    431 	/*
    432 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
    433 	 */
    434 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
    435 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
    436 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
    437 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
    438 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx;
    439 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx;
    440 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Tx;
    441 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Rx;
    442 	ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Tx;
    443 	ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Rx;
    444 
    445 	/*
    446 	 * Initialize struct ifnet
    447 	 */
    448 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(MVXPE_TX_RING_CNT - 1, IFQ_MAXLEN));
    449 	IFQ_SET_READY(&ifp->if_snd);
    450 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
    451 
    452 	/*
    453 	 * Enable DMA engines and Initiazlie Device Registers.
    454 	 */
    455 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
    456 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
    457 	MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
    458 	mvxpe_sc_lock(sc); /* XXX */
    459 	mvxpe_filter_setup(sc);
    460 	mvxpe_sc_unlock(sc);
    461 	mvxpe_initreg(ifp);
    462 
    463 	/*
    464 	 * Now MAC is working, setup MII.
    465 	 */
    466 	if (mii_init == 0) {
    467 		/*
    468 		 * MII bus is shared by all MACs and all PHYs in SoC.
    469 		 * serializing the bus access should be safe.
    470 		 */
    471 		mutex_init(&mii_mutex, MUTEX_DEFAULT, IPL_NET);
    472 		mii_init = 1;
    473 	}
    474 	sc->sc_mii.mii_ifp = ifp;
    475 	sc->sc_mii.mii_readreg = mvxpe_miibus_readreg;
    476 	sc->sc_mii.mii_writereg = mvxpe_miibus_writereg;
    477 	sc->sc_mii.mii_statchg = mvxpe_miibus_statchg;
    478 
    479 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    480 	ifmedia_init(&sc->sc_mii.mii_media, 0,
    481 	    mvxpe_mediachange, mvxpe_mediastatus);
    482 	/*
    483 	 * XXX: phy addressing highly depends on Board Design.
    484 	 * we assume phyaddress == MAC unit number here,
    485 	 * but some boards may not.
    486 	 */
    487 	mii_attach(self, &sc->sc_mii, 0xffffffff,
    488 	    MII_PHY_ANY, sc->sc_dev->dv_unit, 0);
    489 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
    490 	if (mii == NULL) {
    491 		aprint_error_dev(self, "no PHY found!\n");
    492 		ifmedia_add(&sc->sc_mii.mii_media,
    493 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    494 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    495 	} else {
    496 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    497 		phyaddr = MVXPE_PHYADDR_PHYAD(mii->mii_phy);
    498 		MVXPE_WRITE(sc, MVXPE_PHYADDR, phyaddr);
    499 		DPRINTSC(sc, 1, "PHYADDR: %#x\n", MVXPE_READ(sc, MVXPE_PHYADDR));
    500 	}
    501 
    502 	/*
    503 	 * Call MI attach routines.
    504 	 */
    505 	if_attach(ifp);
    506 	if_deferred_start_init(ifp, NULL);
    507 
    508 	ether_ifattach(ifp, sc->sc_enaddr);
    509 	ether_set_ifflags_cb(&sc->sc_ethercom, mvxpe_ifflags_cb);
    510 
    511 	sysctl_mvxpe_init(sc);
    512 	mvxpe_evcnt_attach(sc);
    513 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
    514 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    515 
    516 	return;
    517 
    518 fail:
    519 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++)
    520 		mvxpe_ring_dealloc_queue(sc, q);
    521 	if (sc->sc_sysctl_mib)
    522 		kmem_free(sc->sc_sysctl_mib, sc->sc_sysctl_mib_size);
    523 
    524 	return;
    525 }
    526 
    527 STATIC int
    528 mvxpe_evcnt_attach(struct mvxpe_softc *sc)
    529 {
    530 #ifdef MVXPE_EVENT_COUNTERS
    531 	int q;
    532 
    533 	/* Master Interrupt Handler */
    534 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtxth, EVCNT_TYPE_INTR,
    535 	    NULL, device_xname(sc->sc_dev), "RxTxTH Intr.");
    536 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtx, EVCNT_TYPE_INTR,
    537 	    NULL, device_xname(sc->sc_dev), "RxTx Intr.");
    538 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_misc, EVCNT_TYPE_INTR,
    539 	    NULL, device_xname(sc->sc_dev), "MISC Intr.");
    540 
    541 	/* RXTXTH Interrupt */
    542 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtxth_txerr, EVCNT_TYPE_INTR,
    543 	    NULL, device_xname(sc->sc_dev), "RxTxTH Tx error summary");
    544 
    545 	/* MISC Interrupt */
    546 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_phystatuschng, EVCNT_TYPE_INTR,
    547 	    NULL, device_xname(sc->sc_dev), "MISC phy status changed");
    548 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_linkchange, EVCNT_TYPE_INTR,
    549 	    NULL, device_xname(sc->sc_dev), "MISC link status changed");
    550 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_iae, EVCNT_TYPE_INTR,
    551 	    NULL, device_xname(sc->sc_dev), "MISC internal address error");
    552 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxoverrun, EVCNT_TYPE_INTR,
    553 	    NULL, device_xname(sc->sc_dev), "MISC Rx FIFO overrun");
    554 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxcrc, EVCNT_TYPE_INTR,
    555 	    NULL, device_xname(sc->sc_dev), "MISC Rx CRC error");
    556 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxlargepacket, EVCNT_TYPE_INTR,
    557 	    NULL, device_xname(sc->sc_dev), "MISC Rx too large frame");
    558 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txunderrun, EVCNT_TYPE_INTR,
    559 	    NULL, device_xname(sc->sc_dev), "MISC Tx FIFO underrun");
    560 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_prbserr, EVCNT_TYPE_INTR,
    561 	    NULL, device_xname(sc->sc_dev), "MISC SERDES loopback test err");
    562 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_srse, EVCNT_TYPE_INTR,
    563 	    NULL, device_xname(sc->sc_dev), "MISC SERDES sync error");
    564 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txreq, EVCNT_TYPE_INTR,
    565 	    NULL, device_xname(sc->sc_dev), "MISC Tx resource erorr");
    566 
    567 	/* RxTx Interrupt */
    568 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rreq, EVCNT_TYPE_INTR,
    569 	    NULL, device_xname(sc->sc_dev), "RxTx Rx resource erorr");
    570 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rpq, EVCNT_TYPE_INTR,
    571 	    NULL, device_xname(sc->sc_dev), "RxTx Rx packet");
    572 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_tbrq, EVCNT_TYPE_INTR,
    573 	    NULL, device_xname(sc->sc_dev), "RxTx Tx complete");
    574 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rxtxth, EVCNT_TYPE_INTR,
    575 	    NULL, device_xname(sc->sc_dev), "RxTx RxTxTH summary");
    576 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_txerr, EVCNT_TYPE_INTR,
    577 	    NULL, device_xname(sc->sc_dev), "RxTx Tx error summary");
    578 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_misc, EVCNT_TYPE_INTR,
    579 	    NULL, device_xname(sc->sc_dev), "RxTx MISC summary");
    580 
    581 	/* Link */
    582 	evcnt_attach_dynamic(&sc->sc_ev.ev_link_up, EVCNT_TYPE_MISC,
    583 	    NULL, device_xname(sc->sc_dev), "link up");
    584 	evcnt_attach_dynamic(&sc->sc_ev.ev_link_down, EVCNT_TYPE_MISC,
    585 	    NULL, device_xname(sc->sc_dev), "link down");
    586 
    587 	/* Rx Descriptor */
    588 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_ce, EVCNT_TYPE_MISC,
    589 	    NULL, device_xname(sc->sc_dev), "Rx CRC error counter");
    590 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_or, EVCNT_TYPE_MISC,
    591 	    NULL, device_xname(sc->sc_dev), "Rx FIFO overrun counter");
    592 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_mf, EVCNT_TYPE_MISC,
    593 	    NULL, device_xname(sc->sc_dev), "Rx too large frame counter");
    594 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_re, EVCNT_TYPE_MISC,
    595 	    NULL, device_xname(sc->sc_dev), "Rx resource error counter");
    596 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_scat, EVCNT_TYPE_MISC,
    597 	    NULL, device_xname(sc->sc_dev), "Rx unexpected scatter bufs");
    598 
    599 	/* Tx Descriptor */
    600 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_lc, EVCNT_TYPE_MISC,
    601 	    NULL, device_xname(sc->sc_dev), "Tx late collision counter");
    602 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_rl, EVCNT_TYPE_MISC,
    603 	    NULL, device_xname(sc->sc_dev), "Tx excess. collision counter");
    604 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_ur, EVCNT_TYPE_MISC,
    605 	    NULL, device_xname(sc->sc_dev), "Tx FIFO underrun counter");
    606 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_oth, EVCNT_TYPE_MISC,
    607 	    NULL, device_xname(sc->sc_dev), "Tx unkonwn erorr counter");
    608 
    609 	/* Status Registers */
    610 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pdfc, EVCNT_TYPE_MISC,
    611 	    NULL, device_xname(sc->sc_dev), "Rx discard counter");
    612 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pofc, EVCNT_TYPE_MISC,
    613 	    NULL, device_xname(sc->sc_dev), "Rx overrun counter");
    614 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txbadfcs, EVCNT_TYPE_MISC,
    615 	    NULL, device_xname(sc->sc_dev), "Tx bad FCS counter");
    616 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txdropped, EVCNT_TYPE_MISC,
    617 	    NULL, device_xname(sc->sc_dev), "Tx dorpped counter");
    618 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_lpic, EVCNT_TYPE_MISC,
    619 	    NULL, device_xname(sc->sc_dev), "LP_IDLE counter");
    620 
    621 	/* Device Driver Errors */
    622 	evcnt_attach_dynamic(&sc->sc_ev.ev_drv_wdogsoft, EVCNT_TYPE_MISC,
    623 	    NULL, device_xname(sc->sc_dev), "watchdog timer expired");
    624 	evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txerr, EVCNT_TYPE_MISC,
    625 	    NULL, device_xname(sc->sc_dev), "Tx descriptor alloc failed");
    626 #define MVXPE_QUEUE_DESC(q) "Rx success in queue " # q
    627 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    628 		static const char *rxq_desc[] = {
    629 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
    630 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
    631 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
    632 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
    633 		};
    634 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxq[q], EVCNT_TYPE_MISC,
    635 		    NULL, device_xname(sc->sc_dev), rxq_desc[q]);
    636 	}
    637 #undef MVXPE_QUEUE_DESC
    638 #define MVXPE_QUEUE_DESC(q) "Tx success in queue " # q
    639 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    640 		static const char *txq_desc[] = {
    641 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
    642 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
    643 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
    644 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
    645 		};
    646 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txq[q], EVCNT_TYPE_MISC,
    647 		    NULL, device_xname(sc->sc_dev), txq_desc[q]);
    648 	}
    649 #undef MVXPE_QUEUE_DESC
    650 #define MVXPE_QUEUE_DESC(q) "Rx error in queue " # q
    651 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    652 		static const char *rxqe_desc[] = {
    653 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
    654 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
    655 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
    656 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
    657 		};
    658 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxqe[q], EVCNT_TYPE_MISC,
    659 		    NULL, device_xname(sc->sc_dev), rxqe_desc[q]);
    660 	}
    661 #undef MVXPE_QUEUE_DESC
    662 #define MVXPE_QUEUE_DESC(q) "Tx error in queue " # q
    663 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    664 		static const char *txqe_desc[] = {
    665 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
    666 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
    667 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
    668 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
    669 		};
    670 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txqe[q], EVCNT_TYPE_MISC,
    671 		    NULL, device_xname(sc->sc_dev), txqe_desc[q]);
    672 	}
    673 #undef MVXPE_QUEUE_DESC
    674 
    675 #endif /* MVXPE_EVENT_COUNTERS */
    676 	return 0;
    677 }
    678 
    679 STATIC void
    680 mvxpe_sc_lock(struct mvxpe_softc *sc)
    681 {
    682 	mutex_enter(&sc->sc_mtx);
    683 }
    684 
    685 STATIC void
    686 mvxpe_sc_unlock(struct mvxpe_softc *sc)
    687 {
    688 	mutex_exit(&sc->sc_mtx);
    689 }
    690 
    691 /*
    692  * MII
    693  */
    694 STATIC int
    695 mvxpe_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    696 {
    697 	struct mvxpe_softc *sc = device_private(dev);
    698 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    699 	uint32_t smi;
    700 	int i, rv = 0;
    701 
    702 	mutex_enter(&mii_mutex);
    703 
    704 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
    705 		DELAY(1);
    706 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
    707 			break;
    708 	}
    709 	if (i == MVXPE_PHY_TIMEOUT) {
    710 		aprint_error_ifnet(ifp, "SMI busy timeout\n");
    711 		rv = ETIMEDOUT;
    712 		goto out;
    713 	}
    714 
    715 	smi =
    716 	    MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) | MVXPE_SMI_OPCODE_READ;
    717 	MVXPE_WRITE(sc, MVXPE_SMI, smi);
    718 
    719 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
    720 		DELAY(1);
    721 		smi = MVXPE_READ(sc, MVXPE_SMI);
    722 		if (smi & MVXPE_SMI_READVALID) {
    723 			*val = smi & MVXPE_SMI_DATA_MASK;
    724 			break;
    725 		}
    726 	}
    727 	DPRINTDEV(dev, 9, "i=%d, timeout=%d\n", i, MVXPE_PHY_TIMEOUT);
    728 	if (i >= MVXPE_PHY_TIMEOUT)
    729 		rv = ETIMEDOUT;
    730 
    731 out:
    732 	mutex_exit(&mii_mutex);
    733 
    734 	DPRINTDEV(dev, 9, "phy=%d, reg=%#x, val=%#hx\n", phy, reg, *val);
    735 
    736 	return rv;
    737 }
    738 
    739 STATIC int
    740 mvxpe_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    741 {
    742 	struct mvxpe_softc *sc = device_private(dev);
    743 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    744 	uint32_t smi;
    745 	int i, rv = 0;
    746 
    747 	DPRINTDEV(dev, 9, "phy=%d reg=%#x val=%#hx\n", phy, reg, val);
    748 
    749 	mutex_enter(&mii_mutex);
    750 
    751 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
    752 		DELAY(1);
    753 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
    754 			break;
    755 	}
    756 	if (i == MVXPE_PHY_TIMEOUT) {
    757 		aprint_error_ifnet(ifp, "SMI busy timeout\n");
    758 		rv = ETIMEDOUT;
    759 		goto out;
    760 	}
    761 
    762 	smi = MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) |
    763 	    MVXPE_SMI_OPCODE_WRITE | (val & MVXPE_SMI_DATA_MASK);
    764 	MVXPE_WRITE(sc, MVXPE_SMI, smi);
    765 
    766 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
    767 		DELAY(1);
    768 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
    769 			break;
    770 	}
    771 
    772 	if (i == MVXPE_PHY_TIMEOUT) {
    773 		aprint_error_ifnet(ifp, "phy write timed out\n");
    774 		rv = ETIMEDOUT;
    775 	}
    776 
    777 out:
    778 	mutex_exit(&mii_mutex);
    779 
    780 	return rv;
    781 }
    782 
    783 STATIC void
    784 mvxpe_miibus_statchg(struct ifnet *ifp)
    785 {
    786 
    787 	/* nothing to do */
    788 }
    789 
    790 /*
    791  * Address Decoding Window
    792  */
    793 STATIC void
    794 mvxpe_wininit(struct mvxpe_softc *sc, enum marvell_tags *tags)
    795 {
    796 	device_t pdev = device_parent(sc->sc_dev);
    797 	uint64_t base;
    798 	uint32_t en, ac, size;
    799 	int window, target, attr, rv, i;
    800 
    801 	/* First disable all address decode windows */
    802 	en = MVXPE_BARE_EN_MASK;
    803 	MVXPE_WRITE(sc, MVXPE_BARE, en);
    804 
    805 	ac = 0;
    806 	for (window = 0, i = 0;
    807 	    tags[i] != MARVELL_TAG_UNDEFINED && window < MVXPE_NWINDOW; i++) {
    808 		rv = marvell_winparams_by_tag(pdev, tags[i],
    809 		    &target, &attr, &base, &size);
    810 		if (rv != 0 || size == 0)
    811 			continue;
    812 
    813 		if (base > 0xffffffffULL) {
    814 			if (window >= MVXPE_NREMAP) {
    815 				aprint_error_dev(sc->sc_dev,
    816 				    "can't remap window %d\n", window);
    817 				continue;
    818 			}
    819 			MVXPE_WRITE(sc, MVXPE_HA(window),
    820 			    (base >> 32) & 0xffffffff);
    821 		}
    822 
    823 		MVXPE_WRITE(sc, MVXPE_BASEADDR(window),
    824 		    MVXPE_BASEADDR_TARGET(target)	|
    825 		    MVXPE_BASEADDR_ATTR(attr)		|
    826 		    MVXPE_BASEADDR_BASE(base));
    827 		MVXPE_WRITE(sc, MVXPE_S(window), MVXPE_S_SIZE(size));
    828 
    829 		DPRINTSC(sc, 1, "Window %d Base 0x%016llx: Size 0x%08x\n",
    830 				window, base, size);
    831 
    832 		en &= ~(1 << window);
    833 		/* set full access (r/w) */
    834 		ac |= MVXPE_EPAP_EPAR(window, MVXPE_EPAP_AC_FA);
    835 		window++;
    836 	}
    837 	/* allow to access decode window */
    838 	MVXPE_WRITE(sc, MVXPE_EPAP, ac);
    839 
    840 	MVXPE_WRITE(sc, MVXPE_BARE, en);
    841 }
    842 
    843 /*
    844  * Device Register Initialization
    845  *  reset device registers to device driver default value.
    846  *  the device is not enabled here.
    847  */
    848 STATIC int
    849 mvxpe_initreg(struct ifnet *ifp)
    850 {
    851 	struct mvxpe_softc *sc = ifp->if_softc;
    852 	int serdes = 0;
    853 	uint32_t reg;
    854 	int q, i;
    855 
    856 	DPRINTIFNET(ifp, 1, "initializing device register\n");
    857 
    858 	/* Init TX/RX Queue Registers */
    859 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    860 		mvxpe_rx_lockq(sc, q);
    861 		if (mvxpe_rx_queue_init(ifp, q) != 0) {
    862 			aprint_error_ifnet(ifp,
    863 			    "initialization failed: cannot initialize queue\n");
    864 			mvxpe_rx_unlockq(sc, q);
    865 			return ENOBUFS;
    866 		}
    867 		mvxpe_rx_unlockq(sc, q);
    868 
    869 		mvxpe_tx_lockq(sc, q);
    870 		if (mvxpe_tx_queue_init(ifp, q) != 0) {
    871 			aprint_error_ifnet(ifp,
    872 			    "initialization failed: cannot initialize queue\n");
    873 			mvxpe_tx_unlockq(sc, q);
    874 			return ENOBUFS;
    875 		}
    876 		mvxpe_tx_unlockq(sc, q);
    877 	}
    878 
    879 	/* Tx MTU Limit */
    880 	MVXPE_WRITE(sc, MVXPE_TXMTU, MVXPE_MTU);
    881 
    882 	/* Check SGMII or SERDES(asume IPL/U-BOOT initialize this) */
    883 	reg = MVXPE_READ(sc, MVXPE_PMACC0);
    884 	if ((reg & MVXPE_PMACC0_PORTTYPE) != 0)
    885 		serdes = 1;
    886 
    887 	/* Ethernet Unit Control */
    888 	reg = MVXPE_READ(sc, MVXPE_EUC);
    889 	reg |= MVXPE_EUC_POLLING;
    890 	MVXPE_WRITE(sc, MVXPE_EUC, reg);
    891 
    892 	/* Auto Negotiation */
    893 	reg  = MVXPE_PANC_MUSTSET;	/* must write 0x1 */
    894 	reg |= MVXPE_PANC_FORCELINKFAIL;/* force link state down */
    895 	reg |= MVXPE_PANC_ANSPEEDEN;	/* interface speed negotiation */
    896 	reg |= MVXPE_PANC_ANDUPLEXEN;	/* negotiate duplex mode */
    897 	if (serdes) {
    898 		reg |= MVXPE_PANC_INBANDANEN; /* In Band negotiation */
    899 		reg |= MVXPE_PANC_INBANDANBYPASSEN; /* bypass negotiation */
    900 		reg |= MVXPE_PANC_SETFULLDX; /* set full-duplex on failure */
    901 	}
    902 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
    903 
    904 	/* EEE: Low Power Idle */
    905 	reg  = MVXPE_LPIC0_LILIMIT(MVXPE_LPI_LI);
    906 	reg |= MVXPE_LPIC0_TSLIMIT(MVXPE_LPI_TS);
    907 	MVXPE_WRITE(sc, MVXPE_LPIC0, reg);
    908 
    909 	reg  = MVXPE_LPIC1_TWLIMIT(MVXPE_LPI_TS);
    910 	MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
    911 
    912 	reg = MVXPE_LPIC2_MUSTSET;
    913 	MVXPE_WRITE(sc, MVXPE_LPIC2, reg);
    914 
    915 	/* Port MAC Control set 0 */
    916 	reg  = MVXPE_PMACC0_MUSTSET;	/* must write 0x1 */
    917 	reg &= ~MVXPE_PMACC0_PORTEN;	/* port is still disabled */
    918 	reg |= MVXPE_PMACC0_FRAMESIZELIMIT(MVXPE_MRU);
    919 	if (serdes)
    920 		reg |= MVXPE_PMACC0_PORTTYPE;
    921 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
    922 
    923 	/* Port MAC Control set 1 is only used for loop-back test */
    924 
    925 	/* Port MAC Control set 2 */
    926 	reg = MVXPE_READ(sc, MVXPE_PMACC2);
    927 	reg &= (MVXPE_PMACC2_PCSEN | MVXPE_PMACC2_RGMIIEN);
    928 	reg |= MVXPE_PMACC2_MUSTSET;
    929 	MVXPE_WRITE(sc, MVXPE_PMACC2, reg);
    930 
    931 	/* Port MAC Control set 3 is used for IPG tune */
    932 
    933 	/* Port MAC Control set 4 is not used */
    934 
    935 	/* Port Configuration */
    936 	/* Use queue 0 only */
    937 	reg = MVXPE_READ(sc, MVXPE_PXC);
    938 	reg &= ~(MVXPE_PXC_RXQ_MASK | MVXPE_PXC_RXQARP_MASK |
    939 	    MVXPE_PXC_TCPQ_MASK | MVXPE_PXC_UDPQ_MASK | MVXPE_PXC_BPDUQ_MASK);
    940 	MVXPE_WRITE(sc, MVXPE_PXC, reg);
    941 
    942 	/* Port Configuration Extended: enable Tx CRC generation */
    943 	reg = MVXPE_READ(sc, MVXPE_PXCX);
    944 	reg &= ~MVXPE_PXCX_TXCRCDIS;
    945 	MVXPE_WRITE(sc, MVXPE_PXCX, reg);
    946 
    947 	/* clear MIB counter registers(clear by read) */
    948 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++)
    949 		MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum));
    950 
    951 	/* Set SDC register except IPGINT bits */
    952 	reg  = MVXPE_SDC_RXBSZ_16_64BITWORDS;
    953 	reg |= MVXPE_SDC_TXBSZ_16_64BITWORDS;
    954 	reg |= MVXPE_SDC_BLMR;
    955 	reg |= MVXPE_SDC_BLMT;
    956 	MVXPE_WRITE(sc, MVXPE_SDC, reg);
    957 
    958 	return 0;
    959 }
    960 
    961 /*
    962  * Descriptor Ring Controls for each of queues
    963  */
    964 STATIC void *
    965 mvxpe_dma_memalloc(struct mvxpe_softc *sc, bus_dmamap_t *map, size_t size)
    966 {
    967 	bus_dma_segment_t segs;
    968 	void *kva = NULL;
    969 	int nsegs;
    970 
    971 	/*
    972 	 * Allocate the descriptor queues.
    973 	 * struct mvxpe_ring_data contians array of descriptor per queue.
    974 	 */
    975 	if (bus_dmamem_alloc(sc->sc_dmat,
    976 	    size, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) {
    977 		aprint_error_dev(sc->sc_dev,
    978 		    "can't alloc device memory (%zu bytes)\n", size);
    979 		return NULL;
    980 	}
    981 	if (bus_dmamem_map(sc->sc_dmat,
    982 	    &segs, nsegs, size, &kva, BUS_DMA_NOWAIT)) {
    983 		aprint_error_dev(sc->sc_dev,
    984 		    "can't map dma buffers (%zu bytes)\n", size);
    985 		goto fail1;
    986 	}
    987 
    988 	if (bus_dmamap_create(sc->sc_dmat,
    989 	    size, 1, size, 0, BUS_DMA_NOWAIT, map)) {
    990 		aprint_error_dev(sc->sc_dev, "can't create dma map\n");
    991 		goto fail2;
    992 	}
    993 	if (bus_dmamap_load(sc->sc_dmat,
    994 	    *map, kva, size, NULL, BUS_DMA_NOWAIT)) {
    995 		aprint_error_dev(sc->sc_dev, "can't load dma map\n");
    996 		goto fail3;
    997 	}
    998 	memset(kva, 0, size);
    999 	return kva;
   1000 
   1001 fail3:
   1002 	bus_dmamap_destroy(sc->sc_dmat, *map);
   1003 	memset(map, 0, sizeof(*map));
   1004 fail2:
   1005 	bus_dmamem_unmap(sc->sc_dmat, kva, size);
   1006 fail1:
   1007 	bus_dmamem_free(sc->sc_dmat, &segs, nsegs);
   1008 	return NULL;
   1009 }
   1010 
   1011 STATIC int
   1012 mvxpe_ring_alloc_queue(struct mvxpe_softc *sc, int q)
   1013 {
   1014 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1015 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1016 
   1017 	/*
   1018 	 * MVXPE_RX_RING_CNT and MVXPE_TX_RING_CNT is a hard limit of
   1019 	 * queue length. real queue length is limited by
   1020 	 * sc->sc_rx_ring[q].rx_queue_len and sc->sc_tx_ring[q].tx_queue_len.
   1021 	 *
   1022 	 * because descriptor ring reallocation needs reprogramming of
   1023 	 * DMA registers, we allocate enough descriptor for hard limit
   1024 	 * of queue length.
   1025 	 */
   1026 	rx->rx_descriptors =
   1027 	    mvxpe_dma_memalloc(sc, &rx->rx_descriptors_map,
   1028 		(sizeof(struct mvxpe_rx_desc) * MVXPE_RX_RING_CNT));
   1029 	if (rx->rx_descriptors == NULL)
   1030 		goto fail;
   1031 
   1032 	tx->tx_descriptors =
   1033 	    mvxpe_dma_memalloc(sc, &tx->tx_descriptors_map,
   1034 		(sizeof(struct mvxpe_tx_desc) * MVXPE_TX_RING_CNT));
   1035 	if (tx->tx_descriptors == NULL)
   1036 		goto fail;
   1037 
   1038 	return 0;
   1039 fail:
   1040 	mvxpe_ring_dealloc_queue(sc, q);
   1041 	aprint_error_dev(sc->sc_dev, "DMA Ring buffer allocation failure.\n");
   1042 	return ENOMEM;
   1043 }
   1044 
   1045 STATIC void
   1046 mvxpe_ring_dealloc_queue(struct mvxpe_softc *sc, int q)
   1047 {
   1048 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1049 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1050 	bus_dma_segment_t *segs;
   1051 	bus_size_t size;
   1052 	void *kva;
   1053 	int nsegs;
   1054 
   1055 	/* Rx */
   1056 	kva = (void *)MVXPE_RX_RING_MEM_VA(sc, q);
   1057 	if (kva) {
   1058 		segs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_segs;
   1059 		nsegs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_nsegs;
   1060 		size = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_mapsize;
   1061 
   1062 		bus_dmamap_unload(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
   1063 		bus_dmamap_destroy(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
   1064 		bus_dmamem_unmap(sc->sc_dmat, kva, size);
   1065 		bus_dmamem_free(sc->sc_dmat, segs, nsegs);
   1066 	}
   1067 
   1068 	/* Tx */
   1069 	kva = (void *)MVXPE_TX_RING_MEM_VA(sc, q);
   1070 	if (kva) {
   1071 		segs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_segs;
   1072 		nsegs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_nsegs;
   1073 		size = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_mapsize;
   1074 
   1075 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
   1076 		bus_dmamap_destroy(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
   1077 		bus_dmamem_unmap(sc->sc_dmat, kva, size);
   1078 		bus_dmamem_free(sc->sc_dmat, segs, nsegs);
   1079 	}
   1080 
   1081 	/* Clear doungling pointers all */
   1082 	memset(rx, 0, sizeof(*rx));
   1083 	memset(tx, 0, sizeof(*tx));
   1084 }
   1085 
   1086 STATIC void
   1087 mvxpe_ring_init_queue(struct mvxpe_softc *sc, int q)
   1088 {
   1089 	struct mvxpe_rx_desc *rxd = MVXPE_RX_RING_MEM_VA(sc, q);
   1090 	struct mvxpe_tx_desc *txd = MVXPE_TX_RING_MEM_VA(sc, q);
   1091 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1092 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1093 	static const int rx_default_queue_len[] = {
   1094 		MVXPE_RX_QUEUE_LIMIT_0, MVXPE_RX_QUEUE_LIMIT_1,
   1095 		MVXPE_RX_QUEUE_LIMIT_2, MVXPE_RX_QUEUE_LIMIT_3,
   1096 		MVXPE_RX_QUEUE_LIMIT_4, MVXPE_RX_QUEUE_LIMIT_5,
   1097 		MVXPE_RX_QUEUE_LIMIT_6, MVXPE_RX_QUEUE_LIMIT_7,
   1098 	};
   1099 	static const int tx_default_queue_len[] = {
   1100 		MVXPE_TX_QUEUE_LIMIT_0, MVXPE_TX_QUEUE_LIMIT_1,
   1101 		MVXPE_TX_QUEUE_LIMIT_2, MVXPE_TX_QUEUE_LIMIT_3,
   1102 		MVXPE_TX_QUEUE_LIMIT_4, MVXPE_TX_QUEUE_LIMIT_5,
   1103 		MVXPE_TX_QUEUE_LIMIT_6, MVXPE_TX_QUEUE_LIMIT_7,
   1104 	};
   1105 	extern uint32_t mvTclk;
   1106 	int i;
   1107 
   1108 	/* Rx handle */
   1109 	for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
   1110 		MVXPE_RX_DESC(sc, q, i) = &rxd[i];
   1111 		MVXPE_RX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_rx_desc) * i;
   1112 		MVXPE_RX_PKTBUF(sc, q, i) = NULL;
   1113 	}
   1114 	mutex_init(&rx->rx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
   1115 	rx->rx_dma = rx->rx_cpu = 0;
   1116 	rx->rx_queue_len = rx_default_queue_len[q];
   1117 	if (rx->rx_queue_len > MVXPE_RX_RING_CNT)
   1118 		rx->rx_queue_len = MVXPE_RX_RING_CNT;
   1119 	rx->rx_queue_th_received = rx->rx_queue_len / MVXPE_RXTH_RATIO;
   1120 	rx->rx_queue_th_free = rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
   1121 	rx->rx_queue_th_time = (mvTclk / 1000) / 2; /* 0.5 [ms] */
   1122 
   1123 	/* Tx handle */
   1124 	for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
   1125 		MVXPE_TX_DESC(sc, q, i) = &txd[i];
   1126 		MVXPE_TX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_tx_desc) * i;
   1127 		MVXPE_TX_MBUF(sc, q, i) = NULL;
   1128 		/* Tx handle needs DMA map for busdma_load_mbuf() */
   1129 		if (bus_dmamap_create(sc->sc_dmat,
   1130 		    mvxpbm_chunk_size(sc->sc_bm),
   1131 		    MVXPE_TX_SEGLIMIT, mvxpbm_chunk_size(sc->sc_bm), 0,
   1132 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
   1133 		    &MVXPE_TX_MAP(sc, q, i))) {
   1134 			aprint_error_dev(sc->sc_dev,
   1135 			    "can't create dma map (tx ring %d)\n", i);
   1136 		}
   1137 	}
   1138 	mutex_init(&tx->tx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
   1139 	tx->tx_dma = tx->tx_cpu = 0;
   1140 	tx->tx_queue_len = tx_default_queue_len[q];
   1141 	if (tx->tx_queue_len > MVXPE_TX_RING_CNT)
   1142 		tx->tx_queue_len = MVXPE_TX_RING_CNT;
   1143        	tx->tx_used = 0;
   1144 	tx->tx_queue_th_free = tx->tx_queue_len / MVXPE_TXTH_RATIO;
   1145 }
   1146 
   1147 STATIC void
   1148 mvxpe_ring_flush_queue(struct mvxpe_softc *sc, int q)
   1149 {
   1150 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1151 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1152 	struct mbuf *m;
   1153 	int i;
   1154 
   1155 	KASSERT_RX_MTX(sc, q);
   1156 	KASSERT_TX_MTX(sc, q);
   1157 
   1158 	/* Rx handle */
   1159 	for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
   1160 		if (MVXPE_RX_PKTBUF(sc, q, i) == NULL)
   1161 			continue;
   1162 		mvxpbm_free_chunk(MVXPE_RX_PKTBUF(sc, q, i));
   1163 		MVXPE_RX_PKTBUF(sc, q, i) = NULL;
   1164 	}
   1165 	rx->rx_dma = rx->rx_cpu = 0;
   1166 
   1167 	/* Tx handle */
   1168 	for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
   1169 		m = MVXPE_TX_MBUF(sc, q, i);
   1170 		if (m == NULL)
   1171 			continue;
   1172 		MVXPE_TX_MBUF(sc, q, i) = NULL;
   1173 		bus_dmamap_sync(sc->sc_dmat,
   1174 		    MVXPE_TX_MAP(sc, q, i), 0, m->m_pkthdr.len,
   1175 		    BUS_DMASYNC_POSTWRITE);
   1176 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, i));
   1177 		m_freem(m);
   1178 	}
   1179 	tx->tx_dma = tx->tx_cpu = 0;
   1180        	tx->tx_used = 0;
   1181 }
   1182 
   1183 STATIC void
   1184 mvxpe_ring_sync_rx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
   1185 {
   1186 	int wrap;
   1187 
   1188 	KASSERT_RX_MTX(sc, q);
   1189 	KASSERT(count > 0 && count <= MVXPE_RX_RING_CNT);
   1190 	KASSERT(idx >= 0 && idx < MVXPE_RX_RING_CNT);
   1191 
   1192 	wrap = (idx + count) - MVXPE_RX_RING_CNT;
   1193 	if (wrap > 0) {
   1194 		count -= wrap;
   1195 		KASSERT(count > 0);
   1196 		bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
   1197 		    0, sizeof(struct mvxpe_rx_desc) * wrap, ops);
   1198 	}
   1199 	bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
   1200 	    MVXPE_RX_DESC_OFF(sc, q, idx),
   1201 	    sizeof(struct mvxpe_rx_desc) * count, ops);
   1202 }
   1203 
   1204 STATIC void
   1205 mvxpe_ring_sync_tx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
   1206 {
   1207 	int wrap = 0;
   1208 
   1209 	KASSERT_TX_MTX(sc, q);
   1210 	KASSERT(count > 0 && count <= MVXPE_TX_RING_CNT);
   1211 	KASSERT(idx >= 0 && idx < MVXPE_TX_RING_CNT);
   1212 
   1213 	wrap = (idx + count) - MVXPE_TX_RING_CNT;
   1214 	if (wrap > 0)  {
   1215 		count -= wrap;
   1216 		bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
   1217 		    0, sizeof(struct mvxpe_tx_desc) * wrap, ops);
   1218 	}
   1219 	bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
   1220 	    MVXPE_TX_DESC_OFF(sc, q, idx),
   1221 	    sizeof(struct mvxpe_tx_desc) * count, ops);
   1222 }
   1223 
   1224 /*
   1225  * Rx/Tx Queue Control
   1226  */
   1227 STATIC int
   1228 mvxpe_rx_queue_init(struct ifnet *ifp, int q)
   1229 {
   1230 	struct mvxpe_softc *sc = ifp->if_softc;
   1231 	uint32_t reg;
   1232 
   1233 	KASSERT_RX_MTX(sc, q);
   1234 	KASSERT(MVXPE_RX_RING_MEM_PA(sc, q) != 0);
   1235 
   1236 	/* descriptor address */
   1237 	MVXPE_WRITE(sc, MVXPE_PRXDQA(q), MVXPE_RX_RING_MEM_PA(sc, q));
   1238 
   1239 	/* Rx buffer size and descriptor ring size */
   1240 	reg  = MVXPE_PRXDQS_BUFFERSIZE(mvxpbm_chunk_size(sc->sc_bm) >> 3);
   1241 	reg |= MVXPE_PRXDQS_DESCRIPTORSQUEUESIZE(MVXPE_RX_RING_CNT);
   1242 	MVXPE_WRITE(sc, MVXPE_PRXDQS(q), reg);
   1243 	DPRINTIFNET(ifp, 1, "PRXDQS(%d): %#x\n",
   1244 	    q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
   1245 
   1246 	/* Rx packet offset address */
   1247 	reg = MVXPE_PRXC_PACKETOFFSET(mvxpbm_packet_offset(sc->sc_bm) >> 3);
   1248 	MVXPE_WRITE(sc, MVXPE_PRXC(q), reg);
   1249 	DPRINTIFNET(ifp, 1, "PRXC(%d): %#x\n",
   1250 	    q, MVXPE_READ(sc, MVXPE_PRXC(q)));
   1251 
   1252 	/* Rx DMA SNOOP */
   1253 	reg  = MVXPE_PRXSNP_SNOOPNOOFBYTES(MVXPE_MRU);
   1254 	reg |= MVXPE_PRXSNP_L2DEPOSITNOOFBYTES(MVXPE_MRU);
   1255 	MVXPE_WRITE(sc, MVXPE_PRXSNP(q), reg);
   1256 
   1257 	/* if DMA is not working, register is not updated */
   1258 	KASSERT(MVXPE_READ(sc, MVXPE_PRXDQA(q)) == MVXPE_RX_RING_MEM_PA(sc, q));
   1259 	return 0;
   1260 }
   1261 
   1262 STATIC int
   1263 mvxpe_tx_queue_init(struct ifnet *ifp, int q)
   1264 {
   1265 	struct mvxpe_softc *sc = ifp->if_softc;
   1266 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1267 	uint32_t reg;
   1268 
   1269 	KASSERT_TX_MTX(sc, q);
   1270 	KASSERT(MVXPE_TX_RING_MEM_PA(sc, q) != 0);
   1271 
   1272 	/* descriptor address */
   1273 	MVXPE_WRITE(sc, MVXPE_PTXDQA(q), MVXPE_TX_RING_MEM_PA(sc, q));
   1274 
   1275 	/* Tx threshold, and descriptor ring size */
   1276 	reg  = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
   1277 	reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
   1278 	MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
   1279 	DPRINTIFNET(ifp, 1, "PTXDQS(%d): %#x\n",
   1280 	    q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
   1281 
   1282 	/* if DMA is not working, register is not updated */
   1283 	KASSERT(MVXPE_READ(sc, MVXPE_PTXDQA(q)) == MVXPE_TX_RING_MEM_PA(sc, q));
   1284 	return 0;
   1285 }
   1286 
   1287 STATIC int
   1288 mvxpe_rx_queue_enable(struct ifnet *ifp, int q)
   1289 {
   1290 	struct mvxpe_softc *sc = ifp->if_softc;
   1291 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1292 	uint32_t reg;
   1293 
   1294 	KASSERT_RX_MTX(sc, q);
   1295 
   1296 	/* Set Rx interrupt threshold */
   1297 	reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
   1298 	reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
   1299 	MVXPE_WRITE(sc, MVXPE_PRXDQTH(q), reg);
   1300 
   1301 	reg  = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
   1302 	MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
   1303 
   1304 	/* Unmask RXTX_TH Intr. */
   1305 	reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
   1306 	reg |= MVXPE_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
   1307 	reg |= MVXPE_PRXTXTI_RDTAQ(q); /* Rx Descriptor Alart */
   1308 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
   1309 
   1310 	/* Enable Rx queue */
   1311 	reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
   1312 	reg |= MVXPE_RQC_ENQ(q);
   1313 	MVXPE_WRITE(sc, MVXPE_RQC, reg);
   1314 
   1315 	return 0;
   1316 }
   1317 
   1318 STATIC int
   1319 mvxpe_tx_queue_enable(struct ifnet *ifp, int q)
   1320 {
   1321 	struct mvxpe_softc *sc = ifp->if_softc;
   1322 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1323 	uint32_t reg;
   1324 
   1325 	KASSERT_TX_MTX(sc, q);
   1326 
   1327 	/* Set Tx interrupt threshold */
   1328 	reg  = MVXPE_READ(sc, MVXPE_PTXDQS(q));
   1329 	reg &= ~MVXPE_PTXDQS_TBT_MASK; /* keep queue size */
   1330 	reg |= MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
   1331 	MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
   1332 
   1333 	/* Unmask RXTX_TH Intr. */
   1334 	reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
   1335 	reg |= MVXPE_PRXTXTI_TBTCQ(q); /* Tx Threshold cross */
   1336 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
   1337 
   1338 	/* Don't update MVXPE_TQC here, there is no packet yet. */
   1339 	return 0;
   1340 }
   1341 
   1342 STATIC void
   1343 mvxpe_rx_lockq(struct mvxpe_softc *sc, int q)
   1344 {
   1345 	KASSERT(q >= 0);
   1346 	KASSERT(q < MVXPE_QUEUE_SIZE);
   1347 	mutex_enter(&sc->sc_rx_ring[q].rx_ring_mtx);
   1348 }
   1349 
   1350 STATIC void
   1351 mvxpe_rx_unlockq(struct mvxpe_softc *sc, int q)
   1352 {
   1353 	KASSERT(q >= 0);
   1354 	KASSERT(q < MVXPE_QUEUE_SIZE);
   1355 	mutex_exit(&sc->sc_rx_ring[q].rx_ring_mtx);
   1356 }
   1357 
   1358 STATIC void
   1359 mvxpe_tx_lockq(struct mvxpe_softc *sc, int q)
   1360 {
   1361 	KASSERT(q >= 0);
   1362 	KASSERT(q < MVXPE_QUEUE_SIZE);
   1363 	mutex_enter(&sc->sc_tx_ring[q].tx_ring_mtx);
   1364 }
   1365 
   1366 STATIC void
   1367 mvxpe_tx_unlockq(struct mvxpe_softc *sc, int q)
   1368 {
   1369 	KASSERT(q >= 0);
   1370 	KASSERT(q < MVXPE_QUEUE_SIZE);
   1371 	mutex_exit(&sc->sc_tx_ring[q].tx_ring_mtx);
   1372 }
   1373 
   1374 /*
   1375  * Interrupt Handlers
   1376  */
   1377 STATIC void
   1378 mvxpe_disable_intr(struct mvxpe_softc *sc)
   1379 {
   1380 	MVXPE_WRITE(sc, MVXPE_EUIM, 0);
   1381 	MVXPE_WRITE(sc, MVXPE_EUIC, 0);
   1382 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, 0);
   1383 	MVXPE_WRITE(sc, MVXPE_PRXTXTIC, 0);
   1384 	MVXPE_WRITE(sc, MVXPE_PRXTXIM, 0);
   1385 	MVXPE_WRITE(sc, MVXPE_PRXTXIC, 0);
   1386 	MVXPE_WRITE(sc, MVXPE_PMIM, 0);
   1387 	MVXPE_WRITE(sc, MVXPE_PMIC, 0);
   1388 	MVXPE_WRITE(sc, MVXPE_PIE, 0);
   1389 }
   1390 
   1391 STATIC void
   1392 mvxpe_enable_intr(struct mvxpe_softc *sc)
   1393 {
   1394 	uint32_t reg;
   1395 
   1396 	/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
   1397 	reg  = MVXPE_READ(sc, MVXPE_PMIM);
   1398 	reg |= MVXPE_PMI_PHYSTATUSCHNG;
   1399 	reg |= MVXPE_PMI_LINKCHANGE;
   1400 	reg |= MVXPE_PMI_IAE;
   1401 	reg |= MVXPE_PMI_RXOVERRUN;
   1402 	reg |= MVXPE_PMI_RXCRCERROR;
   1403 	reg |= MVXPE_PMI_RXLARGEPACKET;
   1404 	reg |= MVXPE_PMI_TXUNDRN;
   1405 #if 0
   1406 	/*
   1407 	 * The device may raise false interrupts for SERDES even if the device
   1408 	 * is not configured to use SERDES connection.
   1409 	 */
   1410 	reg |= MVXPE_PMI_PRBSERROR;
   1411 	reg |= MVXPE_PMI_SRSE;
   1412 #else
   1413 	reg &= ~MVXPE_PMI_PRBSERROR;
   1414 	reg &= ~MVXPE_PMI_SRSE;
   1415 #endif
   1416 	reg |= MVXPE_PMI_TREQ_MASK;
   1417 	MVXPE_WRITE(sc, MVXPE_PMIM, reg);
   1418 
   1419 	/* Enable Summary Bit to check all interrupt cause. */
   1420 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
   1421 	reg |= MVXPE_PRXTXTI_PMISCICSUMMARY;
   1422 	reg |= MVXPE_PRXTXTI_PTXERRORSUMMARY;
   1423 	reg |= MVXPE_PRXTXTI_PRXTXICSUMMARY;
   1424 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
   1425 
   1426 	/* Enable All Queue Interrupt */
   1427 	reg  = MVXPE_READ(sc, MVXPE_PIE);
   1428 	reg |= MVXPE_PIE_RXPKTINTRPTENB_MASK;
   1429 	reg |= MVXPE_PIE_TXPKTINTRPTENB_MASK;
   1430 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
   1431 }
   1432 
   1433 STATIC int
   1434 mvxpe_rxtxth_intr(void *arg)
   1435 {
   1436 	struct mvxpe_softc *sc = arg;
   1437 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1438 	uint32_t ic, queues, datum = 0;
   1439 
   1440 	DPRINTSC(sc, 2, "got RXTX_TH_Intr\n");
   1441 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtxth);
   1442 
   1443 	mvxpe_sc_lock(sc);
   1444 	ic = MVXPE_READ(sc, MVXPE_PRXTXTIC);
   1445 	if (ic == 0) {
   1446 		mvxpe_sc_unlock(sc);
   1447 		return 0;
   1448 	}
   1449 	MVXPE_WRITE(sc, MVXPE_PRXTXTIC, ~ic);
   1450 	datum = datum ^ ic;
   1451 
   1452 	DPRINTIFNET(ifp, 2, "PRXTXTIC: %#x\n", ic);
   1453 
   1454 	/* ack maintance interrupt first */
   1455 	if (ic & MVXPE_PRXTXTI_PTXERRORSUMMARY) {
   1456 		DPRINTIFNET(ifp, 1, "PRXTXTIC: +PTXERRORSUMMARY\n");
   1457 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtxth_txerr);
   1458 	}
   1459 	if ((ic & MVXPE_PRXTXTI_PMISCICSUMMARY)) {
   1460 		DPRINTIFNET(ifp, 2, "PTXTXTIC: +PMISCICSUMMARY\n");
   1461 		mvxpe_misc_intr(sc);
   1462 	}
   1463 	if (ic & MVXPE_PRXTXTI_PRXTXICSUMMARY) {
   1464 		DPRINTIFNET(ifp, 2, "PTXTXTIC: +PRXTXICSUMMARY\n");
   1465 		mvxpe_rxtx_intr(sc);
   1466 	}
   1467 	if (!(ifp->if_flags & IFF_RUNNING)) {
   1468 		mvxpe_sc_unlock(sc);
   1469 		return 1;
   1470 	}
   1471 
   1472 	/* RxTxTH interrupt */
   1473 	queues = MVXPE_PRXTXTI_GET_RBICTAPQ(ic);
   1474 	if (queues) {
   1475 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +RXEOF\n");
   1476 		mvxpe_rx(sc, queues);
   1477 	}
   1478 	queues = MVXPE_PRXTXTI_GET_TBTCQ(ic);
   1479 	if (queues) {
   1480 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +TBTCQ\n");
   1481 		mvxpe_tx_complete(sc, queues);
   1482 	}
   1483 	queues = MVXPE_PRXTXTI_GET_RDTAQ(ic);
   1484 	if (queues) {
   1485 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +RDTAQ\n");
   1486 		mvxpe_rx_refill(sc, queues);
   1487 	}
   1488 	mvxpe_sc_unlock(sc);
   1489 
   1490 	if_schedule_deferred_start(ifp);
   1491 
   1492 	rnd_add_uint32(&sc->sc_rnd_source, datum);
   1493 
   1494 	return 1;
   1495 }
   1496 
   1497 STATIC int
   1498 mvxpe_misc_intr(void *arg)
   1499 {
   1500 	struct mvxpe_softc *sc = arg;
   1501 #ifdef MVXPE_DEBUG
   1502 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1503 #endif
   1504 	uint32_t ic;
   1505 	uint32_t datum = 0;
   1506 	int claimed = 0;
   1507 
   1508 	DPRINTSC(sc, 2, "got MISC_INTR\n");
   1509 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_misc);
   1510 
   1511 	KASSERT_SC_MTX(sc);
   1512 
   1513 	for (;;) {
   1514 		ic = MVXPE_READ(sc, MVXPE_PMIC);
   1515 		ic &= MVXPE_READ(sc, MVXPE_PMIM);
   1516 		if (ic == 0)
   1517 			break;
   1518 		MVXPE_WRITE(sc, MVXPE_PMIC, ~ic);
   1519 		datum = datum ^ ic;
   1520 		claimed = 1;
   1521 
   1522 		DPRINTIFNET(ifp, 2, "PMIC=%#x\n", ic);
   1523 		if (ic & MVXPE_PMI_PHYSTATUSCHNG) {
   1524 			DPRINTIFNET(ifp, 2, "+PHYSTATUSCHNG\n");
   1525 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_phystatuschng);
   1526 		}
   1527 		if (ic & MVXPE_PMI_LINKCHANGE) {
   1528 			DPRINTIFNET(ifp, 2, "+LINKCHANGE\n");
   1529 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_linkchange);
   1530 			mvxpe_linkupdate(sc);
   1531 		}
   1532 		if (ic & MVXPE_PMI_IAE) {
   1533 			DPRINTIFNET(ifp, 2, "+IAE\n");
   1534 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_iae);
   1535 		}
   1536 		if (ic & MVXPE_PMI_RXOVERRUN) {
   1537 			DPRINTIFNET(ifp, 2, "+RXOVERRUN\n");
   1538 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxoverrun);
   1539 		}
   1540 		if (ic & MVXPE_PMI_RXCRCERROR) {
   1541 			DPRINTIFNET(ifp, 2, "+RXCRCERROR\n");
   1542 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxcrc);
   1543 		}
   1544 		if (ic & MVXPE_PMI_RXLARGEPACKET) {
   1545 			DPRINTIFNET(ifp, 2, "+RXLARGEPACKET\n");
   1546 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxlargepacket);
   1547 		}
   1548 		if (ic & MVXPE_PMI_TXUNDRN) {
   1549 			DPRINTIFNET(ifp, 2, "+TXUNDRN\n");
   1550 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txunderrun);
   1551 		}
   1552 		if (ic & MVXPE_PMI_PRBSERROR) {
   1553 			DPRINTIFNET(ifp, 2, "+PRBSERROR\n");
   1554 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_prbserr);
   1555 		}
   1556 		if (ic & MVXPE_PMI_TREQ_MASK) {
   1557 			DPRINTIFNET(ifp, 2, "+TREQ\n");
   1558 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txreq);
   1559 		}
   1560 	}
   1561 	if (datum)
   1562 		rnd_add_uint32(&sc->sc_rnd_source, datum);
   1563 
   1564 	return claimed;
   1565 }
   1566 
   1567 STATIC int
   1568 mvxpe_rxtx_intr(void *arg)
   1569 {
   1570 	struct mvxpe_softc *sc = arg;
   1571 #ifdef MVXPE_DEBUG
   1572 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1573 #endif
   1574 	uint32_t datum = 0;
   1575 	uint32_t prxtxic;
   1576 	int claimed = 0;
   1577 
   1578 	DPRINTSC(sc, 2, "got RXTX_Intr\n");
   1579 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtx);
   1580 
   1581 	KASSERT_SC_MTX(sc);
   1582 
   1583 	for (;;) {
   1584 		prxtxic = MVXPE_READ(sc, MVXPE_PRXTXIC);
   1585 		prxtxic &= MVXPE_READ(sc, MVXPE_PRXTXIM);
   1586 		if (prxtxic == 0)
   1587 			break;
   1588 		MVXPE_WRITE(sc, MVXPE_PRXTXIC, ~prxtxic);
   1589 		datum = datum ^ prxtxic;
   1590 		claimed = 1;
   1591 
   1592 		DPRINTSC(sc, 2, "PRXTXIC: %#x\n", prxtxic);
   1593 
   1594 		if (prxtxic & MVXPE_PRXTXI_RREQ_MASK) {
   1595 			DPRINTIFNET(ifp, 1, "Rx Resource Error.\n");
   1596 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rreq);
   1597 		}
   1598 		if (prxtxic & MVXPE_PRXTXI_RPQ_MASK) {
   1599 			DPRINTIFNET(ifp, 1, "Rx Packet in Queue.\n");
   1600 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rpq);
   1601 		}
   1602 		if (prxtxic & MVXPE_PRXTXI_TBRQ_MASK) {
   1603 			DPRINTIFNET(ifp, 1, "Tx Buffer Return.\n");
   1604 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_tbrq);
   1605 		}
   1606 		if (prxtxic & MVXPE_PRXTXI_PRXTXTHICSUMMARY) {
   1607 			DPRINTIFNET(ifp, 1, "PRXTXTHIC Sumary\n");
   1608 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rxtxth);
   1609 		}
   1610 		if (prxtxic & MVXPE_PRXTXI_PTXERRORSUMMARY) {
   1611 			DPRINTIFNET(ifp, 1, "PTXERROR Sumary\n");
   1612 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_txerr);
   1613 		}
   1614 		if (prxtxic & MVXPE_PRXTXI_PMISCICSUMMARY) {
   1615 			DPRINTIFNET(ifp, 1, "PMISCIC Sumary\n");
   1616 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_misc);
   1617 		}
   1618 	}
   1619 	if (datum)
   1620 		rnd_add_uint32(&sc->sc_rnd_source, datum);
   1621 
   1622 	return claimed;
   1623 }
   1624 
   1625 STATIC void
   1626 mvxpe_tick(void *arg)
   1627 {
   1628 	struct mvxpe_softc *sc = arg;
   1629 	struct mii_data *mii = &sc->sc_mii;
   1630 
   1631 	mvxpe_sc_lock(sc);
   1632 
   1633 	mii_tick(mii);
   1634 	mii_pollstat(&sc->sc_mii);
   1635 
   1636 	/* read mib registers(clear by read) */
   1637 	mvxpe_update_mib(sc);
   1638 
   1639 	/* read counter registers(clear by read) */
   1640 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pdfc,
   1641 	    MVXPE_READ(sc, MVXPE_PDFC));
   1642 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pofc,
   1643 	    MVXPE_READ(sc, MVXPE_POFC));
   1644 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txbadfcs,
   1645 	    MVXPE_READ(sc, MVXPE_TXBADFCS));
   1646 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txdropped,
   1647 	    MVXPE_READ(sc, MVXPE_TXDROPPED));
   1648 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_lpic,
   1649 	    MVXPE_READ(sc, MVXPE_LPIC));
   1650 
   1651 	mvxpe_sc_unlock(sc);
   1652 
   1653 	callout_schedule(&sc->sc_tick_ch, hz);
   1654 }
   1655 
   1656 
   1657 /*
   1658  * struct ifnet and mii callbacks
   1659  */
   1660 STATIC void
   1661 mvxpe_start(struct ifnet *ifp)
   1662 {
   1663 	struct mvxpe_softc *sc = ifp->if_softc;
   1664 	struct mbuf *m;
   1665 	int q;
   1666 
   1667 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1668 		DPRINTIFNET(ifp, 1, "not running\n");
   1669 		return;
   1670 	}
   1671 
   1672 	mvxpe_sc_lock(sc);
   1673 	if (!MVXPE_IS_LINKUP(sc)) {
   1674 		/* If Link is DOWN, can't start TX */
   1675 		DPRINTIFNET(ifp, 1, "link fail\n");
   1676 		for (;;) {
   1677 			/*
   1678 			 * discard stale packets all.
   1679 			 * these may confuse DAD, ARP or timer based protocols.
   1680 			 */
   1681 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1682 			if (m == NULL)
   1683 				break;
   1684 			m_freem(m);
   1685 		}
   1686 		mvxpe_sc_unlock(sc);
   1687 		return;
   1688 	}
   1689 	for (;;) {
   1690 		/*
   1691 		 * don't use IFQ_POLL().
   1692 		 * there is lock problem between IFQ_POLL and IFQ_DEQUEUE
   1693 		 * on SMP enabled networking stack.
   1694 		 */
   1695 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1696 		if (m == NULL)
   1697 			break;
   1698 
   1699 		q = mvxpe_tx_queue_select(sc, m);
   1700 		if (q < 0)
   1701 			break;
   1702 		/* mutex is held in mvxpe_tx_queue_select() */
   1703 
   1704 		if (mvxpe_tx_queue(sc, m, q) != 0) {
   1705 			DPRINTIFNET(ifp, 1, "cannot add packet to tx ring\n");
   1706 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txerr);
   1707 			mvxpe_tx_unlockq(sc, q);
   1708 			break;
   1709 		}
   1710 		mvxpe_tx_unlockq(sc, q);
   1711 		KASSERT(sc->sc_tx_ring[q].tx_used >= 0);
   1712 		KASSERT(sc->sc_tx_ring[q].tx_used <=
   1713 		    sc->sc_tx_ring[q].tx_queue_len);
   1714 		DPRINTIFNET(ifp, 1, "a packet is added to tx ring\n");
   1715 		sc->sc_tx_pending++;
   1716 		ifp->if_opackets++;
   1717 		ifp->if_timer = 1;
   1718 		sc->sc_wdogsoft = 1;
   1719 		bpf_mtap(ifp, m, BPF_D_OUT);
   1720 	}
   1721 	mvxpe_sc_unlock(sc);
   1722 
   1723 	return;
   1724 }
   1725 
   1726 STATIC int
   1727 mvxpe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1728 {
   1729 	struct mvxpe_softc *sc = ifp->if_softc;
   1730 	struct ifreq *ifr = data;
   1731 	int error = 0;
   1732 	int s;
   1733 
   1734 	switch (cmd) {
   1735 	case SIOCGIFMEDIA:
   1736 	case SIOCSIFMEDIA:
   1737 		DPRINTIFNET(ifp, 2, "mvxpe_ioctl MEDIA\n");
   1738 		s = splnet(); /* XXX: is there suitable mutex? */
   1739 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1740 		splx(s);
   1741 		break;
   1742 	default:
   1743 		DPRINTIFNET(ifp, 2, "mvxpe_ioctl ETHER\n");
   1744 		error = ether_ioctl(ifp, cmd, data);
   1745 		if (error == ENETRESET) {
   1746 			if (ifp->if_flags & IFF_RUNNING) {
   1747 				mvxpe_sc_lock(sc);
   1748 				mvxpe_filter_setup(sc);
   1749 				mvxpe_sc_unlock(sc);
   1750 			}
   1751 			error = 0;
   1752 		}
   1753 		break;
   1754 	}
   1755 
   1756 	return error;
   1757 }
   1758 
   1759 STATIC int
   1760 mvxpe_init(struct ifnet *ifp)
   1761 {
   1762 	struct mvxpe_softc *sc = ifp->if_softc;
   1763 	struct mii_data *mii = &sc->sc_mii;
   1764 	uint32_t reg;
   1765 	int q;
   1766 
   1767 	mvxpe_sc_lock(sc);
   1768 
   1769 	/* Start DMA Engine */
   1770 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
   1771 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
   1772 	MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
   1773 
   1774 	/* Enable port */
   1775 	reg  = MVXPE_READ(sc, MVXPE_PMACC0);
   1776 	reg |= MVXPE_PMACC0_PORTEN;
   1777 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
   1778 
   1779 	/* Link up */
   1780 	mvxpe_linkup(sc);
   1781 
   1782 	/* Enable All Queue and interrupt of each Queue */
   1783 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   1784 		mvxpe_rx_lockq(sc, q);
   1785 		mvxpe_rx_queue_enable(ifp, q);
   1786 		mvxpe_rx_queue_refill(sc, q);
   1787 		mvxpe_rx_unlockq(sc, q);
   1788 
   1789 		mvxpe_tx_lockq(sc, q);
   1790 		mvxpe_tx_queue_enable(ifp, q);
   1791 		mvxpe_tx_unlockq(sc, q);
   1792 	}
   1793 
   1794 	/* Enable interrupt */
   1795 	mvxpe_enable_intr(sc);
   1796 
   1797 	/* Set Counter */
   1798 	callout_schedule(&sc->sc_tick_ch, hz);
   1799 
   1800 	/* Media check */
   1801 	mii_mediachg(mii);
   1802 
   1803 	ifp->if_flags |= IFF_RUNNING;
   1804 	ifp->if_flags &= ~IFF_OACTIVE;
   1805 
   1806 	mvxpe_sc_unlock(sc);
   1807 	return 0;
   1808 }
   1809 
   1810 /* ARGSUSED */
   1811 STATIC void
   1812 mvxpe_stop(struct ifnet *ifp, int disable)
   1813 {
   1814 	struct mvxpe_softc *sc = ifp->if_softc;
   1815 	uint32_t reg;
   1816 	int q, cnt;
   1817 
   1818 	DPRINTIFNET(ifp, 1, "stop device dma and interrupts.\n");
   1819 
   1820 	mvxpe_sc_lock(sc);
   1821 
   1822 	callout_stop(&sc->sc_tick_ch);
   1823 
   1824 	/* Link down */
   1825 	mvxpe_linkdown(sc);
   1826 
   1827 	/* Disable Rx interrupt */
   1828 	reg  = MVXPE_READ(sc, MVXPE_PIE);
   1829 	reg &= ~MVXPE_PIE_RXPKTINTRPTENB_MASK;
   1830 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
   1831 
   1832 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
   1833 	reg &= ~MVXPE_PRXTXTI_RBICTAPQ_MASK;
   1834 	reg &= ~MVXPE_PRXTXTI_RDTAQ_MASK;
   1835 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
   1836 
   1837 	/* Wait for all Rx activity to terminate. */
   1838 	reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
   1839 	reg = MVXPE_RQC_DIS(reg);
   1840 	MVXPE_WRITE(sc, MVXPE_RQC, reg);
   1841 	cnt = 0;
   1842 	do {
   1843 		if (cnt >= RX_DISABLE_TIMEOUT) {
   1844 			aprint_error_ifnet(ifp,
   1845 			    "timeout for RX stopped. rqc 0x%x\n", reg);
   1846 			break;
   1847 		}
   1848 		cnt++;
   1849 		reg = MVXPE_READ(sc, MVXPE_RQC);
   1850 	} while (reg & MVXPE_RQC_EN_MASK);
   1851 
   1852 	/* Wait for all Tx activety to terminate. */
   1853 	reg  = MVXPE_READ(sc, MVXPE_PIE);
   1854 	reg &= ~MVXPE_PIE_TXPKTINTRPTENB_MASK;
   1855 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
   1856 
   1857 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
   1858 	reg &= ~MVXPE_PRXTXTI_TBTCQ_MASK;
   1859 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
   1860 
   1861 	reg = MVXPE_READ(sc, MVXPE_TQC) & MVXPE_TQC_EN_MASK;
   1862 	reg = MVXPE_TQC_DIS(reg);
   1863 	MVXPE_WRITE(sc, MVXPE_TQC, reg);
   1864 	cnt = 0;
   1865 	do {
   1866 		if (cnt >= TX_DISABLE_TIMEOUT) {
   1867 			aprint_error_ifnet(ifp,
   1868 			    "timeout for TX stopped. tqc 0x%x\n", reg);
   1869 			break;
   1870 		}
   1871 		cnt++;
   1872 		reg = MVXPE_READ(sc, MVXPE_TQC);
   1873 	} while (reg & MVXPE_TQC_EN_MASK);
   1874 
   1875 	/* Wait for all Tx FIFO is empty */
   1876 	cnt = 0;
   1877 	do {
   1878 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
   1879 			aprint_error_ifnet(ifp,
   1880 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
   1881 			break;
   1882 		}
   1883 		cnt++;
   1884 		reg = MVXPE_READ(sc, MVXPE_PS0);
   1885 	} while (!(reg & MVXPE_PS0_TXFIFOEMP) && (reg & MVXPE_PS0_TXINPROG));
   1886 
   1887 	/* Reset the MAC Port Enable bit */
   1888 	reg = MVXPE_READ(sc, MVXPE_PMACC0);
   1889 	reg &= ~MVXPE_PMACC0_PORTEN;
   1890 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
   1891 
   1892 	/* Disable each of queue */
   1893 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   1894 		struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1895 
   1896 		mvxpe_rx_lockq(sc, q);
   1897 		mvxpe_tx_lockq(sc, q);
   1898 
   1899 		/* Disable Rx packet buffer refill request */
   1900 		reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
   1901 		reg |= MVXPE_PRXDQTH_NODT(0);
   1902 		MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
   1903 
   1904 		if (disable) {
   1905 			/*
   1906 			 * Hold Reset state of DMA Engine
   1907 			 * (must write 0x0 to restart it)
   1908 			 */
   1909 			MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
   1910 			MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
   1911 			mvxpe_ring_flush_queue(sc, q);
   1912 		}
   1913 
   1914 		mvxpe_tx_unlockq(sc, q);
   1915 		mvxpe_rx_unlockq(sc, q);
   1916 	}
   1917 
   1918 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1919 
   1920 	mvxpe_sc_unlock(sc);
   1921 }
   1922 
   1923 STATIC void
   1924 mvxpe_watchdog(struct ifnet *ifp)
   1925 {
   1926 	struct mvxpe_softc *sc = ifp->if_softc;
   1927 	int q;
   1928 
   1929 	mvxpe_sc_lock(sc);
   1930 
   1931 	/*
   1932 	 * Reclaim first as there is a possibility of losing Tx completion
   1933 	 * interrupts.
   1934 	 */
   1935 	mvxpe_tx_complete(sc, 0xff);
   1936 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   1937 		struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1938 
   1939 		if (tx->tx_dma != tx->tx_cpu) {
   1940 			if (sc->sc_wdogsoft) {
   1941 				/*
   1942 				 * There is race condition between CPU and DMA
   1943 				 * engine. When DMA engine encounters queue end,
   1944 				 * it clears MVXPE_TQC_ENQ bit.
   1945 				 * XXX: how about enhanced mode?
   1946 				 */
   1947 				MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
   1948 				ifp->if_timer = 5;
   1949 				sc->sc_wdogsoft = 0;
   1950 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_wdogsoft);
   1951 			} else {
   1952 				aprint_error_ifnet(ifp, "watchdog timeout\n");
   1953 				ifp->if_oerrors++;
   1954 				mvxpe_linkreset(sc);
   1955 				mvxpe_sc_unlock(sc);
   1956 
   1957 				/* trigger reinitialize sequence */
   1958 				mvxpe_stop(ifp, 1);
   1959 				mvxpe_init(ifp);
   1960 
   1961 				mvxpe_sc_lock(sc);
   1962 			}
   1963 		}
   1964 	}
   1965 	mvxpe_sc_unlock(sc);
   1966 }
   1967 
   1968 STATIC int
   1969 mvxpe_ifflags_cb(struct ethercom *ec)
   1970 {
   1971 	struct ifnet *ifp = &ec->ec_if;
   1972 	struct mvxpe_softc *sc = ifp->if_softc;
   1973 	int change = ifp->if_flags ^ sc->sc_if_flags;
   1974 
   1975 	mvxpe_sc_lock(sc);
   1976 
   1977 	if (change != 0)
   1978 		sc->sc_if_flags = ifp->if_flags;
   1979 
   1980 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) {
   1981 		mvxpe_sc_unlock(sc);
   1982 		return ENETRESET;
   1983 	}
   1984 
   1985 	if ((change & IFF_PROMISC) != 0)
   1986 		mvxpe_filter_setup(sc);
   1987 
   1988 	if ((change & IFF_UP) != 0)
   1989 		mvxpe_linkreset(sc);
   1990 
   1991 	mvxpe_sc_unlock(sc);
   1992 	return 0;
   1993 }
   1994 
   1995 STATIC int
   1996 mvxpe_mediachange(struct ifnet *ifp)
   1997 {
   1998 	return ether_mediachange(ifp);
   1999 }
   2000 
   2001 STATIC void
   2002 mvxpe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2003 {
   2004 	ether_mediastatus(ifp, ifmr);
   2005 }
   2006 
   2007 /*
   2008  * Link State Notify
   2009  */
   2010 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc)
   2011 {
   2012 	int linkup; /* bool */
   2013 
   2014 	KASSERT_SC_MTX(sc);
   2015 
   2016 	/* tell miibus */
   2017 	mii_pollstat(&sc->sc_mii);
   2018 
   2019 	/* syslog */
   2020 	linkup = MVXPE_IS_LINKUP(sc);
   2021 	if (sc->sc_linkstate == linkup)
   2022 		return;
   2023 
   2024 #ifdef DEBUG
   2025 	log(LOG_DEBUG,
   2026 	    "%s: link %s\n", device_xname(sc->sc_dev), linkup ? "up" : "down");
   2027 #endif
   2028 	if (linkup)
   2029 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_up);
   2030 	else
   2031 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_down);
   2032 
   2033 	sc->sc_linkstate = linkup;
   2034 }
   2035 
   2036 STATIC void
   2037 mvxpe_linkup(struct mvxpe_softc *sc)
   2038 {
   2039 	uint32_t reg;
   2040 
   2041 	KASSERT_SC_MTX(sc);
   2042 
   2043 	/* set EEE parameters */
   2044 	reg = MVXPE_READ(sc, MVXPE_LPIC1);
   2045 	if (sc->sc_cf.cf_lpi)
   2046 		reg |= MVXPE_LPIC1_LPIRE;
   2047 	else
   2048 		reg &= ~MVXPE_LPIC1_LPIRE;
   2049 	MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
   2050 
   2051 	/* set auto-negotiation parameters */
   2052 	reg  = MVXPE_READ(sc, MVXPE_PANC);
   2053 	if (sc->sc_cf.cf_fc) {
   2054 		/* flow control negotiation */
   2055 		reg |= MVXPE_PANC_PAUSEADV;
   2056 		reg |= MVXPE_PANC_ANFCEN;
   2057 	}
   2058 	else {
   2059 		reg &= ~MVXPE_PANC_PAUSEADV;
   2060 		reg &= ~MVXPE_PANC_ANFCEN;
   2061 	}
   2062 	reg &= ~MVXPE_PANC_FORCELINKFAIL;
   2063 	reg &= ~MVXPE_PANC_FORCELINKPASS;
   2064 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
   2065 
   2066 	mii_mediachg(&sc->sc_mii);
   2067 }
   2068 
   2069 STATIC void
   2070 mvxpe_linkdown(struct mvxpe_softc *sc)
   2071 {
   2072 	struct mii_softc *mii;
   2073 	uint32_t reg;
   2074 
   2075 	KASSERT_SC_MTX(sc);
   2076 	return;
   2077 
   2078 	reg  = MVXPE_READ(sc, MVXPE_PANC);
   2079 	reg |= MVXPE_PANC_FORCELINKFAIL;
   2080 	reg &= MVXPE_PANC_FORCELINKPASS;
   2081 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
   2082 
   2083 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
   2084 	if (mii)
   2085 		mii_phy_down(mii);
   2086 }
   2087 
   2088 STATIC void
   2089 mvxpe_linkreset(struct mvxpe_softc *sc)
   2090 {
   2091 	struct mii_softc *mii;
   2092 
   2093 	KASSERT_SC_MTX(sc);
   2094 
   2095 	/* force reset PHY first */
   2096 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
   2097 	if (mii)
   2098 		mii_phy_reset(mii);
   2099 
   2100 	/* reinit MAC and PHY */
   2101 	mvxpe_linkdown(sc);
   2102 	if ((sc->sc_if_flags & IFF_UP) != 0)
   2103 		mvxpe_linkup(sc);
   2104 }
   2105 
   2106 /*
   2107  * Tx Subroutines
   2108  */
   2109 STATIC int
   2110 mvxpe_tx_queue_select(struct mvxpe_softc *sc, struct mbuf *m)
   2111 {
   2112 	int q = 0;
   2113 
   2114 	/* XXX: get attribute from ALTQ framework? */
   2115 	mvxpe_tx_lockq(sc, q);
   2116 	return 0;
   2117 }
   2118 
   2119 STATIC int
   2120 mvxpe_tx_queue(struct mvxpe_softc *sc, struct mbuf *m, int q)
   2121 {
   2122 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2123 	bus_dma_segment_t *txsegs;
   2124 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   2125 	struct mvxpe_tx_desc *t = NULL;
   2126 	uint32_t ptxsu;
   2127 	int txnsegs;
   2128 	int start, used;
   2129 	int i;
   2130 
   2131 	KASSERT_TX_MTX(sc, q);
   2132 	KASSERT(tx->tx_used >= 0);
   2133 	KASSERT(tx->tx_used <= tx->tx_queue_len);
   2134 
   2135 	/* load mbuf using dmamap of 1st descriptor */
   2136 	if (bus_dmamap_load_mbuf(sc->sc_dmat,
   2137 	    MVXPE_TX_MAP(sc, q, tx->tx_cpu), m, BUS_DMA_NOWAIT) != 0) {
   2138 		m_freem(m);
   2139 		return ENOBUFS;
   2140 	}
   2141 	txsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_segs;
   2142 	txnsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_nsegs;
   2143 	if (txnsegs <= 0 || (txnsegs + tx->tx_used) > tx->tx_queue_len) {
   2144 		/* we have no enough descriptors or mbuf is broken */
   2145 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, tx->tx_cpu));
   2146 		m_freem(m);
   2147 		return ENOBUFS;
   2148 	}
   2149 	DPRINTSC(sc, 2, "send packet %p descriptor %d\n", m, tx->tx_cpu);
   2150 	KASSERT(MVXPE_TX_MBUF(sc, q, tx->tx_cpu) == NULL);
   2151 
   2152 	/* remember mbuf using 1st descriptor */
   2153 	MVXPE_TX_MBUF(sc, q, tx->tx_cpu) = m;
   2154 	bus_dmamap_sync(sc->sc_dmat,
   2155 	    MVXPE_TX_MAP(sc, q, tx->tx_cpu), 0, m->m_pkthdr.len,
   2156 	    BUS_DMASYNC_PREWRITE);
   2157 
   2158 	/* load to tx descriptors */
   2159 	start = tx->tx_cpu;
   2160 	used = 0;
   2161 	for (i = 0; i < txnsegs; i++) {
   2162 		if (__predict_false(txsegs[i].ds_len == 0))
   2163 			continue;
   2164 		t = MVXPE_TX_DESC(sc, q, tx->tx_cpu);
   2165 		t->command = 0;
   2166 		t->l4ichk = 0;
   2167 		t->flags = 0;
   2168 		if (i == 0) {
   2169 			/* 1st descriptor */
   2170 			t->command |= MVXPE_TX_CMD_W_PACKET_OFFSET(0);
   2171 			t->command |= MVXPE_TX_CMD_PADDING;
   2172 			t->command |= MVXPE_TX_CMD_F;
   2173 			mvxpe_tx_set_csumflag(ifp, t, m);
   2174 		}
   2175 		t->bufptr = txsegs[i].ds_addr;
   2176 		t->bytecnt = txsegs[i].ds_len;
   2177 		tx->tx_cpu = tx_counter_adv(tx->tx_cpu, 1);
   2178 		tx->tx_used++;
   2179 		used++;
   2180 	}
   2181 	/* t is last descriptor here */
   2182 	KASSERT(t != NULL);
   2183 	t->command |= MVXPE_TX_CMD_L;
   2184 
   2185 	DPRINTSC(sc, 2, "queue %d, %d descriptors used\n", q, used);
   2186 #ifdef MVXPE_DEBUG
   2187 	if (mvxpe_debug > 2)
   2188 		for (i = start; i <= tx->tx_cpu; i++) {
   2189 			t = MVXPE_TX_DESC(sc, q, i);
   2190 			mvxpe_dump_txdesc(t, i);
   2191 		}
   2192 #endif
   2193 	mvxpe_ring_sync_tx(sc, q, start, used,
   2194 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2195 
   2196 	while (used > 255) {
   2197 		ptxsu = MVXPE_PTXSU_NOWD(255);
   2198 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
   2199 		used -= 255;
   2200 	}
   2201 	if (used > 0) {
   2202 		ptxsu = MVXPE_PTXSU_NOWD(used);
   2203 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
   2204 	}
   2205 	MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
   2206 
   2207 	DPRINTSC(sc, 2,
   2208 	    "PTXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQA(q)));
   2209 	DPRINTSC(sc, 2,
   2210 	    "PTXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
   2211 	DPRINTSC(sc, 2,
   2212 	    "PTXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXS(q)));
   2213 	DPRINTSC(sc, 2,
   2214 	    "PTXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PTXDI(q)));
   2215 	DPRINTSC(sc, 2, "TQC: %#x\n", MVXPE_READ(sc, MVXPE_TQC));
   2216 	DPRINTIFNET(ifp, 2,
   2217 	    "Tx: tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
   2218 	    tx->tx_cpu, tx->tx_dma, tx->tx_used);
   2219 	return 0;
   2220 }
   2221 
   2222 STATIC void
   2223 mvxpe_tx_set_csumflag(struct ifnet *ifp,
   2224     struct mvxpe_tx_desc *t, struct mbuf *m)
   2225 {
   2226 	struct ether_header *eh;
   2227 	int csum_flags;
   2228 	uint32_t iphl = 0, ipoff = 0;
   2229 
   2230 
   2231        	csum_flags = ifp->if_csum_flags_tx & m->m_pkthdr.csum_flags;
   2232 
   2233 	eh = mtod(m, struct ether_header *);
   2234 	switch (htons(eh->ether_type)) {
   2235 	case ETHERTYPE_IP:
   2236 	case ETHERTYPE_IPV6:
   2237 		ipoff = ETHER_HDR_LEN;
   2238 		break;
   2239 	case ETHERTYPE_VLAN:
   2240 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2241 		break;
   2242 	}
   2243 
   2244 	if (csum_flags & (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   2245 		iphl = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
   2246 		t->command |= MVXPE_TX_CMD_L3_IP4;
   2247 	}
   2248 	else if (csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   2249 		iphl = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
   2250 		t->command |= MVXPE_TX_CMD_L3_IP6;
   2251 	}
   2252 	else {
   2253 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
   2254 		return;
   2255 	}
   2256 
   2257 
   2258 	/* L3 */
   2259 	if (csum_flags & M_CSUM_IPv4) {
   2260 		t->command |= MVXPE_TX_CMD_IP4_CHECKSUM;
   2261 	}
   2262 
   2263 	/* L4 */
   2264 	if ((csum_flags &
   2265 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0) {
   2266 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
   2267 	}
   2268 	else if (csum_flags & M_CSUM_TCPv4) {
   2269 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
   2270 		t->command |= MVXPE_TX_CMD_L4_TCP;
   2271 	}
   2272 	else if (csum_flags & M_CSUM_UDPv4) {
   2273 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
   2274 		t->command |= MVXPE_TX_CMD_L4_UDP;
   2275 	}
   2276 	else if (csum_flags & M_CSUM_TCPv6) {
   2277 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
   2278 		t->command |= MVXPE_TX_CMD_L4_TCP;
   2279 	}
   2280 	else if (csum_flags & M_CSUM_UDPv6) {
   2281 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
   2282 		t->command |= MVXPE_TX_CMD_L4_UDP;
   2283 	}
   2284 
   2285 	t->l4ichk = 0;
   2286 	t->command |= MVXPE_TX_CMD_IP_HEADER_LEN(iphl >> 2);
   2287 	t->command |= MVXPE_TX_CMD_L3_OFFSET(ipoff);
   2288 }
   2289 
   2290 STATIC void
   2291 mvxpe_tx_complete(struct mvxpe_softc *sc, uint32_t queues)
   2292 {
   2293 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2294 	int q;
   2295 
   2296 	DPRINTSC(sc, 2, "tx completed.\n");
   2297 
   2298 	KASSERT_SC_MTX(sc);
   2299 
   2300 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   2301 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
   2302 			continue;
   2303 		mvxpe_tx_lockq(sc, q);
   2304 		mvxpe_tx_queue_complete(sc, q);
   2305 		mvxpe_tx_unlockq(sc, q);
   2306 	}
   2307 	KASSERT(sc->sc_tx_pending >= 0);
   2308 	if (sc->sc_tx_pending == 0)
   2309 		ifp->if_timer = 0;
   2310 }
   2311 
   2312 STATIC void
   2313 mvxpe_tx_queue_complete(struct mvxpe_softc *sc, int q)
   2314 {
   2315 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   2316 	struct mvxpe_tx_desc *t;
   2317 	struct mbuf *m;
   2318 	uint32_t ptxs, ptxsu, ndesc;
   2319 	int i;
   2320 
   2321 	KASSERT_TX_MTX(sc, q);
   2322 
   2323 	ptxs = MVXPE_READ(sc, MVXPE_PTXS(q));
   2324 	ndesc = MVXPE_PTXS_GET_TBC(ptxs);
   2325 	if (ndesc == 0)
   2326 		return;
   2327 
   2328 	DPRINTSC(sc, 2,
   2329 	    "tx complete queue %d, %d descriptors.\n", q, ndesc);
   2330 
   2331 	mvxpe_ring_sync_tx(sc, q, tx->tx_dma, ndesc,
   2332 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2333 
   2334 	for (i = 0; i < ndesc; i++) {
   2335 		int error = 0;
   2336 
   2337 		t = MVXPE_TX_DESC(sc, q, tx->tx_dma);
   2338 		if (t->flags & MVXPE_TX_F_ES) {
   2339 			DPRINTSC(sc, 1,
   2340 			    "tx error queue %d desc %d\n",
   2341 			    q, tx->tx_dma);
   2342 			switch (t->flags & MVXPE_TX_F_EC_MASK) {
   2343 			case MVXPE_TX_F_EC_LC:
   2344 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_lc);
   2345 				break;
   2346 			case MVXPE_TX_F_EC_UR:
   2347 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_ur);
   2348 				break;
   2349 			case MVXPE_TX_F_EC_RL:
   2350 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_rl);
   2351 				break;
   2352 			default:
   2353 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_oth);
   2354 				break;
   2355 			}
   2356 			error = 1;
   2357 		}
   2358 		m = MVXPE_TX_MBUF(sc, q, tx->tx_dma);
   2359 		if (m != NULL) {
   2360 			KASSERT((t->command & MVXPE_TX_CMD_F) != 0);
   2361 			MVXPE_TX_MBUF(sc, q, tx->tx_dma) = NULL;
   2362 			bus_dmamap_sync(sc->sc_dmat,
   2363 			    MVXPE_TX_MAP(sc, q, tx->tx_dma), 0, m->m_pkthdr.len,
   2364 			    BUS_DMASYNC_POSTWRITE);
   2365 			bus_dmamap_unload(sc->sc_dmat,
   2366 			    MVXPE_TX_MAP(sc, q, tx->tx_dma));
   2367 			m_freem(m);
   2368 			sc->sc_tx_pending--;
   2369 		}
   2370 		else
   2371 			KASSERT((t->flags & MVXPE_TX_CMD_F) == 0);
   2372 		tx->tx_dma = tx_counter_adv(tx->tx_dma, 1);
   2373 		tx->tx_used--;
   2374 		if (error)
   2375 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txqe[q]);
   2376 		else
   2377 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txq[q]);
   2378 	}
   2379 	KASSERT(tx->tx_used >= 0);
   2380 	KASSERT(tx->tx_used <= tx->tx_queue_len);
   2381 	while (ndesc > 255) {
   2382 		ptxsu = MVXPE_PTXSU_NORB(255);
   2383 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
   2384 		ndesc -= 255;
   2385 	}
   2386 	if (ndesc > 0) {
   2387 		ptxsu = MVXPE_PTXSU_NORB(ndesc);
   2388 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
   2389 	}
   2390 	DPRINTSC(sc, 2,
   2391 	    "Tx complete q %d, tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
   2392 	    q, tx->tx_cpu, tx->tx_dma, tx->tx_used);
   2393 }
   2394 
   2395 /*
   2396  * Rx Subroutines
   2397  */
   2398 STATIC void
   2399 mvxpe_rx(struct mvxpe_softc *sc, uint32_t queues)
   2400 {
   2401 	int q, npkt;
   2402 
   2403 	KASSERT_SC_MTX(sc);
   2404 
   2405 	while ( (npkt = mvxpe_rx_queue_select(sc, queues, &q))) {
   2406 		/* mutex is held by rx_queue_select */
   2407 		mvxpe_rx_queue(sc, q, npkt);
   2408 		mvxpe_rx_unlockq(sc, q);
   2409 	}
   2410 }
   2411 
   2412 STATIC void
   2413 mvxpe_rx_queue(struct mvxpe_softc *sc, int q, int npkt)
   2414 {
   2415 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2416 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   2417 	struct mvxpe_rx_desc *r;
   2418 	struct mvxpbm_chunk *chunk;
   2419 	struct mbuf *m;
   2420 	uint32_t prxsu;
   2421 	int error = 0;
   2422 	int i;
   2423 
   2424 	KASSERT_RX_MTX(sc, q);
   2425 
   2426 	mvxpe_ring_sync_rx(sc, q, rx->rx_dma, npkt,
   2427 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2428 
   2429 	for (i = 0; i < npkt; i++) {
   2430 		/* get descriptor and packet */
   2431 		chunk = MVXPE_RX_PKTBUF(sc, q, rx->rx_dma);
   2432 		MVXPE_RX_PKTBUF(sc, q, rx->rx_dma) = NULL;
   2433 		r = MVXPE_RX_DESC(sc, q, rx->rx_dma);
   2434 		mvxpbm_dmamap_sync(chunk, r->bytecnt, BUS_DMASYNC_POSTREAD);
   2435 
   2436 		/* check errors */
   2437 		if (r->status & MVXPE_RX_ES) {
   2438 			switch (r->status & MVXPE_RX_EC_MASK) {
   2439 			case MVXPE_RX_EC_CE:
   2440 				DPRINTIFNET(ifp, 1, "CRC error\n");
   2441 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_ce);
   2442 				break;
   2443 			case MVXPE_RX_EC_OR:
   2444 				DPRINTIFNET(ifp, 1, "Rx FIFO overrun\n");
   2445 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_or);
   2446 				break;
   2447 			case MVXPE_RX_EC_MF:
   2448 				DPRINTIFNET(ifp, 1, "Rx too large frame\n");
   2449 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_mf);
   2450 				break;
   2451 			case MVXPE_RX_EC_RE:
   2452 				DPRINTIFNET(ifp, 1, "Rx resource error\n");
   2453 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_re);
   2454 				break;
   2455 			}
   2456 			error = 1;
   2457 			goto rx_done;
   2458 		}
   2459 		if (!(r->status & MVXPE_RX_F) || !(r->status & MVXPE_RX_L)) {
   2460 			DPRINTIFNET(ifp, 1, "not support scatter buf\n");
   2461 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_scat);
   2462 			error = 1;
   2463 			goto rx_done;
   2464 		}
   2465 
   2466 		if (chunk == NULL) {
   2467 			device_printf(sc->sc_dev,
   2468 			    "got rx interrupt, but no chunk\n");
   2469 			error = 1;
   2470 			goto rx_done;
   2471 		}
   2472 
   2473 		/* extract packet buffer */
   2474 		if (mvxpbm_init_mbuf_hdr(chunk) != 0) {
   2475 			error = 1;
   2476 			goto rx_done;
   2477 		}
   2478 		m = chunk->m;
   2479 		m_set_rcvif(m, ifp);
   2480 		m->m_pkthdr.len = m->m_len = r->bytecnt - ETHER_CRC_LEN;
   2481 		m_adj(m, MVXPE_HWHEADER_SIZE); /* strip MH */
   2482 		mvxpe_rx_set_csumflag(ifp, r, m);
   2483 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2484 		chunk = NULL; /* the BM chunk goes to networking stack now */
   2485 rx_done:
   2486 		if (chunk) {
   2487 			/* rx error. just return the chunk to BM. */
   2488 			mvxpbm_free_chunk(chunk);
   2489 		}
   2490 		if (error)
   2491 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxqe[q]);
   2492 		else
   2493 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxq[q]);
   2494 		rx->rx_dma = rx_counter_adv(rx->rx_dma, 1);
   2495 	}
   2496 	/* DMA status update */
   2497 	DPRINTSC(sc, 2, "%d packets received from queue %d\n", npkt, q);
   2498 	while (npkt > 255) {
   2499 		prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
   2500 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
   2501 		npkt -= 255;
   2502 	}
   2503 	if (npkt > 0) {
   2504 		prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(npkt);
   2505 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
   2506 	}
   2507 
   2508 	DPRINTSC(sc, 2,
   2509 	    "PRXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQA(q)));
   2510 	DPRINTSC(sc, 2,
   2511 	    "PRXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
   2512 	DPRINTSC(sc, 2,
   2513 	    "PRXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXS(q)));
   2514 	DPRINTSC(sc, 2,
   2515 	    "PRXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PRXDI(q)));
   2516 	DPRINTSC(sc, 2, "RQC: %#x\n", MVXPE_READ(sc, MVXPE_RQC));
   2517 	DPRINTIFNET(ifp, 2, "Rx: rx_cpu = %d, rx_dma = %d\n",
   2518 	    rx->rx_cpu, rx->rx_dma);
   2519 }
   2520 
   2521 STATIC int
   2522 mvxpe_rx_queue_select(struct mvxpe_softc *sc, uint32_t queues, int *queue)
   2523 {
   2524 	uint32_t prxs, npkt;
   2525 	int q;
   2526 
   2527 	KASSERT_SC_MTX(sc);
   2528 	KASSERT(queue != NULL);
   2529 	DPRINTSC(sc, 2, "selecting rx queue\n");
   2530 
   2531 	for (q = MVXPE_QUEUE_SIZE - 1; q >= 0; q--) {
   2532 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
   2533 			continue;
   2534 
   2535 		prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
   2536 		npkt = MVXPE_PRXS_GET_ODC(prxs);
   2537 		if (npkt == 0)
   2538 			continue;
   2539 
   2540 		DPRINTSC(sc, 2,
   2541 		    "queue %d selected: prxs=%#x, %u packet received.\n",
   2542 		    q, prxs, npkt);
   2543 		*queue = q;
   2544 		mvxpe_rx_lockq(sc, q);
   2545 		return npkt;
   2546 	}
   2547 
   2548 	return 0;
   2549 }
   2550 
   2551 STATIC void
   2552 mvxpe_rx_refill(struct mvxpe_softc *sc, uint32_t queues)
   2553 {
   2554 	int q;
   2555 
   2556 	KASSERT_SC_MTX(sc);
   2557 
   2558 	/* XXX: check rx bit array */
   2559 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   2560 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
   2561 			continue;
   2562 
   2563 		mvxpe_rx_lockq(sc, q);
   2564 		mvxpe_rx_queue_refill(sc, q);
   2565 		mvxpe_rx_unlockq(sc, q);
   2566 	}
   2567 }
   2568 
   2569 STATIC void
   2570 mvxpe_rx_queue_refill(struct mvxpe_softc *sc, int q)
   2571 {
   2572 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   2573 	uint32_t prxs, prxsu, ndesc;
   2574 	int idx, refill = 0;
   2575 	int npkt;
   2576 
   2577 	KASSERT_RX_MTX(sc, q);
   2578 
   2579 	prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
   2580 	ndesc = MVXPE_PRXS_GET_NODC(prxs) + MVXPE_PRXS_GET_ODC(prxs);
   2581 	refill = rx->rx_queue_len - ndesc;
   2582 	if (refill <= 0)
   2583 		return;
   2584 	DPRINTPRXS(2, q);
   2585 	DPRINTSC(sc, 2, "%d buffers to refill.\n", refill);
   2586 
   2587 	idx = rx->rx_cpu;
   2588 	for (npkt = 0; npkt < refill; npkt++)
   2589 		if (mvxpe_rx_queue_add(sc, q) != 0)
   2590 			break;
   2591 	DPRINTSC(sc, 2, "queue %d, %d buffer refilled.\n", q, npkt);
   2592 	if (npkt == 0)
   2593 		return;
   2594 
   2595 	mvxpe_ring_sync_rx(sc, q, idx, npkt,
   2596 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2597 
   2598 	while (npkt > 255) {
   2599 		prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(255);
   2600 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
   2601 		npkt -= 255;
   2602 	}
   2603 	if (npkt > 0) {
   2604 		prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(npkt);
   2605 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
   2606 	}
   2607 	DPRINTPRXS(2, q);
   2608 	return;
   2609 }
   2610 
   2611 STATIC int
   2612 mvxpe_rx_queue_add(struct mvxpe_softc *sc, int q)
   2613 {
   2614 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   2615 	struct mvxpe_rx_desc *r;
   2616 	struct mvxpbm_chunk *chunk = NULL;
   2617 
   2618 	KASSERT_RX_MTX(sc, q);
   2619 
   2620 	/* Allocate the packet buffer */
   2621 	chunk = mvxpbm_alloc(sc->sc_bm);
   2622 	if (chunk == NULL) {
   2623 		DPRINTSC(sc, 1, "BM chunk allocation failed.\n");
   2624 		return ENOBUFS;
   2625 	}
   2626 
   2627 	/* Add the packet to descritor */
   2628 	KASSERT(MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) == NULL);
   2629 	MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) = chunk;
   2630 	mvxpbm_dmamap_sync(chunk, BM_SYNC_ALL, BUS_DMASYNC_PREREAD);
   2631 
   2632 	r = MVXPE_RX_DESC(sc, q, rx->rx_cpu);
   2633 	r->bufptr = chunk->buf_pa;
   2634 	DPRINTSC(sc, 9, "chunk added to index %d\n", rx->rx_cpu);
   2635 	rx->rx_cpu = rx_counter_adv(rx->rx_cpu, 1);
   2636 	return 0;
   2637 }
   2638 
   2639 STATIC void
   2640 mvxpe_rx_set_csumflag(struct ifnet *ifp,
   2641     struct mvxpe_rx_desc *r, struct mbuf *m0)
   2642 {
   2643 	uint32_t csum_flags = 0;
   2644 
   2645 	if ((r->status & (MVXPE_RX_IP_HEADER_OK|MVXPE_RX_L3_IP)) == 0)
   2646 		return; /* not a IP packet */
   2647 
   2648 	/* L3 */
   2649 	if (r->status & MVXPE_RX_L3_IP) {
   2650 		csum_flags |= M_CSUM_IPv4 & ifp->if_csum_flags_rx;
   2651 		if ((r->status & MVXPE_RX_IP_HEADER_OK) == 0 &&
   2652 		    (csum_flags & M_CSUM_IPv4) != 0) {
   2653 			csum_flags |= M_CSUM_IPv4_BAD;
   2654 			goto finish;
   2655 		}
   2656 		else if (r->status & MVXPE_RX_IPV4_FRAGMENT) {
   2657 			/*
   2658 			 * r->l4chk has partial checksum of each framgment.
   2659 			 * but there is no way to use it in NetBSD.
   2660 			 */
   2661 			return;
   2662 		}
   2663 	}
   2664 
   2665 	/* L4 */
   2666 	switch (r->status & MVXPE_RX_L4_MASK) {
   2667 	case MVXPE_RX_L4_TCP:
   2668 		if (r->status & MVXPE_RX_L3_IP)
   2669 			csum_flags |= M_CSUM_TCPv4 & ifp->if_csum_flags_rx;
   2670 		else
   2671 			csum_flags |= M_CSUM_TCPv6 & ifp->if_csum_flags_rx;
   2672 		break;
   2673 	case MVXPE_RX_L4_UDP:
   2674 		if (r->status & MVXPE_RX_L3_IP)
   2675 			csum_flags |= M_CSUM_UDPv4 & ifp->if_csum_flags_rx;
   2676 		else
   2677 			csum_flags |= M_CSUM_UDPv6 & ifp->if_csum_flags_rx;
   2678 		break;
   2679 	case MVXPE_RX_L4_OTH:
   2680 	default:
   2681 		break;
   2682 	}
   2683 	if ((r->status & MVXPE_RX_L4_CHECKSUM_OK) == 0 && (csum_flags &
   2684 	    (M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
   2685 		csum_flags |= M_CSUM_TCP_UDP_BAD;
   2686 finish:
   2687 	m0->m_pkthdr.csum_flags = csum_flags;
   2688 }
   2689 
   2690 /*
   2691  * MAC address filter
   2692  */
   2693 STATIC uint8_t
   2694 mvxpe_crc8(const uint8_t *data, size_t size)
   2695 {
   2696 	int bit;
   2697 	uint8_t byte;
   2698 	uint8_t crc = 0;
   2699 	const uint8_t poly = 0x07;
   2700 
   2701 	while(size--)
   2702 	  for (byte = *data++, bit = NBBY-1; bit >= 0; bit--)
   2703 	    crc = (crc << 1) ^ ((((crc >> 7) ^ (byte >> bit)) & 1) ? poly : 0);
   2704 
   2705 	return crc;
   2706 }
   2707 
   2708 CTASSERT(MVXPE_NDFSMT == MVXPE_NDFOMT);
   2709 
   2710 STATIC void
   2711 mvxpe_filter_setup(struct mvxpe_softc *sc)
   2712 {
   2713 	struct ethercom *ec = &sc->sc_ethercom;
   2714 	struct ifnet *ifp= &sc->sc_ethercom.ec_if;
   2715 	struct ether_multi *enm;
   2716 	struct ether_multistep step;
   2717 	uint32_t dfut[MVXPE_NDFUT], dfsmt[MVXPE_NDFSMT], dfomt[MVXPE_NDFOMT];
   2718 	uint32_t pxc;
   2719 	int i;
   2720 	const uint8_t special[ETHER_ADDR_LEN] = {0x01,0x00,0x5e,0x00,0x00,0x00};
   2721 
   2722 	KASSERT_SC_MTX(sc);
   2723 
   2724 	memset(dfut, 0, sizeof(dfut));
   2725 	memset(dfsmt, 0, sizeof(dfsmt));
   2726 	memset(dfomt, 0, sizeof(dfomt));
   2727 
   2728 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
   2729 		goto allmulti;
   2730 	}
   2731 
   2732 	ETHER_FIRST_MULTI(step, ec, enm);
   2733 	while (enm != NULL) {
   2734 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2735 			/* ranges are complex and somewhat rare */
   2736 			goto allmulti;
   2737 		}
   2738 		/* chip handles some IPv4 multicast specially */
   2739 		if (memcmp(enm->enm_addrlo, special, 5) == 0) {
   2740 			i = enm->enm_addrlo[5];
   2741 			dfsmt[i>>2] |=
   2742 			    MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
   2743 		} else {
   2744 			i = mvxpe_crc8(enm->enm_addrlo, ETHER_ADDR_LEN);
   2745 			dfomt[i>>2] |=
   2746 			    MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
   2747 		}
   2748 
   2749 		ETHER_NEXT_MULTI(step, enm);
   2750 	}
   2751 	goto set;
   2752 
   2753 allmulti:
   2754 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
   2755 		for (i = 0; i < MVXPE_NDFSMT; i++) {
   2756 			dfsmt[i] = dfomt[i] =
   2757 			    MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
   2758 			    MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
   2759 			    MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
   2760 			    MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
   2761 		}
   2762 	}
   2763 
   2764 set:
   2765 	pxc = MVXPE_READ(sc, MVXPE_PXC);
   2766 	pxc &= ~MVXPE_PXC_UPM;
   2767 	pxc |= MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP;
   2768 	if (ifp->if_flags & IFF_BROADCAST) {
   2769 		pxc &= ~(MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP);
   2770 	}
   2771 	if (ifp->if_flags & IFF_PROMISC) {
   2772 		pxc |= MVXPE_PXC_UPM;
   2773 	}
   2774 	MVXPE_WRITE(sc, MVXPE_PXC, pxc);
   2775 
   2776 	/* Set Destination Address Filter Unicast Table */
   2777 	if (ifp->if_flags & IFF_PROMISC) {
   2778 		/* pass all unicast addresses */
   2779 		for (i = 0; i < MVXPE_NDFUT; i++) {
   2780 			dfut[i] =
   2781 			    MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
   2782 			    MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
   2783 			    MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
   2784 			    MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
   2785 		}
   2786 	}
   2787 	else {
   2788 		i = sc->sc_enaddr[5] & 0xf;             /* last nibble */
   2789 		dfut[i>>2] = MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
   2790 	}
   2791 	MVXPE_WRITE_REGION(sc, MVXPE_DFUT(0), dfut, MVXPE_NDFUT);
   2792 
   2793 	/* Set Destination Address Filter Multicast Tables */
   2794 	MVXPE_WRITE_REGION(sc, MVXPE_DFSMT(0), dfsmt, MVXPE_NDFSMT);
   2795 	MVXPE_WRITE_REGION(sc, MVXPE_DFOMT(0), dfomt, MVXPE_NDFOMT);
   2796 }
   2797 
   2798 /*
   2799  * sysctl(9)
   2800  */
   2801 SYSCTL_SETUP(sysctl_mvxpe, "sysctl mvxpe subtree setup")
   2802 {
   2803 	int rc;
   2804 	const struct sysctlnode *node;
   2805 
   2806 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   2807 	    0, CTLTYPE_NODE, "mvxpe",
   2808 	    SYSCTL_DESCR("mvxpe interface controls"),
   2809 	    NULL, 0, NULL, 0,
   2810 	    CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   2811 		goto err;
   2812 	}
   2813 
   2814 	mvxpe_root_num = node->sysctl_num;
   2815 	return;
   2816 
   2817 err:
   2818 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   2819 }
   2820 
   2821 STATIC int
   2822 sysctl_read_mib(SYSCTLFN_ARGS)
   2823 {
   2824 	struct mvxpe_sysctl_mib *arg;
   2825 	struct mvxpe_softc *sc;
   2826 	struct sysctlnode node;
   2827 	uint64_t val;
   2828 	int err;
   2829 
   2830 	node = *rnode;
   2831 	arg = (struct mvxpe_sysctl_mib *)rnode->sysctl_data;
   2832 	if (arg == NULL)
   2833 		return EINVAL;
   2834 
   2835 	sc = arg->sc;
   2836 	if (sc == NULL)
   2837 		return EINVAL;
   2838 	if (arg->index < 0 || arg->index > __arraycount(mvxpe_mib_list))
   2839 		return EINVAL;
   2840 
   2841 	mvxpe_sc_lock(sc);
   2842 	val = arg->counter;
   2843 	mvxpe_sc_unlock(sc);
   2844 
   2845 	node.sysctl_data = &val;
   2846 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   2847 	if (err)
   2848 	       return err;
   2849 	if (newp)
   2850 		return EINVAL;
   2851 
   2852 	return 0;
   2853 }
   2854 
   2855 
   2856 STATIC int
   2857 sysctl_clear_mib(SYSCTLFN_ARGS)
   2858 {
   2859 	struct mvxpe_softc *sc;
   2860 	struct sysctlnode node;
   2861 	int val;
   2862 	int err;
   2863 
   2864 	node = *rnode;
   2865 	sc = (struct mvxpe_softc *)rnode->sysctl_data;
   2866 	if (sc == NULL)
   2867 		return EINVAL;
   2868 
   2869 	val = 0;
   2870 	node.sysctl_data = &val;
   2871 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   2872 	if (err || newp == NULL)
   2873 		return err;
   2874 	if (val < 0 || val > 1)
   2875 		return EINVAL;
   2876 	if (val == 1) {
   2877 		mvxpe_sc_lock(sc);
   2878 		mvxpe_clear_mib(sc);
   2879 		mvxpe_sc_unlock(sc);
   2880 	}
   2881 
   2882 	return 0;
   2883 }
   2884 
   2885 STATIC int
   2886 sysctl_set_queue_length(SYSCTLFN_ARGS)
   2887 {
   2888 	struct mvxpe_sysctl_queue *arg;
   2889 	struct mvxpe_rx_ring *rx = NULL;
   2890 	struct mvxpe_tx_ring *tx = NULL;
   2891 	struct mvxpe_softc *sc;
   2892 	struct sysctlnode node;
   2893 	uint32_t reg;
   2894 	int val;
   2895 	int err;
   2896 
   2897 	node = *rnode;
   2898 
   2899 	arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
   2900 	if (arg == NULL)
   2901 		return EINVAL;
   2902 	if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
   2903 		return EINVAL;
   2904 	if (arg->rxtx != MVXPE_SYSCTL_RX && arg->rxtx != MVXPE_SYSCTL_TX)
   2905 		return EINVAL;
   2906 
   2907 	sc = arg->sc;
   2908 	if (sc == NULL)
   2909 		return EINVAL;
   2910 
   2911 	/* read queue length */
   2912 	mvxpe_sc_lock(sc);
   2913 	switch (arg->rxtx) {
   2914 	case  MVXPE_SYSCTL_RX:
   2915 		mvxpe_rx_lockq(sc, arg->queue);
   2916 		rx = MVXPE_RX_RING(sc, arg->queue);
   2917 		val = rx->rx_queue_len;
   2918 		mvxpe_rx_unlockq(sc, arg->queue);
   2919 		break;
   2920 	case  MVXPE_SYSCTL_TX:
   2921 		mvxpe_tx_lockq(sc, arg->queue);
   2922 		tx = MVXPE_TX_RING(sc, arg->queue);
   2923 		val = tx->tx_queue_len;
   2924 		mvxpe_tx_unlockq(sc, arg->queue);
   2925 		break;
   2926 	}
   2927 
   2928 	node.sysctl_data = &val;
   2929 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   2930 	if (err || newp == NULL) {
   2931 		mvxpe_sc_unlock(sc);
   2932 		return err;
   2933 	}
   2934 
   2935 	/* update queue length */
   2936 	if (val < 8 || val > MVXPE_RX_RING_CNT) {
   2937 		mvxpe_sc_unlock(sc);
   2938 		return EINVAL;
   2939 	}
   2940 	switch (arg->rxtx) {
   2941 	case  MVXPE_SYSCTL_RX:
   2942 		mvxpe_rx_lockq(sc, arg->queue);
   2943 		rx->rx_queue_len = val;
   2944 		rx->rx_queue_th_received =
   2945 		    rx->rx_queue_len / MVXPE_RXTH_RATIO;
   2946 		rx->rx_queue_th_free =
   2947 		    rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
   2948 
   2949 		reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
   2950 		reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
   2951 		MVXPE_WRITE(sc, MVXPE_PRXDQTH(arg->queue), reg);
   2952 
   2953 		mvxpe_rx_unlockq(sc, arg->queue);
   2954 		break;
   2955 	case  MVXPE_SYSCTL_TX:
   2956 		mvxpe_tx_lockq(sc, arg->queue);
   2957 		tx->tx_queue_len = val;
   2958 		tx->tx_queue_th_free =
   2959 		    tx->tx_queue_len / MVXPE_TXTH_RATIO;
   2960 
   2961 		reg  = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
   2962 		reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
   2963 		MVXPE_WRITE(sc, MVXPE_PTXDQS(arg->queue), reg);
   2964 
   2965 		mvxpe_tx_unlockq(sc, arg->queue);
   2966 		break;
   2967 	}
   2968 	mvxpe_sc_unlock(sc);
   2969 
   2970 	return 0;
   2971 }
   2972 
   2973 STATIC int
   2974 sysctl_set_queue_rxthtime(SYSCTLFN_ARGS)
   2975 {
   2976 	struct mvxpe_sysctl_queue *arg;
   2977 	struct mvxpe_rx_ring *rx = NULL;
   2978 	struct mvxpe_softc *sc;
   2979 	struct sysctlnode node;
   2980 	extern uint32_t mvTclk;
   2981 	uint32_t reg, time_mvtclk;
   2982 	int time_us;
   2983 	int err;
   2984 
   2985 	node = *rnode;
   2986 
   2987 	arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
   2988 	if (arg == NULL)
   2989 		return EINVAL;
   2990 	if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
   2991 		return EINVAL;
   2992 	if (arg->rxtx != MVXPE_SYSCTL_RX)
   2993 		return EINVAL;
   2994 
   2995 	sc = arg->sc;
   2996 	if (sc == NULL)
   2997 		return EINVAL;
   2998 
   2999 	/* read queue length */
   3000 	mvxpe_sc_lock(sc);
   3001 	mvxpe_rx_lockq(sc, arg->queue);
   3002 	rx = MVXPE_RX_RING(sc, arg->queue);
   3003 	time_mvtclk = rx->rx_queue_th_time;
   3004 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvTclk;
   3005 	node.sysctl_data = &time_us;
   3006 	DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n",
   3007 	    arg->queue, MVXPE_READ(sc, MVXPE_PRXITTH(arg->queue)));
   3008 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   3009 	if (err || newp == NULL) {
   3010 		mvxpe_rx_unlockq(sc, arg->queue);
   3011 		mvxpe_sc_unlock(sc);
   3012 		return err;
   3013 	}
   3014 
   3015 	/* update queue length (0[sec] - 1[sec]) */
   3016 	if (time_us < 0 || time_us > (1000 * 1000)) {
   3017 		mvxpe_rx_unlockq(sc, arg->queue);
   3018 		mvxpe_sc_unlock(sc);
   3019 		return EINVAL;
   3020 	}
   3021 	time_mvtclk =
   3022 	    (uint64_t)mvTclk * (uint64_t)time_us / (1000ULL * 1000ULL);
   3023 	rx->rx_queue_th_time = time_mvtclk;
   3024 	reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
   3025 	MVXPE_WRITE(sc, MVXPE_PRXITTH(arg->queue), reg);
   3026 	DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n", arg->queue, reg);
   3027 	mvxpe_rx_unlockq(sc, arg->queue);
   3028 	mvxpe_sc_unlock(sc);
   3029 
   3030 	return 0;
   3031 }
   3032 
   3033 
   3034 STATIC void
   3035 sysctl_mvxpe_init(struct mvxpe_softc *sc)
   3036 {
   3037 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3038 	const struct sysctlnode *node;
   3039 	int mvxpe_nodenum;
   3040 	int mvxpe_mibnum;
   3041 	int mvxpe_rxqueuenum;
   3042 	int mvxpe_txqueuenum;
   3043 	int q, i;
   3044 
   3045 	/* hw.mvxpe.mvxpe[unit] */
   3046 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3047 	    0, CTLTYPE_NODE, ifp->if_xname,
   3048 	    SYSCTL_DESCR("mvxpe per-controller controls"),
   3049 	    NULL, 0, NULL, 0,
   3050 	    CTL_HW, mvxpe_root_num, CTL_CREATE,
   3051 	    CTL_EOL) != 0) {
   3052 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3053 		return;
   3054 	}
   3055 	mvxpe_nodenum = node->sysctl_num;
   3056 
   3057 	/* hw.mvxpe.mvxpe[unit].mib */
   3058 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3059 	    0, CTLTYPE_NODE, "mib",
   3060 	    SYSCTL_DESCR("mvxpe per-controller MIB counters"),
   3061 	    NULL, 0, NULL, 0,
   3062 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
   3063 	    CTL_EOL) != 0) {
   3064 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3065 		return;
   3066 	}
   3067 	mvxpe_mibnum = node->sysctl_num;
   3068 
   3069 	/* hw.mvxpe.mvxpe[unit].rx */
   3070 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3071 	    0, CTLTYPE_NODE, "rx",
   3072 	    SYSCTL_DESCR("Rx Queues"),
   3073 	    NULL, 0, NULL, 0,
   3074 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
   3075 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3076 		return;
   3077 	}
   3078 	mvxpe_rxqueuenum = node->sysctl_num;
   3079 
   3080 	/* hw.mvxpe.mvxpe[unit].tx */
   3081 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3082 	    0, CTLTYPE_NODE, "tx",
   3083 	    SYSCTL_DESCR("Tx Queues"),
   3084 	    NULL, 0, NULL, 0,
   3085 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
   3086 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3087 		return;
   3088 	}
   3089 	mvxpe_txqueuenum = node->sysctl_num;
   3090 
   3091 #ifdef MVXPE_DEBUG
   3092 	/* hw.mvxpe.debug */
   3093 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3094 	    CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
   3095 	    SYSCTL_DESCR("mvxpe device driver debug control"),
   3096 	    NULL, 0, &mvxpe_debug, 0,
   3097 	    CTL_HW, mvxpe_root_num, CTL_CREATE, CTL_EOL) != 0) {
   3098 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3099 		return;
   3100 	}
   3101 #endif
   3102 	/*
   3103 	 * MIB access
   3104 	 */
   3105 	/* hw.mvxpe.mvxpe[unit].mib.<mibs> */
   3106 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
   3107 		const char *name = mvxpe_mib_list[i].sysctl_name;
   3108 		const char *desc = mvxpe_mib_list[i].desc;
   3109 		struct mvxpe_sysctl_mib *mib_arg = &sc->sc_sysctl_mib[i];
   3110 
   3111 		mib_arg->sc = sc;
   3112 		mib_arg->index = i;
   3113 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3114 		    CTLFLAG_READONLY, CTLTYPE_QUAD, name, desc,
   3115 		    sysctl_read_mib, 0, (void *)mib_arg, 0,
   3116 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_mibnum,
   3117 		    CTL_CREATE, CTL_EOL) != 0) {
   3118 			aprint_normal_dev(sc->sc_dev,
   3119 			    "couldn't create sysctl node\n");
   3120 			break;
   3121 		}
   3122 	}
   3123 
   3124 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   3125 		struct mvxpe_sysctl_queue *rxarg = &sc->sc_sysctl_rx_queue[q];
   3126 		struct mvxpe_sysctl_queue *txarg = &sc->sc_sysctl_tx_queue[q];
   3127 #define MVXPE_SYSCTL_NAME(num) "queue" # num
   3128 		static const char *sysctl_queue_names[] = {
   3129 			MVXPE_SYSCTL_NAME(0), MVXPE_SYSCTL_NAME(1),
   3130 			MVXPE_SYSCTL_NAME(2), MVXPE_SYSCTL_NAME(3),
   3131 			MVXPE_SYSCTL_NAME(4), MVXPE_SYSCTL_NAME(5),
   3132 			MVXPE_SYSCTL_NAME(6), MVXPE_SYSCTL_NAME(7),
   3133 		};
   3134 #undef MVXPE_SYSCTL_NAME
   3135 #ifdef SYSCTL_INCLUDE_DESCR
   3136 #define MVXPE_SYSCTL_DESCR(num) "configuration parameters for queue " # num
   3137 		static const char *sysctl_queue_descrs[] = {
   3138 			MVXPE_SYSCTL_DESCR(0), MVXPE_SYSCTL_DESCR(1),
   3139 			MVXPE_SYSCTL_DESCR(2), MVXPE_SYSCTL_DESCR(3),
   3140 			MVXPE_SYSCTL_DESCR(4), MVXPE_SYSCTL_DESCR(5),
   3141 			MVXPE_SYSCTL_DESCR(6), MVXPE_SYSCTL_DESCR(7),
   3142 		};
   3143 #undef MVXPE_SYSCTL_DESCR
   3144 #endif /* SYSCTL_INCLUDE_DESCR */
   3145 		int mvxpe_curnum;
   3146 
   3147 		rxarg->sc = txarg->sc = sc;
   3148 		rxarg->queue = txarg->queue = q;
   3149 		rxarg->rxtx = MVXPE_SYSCTL_RX;
   3150 		txarg->rxtx = MVXPE_SYSCTL_TX;
   3151 
   3152 		/* hw.mvxpe.mvxpe[unit].rx.[queue] */
   3153 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3154 		    0, CTLTYPE_NODE,
   3155 		    sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descrs[q]),
   3156 		    NULL, 0, NULL, 0,
   3157 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
   3158 		    CTL_CREATE, CTL_EOL) != 0) {
   3159 			aprint_normal_dev(sc->sc_dev,
   3160 			    "couldn't create sysctl node\n");
   3161 			break;
   3162 		}
   3163 		mvxpe_curnum = node->sysctl_num;
   3164 
   3165 		/* hw.mvxpe.mvxpe[unit].rx.[queue].length */
   3166 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3167 		    CTLFLAG_READWRITE, CTLTYPE_INT, "length",
   3168 		    SYSCTL_DESCR("maximum length of the queue"),
   3169 		    sysctl_set_queue_length, 0, (void *)rxarg, 0,
   3170 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
   3171 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
   3172 			aprint_normal_dev(sc->sc_dev,
   3173 			    "couldn't create sysctl node\n");
   3174 			break;
   3175 		}
   3176 
   3177 		/* hw.mvxpe.mvxpe[unit].rx.[queue].threshold_timer_us */
   3178 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3179 		    CTLFLAG_READWRITE, CTLTYPE_INT, "threshold_timer_us",
   3180 		    SYSCTL_DESCR("interrupt coalescing threshold timer [us]"),
   3181 		    sysctl_set_queue_rxthtime, 0, (void *)rxarg, 0,
   3182 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
   3183 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
   3184 			aprint_normal_dev(sc->sc_dev,
   3185 			    "couldn't create sysctl node\n");
   3186 			break;
   3187 		}
   3188 
   3189 		/* hw.mvxpe.mvxpe[unit].tx.[queue] */
   3190 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3191 		    0, CTLTYPE_NODE,
   3192 		    sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descs[q]),
   3193 		    NULL, 0, NULL, 0,
   3194 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
   3195 		    CTL_CREATE, CTL_EOL) != 0) {
   3196 			aprint_normal_dev(sc->sc_dev,
   3197 			    "couldn't create sysctl node\n");
   3198 			break;
   3199 		}
   3200 		mvxpe_curnum = node->sysctl_num;
   3201 
   3202 		/* hw.mvxpe.mvxpe[unit].tx.length[queue] */
   3203 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3204 		    CTLFLAG_READWRITE, CTLTYPE_INT, "length",
   3205 		    SYSCTL_DESCR("maximum length of the queue"),
   3206 		    sysctl_set_queue_length, 0, (void *)txarg, 0,
   3207 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
   3208 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
   3209 			aprint_normal_dev(sc->sc_dev,
   3210 			    "couldn't create sysctl node\n");
   3211 			break;
   3212 		}
   3213 	}
   3214 
   3215 	/* hw.mvxpe.mvxpe[unit].clear_mib */
   3216 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3217 	    CTLFLAG_READWRITE, CTLTYPE_INT, "clear_mib",
   3218 	    SYSCTL_DESCR("mvxpe device driver debug control"),
   3219 	    sysctl_clear_mib, 0, (void *)sc, 0,
   3220 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
   3221 	    CTL_EOL) != 0) {
   3222 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3223 		return;
   3224 	}
   3225 
   3226 }
   3227 
   3228 /*
   3229  * MIB
   3230  */
   3231 STATIC void
   3232 mvxpe_clear_mib(struct mvxpe_softc *sc)
   3233 {
   3234 	int i;
   3235 
   3236 	KASSERT_SC_MTX(sc);
   3237 
   3238 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
   3239 		if (mvxpe_mib_list[i].reg64)
   3240 			MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum + 4));
   3241 		MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
   3242 		sc->sc_sysctl_mib[i].counter = 0;
   3243 	}
   3244 }
   3245 
   3246 STATIC void
   3247 mvxpe_update_mib(struct mvxpe_softc *sc)
   3248 {
   3249 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   3250 	int i;
   3251 
   3252 	KASSERT_SC_MTX(sc);
   3253 
   3254 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
   3255 		uint32_t val_hi;
   3256 		uint32_t val_lo;
   3257 		uint64_t val;
   3258 
   3259 		if (mvxpe_mib_list[i].reg64) {
   3260 			/* XXX: implement bus_space_read_8() */
   3261 			val_lo = MVXPE_READ_MIB(sc,
   3262 			    (mvxpe_mib_list[i].regnum + 4));
   3263 			val_hi = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
   3264 		}
   3265 		else {
   3266 			val_lo = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
   3267 			val_hi = 0;
   3268 		}
   3269 
   3270 		if ((val_lo | val_hi) == 0)
   3271 			continue;
   3272 
   3273 		val = ((uint64_t)val_hi << 32) | (uint64_t)val_lo;
   3274 		sc->sc_sysctl_mib[i].counter += val;
   3275 
   3276 		switch (mvxpe_mib_list[i].ext) {
   3277 		case MVXPE_MIBEXT_IF_OERRORS:
   3278 			ifp->if_oerrors += val;
   3279 			break;
   3280 		case MVXPE_MIBEXT_IF_IERRORS:
   3281 			ifp->if_ierrors += val;
   3282 			break;
   3283 		case MVXPE_MIBEXT_IF_COLLISIONS:
   3284 			ifp->if_collisions += val;
   3285 			break;
   3286 		default:
   3287 			break;
   3288 		}
   3289 
   3290 	}
   3291 }
   3292 
   3293 /*
   3294  * for Debug
   3295  */
   3296 STATIC void
   3297 mvxpe_dump_txdesc(struct mvxpe_tx_desc *desc, int idx)
   3298 {
   3299 #define DESC_PRINT(X)					\
   3300 	if (X)						\
   3301 		printf("txdesc[%d]." #X "=%#x\n", idx, X);
   3302 
   3303        DESC_PRINT(desc->command);
   3304        DESC_PRINT(desc->l4ichk);
   3305        DESC_PRINT(desc->bytecnt);
   3306        DESC_PRINT(desc->bufptr);
   3307        DESC_PRINT(desc->flags);
   3308 #undef DESC_PRINT
   3309 }
   3310 
   3311 STATIC void
   3312 mvxpe_dump_rxdesc(struct mvxpe_rx_desc *desc, int idx)
   3313 {
   3314 #define DESC_PRINT(X)					\
   3315 	if (X)						\
   3316 		printf("rxdesc[%d]." #X "=%#x\n", idx, X);
   3317 
   3318        DESC_PRINT(desc->status);
   3319        DESC_PRINT(desc->bytecnt);
   3320        DESC_PRINT(desc->bufptr);
   3321        DESC_PRINT(desc->l4chk);
   3322 #undef DESC_PRINT
   3323 }
   3324