if_mvxpe.c revision 1.27 1 /* $NetBSD: if_mvxpe.c,v 1.27 2019/05/28 07:41:49 msaitoh Exp $ */
2 /*
3 * Copyright (c) 2015 Internet Initiative Japan Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: if_mvxpe.c,v 1.27 2019/05/28 07:41:49 msaitoh Exp $");
29
30 #include "opt_multiprocessor.h"
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/callout.h>
35 #include <sys/device.h>
36 #include <sys/endian.h>
37 #include <sys/errno.h>
38 #include <sys/evcnt.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/mutex.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/syslog.h>
45 #include <sys/rndsource.h>
46
47 #include <net/if.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/bpf.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55
56 #include <dev/mii/mii.h>
57 #include <dev/mii/miivar.h>
58
59 #include <dev/marvell/marvellreg.h>
60 #include <dev/marvell/marvellvar.h>
61 #include <dev/marvell/mvxpbmvar.h>
62 #include <dev/marvell/if_mvxpereg.h>
63 #include <dev/marvell/if_mvxpevar.h>
64
65 #include "locators.h"
66
67 #if BYTE_ORDER == BIG_ENDIAN
68 #error "BIG ENDIAN not supported"
69 #endif
70
71 #ifdef MVXPE_DEBUG
72 #define STATIC /* nothing */
73 #else
74 #define STATIC static
75 #endif
76
77 /* autoconf(9) */
78 STATIC int mvxpe_match(device_t, struct cfdata *, void *);
79 STATIC void mvxpe_attach(device_t, device_t, void *);
80 STATIC int mvxpe_evcnt_attach(struct mvxpe_softc *);
81 CFATTACH_DECL_NEW(mvxpe_mbus, sizeof(struct mvxpe_softc),
82 mvxpe_match, mvxpe_attach, NULL, NULL);
83 STATIC void mvxpe_sc_lock(struct mvxpe_softc *);
84 STATIC void mvxpe_sc_unlock(struct mvxpe_softc *);
85
86 /* MII */
87 STATIC int mvxpe_miibus_readreg(device_t, int, int, uint16_t *);
88 STATIC int mvxpe_miibus_writereg(device_t, int, int, uint16_t);
89 STATIC void mvxpe_miibus_statchg(struct ifnet *);
90
91 /* Addres Decoding Window */
92 STATIC void mvxpe_wininit(struct mvxpe_softc *, enum marvell_tags *);
93
94 /* Device Register Initialization */
95 STATIC int mvxpe_initreg(struct ifnet *);
96
97 /* Descriptor Ring Control for each of queues */
98 STATIC void *mvxpe_dma_memalloc(struct mvxpe_softc *, bus_dmamap_t *, size_t);
99 STATIC int mvxpe_ring_alloc_queue(struct mvxpe_softc *, int);
100 STATIC void mvxpe_ring_dealloc_queue(struct mvxpe_softc *, int);
101 STATIC void mvxpe_ring_init_queue(struct mvxpe_softc *, int);
102 STATIC void mvxpe_ring_flush_queue(struct mvxpe_softc *, int);
103 STATIC void mvxpe_ring_sync_rx(struct mvxpe_softc *, int, int, int, int);
104 STATIC void mvxpe_ring_sync_tx(struct mvxpe_softc *, int, int, int, int);
105
106 /* Rx/Tx Queue Control */
107 STATIC int mvxpe_rx_queue_init(struct ifnet *, int);
108 STATIC int mvxpe_tx_queue_init(struct ifnet *, int);
109 STATIC int mvxpe_rx_queue_enable(struct ifnet *, int);
110 STATIC int mvxpe_tx_queue_enable(struct ifnet *, int);
111 STATIC void mvxpe_rx_lockq(struct mvxpe_softc *, int);
112 STATIC void mvxpe_rx_unlockq(struct mvxpe_softc *, int);
113 STATIC void mvxpe_tx_lockq(struct mvxpe_softc *, int);
114 STATIC void mvxpe_tx_unlockq(struct mvxpe_softc *, int);
115
116 /* Interrupt Handlers */
117 STATIC void mvxpe_disable_intr(struct mvxpe_softc *);
118 STATIC void mvxpe_enable_intr(struct mvxpe_softc *);
119 STATIC int mvxpe_rxtxth_intr(void *);
120 STATIC int mvxpe_misc_intr(void *);
121 STATIC int mvxpe_rxtx_intr(void *);
122 STATIC void mvxpe_tick(void *);
123
124 /* struct ifnet and mii callbacks*/
125 STATIC void mvxpe_start(struct ifnet *);
126 STATIC int mvxpe_ioctl(struct ifnet *, u_long, void *);
127 STATIC int mvxpe_init(struct ifnet *);
128 STATIC void mvxpe_stop(struct ifnet *, int);
129 STATIC void mvxpe_watchdog(struct ifnet *);
130 STATIC int mvxpe_ifflags_cb(struct ethercom *);
131 STATIC int mvxpe_mediachange(struct ifnet *);
132 STATIC void mvxpe_mediastatus(struct ifnet *, struct ifmediareq *);
133
134 /* Link State Notify */
135 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc);
136 STATIC void mvxpe_linkup(struct mvxpe_softc *);
137 STATIC void mvxpe_linkdown(struct mvxpe_softc *);
138 STATIC void mvxpe_linkreset(struct mvxpe_softc *);
139
140 /* Tx Subroutines */
141 STATIC int mvxpe_tx_queue_select(struct mvxpe_softc *, struct mbuf *);
142 STATIC int mvxpe_tx_queue(struct mvxpe_softc *, struct mbuf *, int);
143 STATIC void mvxpe_tx_set_csumflag(struct ifnet *,
144 struct mvxpe_tx_desc *, struct mbuf *);
145 STATIC void mvxpe_tx_complete(struct mvxpe_softc *, uint32_t);
146 STATIC void mvxpe_tx_queue_complete(struct mvxpe_softc *, int);
147
148 /* Rx Subroutines */
149 STATIC void mvxpe_rx(struct mvxpe_softc *, uint32_t);
150 STATIC void mvxpe_rx_queue(struct mvxpe_softc *, int, int);
151 STATIC int mvxpe_rx_queue_select(struct mvxpe_softc *, uint32_t, int *);
152 STATIC void mvxpe_rx_refill(struct mvxpe_softc *, uint32_t);
153 STATIC void mvxpe_rx_queue_refill(struct mvxpe_softc *, int);
154 STATIC int mvxpe_rx_queue_add(struct mvxpe_softc *, int);
155 STATIC void mvxpe_rx_set_csumflag(struct ifnet *,
156 struct mvxpe_rx_desc *, struct mbuf *);
157
158 /* MAC address filter */
159 STATIC uint8_t mvxpe_crc8(const uint8_t *, size_t);
160 STATIC void mvxpe_filter_setup(struct mvxpe_softc *);
161
162 /* sysctl(9) */
163 STATIC int sysctl_read_mib(SYSCTLFN_PROTO);
164 STATIC int sysctl_clear_mib(SYSCTLFN_PROTO);
165 STATIC int sysctl_set_queue_length(SYSCTLFN_PROTO);
166 STATIC int sysctl_set_queue_rxthtime(SYSCTLFN_PROTO);
167 STATIC void sysctl_mvxpe_init(struct mvxpe_softc *);
168
169 /* MIB */
170 STATIC void mvxpe_clear_mib(struct mvxpe_softc *);
171 STATIC void mvxpe_update_mib(struct mvxpe_softc *);
172
173 /* for Debug */
174 STATIC void mvxpe_dump_txdesc(struct mvxpe_tx_desc *, int) __attribute__((__unused__));
175 STATIC void mvxpe_dump_rxdesc(struct mvxpe_rx_desc *, int) __attribute__((__unused__));
176
177 STATIC int mvxpe_root_num;
178 STATIC kmutex_t mii_mutex;
179 STATIC int mii_init = 0;
180 #ifdef MVXPE_DEBUG
181 STATIC int mvxpe_debug = MVXPE_DEBUG;
182 #endif
183
184 /*
185 * List of MIB register and names
186 */
187 STATIC struct mvxpe_mib_def {
188 uint32_t regnum;
189 int reg64;
190 const char *sysctl_name;
191 const char *desc;
192 int ext;
193 #define MVXPE_MIBEXT_IF_OERRORS 1
194 #define MVXPE_MIBEXT_IF_IERRORS 2
195 #define MVXPE_MIBEXT_IF_COLLISIONS 3
196 } mvxpe_mib_list[] = {
197 {MVXPE_MIB_RX_GOOD_OCT, 1, "rx_good_oct",
198 "Good Octets Rx", 0},
199 {MVXPE_MIB_RX_BAD_OCT, 0, "rx_bad_oct",
200 "Bad Octets Rx", 0},
201 {MVXPE_MIB_TX_MAC_TRNS_ERR, 0, "tx_mac_err",
202 "MAC Transmit Error", MVXPE_MIBEXT_IF_OERRORS},
203 {MVXPE_MIB_RX_GOOD_FRAME, 0, "rx_good_frame",
204 "Good Frames Rx", 0},
205 {MVXPE_MIB_RX_BAD_FRAME, 0, "rx_bad_frame",
206 "Bad Frames Rx", 0},
207 {MVXPE_MIB_RX_BCAST_FRAME, 0, "rx_bcast_frame",
208 "Broadcast Frames Rx", 0},
209 {MVXPE_MIB_RX_MCAST_FRAME, 0, "rx_mcast_frame",
210 "Multicast Frames Rx", 0},
211 {MVXPE_MIB_RX_FRAME64_OCT, 0, "rx_frame_1_64",
212 "Frame Size 1 - 64", 0},
213 {MVXPE_MIB_RX_FRAME127_OCT, 0, "rx_frame_65_127",
214 "Frame Size 65 - 127", 0},
215 {MVXPE_MIB_RX_FRAME255_OCT, 0, "rx_frame_128_255",
216 "Frame Size 128 - 255", 0},
217 {MVXPE_MIB_RX_FRAME511_OCT, 0, "rx_frame_256_511",
218 "Frame Size 256 - 511"},
219 {MVXPE_MIB_RX_FRAME1023_OCT, 0, "rx_frame_512_1023",
220 "Frame Size 512 - 1023", 0},
221 {MVXPE_MIB_RX_FRAMEMAX_OCT, 0, "rx_fame_1024_max",
222 "Frame Size 1024 - Max", 0},
223 {MVXPE_MIB_TX_GOOD_OCT, 1, "tx_good_oct",
224 "Good Octets Tx", 0},
225 {MVXPE_MIB_TX_GOOD_FRAME, 0, "tx_good_frame",
226 "Good Frames Tx", 0},
227 {MVXPE_MIB_TX_EXCES_COL, 0, "tx_exces_collision",
228 "Excessive Collision", MVXPE_MIBEXT_IF_OERRORS},
229 {MVXPE_MIB_TX_MCAST_FRAME, 0, "tx_mcast_frame",
230 "Multicast Frames Tx"},
231 {MVXPE_MIB_TX_BCAST_FRAME, 0, "tx_bcast_frame",
232 "Broadcast Frames Tx"},
233 {MVXPE_MIB_TX_MAC_CTL_ERR, 0, "tx_mac_err",
234 "Unknown MAC Control", 0},
235 {MVXPE_MIB_FC_SENT, 0, "fc_tx",
236 "Flow Control Tx", 0},
237 {MVXPE_MIB_FC_GOOD, 0, "fc_rx_good",
238 "Good Flow Control Rx", 0},
239 {MVXPE_MIB_FC_BAD, 0, "fc_rx_bad",
240 "Bad Flow Control Rx", 0},
241 {MVXPE_MIB_PKT_UNDERSIZE, 0, "pkt_undersize",
242 "Undersized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
243 {MVXPE_MIB_PKT_FRAGMENT, 0, "pkt_fragment",
244 "Fragmented Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
245 {MVXPE_MIB_PKT_OVERSIZE, 0, "pkt_oversize",
246 "Oversized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
247 {MVXPE_MIB_PKT_JABBER, 0, "pkt_jabber",
248 "Jabber Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
249 {MVXPE_MIB_MAC_RX_ERR, 0, "mac_rx_err",
250 "MAC Rx Errors", MVXPE_MIBEXT_IF_IERRORS},
251 {MVXPE_MIB_MAC_CRC_ERR, 0, "mac_crc_err",
252 "MAC CRC Errors", MVXPE_MIBEXT_IF_IERRORS},
253 {MVXPE_MIB_MAC_COL, 0, "mac_collision",
254 "MAC Collision", MVXPE_MIBEXT_IF_COLLISIONS},
255 {MVXPE_MIB_MAC_LATE_COL, 0, "mac_late_collision",
256 "MAC Late Collision", MVXPE_MIBEXT_IF_OERRORS},
257 };
258
259 /*
260 * autoconf(9)
261 */
262 /* ARGSUSED */
263 STATIC int
264 mvxpe_match(device_t parent, cfdata_t match, void *aux)
265 {
266 struct marvell_attach_args *mva = aux;
267 bus_size_t pv_off;
268 uint32_t pv;
269
270 if (strcmp(mva->mva_name, match->cf_name) != 0)
271 return 0;
272 if (mva->mva_offset == MVA_OFFSET_DEFAULT)
273 return 0;
274
275 /* check port version */
276 pv_off = mva->mva_offset + MVXPE_PV;
277 pv = bus_space_read_4(mva->mva_iot, mva->mva_ioh, pv_off);
278 if (MVXPE_PV_GET_VERSION(pv) < 0x10)
279 return 0; /* old version is not supported */
280
281 return 1;
282 }
283
284 /* ARGSUSED */
285 STATIC void
286 mvxpe_attach(device_t parent, device_t self, void *aux)
287 {
288 struct mvxpe_softc *sc = device_private(self);
289 struct mii_softc *mii;
290 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
291 struct mii_data * const mii = &sc->sc_mii;
292 struct marvell_attach_args *mva = aux;
293 prop_dictionary_t dict;
294 prop_data_t enaddrp = NULL;
295 uint32_t phyaddr, maddrh, maddrl;
296 uint8_t enaddr[ETHER_ADDR_LEN];
297 int q;
298
299 aprint_naive("\n");
300 aprint_normal(": Marvell ARMADA GbE Controller\n");
301 memset(sc, 0, sizeof(*sc));
302 sc->sc_dev = self;
303 sc->sc_port = mva->mva_unit;
304 sc->sc_iot = mva->mva_iot;
305 sc->sc_dmat = mva->mva_dmat;
306 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
307 callout_init(&sc->sc_tick_ch, 0);
308 callout_setfunc(&sc->sc_tick_ch, mvxpe_tick, sc);
309
310 /*
311 * BUS space
312 */
313 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
314 mva->mva_offset, mva->mva_size, &sc->sc_ioh)) {
315 aprint_error_dev(self, "Cannot map registers\n");
316 goto fail;
317 }
318 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
319 mva->mva_offset + MVXPE_PORTMIB_BASE, MVXPE_PORTMIB_SIZE,
320 &sc->sc_mibh)) {
321 aprint_error_dev(self,
322 "Cannot map destination address filter registers\n");
323 goto fail;
324 }
325 sc->sc_version = MVXPE_READ(sc, MVXPE_PV);
326 aprint_normal_dev(self, "Port Version %#x\n", sc->sc_version);
327
328 /*
329 * Buffer Manager(BM) subsystem.
330 */
331 sc->sc_bm = mvxpbm_device(mva);
332 if (sc->sc_bm == NULL) {
333 aprint_error_dev(self, "no Buffer Manager.\n");
334 goto fail;
335 }
336 aprint_normal_dev(self,
337 "Using Buffer Manager: %s\n", mvxpbm_xname(sc->sc_bm));
338 aprint_normal_dev(sc->sc_dev,
339 "%zu kbytes managed buffer, %zu bytes * %u entries allocated.\n",
340 mvxpbm_buf_size(sc->sc_bm) / 1024,
341 mvxpbm_chunk_size(sc->sc_bm), mvxpbm_chunk_count(sc->sc_bm));
342
343 /*
344 * make sure DMA engines are in reset state
345 */
346 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
347 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
348
349 /*
350 * Address decoding window
351 */
352 mvxpe_wininit(sc, mva->mva_tags);
353
354 /*
355 * MAC address
356 */
357 dict = device_properties(self);
358 if (dict)
359 enaddrp = prop_dictionary_get(dict, "mac-address");
360 if (enaddrp) {
361 memcpy(enaddr, prop_data_data_nocopy(enaddrp), ETHER_ADDR_LEN);
362 maddrh = enaddr[0] << 24;
363 maddrh |= enaddr[1] << 16;
364 maddrh |= enaddr[2] << 8;
365 maddrh |= enaddr[3];
366 maddrl = enaddr[4] << 8;
367 maddrl |= enaddr[5];
368 MVXPE_WRITE(sc, MVXPE_MACAH, maddrh);
369 MVXPE_WRITE(sc, MVXPE_MACAL, maddrl);
370 }
371 else {
372 /*
373 * even if enaddr is not found in dictionary,
374 * the port may be initialized by IPL program such as U-BOOT.
375 */
376 maddrh = MVXPE_READ(sc, MVXPE_MACAH);
377 maddrl = MVXPE_READ(sc, MVXPE_MACAL);
378 if ((maddrh | maddrl) == 0) {
379 aprint_error_dev(self, "No Ethernet address\n");
380 return;
381 }
382 }
383 sc->sc_enaddr[0] = maddrh >> 24;
384 sc->sc_enaddr[1] = maddrh >> 16;
385 sc->sc_enaddr[2] = maddrh >> 8;
386 sc->sc_enaddr[3] = maddrh >> 0;
387 sc->sc_enaddr[4] = maddrl >> 8;
388 sc->sc_enaddr[5] = maddrl >> 0;
389 aprint_normal_dev(self, "Ethernet address %s\n",
390 ether_sprintf(sc->sc_enaddr));
391
392 /*
393 * Register interrupt handlers
394 * XXX: handle Ethernet unit intr. and Error intr.
395 */
396 mvxpe_disable_intr(sc);
397 marvell_intr_establish(mva->mva_irq, IPL_NET, mvxpe_rxtxth_intr, sc);
398
399 /*
400 * MIB buffer allocation
401 */
402 sc->sc_sysctl_mib_size =
403 __arraycount(mvxpe_mib_list) * sizeof(struct mvxpe_sysctl_mib);
404 sc->sc_sysctl_mib = kmem_alloc(sc->sc_sysctl_mib_size, KM_NOSLEEP);
405 if (sc->sc_sysctl_mib == NULL)
406 goto fail;
407 memset(sc->sc_sysctl_mib, 0, sc->sc_sysctl_mib_size);
408
409 /*
410 * Device DMA Buffer allocation
411 */
412 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
413 if (mvxpe_ring_alloc_queue(sc, q) != 0)
414 goto fail;
415 mvxpe_ring_init_queue(sc, q);
416 }
417
418 /*
419 * We can support 802.1Q VLAN-sized frames and jumbo
420 * Ethernet frames.
421 */
422 sc->sc_ethercom.ec_capabilities |=
423 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
424 ifp->if_softc = sc;
425 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
426 ifp->if_start = mvxpe_start;
427 ifp->if_ioctl = mvxpe_ioctl;
428 ifp->if_init = mvxpe_init;
429 ifp->if_stop = mvxpe_stop;
430 ifp->if_watchdog = mvxpe_watchdog;
431
432 /*
433 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
434 */
435 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
436 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
437 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
438 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
439 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx;
440 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx;
441 ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Tx;
442 ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Rx;
443 ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Tx;
444 ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Rx;
445
446 /*
447 * Initialize struct ifnet
448 */
449 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(MVXPE_TX_RING_CNT - 1, IFQ_MAXLEN));
450 IFQ_SET_READY(&ifp->if_snd);
451 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
452
453 /*
454 * Enable DMA engines and Initiazlie Device Registers.
455 */
456 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
457 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
458 MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
459 mvxpe_sc_lock(sc); /* XXX */
460 mvxpe_filter_setup(sc);
461 mvxpe_sc_unlock(sc);
462 mvxpe_initreg(ifp);
463
464 /*
465 * Now MAC is working, setup MII.
466 */
467 if (mii_init == 0) {
468 /*
469 * MII bus is shared by all MACs and all PHYs in SoC.
470 * serializing the bus access should be safe.
471 */
472 mutex_init(&mii_mutex, MUTEX_DEFAULT, IPL_NET);
473 mii_init = 1;
474 }
475 mii->mii_ifp = ifp;
476 mii->mii_readreg = mvxpe_miibus_readreg;
477 mii->mii_writereg = mvxpe_miibus_writereg;
478 mii->mii_statchg = mvxpe_miibus_statchg;
479
480 sc->sc_ethercom.ec_mii = mii;
481 ifmedia_init(&mii->mii_media, 0, mvxpe_mediachange, mvxpe_mediastatus);
482 /*
483 * XXX: phy addressing highly depends on Board Design.
484 * we assume phyaddress == MAC unit number here,
485 * but some boards may not.
486 */
487 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, sc->sc_dev->dv_unit, 0);
488 mii = LIST_FIRST(&mii->mii_phys);
489 if (mii == NULL) {
490 aprint_error_dev(self, "no PHY found!\n");
491 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
492 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
493 } else {
494 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
495 phyaddr = MVXPE_PHYADDR_PHYAD(mii->mii_phy);
496 MVXPE_WRITE(sc, MVXPE_PHYADDR, phyaddr);
497 DPRINTSC(sc, 1, "PHYADDR: %#x\n", MVXPE_READ(sc, MVXPE_PHYADDR));
498 }
499
500 /*
501 * Call MI attach routines.
502 */
503 if_attach(ifp);
504 if_deferred_start_init(ifp, NULL);
505
506 ether_ifattach(ifp, sc->sc_enaddr);
507 ether_set_ifflags_cb(&sc->sc_ethercom, mvxpe_ifflags_cb);
508
509 sysctl_mvxpe_init(sc);
510 mvxpe_evcnt_attach(sc);
511 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
512 RND_TYPE_NET, RND_FLAG_DEFAULT);
513
514 return;
515
516 fail:
517 for (q = 0; q < MVXPE_QUEUE_SIZE; q++)
518 mvxpe_ring_dealloc_queue(sc, q);
519 if (sc->sc_sysctl_mib)
520 kmem_free(sc->sc_sysctl_mib, sc->sc_sysctl_mib_size);
521
522 return;
523 }
524
525 STATIC int
526 mvxpe_evcnt_attach(struct mvxpe_softc *sc)
527 {
528 #ifdef MVXPE_EVENT_COUNTERS
529 int q;
530
531 /* Master Interrupt Handler */
532 evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtxth, EVCNT_TYPE_INTR,
533 NULL, device_xname(sc->sc_dev), "RxTxTH Intr.");
534 evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtx, EVCNT_TYPE_INTR,
535 NULL, device_xname(sc->sc_dev), "RxTx Intr.");
536 evcnt_attach_dynamic(&sc->sc_ev.ev_i_misc, EVCNT_TYPE_INTR,
537 NULL, device_xname(sc->sc_dev), "MISC Intr.");
538
539 /* RXTXTH Interrupt */
540 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtxth_txerr, EVCNT_TYPE_INTR,
541 NULL, device_xname(sc->sc_dev), "RxTxTH Tx error summary");
542
543 /* MISC Interrupt */
544 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_phystatuschng, EVCNT_TYPE_INTR,
545 NULL, device_xname(sc->sc_dev), "MISC phy status changed");
546 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_linkchange, EVCNT_TYPE_INTR,
547 NULL, device_xname(sc->sc_dev), "MISC link status changed");
548 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_iae, EVCNT_TYPE_INTR,
549 NULL, device_xname(sc->sc_dev), "MISC internal address error");
550 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxoverrun, EVCNT_TYPE_INTR,
551 NULL, device_xname(sc->sc_dev), "MISC Rx FIFO overrun");
552 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxcrc, EVCNT_TYPE_INTR,
553 NULL, device_xname(sc->sc_dev), "MISC Rx CRC error");
554 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxlargepacket, EVCNT_TYPE_INTR,
555 NULL, device_xname(sc->sc_dev), "MISC Rx too large frame");
556 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txunderrun, EVCNT_TYPE_INTR,
557 NULL, device_xname(sc->sc_dev), "MISC Tx FIFO underrun");
558 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_prbserr, EVCNT_TYPE_INTR,
559 NULL, device_xname(sc->sc_dev), "MISC SERDES loopback test err");
560 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_srse, EVCNT_TYPE_INTR,
561 NULL, device_xname(sc->sc_dev), "MISC SERDES sync error");
562 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txreq, EVCNT_TYPE_INTR,
563 NULL, device_xname(sc->sc_dev), "MISC Tx resource erorr");
564
565 /* RxTx Interrupt */
566 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rreq, EVCNT_TYPE_INTR,
567 NULL, device_xname(sc->sc_dev), "RxTx Rx resource erorr");
568 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rpq, EVCNT_TYPE_INTR,
569 NULL, device_xname(sc->sc_dev), "RxTx Rx packet");
570 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_tbrq, EVCNT_TYPE_INTR,
571 NULL, device_xname(sc->sc_dev), "RxTx Tx complete");
572 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rxtxth, EVCNT_TYPE_INTR,
573 NULL, device_xname(sc->sc_dev), "RxTx RxTxTH summary");
574 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_txerr, EVCNT_TYPE_INTR,
575 NULL, device_xname(sc->sc_dev), "RxTx Tx error summary");
576 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_misc, EVCNT_TYPE_INTR,
577 NULL, device_xname(sc->sc_dev), "RxTx MISC summary");
578
579 /* Link */
580 evcnt_attach_dynamic(&sc->sc_ev.ev_link_up, EVCNT_TYPE_MISC,
581 NULL, device_xname(sc->sc_dev), "link up");
582 evcnt_attach_dynamic(&sc->sc_ev.ev_link_down, EVCNT_TYPE_MISC,
583 NULL, device_xname(sc->sc_dev), "link down");
584
585 /* Rx Descriptor */
586 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_ce, EVCNT_TYPE_MISC,
587 NULL, device_xname(sc->sc_dev), "Rx CRC error counter");
588 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_or, EVCNT_TYPE_MISC,
589 NULL, device_xname(sc->sc_dev), "Rx FIFO overrun counter");
590 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_mf, EVCNT_TYPE_MISC,
591 NULL, device_xname(sc->sc_dev), "Rx too large frame counter");
592 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_re, EVCNT_TYPE_MISC,
593 NULL, device_xname(sc->sc_dev), "Rx resource error counter");
594 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_scat, EVCNT_TYPE_MISC,
595 NULL, device_xname(sc->sc_dev), "Rx unexpected scatter bufs");
596
597 /* Tx Descriptor */
598 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_lc, EVCNT_TYPE_MISC,
599 NULL, device_xname(sc->sc_dev), "Tx late collision counter");
600 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_rl, EVCNT_TYPE_MISC,
601 NULL, device_xname(sc->sc_dev), "Tx excess. collision counter");
602 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_ur, EVCNT_TYPE_MISC,
603 NULL, device_xname(sc->sc_dev), "Tx FIFO underrun counter");
604 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_oth, EVCNT_TYPE_MISC,
605 NULL, device_xname(sc->sc_dev), "Tx unkonwn erorr counter");
606
607 /* Status Registers */
608 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pdfc, EVCNT_TYPE_MISC,
609 NULL, device_xname(sc->sc_dev), "Rx discard counter");
610 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pofc, EVCNT_TYPE_MISC,
611 NULL, device_xname(sc->sc_dev), "Rx overrun counter");
612 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txbadfcs, EVCNT_TYPE_MISC,
613 NULL, device_xname(sc->sc_dev), "Tx bad FCS counter");
614 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txdropped, EVCNT_TYPE_MISC,
615 NULL, device_xname(sc->sc_dev), "Tx dorpped counter");
616 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_lpic, EVCNT_TYPE_MISC,
617 NULL, device_xname(sc->sc_dev), "LP_IDLE counter");
618
619 /* Device Driver Errors */
620 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_wdogsoft, EVCNT_TYPE_MISC,
621 NULL, device_xname(sc->sc_dev), "watchdog timer expired");
622 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txerr, EVCNT_TYPE_MISC,
623 NULL, device_xname(sc->sc_dev), "Tx descriptor alloc failed");
624 #define MVXPE_QUEUE_DESC(q) "Rx success in queue " # q
625 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
626 static const char *rxq_desc[] = {
627 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
628 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
629 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
630 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
631 };
632 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxq[q], EVCNT_TYPE_MISC,
633 NULL, device_xname(sc->sc_dev), rxq_desc[q]);
634 }
635 #undef MVXPE_QUEUE_DESC
636 #define MVXPE_QUEUE_DESC(q) "Tx success in queue " # q
637 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
638 static const char *txq_desc[] = {
639 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
640 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
641 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
642 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
643 };
644 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txq[q], EVCNT_TYPE_MISC,
645 NULL, device_xname(sc->sc_dev), txq_desc[q]);
646 }
647 #undef MVXPE_QUEUE_DESC
648 #define MVXPE_QUEUE_DESC(q) "Rx error in queue " # q
649 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
650 static const char *rxqe_desc[] = {
651 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
652 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
653 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
654 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
655 };
656 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxqe[q], EVCNT_TYPE_MISC,
657 NULL, device_xname(sc->sc_dev), rxqe_desc[q]);
658 }
659 #undef MVXPE_QUEUE_DESC
660 #define MVXPE_QUEUE_DESC(q) "Tx error in queue " # q
661 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
662 static const char *txqe_desc[] = {
663 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
664 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
665 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
666 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
667 };
668 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txqe[q], EVCNT_TYPE_MISC,
669 NULL, device_xname(sc->sc_dev), txqe_desc[q]);
670 }
671 #undef MVXPE_QUEUE_DESC
672
673 #endif /* MVXPE_EVENT_COUNTERS */
674 return 0;
675 }
676
677 STATIC void
678 mvxpe_sc_lock(struct mvxpe_softc *sc)
679 {
680 mutex_enter(&sc->sc_mtx);
681 }
682
683 STATIC void
684 mvxpe_sc_unlock(struct mvxpe_softc *sc)
685 {
686 mutex_exit(&sc->sc_mtx);
687 }
688
689 /*
690 * MII
691 */
692 STATIC int
693 mvxpe_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
694 {
695 struct mvxpe_softc *sc = device_private(dev);
696 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
697 uint32_t smi;
698 int i, rv = 0;
699
700 mutex_enter(&mii_mutex);
701
702 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
703 DELAY(1);
704 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
705 break;
706 }
707 if (i == MVXPE_PHY_TIMEOUT) {
708 aprint_error_ifnet(ifp, "SMI busy timeout\n");
709 rv = ETIMEDOUT;
710 goto out;
711 }
712
713 smi =
714 MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) | MVXPE_SMI_OPCODE_READ;
715 MVXPE_WRITE(sc, MVXPE_SMI, smi);
716
717 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
718 DELAY(1);
719 smi = MVXPE_READ(sc, MVXPE_SMI);
720 if (smi & MVXPE_SMI_READVALID) {
721 *val = smi & MVXPE_SMI_DATA_MASK;
722 break;
723 }
724 }
725 DPRINTDEV(dev, 9, "i=%d, timeout=%d\n", i, MVXPE_PHY_TIMEOUT);
726 if (i >= MVXPE_PHY_TIMEOUT)
727 rv = ETIMEDOUT;
728
729 out:
730 mutex_exit(&mii_mutex);
731
732 DPRINTDEV(dev, 9, "phy=%d, reg=%#x, val=%#hx\n", phy, reg, *val);
733
734 return rv;
735 }
736
737 STATIC int
738 mvxpe_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
739 {
740 struct mvxpe_softc *sc = device_private(dev);
741 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
742 uint32_t smi;
743 int i, rv = 0;
744
745 DPRINTDEV(dev, 9, "phy=%d reg=%#x val=%#hx\n", phy, reg, val);
746
747 mutex_enter(&mii_mutex);
748
749 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
750 DELAY(1);
751 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
752 break;
753 }
754 if (i == MVXPE_PHY_TIMEOUT) {
755 aprint_error_ifnet(ifp, "SMI busy timeout\n");
756 rv = ETIMEDOUT;
757 goto out;
758 }
759
760 smi = MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) |
761 MVXPE_SMI_OPCODE_WRITE | (val & MVXPE_SMI_DATA_MASK);
762 MVXPE_WRITE(sc, MVXPE_SMI, smi);
763
764 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
765 DELAY(1);
766 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
767 break;
768 }
769
770 if (i == MVXPE_PHY_TIMEOUT) {
771 aprint_error_ifnet(ifp, "phy write timed out\n");
772 rv = ETIMEDOUT;
773 }
774
775 out:
776 mutex_exit(&mii_mutex);
777
778 return rv;
779 }
780
781 STATIC void
782 mvxpe_miibus_statchg(struct ifnet *ifp)
783 {
784
785 /* nothing to do */
786 }
787
788 /*
789 * Address Decoding Window
790 */
791 STATIC void
792 mvxpe_wininit(struct mvxpe_softc *sc, enum marvell_tags *tags)
793 {
794 device_t pdev = device_parent(sc->sc_dev);
795 uint64_t base;
796 uint32_t en, ac, size;
797 int window, target, attr, rv, i;
798
799 /* First disable all address decode windows */
800 en = MVXPE_BARE_EN_MASK;
801 MVXPE_WRITE(sc, MVXPE_BARE, en);
802
803 ac = 0;
804 for (window = 0, i = 0;
805 tags[i] != MARVELL_TAG_UNDEFINED && window < MVXPE_NWINDOW; i++) {
806 rv = marvell_winparams_by_tag(pdev, tags[i],
807 &target, &attr, &base, &size);
808 if (rv != 0 || size == 0)
809 continue;
810
811 if (base > 0xffffffffULL) {
812 if (window >= MVXPE_NREMAP) {
813 aprint_error_dev(sc->sc_dev,
814 "can't remap window %d\n", window);
815 continue;
816 }
817 MVXPE_WRITE(sc, MVXPE_HA(window),
818 (base >> 32) & 0xffffffff);
819 }
820
821 MVXPE_WRITE(sc, MVXPE_BASEADDR(window),
822 MVXPE_BASEADDR_TARGET(target) |
823 MVXPE_BASEADDR_ATTR(attr) |
824 MVXPE_BASEADDR_BASE(base));
825 MVXPE_WRITE(sc, MVXPE_S(window), MVXPE_S_SIZE(size));
826
827 DPRINTSC(sc, 1, "Window %d Base 0x%016llx: Size 0x%08x\n",
828 window, base, size);
829
830 en &= ~(1 << window);
831 /* set full access (r/w) */
832 ac |= MVXPE_EPAP_EPAR(window, MVXPE_EPAP_AC_FA);
833 window++;
834 }
835 /* allow to access decode window */
836 MVXPE_WRITE(sc, MVXPE_EPAP, ac);
837
838 MVXPE_WRITE(sc, MVXPE_BARE, en);
839 }
840
841 /*
842 * Device Register Initialization
843 * reset device registers to device driver default value.
844 * the device is not enabled here.
845 */
846 STATIC int
847 mvxpe_initreg(struct ifnet *ifp)
848 {
849 struct mvxpe_softc *sc = ifp->if_softc;
850 int serdes = 0;
851 uint32_t reg;
852 int q, i;
853
854 DPRINTIFNET(ifp, 1, "initializing device register\n");
855
856 /* Init TX/RX Queue Registers */
857 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
858 mvxpe_rx_lockq(sc, q);
859 if (mvxpe_rx_queue_init(ifp, q) != 0) {
860 aprint_error_ifnet(ifp,
861 "initialization failed: cannot initialize queue\n");
862 mvxpe_rx_unlockq(sc, q);
863 return ENOBUFS;
864 }
865 mvxpe_rx_unlockq(sc, q);
866
867 mvxpe_tx_lockq(sc, q);
868 if (mvxpe_tx_queue_init(ifp, q) != 0) {
869 aprint_error_ifnet(ifp,
870 "initialization failed: cannot initialize queue\n");
871 mvxpe_tx_unlockq(sc, q);
872 return ENOBUFS;
873 }
874 mvxpe_tx_unlockq(sc, q);
875 }
876
877 /* Tx MTU Limit */
878 MVXPE_WRITE(sc, MVXPE_TXMTU, MVXPE_MTU);
879
880 /* Check SGMII or SERDES(asume IPL/U-BOOT initialize this) */
881 reg = MVXPE_READ(sc, MVXPE_PMACC0);
882 if ((reg & MVXPE_PMACC0_PORTTYPE) != 0)
883 serdes = 1;
884
885 /* Ethernet Unit Control */
886 reg = MVXPE_READ(sc, MVXPE_EUC);
887 reg |= MVXPE_EUC_POLLING;
888 MVXPE_WRITE(sc, MVXPE_EUC, reg);
889
890 /* Auto Negotiation */
891 reg = MVXPE_PANC_MUSTSET; /* must write 0x1 */
892 reg |= MVXPE_PANC_FORCELINKFAIL;/* force link state down */
893 reg |= MVXPE_PANC_ANSPEEDEN; /* interface speed negotiation */
894 reg |= MVXPE_PANC_ANDUPLEXEN; /* negotiate duplex mode */
895 if (serdes) {
896 reg |= MVXPE_PANC_INBANDANEN; /* In Band negotiation */
897 reg |= MVXPE_PANC_INBANDANBYPASSEN; /* bypass negotiation */
898 reg |= MVXPE_PANC_SETFULLDX; /* set full-duplex on failure */
899 }
900 MVXPE_WRITE(sc, MVXPE_PANC, reg);
901
902 /* EEE: Low Power Idle */
903 reg = MVXPE_LPIC0_LILIMIT(MVXPE_LPI_LI);
904 reg |= MVXPE_LPIC0_TSLIMIT(MVXPE_LPI_TS);
905 MVXPE_WRITE(sc, MVXPE_LPIC0, reg);
906
907 reg = MVXPE_LPIC1_TWLIMIT(MVXPE_LPI_TS);
908 MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
909
910 reg = MVXPE_LPIC2_MUSTSET;
911 MVXPE_WRITE(sc, MVXPE_LPIC2, reg);
912
913 /* Port MAC Control set 0 */
914 reg = MVXPE_PMACC0_MUSTSET; /* must write 0x1 */
915 reg &= ~MVXPE_PMACC0_PORTEN; /* port is still disabled */
916 reg |= MVXPE_PMACC0_FRAMESIZELIMIT(MVXPE_MRU);
917 if (serdes)
918 reg |= MVXPE_PMACC0_PORTTYPE;
919 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
920
921 /* Port MAC Control set 1 is only used for loop-back test */
922
923 /* Port MAC Control set 2 */
924 reg = MVXPE_READ(sc, MVXPE_PMACC2);
925 reg &= (MVXPE_PMACC2_PCSEN | MVXPE_PMACC2_RGMIIEN);
926 reg |= MVXPE_PMACC2_MUSTSET;
927 MVXPE_WRITE(sc, MVXPE_PMACC2, reg);
928
929 /* Port MAC Control set 3 is used for IPG tune */
930
931 /* Port MAC Control set 4 is not used */
932
933 /* Port Configuration */
934 /* Use queue 0 only */
935 reg = MVXPE_READ(sc, MVXPE_PXC);
936 reg &= ~(MVXPE_PXC_RXQ_MASK | MVXPE_PXC_RXQARP_MASK |
937 MVXPE_PXC_TCPQ_MASK | MVXPE_PXC_UDPQ_MASK | MVXPE_PXC_BPDUQ_MASK);
938 MVXPE_WRITE(sc, MVXPE_PXC, reg);
939
940 /* Port Configuration Extended: enable Tx CRC generation */
941 reg = MVXPE_READ(sc, MVXPE_PXCX);
942 reg &= ~MVXPE_PXCX_TXCRCDIS;
943 MVXPE_WRITE(sc, MVXPE_PXCX, reg);
944
945 /* clear MIB counter registers(clear by read) */
946 for (i = 0; i < __arraycount(mvxpe_mib_list); i++)
947 MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum));
948
949 /* Set SDC register except IPGINT bits */
950 reg = MVXPE_SDC_RXBSZ_16_64BITWORDS;
951 reg |= MVXPE_SDC_TXBSZ_16_64BITWORDS;
952 reg |= MVXPE_SDC_BLMR;
953 reg |= MVXPE_SDC_BLMT;
954 MVXPE_WRITE(sc, MVXPE_SDC, reg);
955
956 return 0;
957 }
958
959 /*
960 * Descriptor Ring Controls for each of queues
961 */
962 STATIC void *
963 mvxpe_dma_memalloc(struct mvxpe_softc *sc, bus_dmamap_t *map, size_t size)
964 {
965 bus_dma_segment_t segs;
966 void *kva = NULL;
967 int nsegs;
968
969 /*
970 * Allocate the descriptor queues.
971 * struct mvxpe_ring_data contians array of descriptor per queue.
972 */
973 if (bus_dmamem_alloc(sc->sc_dmat,
974 size, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) {
975 aprint_error_dev(sc->sc_dev,
976 "can't alloc device memory (%zu bytes)\n", size);
977 return NULL;
978 }
979 if (bus_dmamem_map(sc->sc_dmat,
980 &segs, nsegs, size, &kva, BUS_DMA_NOWAIT)) {
981 aprint_error_dev(sc->sc_dev,
982 "can't map dma buffers (%zu bytes)\n", size);
983 goto fail1;
984 }
985
986 if (bus_dmamap_create(sc->sc_dmat,
987 size, 1, size, 0, BUS_DMA_NOWAIT, map)) {
988 aprint_error_dev(sc->sc_dev, "can't create dma map\n");
989 goto fail2;
990 }
991 if (bus_dmamap_load(sc->sc_dmat,
992 *map, kva, size, NULL, BUS_DMA_NOWAIT)) {
993 aprint_error_dev(sc->sc_dev, "can't load dma map\n");
994 goto fail3;
995 }
996 memset(kva, 0, size);
997 return kva;
998
999 fail3:
1000 bus_dmamap_destroy(sc->sc_dmat, *map);
1001 memset(map, 0, sizeof(*map));
1002 fail2:
1003 bus_dmamem_unmap(sc->sc_dmat, kva, size);
1004 fail1:
1005 bus_dmamem_free(sc->sc_dmat, &segs, nsegs);
1006 return NULL;
1007 }
1008
1009 STATIC int
1010 mvxpe_ring_alloc_queue(struct mvxpe_softc *sc, int q)
1011 {
1012 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1013 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1014
1015 /*
1016 * MVXPE_RX_RING_CNT and MVXPE_TX_RING_CNT is a hard limit of
1017 * queue length. real queue length is limited by
1018 * sc->sc_rx_ring[q].rx_queue_len and sc->sc_tx_ring[q].tx_queue_len.
1019 *
1020 * because descriptor ring reallocation needs reprogramming of
1021 * DMA registers, we allocate enough descriptor for hard limit
1022 * of queue length.
1023 */
1024 rx->rx_descriptors =
1025 mvxpe_dma_memalloc(sc, &rx->rx_descriptors_map,
1026 (sizeof(struct mvxpe_rx_desc) * MVXPE_RX_RING_CNT));
1027 if (rx->rx_descriptors == NULL)
1028 goto fail;
1029
1030 tx->tx_descriptors =
1031 mvxpe_dma_memalloc(sc, &tx->tx_descriptors_map,
1032 (sizeof(struct mvxpe_tx_desc) * MVXPE_TX_RING_CNT));
1033 if (tx->tx_descriptors == NULL)
1034 goto fail;
1035
1036 return 0;
1037 fail:
1038 mvxpe_ring_dealloc_queue(sc, q);
1039 aprint_error_dev(sc->sc_dev, "DMA Ring buffer allocation failure.\n");
1040 return ENOMEM;
1041 }
1042
1043 STATIC void
1044 mvxpe_ring_dealloc_queue(struct mvxpe_softc *sc, int q)
1045 {
1046 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1047 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1048 bus_dma_segment_t *segs;
1049 bus_size_t size;
1050 void *kva;
1051 int nsegs;
1052
1053 /* Rx */
1054 kva = (void *)MVXPE_RX_RING_MEM_VA(sc, q);
1055 if (kva) {
1056 segs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_segs;
1057 nsegs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_nsegs;
1058 size = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_mapsize;
1059
1060 bus_dmamap_unload(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1061 bus_dmamap_destroy(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1062 bus_dmamem_unmap(sc->sc_dmat, kva, size);
1063 bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1064 }
1065
1066 /* Tx */
1067 kva = (void *)MVXPE_TX_RING_MEM_VA(sc, q);
1068 if (kva) {
1069 segs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_segs;
1070 nsegs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_nsegs;
1071 size = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_mapsize;
1072
1073 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1074 bus_dmamap_destroy(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1075 bus_dmamem_unmap(sc->sc_dmat, kva, size);
1076 bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1077 }
1078
1079 /* Clear doungling pointers all */
1080 memset(rx, 0, sizeof(*rx));
1081 memset(tx, 0, sizeof(*tx));
1082 }
1083
1084 STATIC void
1085 mvxpe_ring_init_queue(struct mvxpe_softc *sc, int q)
1086 {
1087 struct mvxpe_rx_desc *rxd = MVXPE_RX_RING_MEM_VA(sc, q);
1088 struct mvxpe_tx_desc *txd = MVXPE_TX_RING_MEM_VA(sc, q);
1089 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1090 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1091 static const int rx_default_queue_len[] = {
1092 MVXPE_RX_QUEUE_LIMIT_0, MVXPE_RX_QUEUE_LIMIT_1,
1093 MVXPE_RX_QUEUE_LIMIT_2, MVXPE_RX_QUEUE_LIMIT_3,
1094 MVXPE_RX_QUEUE_LIMIT_4, MVXPE_RX_QUEUE_LIMIT_5,
1095 MVXPE_RX_QUEUE_LIMIT_6, MVXPE_RX_QUEUE_LIMIT_7,
1096 };
1097 static const int tx_default_queue_len[] = {
1098 MVXPE_TX_QUEUE_LIMIT_0, MVXPE_TX_QUEUE_LIMIT_1,
1099 MVXPE_TX_QUEUE_LIMIT_2, MVXPE_TX_QUEUE_LIMIT_3,
1100 MVXPE_TX_QUEUE_LIMIT_4, MVXPE_TX_QUEUE_LIMIT_5,
1101 MVXPE_TX_QUEUE_LIMIT_6, MVXPE_TX_QUEUE_LIMIT_7,
1102 };
1103 extern uint32_t mvTclk;
1104 int i;
1105
1106 /* Rx handle */
1107 for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1108 MVXPE_RX_DESC(sc, q, i) = &rxd[i];
1109 MVXPE_RX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_rx_desc) * i;
1110 MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1111 }
1112 mutex_init(&rx->rx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1113 rx->rx_dma = rx->rx_cpu = 0;
1114 rx->rx_queue_len = rx_default_queue_len[q];
1115 if (rx->rx_queue_len > MVXPE_RX_RING_CNT)
1116 rx->rx_queue_len = MVXPE_RX_RING_CNT;
1117 rx->rx_queue_th_received = rx->rx_queue_len / MVXPE_RXTH_RATIO;
1118 rx->rx_queue_th_free = rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
1119 rx->rx_queue_th_time = (mvTclk / 1000) / 2; /* 0.5 [ms] */
1120
1121 /* Tx handle */
1122 for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1123 MVXPE_TX_DESC(sc, q, i) = &txd[i];
1124 MVXPE_TX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_tx_desc) * i;
1125 MVXPE_TX_MBUF(sc, q, i) = NULL;
1126 /* Tx handle needs DMA map for busdma_load_mbuf() */
1127 if (bus_dmamap_create(sc->sc_dmat,
1128 mvxpbm_chunk_size(sc->sc_bm),
1129 MVXPE_TX_SEGLIMIT, mvxpbm_chunk_size(sc->sc_bm), 0,
1130 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1131 &MVXPE_TX_MAP(sc, q, i))) {
1132 aprint_error_dev(sc->sc_dev,
1133 "can't create dma map (tx ring %d)\n", i);
1134 }
1135 }
1136 mutex_init(&tx->tx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1137 tx->tx_dma = tx->tx_cpu = 0;
1138 tx->tx_queue_len = tx_default_queue_len[q];
1139 if (tx->tx_queue_len > MVXPE_TX_RING_CNT)
1140 tx->tx_queue_len = MVXPE_TX_RING_CNT;
1141 tx->tx_used = 0;
1142 tx->tx_queue_th_free = tx->tx_queue_len / MVXPE_TXTH_RATIO;
1143 }
1144
1145 STATIC void
1146 mvxpe_ring_flush_queue(struct mvxpe_softc *sc, int q)
1147 {
1148 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1149 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1150 struct mbuf *m;
1151 int i;
1152
1153 KASSERT_RX_MTX(sc, q);
1154 KASSERT_TX_MTX(sc, q);
1155
1156 /* Rx handle */
1157 for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1158 if (MVXPE_RX_PKTBUF(sc, q, i) == NULL)
1159 continue;
1160 mvxpbm_free_chunk(MVXPE_RX_PKTBUF(sc, q, i));
1161 MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1162 }
1163 rx->rx_dma = rx->rx_cpu = 0;
1164
1165 /* Tx handle */
1166 for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1167 m = MVXPE_TX_MBUF(sc, q, i);
1168 if (m == NULL)
1169 continue;
1170 MVXPE_TX_MBUF(sc, q, i) = NULL;
1171 bus_dmamap_sync(sc->sc_dmat,
1172 MVXPE_TX_MAP(sc, q, i), 0, m->m_pkthdr.len,
1173 BUS_DMASYNC_POSTWRITE);
1174 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, i));
1175 m_freem(m);
1176 }
1177 tx->tx_dma = tx->tx_cpu = 0;
1178 tx->tx_used = 0;
1179 }
1180
1181 STATIC void
1182 mvxpe_ring_sync_rx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1183 {
1184 int wrap;
1185
1186 KASSERT_RX_MTX(sc, q);
1187 KASSERT(count > 0 && count <= MVXPE_RX_RING_CNT);
1188 KASSERT(idx >= 0 && idx < MVXPE_RX_RING_CNT);
1189
1190 wrap = (idx + count) - MVXPE_RX_RING_CNT;
1191 if (wrap > 0) {
1192 count -= wrap;
1193 KASSERT(count > 0);
1194 bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1195 0, sizeof(struct mvxpe_rx_desc) * wrap, ops);
1196 }
1197 bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1198 MVXPE_RX_DESC_OFF(sc, q, idx),
1199 sizeof(struct mvxpe_rx_desc) * count, ops);
1200 }
1201
1202 STATIC void
1203 mvxpe_ring_sync_tx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1204 {
1205 int wrap = 0;
1206
1207 KASSERT_TX_MTX(sc, q);
1208 KASSERT(count > 0 && count <= MVXPE_TX_RING_CNT);
1209 KASSERT(idx >= 0 && idx < MVXPE_TX_RING_CNT);
1210
1211 wrap = (idx + count) - MVXPE_TX_RING_CNT;
1212 if (wrap > 0) {
1213 count -= wrap;
1214 bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1215 0, sizeof(struct mvxpe_tx_desc) * wrap, ops);
1216 }
1217 bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1218 MVXPE_TX_DESC_OFF(sc, q, idx),
1219 sizeof(struct mvxpe_tx_desc) * count, ops);
1220 }
1221
1222 /*
1223 * Rx/Tx Queue Control
1224 */
1225 STATIC int
1226 mvxpe_rx_queue_init(struct ifnet *ifp, int q)
1227 {
1228 struct mvxpe_softc *sc = ifp->if_softc;
1229 uint32_t reg;
1230
1231 KASSERT_RX_MTX(sc, q);
1232 KASSERT(MVXPE_RX_RING_MEM_PA(sc, q) != 0);
1233
1234 /* descriptor address */
1235 MVXPE_WRITE(sc, MVXPE_PRXDQA(q), MVXPE_RX_RING_MEM_PA(sc, q));
1236
1237 /* Rx buffer size and descriptor ring size */
1238 reg = MVXPE_PRXDQS_BUFFERSIZE(mvxpbm_chunk_size(sc->sc_bm) >> 3);
1239 reg |= MVXPE_PRXDQS_DESCRIPTORSQUEUESIZE(MVXPE_RX_RING_CNT);
1240 MVXPE_WRITE(sc, MVXPE_PRXDQS(q), reg);
1241 DPRINTIFNET(ifp, 1, "PRXDQS(%d): %#x\n",
1242 q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
1243
1244 /* Rx packet offset address */
1245 reg = MVXPE_PRXC_PACKETOFFSET(mvxpbm_packet_offset(sc->sc_bm) >> 3);
1246 MVXPE_WRITE(sc, MVXPE_PRXC(q), reg);
1247 DPRINTIFNET(ifp, 1, "PRXC(%d): %#x\n",
1248 q, MVXPE_READ(sc, MVXPE_PRXC(q)));
1249
1250 /* Rx DMA SNOOP */
1251 reg = MVXPE_PRXSNP_SNOOPNOOFBYTES(MVXPE_MRU);
1252 reg |= MVXPE_PRXSNP_L2DEPOSITNOOFBYTES(MVXPE_MRU);
1253 MVXPE_WRITE(sc, MVXPE_PRXSNP(q), reg);
1254
1255 /* if DMA is not working, register is not updated */
1256 KASSERT(MVXPE_READ(sc, MVXPE_PRXDQA(q)) == MVXPE_RX_RING_MEM_PA(sc, q));
1257 return 0;
1258 }
1259
1260 STATIC int
1261 mvxpe_tx_queue_init(struct ifnet *ifp, int q)
1262 {
1263 struct mvxpe_softc *sc = ifp->if_softc;
1264 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1265 uint32_t reg;
1266
1267 KASSERT_TX_MTX(sc, q);
1268 KASSERT(MVXPE_TX_RING_MEM_PA(sc, q) != 0);
1269
1270 /* descriptor address */
1271 MVXPE_WRITE(sc, MVXPE_PTXDQA(q), MVXPE_TX_RING_MEM_PA(sc, q));
1272
1273 /* Tx threshold, and descriptor ring size */
1274 reg = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1275 reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
1276 MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1277 DPRINTIFNET(ifp, 1, "PTXDQS(%d): %#x\n",
1278 q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
1279
1280 /* if DMA is not working, register is not updated */
1281 KASSERT(MVXPE_READ(sc, MVXPE_PTXDQA(q)) == MVXPE_TX_RING_MEM_PA(sc, q));
1282 return 0;
1283 }
1284
1285 STATIC int
1286 mvxpe_rx_queue_enable(struct ifnet *ifp, int q)
1287 {
1288 struct mvxpe_softc *sc = ifp->if_softc;
1289 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1290 uint32_t reg;
1291
1292 KASSERT_RX_MTX(sc, q);
1293
1294 /* Set Rx interrupt threshold */
1295 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1296 reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
1297 MVXPE_WRITE(sc, MVXPE_PRXDQTH(q), reg);
1298
1299 reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
1300 MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1301
1302 /* Unmask RXTX_TH Intr. */
1303 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1304 reg |= MVXPE_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1305 reg |= MVXPE_PRXTXTI_RDTAQ(q); /* Rx Descriptor Alart */
1306 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1307
1308 /* Enable Rx queue */
1309 reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1310 reg |= MVXPE_RQC_ENQ(q);
1311 MVXPE_WRITE(sc, MVXPE_RQC, reg);
1312
1313 return 0;
1314 }
1315
1316 STATIC int
1317 mvxpe_tx_queue_enable(struct ifnet *ifp, int q)
1318 {
1319 struct mvxpe_softc *sc = ifp->if_softc;
1320 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1321 uint32_t reg;
1322
1323 KASSERT_TX_MTX(sc, q);
1324
1325 /* Set Tx interrupt threshold */
1326 reg = MVXPE_READ(sc, MVXPE_PTXDQS(q));
1327 reg &= ~MVXPE_PTXDQS_TBT_MASK; /* keep queue size */
1328 reg |= MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1329 MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1330
1331 /* Unmask RXTX_TH Intr. */
1332 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1333 reg |= MVXPE_PRXTXTI_TBTCQ(q); /* Tx Threshold cross */
1334 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1335
1336 /* Don't update MVXPE_TQC here, there is no packet yet. */
1337 return 0;
1338 }
1339
1340 STATIC void
1341 mvxpe_rx_lockq(struct mvxpe_softc *sc, int q)
1342 {
1343 KASSERT(q >= 0);
1344 KASSERT(q < MVXPE_QUEUE_SIZE);
1345 mutex_enter(&sc->sc_rx_ring[q].rx_ring_mtx);
1346 }
1347
1348 STATIC void
1349 mvxpe_rx_unlockq(struct mvxpe_softc *sc, int q)
1350 {
1351 KASSERT(q >= 0);
1352 KASSERT(q < MVXPE_QUEUE_SIZE);
1353 mutex_exit(&sc->sc_rx_ring[q].rx_ring_mtx);
1354 }
1355
1356 STATIC void
1357 mvxpe_tx_lockq(struct mvxpe_softc *sc, int q)
1358 {
1359 KASSERT(q >= 0);
1360 KASSERT(q < MVXPE_QUEUE_SIZE);
1361 mutex_enter(&sc->sc_tx_ring[q].tx_ring_mtx);
1362 }
1363
1364 STATIC void
1365 mvxpe_tx_unlockq(struct mvxpe_softc *sc, int q)
1366 {
1367 KASSERT(q >= 0);
1368 KASSERT(q < MVXPE_QUEUE_SIZE);
1369 mutex_exit(&sc->sc_tx_ring[q].tx_ring_mtx);
1370 }
1371
1372 /*
1373 * Interrupt Handlers
1374 */
1375 STATIC void
1376 mvxpe_disable_intr(struct mvxpe_softc *sc)
1377 {
1378 MVXPE_WRITE(sc, MVXPE_EUIM, 0);
1379 MVXPE_WRITE(sc, MVXPE_EUIC, 0);
1380 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, 0);
1381 MVXPE_WRITE(sc, MVXPE_PRXTXTIC, 0);
1382 MVXPE_WRITE(sc, MVXPE_PRXTXIM, 0);
1383 MVXPE_WRITE(sc, MVXPE_PRXTXIC, 0);
1384 MVXPE_WRITE(sc, MVXPE_PMIM, 0);
1385 MVXPE_WRITE(sc, MVXPE_PMIC, 0);
1386 MVXPE_WRITE(sc, MVXPE_PIE, 0);
1387 }
1388
1389 STATIC void
1390 mvxpe_enable_intr(struct mvxpe_softc *sc)
1391 {
1392 uint32_t reg;
1393
1394 /* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1395 reg = MVXPE_READ(sc, MVXPE_PMIM);
1396 reg |= MVXPE_PMI_PHYSTATUSCHNG;
1397 reg |= MVXPE_PMI_LINKCHANGE;
1398 reg |= MVXPE_PMI_IAE;
1399 reg |= MVXPE_PMI_RXOVERRUN;
1400 reg |= MVXPE_PMI_RXCRCERROR;
1401 reg |= MVXPE_PMI_RXLARGEPACKET;
1402 reg |= MVXPE_PMI_TXUNDRN;
1403 #if 0
1404 /*
1405 * The device may raise false interrupts for SERDES even if the device
1406 * is not configured to use SERDES connection.
1407 */
1408 reg |= MVXPE_PMI_PRBSERROR;
1409 reg |= MVXPE_PMI_SRSE;
1410 #else
1411 reg &= ~MVXPE_PMI_PRBSERROR;
1412 reg &= ~MVXPE_PMI_SRSE;
1413 #endif
1414 reg |= MVXPE_PMI_TREQ_MASK;
1415 MVXPE_WRITE(sc, MVXPE_PMIM, reg);
1416
1417 /* Enable Summary Bit to check all interrupt cause. */
1418 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1419 reg |= MVXPE_PRXTXTI_PMISCICSUMMARY;
1420 reg |= MVXPE_PRXTXTI_PTXERRORSUMMARY;
1421 reg |= MVXPE_PRXTXTI_PRXTXICSUMMARY;
1422 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1423
1424 /* Enable All Queue Interrupt */
1425 reg = MVXPE_READ(sc, MVXPE_PIE);
1426 reg |= MVXPE_PIE_RXPKTINTRPTENB_MASK;
1427 reg |= MVXPE_PIE_TXPKTINTRPTENB_MASK;
1428 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1429 }
1430
1431 STATIC int
1432 mvxpe_rxtxth_intr(void *arg)
1433 {
1434 struct mvxpe_softc *sc = arg;
1435 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1436 uint32_t ic, queues, datum = 0;
1437
1438 DPRINTSC(sc, 2, "got RXTX_TH_Intr\n");
1439 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtxth);
1440
1441 mvxpe_sc_lock(sc);
1442 ic = MVXPE_READ(sc, MVXPE_PRXTXTIC);
1443 if (ic == 0) {
1444 mvxpe_sc_unlock(sc);
1445 return 0;
1446 }
1447 MVXPE_WRITE(sc, MVXPE_PRXTXTIC, ~ic);
1448 datum = datum ^ ic;
1449
1450 DPRINTIFNET(ifp, 2, "PRXTXTIC: %#x\n", ic);
1451
1452 /* ack maintance interrupt first */
1453 if (ic & MVXPE_PRXTXTI_PTXERRORSUMMARY) {
1454 DPRINTIFNET(ifp, 1, "PRXTXTIC: +PTXERRORSUMMARY\n");
1455 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtxth_txerr);
1456 }
1457 if ((ic & MVXPE_PRXTXTI_PMISCICSUMMARY)) {
1458 DPRINTIFNET(ifp, 2, "PTXTXTIC: +PMISCICSUMMARY\n");
1459 mvxpe_misc_intr(sc);
1460 }
1461 if (ic & MVXPE_PRXTXTI_PRXTXICSUMMARY) {
1462 DPRINTIFNET(ifp, 2, "PTXTXTIC: +PRXTXICSUMMARY\n");
1463 mvxpe_rxtx_intr(sc);
1464 }
1465 if (!(ifp->if_flags & IFF_RUNNING)) {
1466 mvxpe_sc_unlock(sc);
1467 return 1;
1468 }
1469
1470 /* RxTxTH interrupt */
1471 queues = MVXPE_PRXTXTI_GET_RBICTAPQ(ic);
1472 if (queues) {
1473 DPRINTIFNET(ifp, 2, "PRXTXTIC: +RXEOF\n");
1474 mvxpe_rx(sc, queues);
1475 }
1476 queues = MVXPE_PRXTXTI_GET_TBTCQ(ic);
1477 if (queues) {
1478 DPRINTIFNET(ifp, 2, "PRXTXTIC: +TBTCQ\n");
1479 mvxpe_tx_complete(sc, queues);
1480 }
1481 queues = MVXPE_PRXTXTI_GET_RDTAQ(ic);
1482 if (queues) {
1483 DPRINTIFNET(ifp, 2, "PRXTXTIC: +RDTAQ\n");
1484 mvxpe_rx_refill(sc, queues);
1485 }
1486 mvxpe_sc_unlock(sc);
1487
1488 if_schedule_deferred_start(ifp);
1489
1490 rnd_add_uint32(&sc->sc_rnd_source, datum);
1491
1492 return 1;
1493 }
1494
1495 STATIC int
1496 mvxpe_misc_intr(void *arg)
1497 {
1498 struct mvxpe_softc *sc = arg;
1499 #ifdef MVXPE_DEBUG
1500 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1501 #endif
1502 uint32_t ic;
1503 uint32_t datum = 0;
1504 int claimed = 0;
1505
1506 DPRINTSC(sc, 2, "got MISC_INTR\n");
1507 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_misc);
1508
1509 KASSERT_SC_MTX(sc);
1510
1511 for (;;) {
1512 ic = MVXPE_READ(sc, MVXPE_PMIC);
1513 ic &= MVXPE_READ(sc, MVXPE_PMIM);
1514 if (ic == 0)
1515 break;
1516 MVXPE_WRITE(sc, MVXPE_PMIC, ~ic);
1517 datum = datum ^ ic;
1518 claimed = 1;
1519
1520 DPRINTIFNET(ifp, 2, "PMIC=%#x\n", ic);
1521 if (ic & MVXPE_PMI_PHYSTATUSCHNG) {
1522 DPRINTIFNET(ifp, 2, "+PHYSTATUSCHNG\n");
1523 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_phystatuschng);
1524 }
1525 if (ic & MVXPE_PMI_LINKCHANGE) {
1526 DPRINTIFNET(ifp, 2, "+LINKCHANGE\n");
1527 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_linkchange);
1528 mvxpe_linkupdate(sc);
1529 }
1530 if (ic & MVXPE_PMI_IAE) {
1531 DPRINTIFNET(ifp, 2, "+IAE\n");
1532 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_iae);
1533 }
1534 if (ic & MVXPE_PMI_RXOVERRUN) {
1535 DPRINTIFNET(ifp, 2, "+RXOVERRUN\n");
1536 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxoverrun);
1537 }
1538 if (ic & MVXPE_PMI_RXCRCERROR) {
1539 DPRINTIFNET(ifp, 2, "+RXCRCERROR\n");
1540 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxcrc);
1541 }
1542 if (ic & MVXPE_PMI_RXLARGEPACKET) {
1543 DPRINTIFNET(ifp, 2, "+RXLARGEPACKET\n");
1544 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxlargepacket);
1545 }
1546 if (ic & MVXPE_PMI_TXUNDRN) {
1547 DPRINTIFNET(ifp, 2, "+TXUNDRN\n");
1548 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txunderrun);
1549 }
1550 if (ic & MVXPE_PMI_PRBSERROR) {
1551 DPRINTIFNET(ifp, 2, "+PRBSERROR\n");
1552 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_prbserr);
1553 }
1554 if (ic & MVXPE_PMI_TREQ_MASK) {
1555 DPRINTIFNET(ifp, 2, "+TREQ\n");
1556 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txreq);
1557 }
1558 }
1559 if (datum)
1560 rnd_add_uint32(&sc->sc_rnd_source, datum);
1561
1562 return claimed;
1563 }
1564
1565 STATIC int
1566 mvxpe_rxtx_intr(void *arg)
1567 {
1568 struct mvxpe_softc *sc = arg;
1569 #ifdef MVXPE_DEBUG
1570 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1571 #endif
1572 uint32_t datum = 0;
1573 uint32_t prxtxic;
1574 int claimed = 0;
1575
1576 DPRINTSC(sc, 2, "got RXTX_Intr\n");
1577 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtx);
1578
1579 KASSERT_SC_MTX(sc);
1580
1581 for (;;) {
1582 prxtxic = MVXPE_READ(sc, MVXPE_PRXTXIC);
1583 prxtxic &= MVXPE_READ(sc, MVXPE_PRXTXIM);
1584 if (prxtxic == 0)
1585 break;
1586 MVXPE_WRITE(sc, MVXPE_PRXTXIC, ~prxtxic);
1587 datum = datum ^ prxtxic;
1588 claimed = 1;
1589
1590 DPRINTSC(sc, 2, "PRXTXIC: %#x\n", prxtxic);
1591
1592 if (prxtxic & MVXPE_PRXTXI_RREQ_MASK) {
1593 DPRINTIFNET(ifp, 1, "Rx Resource Error.\n");
1594 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rreq);
1595 }
1596 if (prxtxic & MVXPE_PRXTXI_RPQ_MASK) {
1597 DPRINTIFNET(ifp, 1, "Rx Packet in Queue.\n");
1598 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rpq);
1599 }
1600 if (prxtxic & MVXPE_PRXTXI_TBRQ_MASK) {
1601 DPRINTIFNET(ifp, 1, "Tx Buffer Return.\n");
1602 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_tbrq);
1603 }
1604 if (prxtxic & MVXPE_PRXTXI_PRXTXTHICSUMMARY) {
1605 DPRINTIFNET(ifp, 1, "PRXTXTHIC Sumary\n");
1606 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rxtxth);
1607 }
1608 if (prxtxic & MVXPE_PRXTXI_PTXERRORSUMMARY) {
1609 DPRINTIFNET(ifp, 1, "PTXERROR Sumary\n");
1610 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_txerr);
1611 }
1612 if (prxtxic & MVXPE_PRXTXI_PMISCICSUMMARY) {
1613 DPRINTIFNET(ifp, 1, "PMISCIC Sumary\n");
1614 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_misc);
1615 }
1616 }
1617 if (datum)
1618 rnd_add_uint32(&sc->sc_rnd_source, datum);
1619
1620 return claimed;
1621 }
1622
1623 STATIC void
1624 mvxpe_tick(void *arg)
1625 {
1626 struct mvxpe_softc *sc = arg;
1627 struct mii_data *mii = &sc->sc_mii;
1628
1629 mvxpe_sc_lock(sc);
1630
1631 mii_tick(mii);
1632 mii_pollstat(&sc->sc_mii);
1633
1634 /* read mib registers(clear by read) */
1635 mvxpe_update_mib(sc);
1636
1637 /* read counter registers(clear by read) */
1638 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pdfc,
1639 MVXPE_READ(sc, MVXPE_PDFC));
1640 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pofc,
1641 MVXPE_READ(sc, MVXPE_POFC));
1642 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txbadfcs,
1643 MVXPE_READ(sc, MVXPE_TXBADFCS));
1644 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txdropped,
1645 MVXPE_READ(sc, MVXPE_TXDROPPED));
1646 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_lpic,
1647 MVXPE_READ(sc, MVXPE_LPIC));
1648
1649 mvxpe_sc_unlock(sc);
1650
1651 callout_schedule(&sc->sc_tick_ch, hz);
1652 }
1653
1654
1655 /*
1656 * struct ifnet and mii callbacks
1657 */
1658 STATIC void
1659 mvxpe_start(struct ifnet *ifp)
1660 {
1661 struct mvxpe_softc *sc = ifp->if_softc;
1662 struct mbuf *m;
1663 int q;
1664
1665 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1666 DPRINTIFNET(ifp, 1, "not running\n");
1667 return;
1668 }
1669
1670 mvxpe_sc_lock(sc);
1671 if (!MVXPE_IS_LINKUP(sc)) {
1672 /* If Link is DOWN, can't start TX */
1673 DPRINTIFNET(ifp, 1, "link fail\n");
1674 for (;;) {
1675 /*
1676 * discard stale packets all.
1677 * these may confuse DAD, ARP or timer based protocols.
1678 */
1679 IFQ_DEQUEUE(&ifp->if_snd, m);
1680 if (m == NULL)
1681 break;
1682 m_freem(m);
1683 }
1684 mvxpe_sc_unlock(sc);
1685 return;
1686 }
1687 for (;;) {
1688 /*
1689 * don't use IFQ_POLL().
1690 * there is lock problem between IFQ_POLL and IFQ_DEQUEUE
1691 * on SMP enabled networking stack.
1692 */
1693 IFQ_DEQUEUE(&ifp->if_snd, m);
1694 if (m == NULL)
1695 break;
1696
1697 q = mvxpe_tx_queue_select(sc, m);
1698 if (q < 0)
1699 break;
1700 /* mutex is held in mvxpe_tx_queue_select() */
1701
1702 if (mvxpe_tx_queue(sc, m, q) != 0) {
1703 DPRINTIFNET(ifp, 1, "cannot add packet to tx ring\n");
1704 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txerr);
1705 mvxpe_tx_unlockq(sc, q);
1706 break;
1707 }
1708 mvxpe_tx_unlockq(sc, q);
1709 KASSERT(sc->sc_tx_ring[q].tx_used >= 0);
1710 KASSERT(sc->sc_tx_ring[q].tx_used <=
1711 sc->sc_tx_ring[q].tx_queue_len);
1712 DPRINTIFNET(ifp, 1, "a packet is added to tx ring\n");
1713 sc->sc_tx_pending++;
1714 ifp->if_opackets++;
1715 ifp->if_timer = 1;
1716 sc->sc_wdogsoft = 1;
1717 bpf_mtap(ifp, m, BPF_D_OUT);
1718 }
1719 mvxpe_sc_unlock(sc);
1720
1721 return;
1722 }
1723
1724 STATIC int
1725 mvxpe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1726 {
1727 struct mvxpe_softc *sc = ifp->if_softc;
1728 int error = 0;
1729
1730 switch (cmd) {
1731 default:
1732 DPRINTIFNET(ifp, 2, "mvxpe_ioctl ETHER\n");
1733 error = ether_ioctl(ifp, cmd, data);
1734 if (error == ENETRESET) {
1735 if (ifp->if_flags & IFF_RUNNING) {
1736 mvxpe_sc_lock(sc);
1737 mvxpe_filter_setup(sc);
1738 mvxpe_sc_unlock(sc);
1739 }
1740 error = 0;
1741 }
1742 break;
1743 }
1744
1745 return error;
1746 }
1747
1748 STATIC int
1749 mvxpe_init(struct ifnet *ifp)
1750 {
1751 struct mvxpe_softc *sc = ifp->if_softc;
1752 struct mii_data *mii = &sc->sc_mii;
1753 uint32_t reg;
1754 int q;
1755
1756 mvxpe_sc_lock(sc);
1757
1758 /* Start DMA Engine */
1759 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
1760 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
1761 MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
1762
1763 /* Enable port */
1764 reg = MVXPE_READ(sc, MVXPE_PMACC0);
1765 reg |= MVXPE_PMACC0_PORTEN;
1766 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1767
1768 /* Link up */
1769 mvxpe_linkup(sc);
1770
1771 /* Enable All Queue and interrupt of each Queue */
1772 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1773 mvxpe_rx_lockq(sc, q);
1774 mvxpe_rx_queue_enable(ifp, q);
1775 mvxpe_rx_queue_refill(sc, q);
1776 mvxpe_rx_unlockq(sc, q);
1777
1778 mvxpe_tx_lockq(sc, q);
1779 mvxpe_tx_queue_enable(ifp, q);
1780 mvxpe_tx_unlockq(sc, q);
1781 }
1782
1783 /* Enable interrupt */
1784 mvxpe_enable_intr(sc);
1785
1786 /* Set Counter */
1787 callout_schedule(&sc->sc_tick_ch, hz);
1788
1789 /* Media check */
1790 mii_mediachg(mii);
1791
1792 ifp->if_flags |= IFF_RUNNING;
1793 ifp->if_flags &= ~IFF_OACTIVE;
1794
1795 mvxpe_sc_unlock(sc);
1796 return 0;
1797 }
1798
1799 /* ARGSUSED */
1800 STATIC void
1801 mvxpe_stop(struct ifnet *ifp, int disable)
1802 {
1803 struct mvxpe_softc *sc = ifp->if_softc;
1804 uint32_t reg;
1805 int q, cnt;
1806
1807 DPRINTIFNET(ifp, 1, "stop device dma and interrupts.\n");
1808
1809 mvxpe_sc_lock(sc);
1810
1811 callout_stop(&sc->sc_tick_ch);
1812
1813 /* Link down */
1814 mvxpe_linkdown(sc);
1815
1816 /* Disable Rx interrupt */
1817 reg = MVXPE_READ(sc, MVXPE_PIE);
1818 reg &= ~MVXPE_PIE_RXPKTINTRPTENB_MASK;
1819 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1820
1821 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1822 reg &= ~MVXPE_PRXTXTI_RBICTAPQ_MASK;
1823 reg &= ~MVXPE_PRXTXTI_RDTAQ_MASK;
1824 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1825
1826 /* Wait for all Rx activity to terminate. */
1827 reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1828 reg = MVXPE_RQC_DIS(reg);
1829 MVXPE_WRITE(sc, MVXPE_RQC, reg);
1830 cnt = 0;
1831 do {
1832 if (cnt >= RX_DISABLE_TIMEOUT) {
1833 aprint_error_ifnet(ifp,
1834 "timeout for RX stopped. rqc 0x%x\n", reg);
1835 break;
1836 }
1837 cnt++;
1838 reg = MVXPE_READ(sc, MVXPE_RQC);
1839 } while (reg & MVXPE_RQC_EN_MASK);
1840
1841 /* Wait for all Tx activety to terminate. */
1842 reg = MVXPE_READ(sc, MVXPE_PIE);
1843 reg &= ~MVXPE_PIE_TXPKTINTRPTENB_MASK;
1844 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1845
1846 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1847 reg &= ~MVXPE_PRXTXTI_TBTCQ_MASK;
1848 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1849
1850 reg = MVXPE_READ(sc, MVXPE_TQC) & MVXPE_TQC_EN_MASK;
1851 reg = MVXPE_TQC_DIS(reg);
1852 MVXPE_WRITE(sc, MVXPE_TQC, reg);
1853 cnt = 0;
1854 do {
1855 if (cnt >= TX_DISABLE_TIMEOUT) {
1856 aprint_error_ifnet(ifp,
1857 "timeout for TX stopped. tqc 0x%x\n", reg);
1858 break;
1859 }
1860 cnt++;
1861 reg = MVXPE_READ(sc, MVXPE_TQC);
1862 } while (reg & MVXPE_TQC_EN_MASK);
1863
1864 /* Wait for all Tx FIFO is empty */
1865 cnt = 0;
1866 do {
1867 if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1868 aprint_error_ifnet(ifp,
1869 "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1870 break;
1871 }
1872 cnt++;
1873 reg = MVXPE_READ(sc, MVXPE_PS0);
1874 } while (!(reg & MVXPE_PS0_TXFIFOEMP) && (reg & MVXPE_PS0_TXINPROG));
1875
1876 /* Reset the MAC Port Enable bit */
1877 reg = MVXPE_READ(sc, MVXPE_PMACC0);
1878 reg &= ~MVXPE_PMACC0_PORTEN;
1879 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1880
1881 /* Disable each of queue */
1882 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1883 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1884
1885 mvxpe_rx_lockq(sc, q);
1886 mvxpe_tx_lockq(sc, q);
1887
1888 /* Disable Rx packet buffer refill request */
1889 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1890 reg |= MVXPE_PRXDQTH_NODT(0);
1891 MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1892
1893 if (disable) {
1894 /*
1895 * Hold Reset state of DMA Engine
1896 * (must write 0x0 to restart it)
1897 */
1898 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
1899 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
1900 mvxpe_ring_flush_queue(sc, q);
1901 }
1902
1903 mvxpe_tx_unlockq(sc, q);
1904 mvxpe_rx_unlockq(sc, q);
1905 }
1906
1907 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1908
1909 mvxpe_sc_unlock(sc);
1910 }
1911
1912 STATIC void
1913 mvxpe_watchdog(struct ifnet *ifp)
1914 {
1915 struct mvxpe_softc *sc = ifp->if_softc;
1916 int q;
1917
1918 mvxpe_sc_lock(sc);
1919
1920 /*
1921 * Reclaim first as there is a possibility of losing Tx completion
1922 * interrupts.
1923 */
1924 mvxpe_tx_complete(sc, 0xff);
1925 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1926 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1927
1928 if (tx->tx_dma != tx->tx_cpu) {
1929 if (sc->sc_wdogsoft) {
1930 /*
1931 * There is race condition between CPU and DMA
1932 * engine. When DMA engine encounters queue end,
1933 * it clears MVXPE_TQC_ENQ bit.
1934 * XXX: how about enhanced mode?
1935 */
1936 MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
1937 ifp->if_timer = 5;
1938 sc->sc_wdogsoft = 0;
1939 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_wdogsoft);
1940 } else {
1941 aprint_error_ifnet(ifp, "watchdog timeout\n");
1942 ifp->if_oerrors++;
1943 mvxpe_linkreset(sc);
1944 mvxpe_sc_unlock(sc);
1945
1946 /* trigger reinitialize sequence */
1947 mvxpe_stop(ifp, 1);
1948 mvxpe_init(ifp);
1949
1950 mvxpe_sc_lock(sc);
1951 }
1952 }
1953 }
1954 mvxpe_sc_unlock(sc);
1955 }
1956
1957 STATIC int
1958 mvxpe_ifflags_cb(struct ethercom *ec)
1959 {
1960 struct ifnet *ifp = &ec->ec_if;
1961 struct mvxpe_softc *sc = ifp->if_softc;
1962 int change = ifp->if_flags ^ sc->sc_if_flags;
1963
1964 mvxpe_sc_lock(sc);
1965
1966 if (change != 0)
1967 sc->sc_if_flags = ifp->if_flags;
1968
1969 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
1970 mvxpe_sc_unlock(sc);
1971 return ENETRESET;
1972 }
1973
1974 if ((change & IFF_PROMISC) != 0)
1975 mvxpe_filter_setup(sc);
1976
1977 if ((change & IFF_UP) != 0)
1978 mvxpe_linkreset(sc);
1979
1980 mvxpe_sc_unlock(sc);
1981 return 0;
1982 }
1983
1984 STATIC int
1985 mvxpe_mediachange(struct ifnet *ifp)
1986 {
1987 return ether_mediachange(ifp);
1988 }
1989
1990 STATIC void
1991 mvxpe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1992 {
1993 ether_mediastatus(ifp, ifmr);
1994 }
1995
1996 /*
1997 * Link State Notify
1998 */
1999 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc)
2000 {
2001 int linkup; /* bool */
2002
2003 KASSERT_SC_MTX(sc);
2004
2005 /* tell miibus */
2006 mii_pollstat(&sc->sc_mii);
2007
2008 /* syslog */
2009 linkup = MVXPE_IS_LINKUP(sc);
2010 if (sc->sc_linkstate == linkup)
2011 return;
2012
2013 #ifdef DEBUG
2014 log(LOG_DEBUG,
2015 "%s: link %s\n", device_xname(sc->sc_dev), linkup ? "up" : "down");
2016 #endif
2017 if (linkup)
2018 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_up);
2019 else
2020 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_down);
2021
2022 sc->sc_linkstate = linkup;
2023 }
2024
2025 STATIC void
2026 mvxpe_linkup(struct mvxpe_softc *sc)
2027 {
2028 uint32_t reg;
2029
2030 KASSERT_SC_MTX(sc);
2031
2032 /* set EEE parameters */
2033 reg = MVXPE_READ(sc, MVXPE_LPIC1);
2034 if (sc->sc_cf.cf_lpi)
2035 reg |= MVXPE_LPIC1_LPIRE;
2036 else
2037 reg &= ~MVXPE_LPIC1_LPIRE;
2038 MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
2039
2040 /* set auto-negotiation parameters */
2041 reg = MVXPE_READ(sc, MVXPE_PANC);
2042 if (sc->sc_cf.cf_fc) {
2043 /* flow control negotiation */
2044 reg |= MVXPE_PANC_PAUSEADV;
2045 reg |= MVXPE_PANC_ANFCEN;
2046 }
2047 else {
2048 reg &= ~MVXPE_PANC_PAUSEADV;
2049 reg &= ~MVXPE_PANC_ANFCEN;
2050 }
2051 reg &= ~MVXPE_PANC_FORCELINKFAIL;
2052 reg &= ~MVXPE_PANC_FORCELINKPASS;
2053 MVXPE_WRITE(sc, MVXPE_PANC, reg);
2054
2055 mii_mediachg(&sc->sc_mii);
2056 }
2057
2058 STATIC void
2059 mvxpe_linkdown(struct mvxpe_softc *sc)
2060 {
2061 struct mii_softc *mii;
2062 uint32_t reg;
2063
2064 KASSERT_SC_MTX(sc);
2065 return;
2066
2067 reg = MVXPE_READ(sc, MVXPE_PANC);
2068 reg |= MVXPE_PANC_FORCELINKFAIL;
2069 reg &= MVXPE_PANC_FORCELINKPASS;
2070 MVXPE_WRITE(sc, MVXPE_PANC, reg);
2071
2072 mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2073 if (mii)
2074 mii_phy_down(mii);
2075 }
2076
2077 STATIC void
2078 mvxpe_linkreset(struct mvxpe_softc *sc)
2079 {
2080 struct mii_softc *mii;
2081
2082 KASSERT_SC_MTX(sc);
2083
2084 /* force reset PHY first */
2085 mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2086 if (mii)
2087 mii_phy_reset(mii);
2088
2089 /* reinit MAC and PHY */
2090 mvxpe_linkdown(sc);
2091 if ((sc->sc_if_flags & IFF_UP) != 0)
2092 mvxpe_linkup(sc);
2093 }
2094
2095 /*
2096 * Tx Subroutines
2097 */
2098 STATIC int
2099 mvxpe_tx_queue_select(struct mvxpe_softc *sc, struct mbuf *m)
2100 {
2101 int q = 0;
2102
2103 /* XXX: get attribute from ALTQ framework? */
2104 mvxpe_tx_lockq(sc, q);
2105 return 0;
2106 }
2107
2108 STATIC int
2109 mvxpe_tx_queue(struct mvxpe_softc *sc, struct mbuf *m, int q)
2110 {
2111 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2112 bus_dma_segment_t *txsegs;
2113 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2114 struct mvxpe_tx_desc *t = NULL;
2115 uint32_t ptxsu;
2116 int txnsegs;
2117 int start, used;
2118 int i;
2119
2120 KASSERT_TX_MTX(sc, q);
2121 KASSERT(tx->tx_used >= 0);
2122 KASSERT(tx->tx_used <= tx->tx_queue_len);
2123
2124 /* load mbuf using dmamap of 1st descriptor */
2125 if (bus_dmamap_load_mbuf(sc->sc_dmat,
2126 MVXPE_TX_MAP(sc, q, tx->tx_cpu), m, BUS_DMA_NOWAIT) != 0) {
2127 m_freem(m);
2128 return ENOBUFS;
2129 }
2130 txsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_segs;
2131 txnsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_nsegs;
2132 if (txnsegs <= 0 || (txnsegs + tx->tx_used) > tx->tx_queue_len) {
2133 /* we have no enough descriptors or mbuf is broken */
2134 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, tx->tx_cpu));
2135 m_freem(m);
2136 return ENOBUFS;
2137 }
2138 DPRINTSC(sc, 2, "send packet %p descriptor %d\n", m, tx->tx_cpu);
2139 KASSERT(MVXPE_TX_MBUF(sc, q, tx->tx_cpu) == NULL);
2140
2141 /* remember mbuf using 1st descriptor */
2142 MVXPE_TX_MBUF(sc, q, tx->tx_cpu) = m;
2143 bus_dmamap_sync(sc->sc_dmat,
2144 MVXPE_TX_MAP(sc, q, tx->tx_cpu), 0, m->m_pkthdr.len,
2145 BUS_DMASYNC_PREWRITE);
2146
2147 /* load to tx descriptors */
2148 start = tx->tx_cpu;
2149 used = 0;
2150 for (i = 0; i < txnsegs; i++) {
2151 if (__predict_false(txsegs[i].ds_len == 0))
2152 continue;
2153 t = MVXPE_TX_DESC(sc, q, tx->tx_cpu);
2154 t->command = 0;
2155 t->l4ichk = 0;
2156 t->flags = 0;
2157 if (i == 0) {
2158 /* 1st descriptor */
2159 t->command |= MVXPE_TX_CMD_W_PACKET_OFFSET(0);
2160 t->command |= MVXPE_TX_CMD_PADDING;
2161 t->command |= MVXPE_TX_CMD_F;
2162 mvxpe_tx_set_csumflag(ifp, t, m);
2163 }
2164 t->bufptr = txsegs[i].ds_addr;
2165 t->bytecnt = txsegs[i].ds_len;
2166 tx->tx_cpu = tx_counter_adv(tx->tx_cpu, 1);
2167 tx->tx_used++;
2168 used++;
2169 }
2170 /* t is last descriptor here */
2171 KASSERT(t != NULL);
2172 t->command |= MVXPE_TX_CMD_L;
2173
2174 DPRINTSC(sc, 2, "queue %d, %d descriptors used\n", q, used);
2175 #ifdef MVXPE_DEBUG
2176 if (mvxpe_debug > 2)
2177 for (i = start; i <= tx->tx_cpu; i++) {
2178 t = MVXPE_TX_DESC(sc, q, i);
2179 mvxpe_dump_txdesc(t, i);
2180 }
2181 #endif
2182 mvxpe_ring_sync_tx(sc, q, start, used,
2183 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2184
2185 while (used > 255) {
2186 ptxsu = MVXPE_PTXSU_NOWD(255);
2187 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2188 used -= 255;
2189 }
2190 if (used > 0) {
2191 ptxsu = MVXPE_PTXSU_NOWD(used);
2192 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2193 }
2194 MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
2195
2196 DPRINTSC(sc, 2,
2197 "PTXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQA(q)));
2198 DPRINTSC(sc, 2,
2199 "PTXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
2200 DPRINTSC(sc, 2,
2201 "PTXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXS(q)));
2202 DPRINTSC(sc, 2,
2203 "PTXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PTXDI(q)));
2204 DPRINTSC(sc, 2, "TQC: %#x\n", MVXPE_READ(sc, MVXPE_TQC));
2205 DPRINTIFNET(ifp, 2,
2206 "Tx: tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2207 tx->tx_cpu, tx->tx_dma, tx->tx_used);
2208 return 0;
2209 }
2210
2211 STATIC void
2212 mvxpe_tx_set_csumflag(struct ifnet *ifp,
2213 struct mvxpe_tx_desc *t, struct mbuf *m)
2214 {
2215 struct ether_header *eh;
2216 int csum_flags;
2217 uint32_t iphl = 0, ipoff = 0;
2218
2219 csum_flags = ifp->if_csum_flags_tx & m->m_pkthdr.csum_flags;
2220
2221 eh = mtod(m, struct ether_header *);
2222 switch (htons(eh->ether_type)) {
2223 case ETHERTYPE_IP:
2224 case ETHERTYPE_IPV6:
2225 ipoff = ETHER_HDR_LEN;
2226 break;
2227 case ETHERTYPE_VLAN:
2228 ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2229 break;
2230 }
2231
2232 if (csum_flags & (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
2233 iphl = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2234 t->command |= MVXPE_TX_CMD_L3_IP4;
2235 }
2236 else if (csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
2237 iphl = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2238 t->command |= MVXPE_TX_CMD_L3_IP6;
2239 }
2240 else {
2241 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2242 return;
2243 }
2244
2245
2246 /* L3 */
2247 if (csum_flags & M_CSUM_IPv4) {
2248 t->command |= MVXPE_TX_CMD_IP4_CHECKSUM;
2249 }
2250
2251 /* L4 */
2252 if ((csum_flags &
2253 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0) {
2254 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2255 }
2256 else if (csum_flags & M_CSUM_TCPv4) {
2257 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2258 t->command |= MVXPE_TX_CMD_L4_TCP;
2259 }
2260 else if (csum_flags & M_CSUM_UDPv4) {
2261 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2262 t->command |= MVXPE_TX_CMD_L4_UDP;
2263 }
2264 else if (csum_flags & M_CSUM_TCPv6) {
2265 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2266 t->command |= MVXPE_TX_CMD_L4_TCP;
2267 }
2268 else if (csum_flags & M_CSUM_UDPv6) {
2269 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2270 t->command |= MVXPE_TX_CMD_L4_UDP;
2271 }
2272
2273 t->l4ichk = 0;
2274 t->command |= MVXPE_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2275 t->command |= MVXPE_TX_CMD_L3_OFFSET(ipoff);
2276 }
2277
2278 STATIC void
2279 mvxpe_tx_complete(struct mvxpe_softc *sc, uint32_t queues)
2280 {
2281 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2282 int q;
2283
2284 DPRINTSC(sc, 2, "tx completed.\n");
2285
2286 KASSERT_SC_MTX(sc);
2287
2288 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2289 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2290 continue;
2291 mvxpe_tx_lockq(sc, q);
2292 mvxpe_tx_queue_complete(sc, q);
2293 mvxpe_tx_unlockq(sc, q);
2294 }
2295 KASSERT(sc->sc_tx_pending >= 0);
2296 if (sc->sc_tx_pending == 0)
2297 ifp->if_timer = 0;
2298 }
2299
2300 STATIC void
2301 mvxpe_tx_queue_complete(struct mvxpe_softc *sc, int q)
2302 {
2303 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2304 struct mvxpe_tx_desc *t;
2305 struct mbuf *m;
2306 uint32_t ptxs, ptxsu, ndesc;
2307 int i;
2308
2309 KASSERT_TX_MTX(sc, q);
2310
2311 ptxs = MVXPE_READ(sc, MVXPE_PTXS(q));
2312 ndesc = MVXPE_PTXS_GET_TBC(ptxs);
2313 if (ndesc == 0)
2314 return;
2315
2316 DPRINTSC(sc, 2,
2317 "tx complete queue %d, %d descriptors.\n", q, ndesc);
2318
2319 mvxpe_ring_sync_tx(sc, q, tx->tx_dma, ndesc,
2320 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2321
2322 for (i = 0; i < ndesc; i++) {
2323 int error = 0;
2324
2325 t = MVXPE_TX_DESC(sc, q, tx->tx_dma);
2326 if (t->flags & MVXPE_TX_F_ES) {
2327 DPRINTSC(sc, 1,
2328 "tx error queue %d desc %d\n",
2329 q, tx->tx_dma);
2330 switch (t->flags & MVXPE_TX_F_EC_MASK) {
2331 case MVXPE_TX_F_EC_LC:
2332 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_lc);
2333 break;
2334 case MVXPE_TX_F_EC_UR:
2335 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_ur);
2336 break;
2337 case MVXPE_TX_F_EC_RL:
2338 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_rl);
2339 break;
2340 default:
2341 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_oth);
2342 break;
2343 }
2344 error = 1;
2345 }
2346 m = MVXPE_TX_MBUF(sc, q, tx->tx_dma);
2347 if (m != NULL) {
2348 KASSERT((t->command & MVXPE_TX_CMD_F) != 0);
2349 MVXPE_TX_MBUF(sc, q, tx->tx_dma) = NULL;
2350 bus_dmamap_sync(sc->sc_dmat,
2351 MVXPE_TX_MAP(sc, q, tx->tx_dma), 0, m->m_pkthdr.len,
2352 BUS_DMASYNC_POSTWRITE);
2353 bus_dmamap_unload(sc->sc_dmat,
2354 MVXPE_TX_MAP(sc, q, tx->tx_dma));
2355 m_freem(m);
2356 sc->sc_tx_pending--;
2357 }
2358 else
2359 KASSERT((t->flags & MVXPE_TX_CMD_F) == 0);
2360 tx->tx_dma = tx_counter_adv(tx->tx_dma, 1);
2361 tx->tx_used--;
2362 if (error)
2363 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txqe[q]);
2364 else
2365 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txq[q]);
2366 }
2367 KASSERT(tx->tx_used >= 0);
2368 KASSERT(tx->tx_used <= tx->tx_queue_len);
2369 while (ndesc > 255) {
2370 ptxsu = MVXPE_PTXSU_NORB(255);
2371 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2372 ndesc -= 255;
2373 }
2374 if (ndesc > 0) {
2375 ptxsu = MVXPE_PTXSU_NORB(ndesc);
2376 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2377 }
2378 DPRINTSC(sc, 2,
2379 "Tx complete q %d, tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2380 q, tx->tx_cpu, tx->tx_dma, tx->tx_used);
2381 }
2382
2383 /*
2384 * Rx Subroutines
2385 */
2386 STATIC void
2387 mvxpe_rx(struct mvxpe_softc *sc, uint32_t queues)
2388 {
2389 int q, npkt;
2390
2391 KASSERT_SC_MTX(sc);
2392
2393 while ( (npkt = mvxpe_rx_queue_select(sc, queues, &q))) {
2394 /* mutex is held by rx_queue_select */
2395 mvxpe_rx_queue(sc, q, npkt);
2396 mvxpe_rx_unlockq(sc, q);
2397 }
2398 }
2399
2400 STATIC void
2401 mvxpe_rx_queue(struct mvxpe_softc *sc, int q, int npkt)
2402 {
2403 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2404 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2405 struct mvxpe_rx_desc *r;
2406 struct mvxpbm_chunk *chunk;
2407 struct mbuf *m;
2408 uint32_t prxsu;
2409 int error = 0;
2410 int i;
2411
2412 KASSERT_RX_MTX(sc, q);
2413
2414 mvxpe_ring_sync_rx(sc, q, rx->rx_dma, npkt,
2415 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2416
2417 for (i = 0; i < npkt; i++) {
2418 /* get descriptor and packet */
2419 chunk = MVXPE_RX_PKTBUF(sc, q, rx->rx_dma);
2420 MVXPE_RX_PKTBUF(sc, q, rx->rx_dma) = NULL;
2421 r = MVXPE_RX_DESC(sc, q, rx->rx_dma);
2422 mvxpbm_dmamap_sync(chunk, r->bytecnt, BUS_DMASYNC_POSTREAD);
2423
2424 /* check errors */
2425 if (r->status & MVXPE_RX_ES) {
2426 switch (r->status & MVXPE_RX_EC_MASK) {
2427 case MVXPE_RX_EC_CE:
2428 DPRINTIFNET(ifp, 1, "CRC error\n");
2429 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_ce);
2430 break;
2431 case MVXPE_RX_EC_OR:
2432 DPRINTIFNET(ifp, 1, "Rx FIFO overrun\n");
2433 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_or);
2434 break;
2435 case MVXPE_RX_EC_MF:
2436 DPRINTIFNET(ifp, 1, "Rx too large frame\n");
2437 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_mf);
2438 break;
2439 case MVXPE_RX_EC_RE:
2440 DPRINTIFNET(ifp, 1, "Rx resource error\n");
2441 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_re);
2442 break;
2443 }
2444 error = 1;
2445 goto rx_done;
2446 }
2447 if (!(r->status & MVXPE_RX_F) || !(r->status & MVXPE_RX_L)) {
2448 DPRINTIFNET(ifp, 1, "not support scatter buf\n");
2449 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_scat);
2450 error = 1;
2451 goto rx_done;
2452 }
2453
2454 if (chunk == NULL) {
2455 device_printf(sc->sc_dev,
2456 "got rx interrupt, but no chunk\n");
2457 error = 1;
2458 goto rx_done;
2459 }
2460
2461 /* extract packet buffer */
2462 if (mvxpbm_init_mbuf_hdr(chunk) != 0) {
2463 error = 1;
2464 goto rx_done;
2465 }
2466 m = chunk->m;
2467 m_set_rcvif(m, ifp);
2468 m->m_pkthdr.len = m->m_len = r->bytecnt - ETHER_CRC_LEN;
2469 m_adj(m, MVXPE_HWHEADER_SIZE); /* strip MH */
2470 mvxpe_rx_set_csumflag(ifp, r, m);
2471 if_percpuq_enqueue(ifp->if_percpuq, m);
2472 chunk = NULL; /* the BM chunk goes to networking stack now */
2473 rx_done:
2474 if (chunk) {
2475 /* rx error. just return the chunk to BM. */
2476 mvxpbm_free_chunk(chunk);
2477 }
2478 if (error)
2479 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxqe[q]);
2480 else
2481 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxq[q]);
2482 rx->rx_dma = rx_counter_adv(rx->rx_dma, 1);
2483 }
2484 /* DMA status update */
2485 DPRINTSC(sc, 2, "%d packets received from queue %d\n", npkt, q);
2486 while (npkt > 255) {
2487 prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2488 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2489 npkt -= 255;
2490 }
2491 if (npkt > 0) {
2492 prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(npkt);
2493 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2494 }
2495
2496 DPRINTSC(sc, 2,
2497 "PRXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQA(q)));
2498 DPRINTSC(sc, 2,
2499 "PRXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
2500 DPRINTSC(sc, 2,
2501 "PRXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXS(q)));
2502 DPRINTSC(sc, 2,
2503 "PRXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PRXDI(q)));
2504 DPRINTSC(sc, 2, "RQC: %#x\n", MVXPE_READ(sc, MVXPE_RQC));
2505 DPRINTIFNET(ifp, 2, "Rx: rx_cpu = %d, rx_dma = %d\n",
2506 rx->rx_cpu, rx->rx_dma);
2507 }
2508
2509 STATIC int
2510 mvxpe_rx_queue_select(struct mvxpe_softc *sc, uint32_t queues, int *queue)
2511 {
2512 uint32_t prxs, npkt;
2513 int q;
2514
2515 KASSERT_SC_MTX(sc);
2516 KASSERT(queue != NULL);
2517 DPRINTSC(sc, 2, "selecting rx queue\n");
2518
2519 for (q = MVXPE_QUEUE_SIZE - 1; q >= 0; q--) {
2520 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2521 continue;
2522
2523 prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2524 npkt = MVXPE_PRXS_GET_ODC(prxs);
2525 if (npkt == 0)
2526 continue;
2527
2528 DPRINTSC(sc, 2,
2529 "queue %d selected: prxs=%#x, %u packet received.\n",
2530 q, prxs, npkt);
2531 *queue = q;
2532 mvxpe_rx_lockq(sc, q);
2533 return npkt;
2534 }
2535
2536 return 0;
2537 }
2538
2539 STATIC void
2540 mvxpe_rx_refill(struct mvxpe_softc *sc, uint32_t queues)
2541 {
2542 int q;
2543
2544 KASSERT_SC_MTX(sc);
2545
2546 /* XXX: check rx bit array */
2547 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2548 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2549 continue;
2550
2551 mvxpe_rx_lockq(sc, q);
2552 mvxpe_rx_queue_refill(sc, q);
2553 mvxpe_rx_unlockq(sc, q);
2554 }
2555 }
2556
2557 STATIC void
2558 mvxpe_rx_queue_refill(struct mvxpe_softc *sc, int q)
2559 {
2560 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2561 uint32_t prxs, prxsu, ndesc;
2562 int idx, refill = 0;
2563 int npkt;
2564
2565 KASSERT_RX_MTX(sc, q);
2566
2567 prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2568 ndesc = MVXPE_PRXS_GET_NODC(prxs) + MVXPE_PRXS_GET_ODC(prxs);
2569 refill = rx->rx_queue_len - ndesc;
2570 if (refill <= 0)
2571 return;
2572 DPRINTPRXS(2, q);
2573 DPRINTSC(sc, 2, "%d buffers to refill.\n", refill);
2574
2575 idx = rx->rx_cpu;
2576 for (npkt = 0; npkt < refill; npkt++)
2577 if (mvxpe_rx_queue_add(sc, q) != 0)
2578 break;
2579 DPRINTSC(sc, 2, "queue %d, %d buffer refilled.\n", q, npkt);
2580 if (npkt == 0)
2581 return;
2582
2583 mvxpe_ring_sync_rx(sc, q, idx, npkt,
2584 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2585
2586 while (npkt > 255) {
2587 prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(255);
2588 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2589 npkt -= 255;
2590 }
2591 if (npkt > 0) {
2592 prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(npkt);
2593 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2594 }
2595 DPRINTPRXS(2, q);
2596 return;
2597 }
2598
2599 STATIC int
2600 mvxpe_rx_queue_add(struct mvxpe_softc *sc, int q)
2601 {
2602 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2603 struct mvxpe_rx_desc *r;
2604 struct mvxpbm_chunk *chunk = NULL;
2605
2606 KASSERT_RX_MTX(sc, q);
2607
2608 /* Allocate the packet buffer */
2609 chunk = mvxpbm_alloc(sc->sc_bm);
2610 if (chunk == NULL) {
2611 DPRINTSC(sc, 1, "BM chunk allocation failed.\n");
2612 return ENOBUFS;
2613 }
2614
2615 /* Add the packet to descritor */
2616 KASSERT(MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) == NULL);
2617 MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) = chunk;
2618 mvxpbm_dmamap_sync(chunk, BM_SYNC_ALL, BUS_DMASYNC_PREREAD);
2619
2620 r = MVXPE_RX_DESC(sc, q, rx->rx_cpu);
2621 r->bufptr = chunk->buf_pa;
2622 DPRINTSC(sc, 9, "chunk added to index %d\n", rx->rx_cpu);
2623 rx->rx_cpu = rx_counter_adv(rx->rx_cpu, 1);
2624 return 0;
2625 }
2626
2627 STATIC void
2628 mvxpe_rx_set_csumflag(struct ifnet *ifp,
2629 struct mvxpe_rx_desc *r, struct mbuf *m0)
2630 {
2631 uint32_t csum_flags = 0;
2632
2633 if ((r->status & (MVXPE_RX_IP_HEADER_OK | MVXPE_RX_L3_IP)) == 0)
2634 return; /* not a IP packet */
2635
2636 /* L3 */
2637 if (r->status & MVXPE_RX_L3_IP) {
2638 csum_flags |= M_CSUM_IPv4 & ifp->if_csum_flags_rx;
2639 if ((r->status & MVXPE_RX_IP_HEADER_OK) == 0 &&
2640 (csum_flags & M_CSUM_IPv4) != 0) {
2641 csum_flags |= M_CSUM_IPv4_BAD;
2642 goto finish;
2643 }
2644 else if (r->status & MVXPE_RX_IPV4_FRAGMENT) {
2645 /*
2646 * r->l4chk has partial checksum of each framgment.
2647 * but there is no way to use it in NetBSD.
2648 */
2649 return;
2650 }
2651 }
2652
2653 /* L4 */
2654 switch (r->status & MVXPE_RX_L4_MASK) {
2655 case MVXPE_RX_L4_TCP:
2656 if (r->status & MVXPE_RX_L3_IP)
2657 csum_flags |= M_CSUM_TCPv4 & ifp->if_csum_flags_rx;
2658 else
2659 csum_flags |= M_CSUM_TCPv6 & ifp->if_csum_flags_rx;
2660 break;
2661 case MVXPE_RX_L4_UDP:
2662 if (r->status & MVXPE_RX_L3_IP)
2663 csum_flags |= M_CSUM_UDPv4 & ifp->if_csum_flags_rx;
2664 else
2665 csum_flags |= M_CSUM_UDPv6 & ifp->if_csum_flags_rx;
2666 break;
2667 case MVXPE_RX_L4_OTH:
2668 default:
2669 break;
2670 }
2671 if ((r->status & MVXPE_RX_L4_CHECKSUM_OK) == 0 && (csum_flags &
2672 (M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2673 csum_flags |= M_CSUM_TCP_UDP_BAD;
2674 finish:
2675 m0->m_pkthdr.csum_flags = csum_flags;
2676 }
2677
2678 /*
2679 * MAC address filter
2680 */
2681 STATIC uint8_t
2682 mvxpe_crc8(const uint8_t *data, size_t size)
2683 {
2684 int bit;
2685 uint8_t byte;
2686 uint8_t crc = 0;
2687 const uint8_t poly = 0x07;
2688
2689 while (size--)
2690 for (byte = *data++, bit = NBBY-1; bit >= 0; bit--)
2691 crc = (crc << 1) ^ ((((crc >> 7) ^ (byte >> bit)) & 1) ? poly : 0);
2692
2693 return crc;
2694 }
2695
2696 CTASSERT(MVXPE_NDFSMT == MVXPE_NDFOMT);
2697
2698 STATIC void
2699 mvxpe_filter_setup(struct mvxpe_softc *sc)
2700 {
2701 struct ethercom *ec = &sc->sc_ethercom;
2702 struct ifnet *ifp= &sc->sc_ethercom.ec_if;
2703 struct ether_multi *enm;
2704 struct ether_multistep step;
2705 uint32_t dfut[MVXPE_NDFUT], dfsmt[MVXPE_NDFSMT], dfomt[MVXPE_NDFOMT];
2706 uint32_t pxc;
2707 int i;
2708 const uint8_t special[ETHER_ADDR_LEN] = {0x01,0x00,0x5e,0x00,0x00,0x00};
2709
2710 KASSERT_SC_MTX(sc);
2711
2712 memset(dfut, 0, sizeof(dfut));
2713 memset(dfsmt, 0, sizeof(dfsmt));
2714 memset(dfomt, 0, sizeof(dfomt));
2715
2716 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
2717 goto allmulti;
2718 }
2719
2720 ETHER_LOCK(ec);
2721 ETHER_FIRST_MULTI(step, ec, enm);
2722 while (enm != NULL) {
2723 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2724 /* ranges are complex and somewhat rare */
2725 ETHER_UNLOCK(ec);
2726 goto allmulti;
2727 }
2728 /* chip handles some IPv4 multicast specially */
2729 if (memcmp(enm->enm_addrlo, special, 5) == 0) {
2730 i = enm->enm_addrlo[5];
2731 dfsmt[i>>2] |=
2732 MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2733 } else {
2734 i = mvxpe_crc8(enm->enm_addrlo, ETHER_ADDR_LEN);
2735 dfomt[i>>2] |=
2736 MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2737 }
2738
2739 ETHER_NEXT_MULTI(step, enm);
2740 }
2741 ETHER_UNLOCK(ec);
2742 goto set;
2743
2744 allmulti:
2745 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
2746 for (i = 0; i < MVXPE_NDFSMT; i++) {
2747 dfsmt[i] = dfomt[i] =
2748 MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2749 MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2750 MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2751 MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2752 }
2753 }
2754
2755 set:
2756 pxc = MVXPE_READ(sc, MVXPE_PXC);
2757 pxc &= ~MVXPE_PXC_UPM;
2758 pxc |= MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP;
2759 if (ifp->if_flags & IFF_BROADCAST) {
2760 pxc &= ~(MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP);
2761 }
2762 if (ifp->if_flags & IFF_PROMISC) {
2763 pxc |= MVXPE_PXC_UPM;
2764 }
2765 MVXPE_WRITE(sc, MVXPE_PXC, pxc);
2766
2767 /* Set Destination Address Filter Unicast Table */
2768 if (ifp->if_flags & IFF_PROMISC) {
2769 /* pass all unicast addresses */
2770 for (i = 0; i < MVXPE_NDFUT; i++) {
2771 dfut[i] =
2772 MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2773 MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2774 MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2775 MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2776 }
2777 }
2778 else {
2779 i = sc->sc_enaddr[5] & 0xf; /* last nibble */
2780 dfut[i>>2] = MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2781 }
2782 MVXPE_WRITE_REGION(sc, MVXPE_DFUT(0), dfut, MVXPE_NDFUT);
2783
2784 /* Set Destination Address Filter Multicast Tables */
2785 MVXPE_WRITE_REGION(sc, MVXPE_DFSMT(0), dfsmt, MVXPE_NDFSMT);
2786 MVXPE_WRITE_REGION(sc, MVXPE_DFOMT(0), dfomt, MVXPE_NDFOMT);
2787 }
2788
2789 /*
2790 * sysctl(9)
2791 */
2792 SYSCTL_SETUP(sysctl_mvxpe, "sysctl mvxpe subtree setup")
2793 {
2794 int rc;
2795 const struct sysctlnode *node;
2796
2797 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2798 0, CTLTYPE_NODE, "mvxpe",
2799 SYSCTL_DESCR("mvxpe interface controls"),
2800 NULL, 0, NULL, 0,
2801 CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2802 goto err;
2803 }
2804
2805 mvxpe_root_num = node->sysctl_num;
2806 return;
2807
2808 err:
2809 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2810 }
2811
2812 STATIC int
2813 sysctl_read_mib(SYSCTLFN_ARGS)
2814 {
2815 struct mvxpe_sysctl_mib *arg;
2816 struct mvxpe_softc *sc;
2817 struct sysctlnode node;
2818 uint64_t val;
2819 int err;
2820
2821 node = *rnode;
2822 arg = (struct mvxpe_sysctl_mib *)rnode->sysctl_data;
2823 if (arg == NULL)
2824 return EINVAL;
2825
2826 sc = arg->sc;
2827 if (sc == NULL)
2828 return EINVAL;
2829 if (arg->index < 0 || arg->index > __arraycount(mvxpe_mib_list))
2830 return EINVAL;
2831
2832 mvxpe_sc_lock(sc);
2833 val = arg->counter;
2834 mvxpe_sc_unlock(sc);
2835
2836 node.sysctl_data = &val;
2837 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2838 if (err)
2839 return err;
2840 if (newp)
2841 return EINVAL;
2842
2843 return 0;
2844 }
2845
2846
2847 STATIC int
2848 sysctl_clear_mib(SYSCTLFN_ARGS)
2849 {
2850 struct mvxpe_softc *sc;
2851 struct sysctlnode node;
2852 int val;
2853 int err;
2854
2855 node = *rnode;
2856 sc = (struct mvxpe_softc *)rnode->sysctl_data;
2857 if (sc == NULL)
2858 return EINVAL;
2859
2860 val = 0;
2861 node.sysctl_data = &val;
2862 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2863 if (err || newp == NULL)
2864 return err;
2865 if (val < 0 || val > 1)
2866 return EINVAL;
2867 if (val == 1) {
2868 mvxpe_sc_lock(sc);
2869 mvxpe_clear_mib(sc);
2870 mvxpe_sc_unlock(sc);
2871 }
2872
2873 return 0;
2874 }
2875
2876 STATIC int
2877 sysctl_set_queue_length(SYSCTLFN_ARGS)
2878 {
2879 struct mvxpe_sysctl_queue *arg;
2880 struct mvxpe_rx_ring *rx = NULL;
2881 struct mvxpe_tx_ring *tx = NULL;
2882 struct mvxpe_softc *sc;
2883 struct sysctlnode node;
2884 uint32_t reg;
2885 int val;
2886 int err;
2887
2888 node = *rnode;
2889
2890 arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2891 if (arg == NULL)
2892 return EINVAL;
2893 if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2894 return EINVAL;
2895 if (arg->rxtx != MVXPE_SYSCTL_RX && arg->rxtx != MVXPE_SYSCTL_TX)
2896 return EINVAL;
2897
2898 sc = arg->sc;
2899 if (sc == NULL)
2900 return EINVAL;
2901
2902 /* read queue length */
2903 mvxpe_sc_lock(sc);
2904 switch (arg->rxtx) {
2905 case MVXPE_SYSCTL_RX:
2906 mvxpe_rx_lockq(sc, arg->queue);
2907 rx = MVXPE_RX_RING(sc, arg->queue);
2908 val = rx->rx_queue_len;
2909 mvxpe_rx_unlockq(sc, arg->queue);
2910 break;
2911 case MVXPE_SYSCTL_TX:
2912 mvxpe_tx_lockq(sc, arg->queue);
2913 tx = MVXPE_TX_RING(sc, arg->queue);
2914 val = tx->tx_queue_len;
2915 mvxpe_tx_unlockq(sc, arg->queue);
2916 break;
2917 }
2918
2919 node.sysctl_data = &val;
2920 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2921 if (err || newp == NULL) {
2922 mvxpe_sc_unlock(sc);
2923 return err;
2924 }
2925
2926 /* update queue length */
2927 if (val < 8 || val > MVXPE_RX_RING_CNT) {
2928 mvxpe_sc_unlock(sc);
2929 return EINVAL;
2930 }
2931 switch (arg->rxtx) {
2932 case MVXPE_SYSCTL_RX:
2933 mvxpe_rx_lockq(sc, arg->queue);
2934 rx->rx_queue_len = val;
2935 rx->rx_queue_th_received =
2936 rx->rx_queue_len / MVXPE_RXTH_RATIO;
2937 rx->rx_queue_th_free =
2938 rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
2939
2940 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
2941 reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
2942 MVXPE_WRITE(sc, MVXPE_PRXDQTH(arg->queue), reg);
2943
2944 mvxpe_rx_unlockq(sc, arg->queue);
2945 break;
2946 case MVXPE_SYSCTL_TX:
2947 mvxpe_tx_lockq(sc, arg->queue);
2948 tx->tx_queue_len = val;
2949 tx->tx_queue_th_free =
2950 tx->tx_queue_len / MVXPE_TXTH_RATIO;
2951
2952 reg = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
2953 reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
2954 MVXPE_WRITE(sc, MVXPE_PTXDQS(arg->queue), reg);
2955
2956 mvxpe_tx_unlockq(sc, arg->queue);
2957 break;
2958 }
2959 mvxpe_sc_unlock(sc);
2960
2961 return 0;
2962 }
2963
2964 STATIC int
2965 sysctl_set_queue_rxthtime(SYSCTLFN_ARGS)
2966 {
2967 struct mvxpe_sysctl_queue *arg;
2968 struct mvxpe_rx_ring *rx = NULL;
2969 struct mvxpe_softc *sc;
2970 struct sysctlnode node;
2971 extern uint32_t mvTclk;
2972 uint32_t reg, time_mvtclk;
2973 int time_us;
2974 int err;
2975
2976 node = *rnode;
2977
2978 arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2979 if (arg == NULL)
2980 return EINVAL;
2981 if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2982 return EINVAL;
2983 if (arg->rxtx != MVXPE_SYSCTL_RX)
2984 return EINVAL;
2985
2986 sc = arg->sc;
2987 if (sc == NULL)
2988 return EINVAL;
2989
2990 /* read queue length */
2991 mvxpe_sc_lock(sc);
2992 mvxpe_rx_lockq(sc, arg->queue);
2993 rx = MVXPE_RX_RING(sc, arg->queue);
2994 time_mvtclk = rx->rx_queue_th_time;
2995 time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvTclk;
2996 node.sysctl_data = &time_us;
2997 DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n",
2998 arg->queue, MVXPE_READ(sc, MVXPE_PRXITTH(arg->queue)));
2999 err = sysctl_lookup(SYSCTLFN_CALL(&node));
3000 if (err || newp == NULL) {
3001 mvxpe_rx_unlockq(sc, arg->queue);
3002 mvxpe_sc_unlock(sc);
3003 return err;
3004 }
3005
3006 /* update queue length (0[sec] - 1[sec]) */
3007 if (time_us < 0 || time_us > (1000 * 1000)) {
3008 mvxpe_rx_unlockq(sc, arg->queue);
3009 mvxpe_sc_unlock(sc);
3010 return EINVAL;
3011 }
3012 time_mvtclk =
3013 (uint64_t)mvTclk * (uint64_t)time_us / (1000ULL * 1000ULL);
3014 rx->rx_queue_th_time = time_mvtclk;
3015 reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
3016 MVXPE_WRITE(sc, MVXPE_PRXITTH(arg->queue), reg);
3017 DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n", arg->queue, reg);
3018 mvxpe_rx_unlockq(sc, arg->queue);
3019 mvxpe_sc_unlock(sc);
3020
3021 return 0;
3022 }
3023
3024
3025 STATIC void
3026 sysctl_mvxpe_init(struct mvxpe_softc *sc)
3027 {
3028 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3029 const struct sysctlnode *node;
3030 int mvxpe_nodenum;
3031 int mvxpe_mibnum;
3032 int mvxpe_rxqueuenum;
3033 int mvxpe_txqueuenum;
3034 int q, i;
3035
3036 /* hw.mvxpe.mvxpe[unit] */
3037 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3038 0, CTLTYPE_NODE, ifp->if_xname,
3039 SYSCTL_DESCR("mvxpe per-controller controls"),
3040 NULL, 0, NULL, 0,
3041 CTL_HW, mvxpe_root_num, CTL_CREATE,
3042 CTL_EOL) != 0) {
3043 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3044 return;
3045 }
3046 mvxpe_nodenum = node->sysctl_num;
3047
3048 /* hw.mvxpe.mvxpe[unit].mib */
3049 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3050 0, CTLTYPE_NODE, "mib",
3051 SYSCTL_DESCR("mvxpe per-controller MIB counters"),
3052 NULL, 0, NULL, 0,
3053 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3054 CTL_EOL) != 0) {
3055 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3056 return;
3057 }
3058 mvxpe_mibnum = node->sysctl_num;
3059
3060 /* hw.mvxpe.mvxpe[unit].rx */
3061 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3062 0, CTLTYPE_NODE, "rx",
3063 SYSCTL_DESCR("Rx Queues"),
3064 NULL, 0, NULL, 0,
3065 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3066 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3067 return;
3068 }
3069 mvxpe_rxqueuenum = node->sysctl_num;
3070
3071 /* hw.mvxpe.mvxpe[unit].tx */
3072 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3073 0, CTLTYPE_NODE, "tx",
3074 SYSCTL_DESCR("Tx Queues"),
3075 NULL, 0, NULL, 0,
3076 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3077 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3078 return;
3079 }
3080 mvxpe_txqueuenum = node->sysctl_num;
3081
3082 #ifdef MVXPE_DEBUG
3083 /* hw.mvxpe.debug */
3084 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3085 CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
3086 SYSCTL_DESCR("mvxpe device driver debug control"),
3087 NULL, 0, &mvxpe_debug, 0,
3088 CTL_HW, mvxpe_root_num, CTL_CREATE, CTL_EOL) != 0) {
3089 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3090 return;
3091 }
3092 #endif
3093 /*
3094 * MIB access
3095 */
3096 /* hw.mvxpe.mvxpe[unit].mib.<mibs> */
3097 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3098 const char *name = mvxpe_mib_list[i].sysctl_name;
3099 const char *desc = mvxpe_mib_list[i].desc;
3100 struct mvxpe_sysctl_mib *mib_arg = &sc->sc_sysctl_mib[i];
3101
3102 mib_arg->sc = sc;
3103 mib_arg->index = i;
3104 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3105 CTLFLAG_READONLY, CTLTYPE_QUAD, name, desc,
3106 sysctl_read_mib, 0, (void *)mib_arg, 0,
3107 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_mibnum,
3108 CTL_CREATE, CTL_EOL) != 0) {
3109 aprint_normal_dev(sc->sc_dev,
3110 "couldn't create sysctl node\n");
3111 break;
3112 }
3113 }
3114
3115 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
3116 struct mvxpe_sysctl_queue *rxarg = &sc->sc_sysctl_rx_queue[q];
3117 struct mvxpe_sysctl_queue *txarg = &sc->sc_sysctl_tx_queue[q];
3118 #define MVXPE_SYSCTL_NAME(num) "queue" # num
3119 static const char *sysctl_queue_names[] = {
3120 MVXPE_SYSCTL_NAME(0), MVXPE_SYSCTL_NAME(1),
3121 MVXPE_SYSCTL_NAME(2), MVXPE_SYSCTL_NAME(3),
3122 MVXPE_SYSCTL_NAME(4), MVXPE_SYSCTL_NAME(5),
3123 MVXPE_SYSCTL_NAME(6), MVXPE_SYSCTL_NAME(7),
3124 };
3125 #undef MVXPE_SYSCTL_NAME
3126 #ifdef SYSCTL_INCLUDE_DESCR
3127 #define MVXPE_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3128 static const char *sysctl_queue_descrs[] = {
3129 MVXPE_SYSCTL_DESCR(0), MVXPE_SYSCTL_DESCR(1),
3130 MVXPE_SYSCTL_DESCR(2), MVXPE_SYSCTL_DESCR(3),
3131 MVXPE_SYSCTL_DESCR(4), MVXPE_SYSCTL_DESCR(5),
3132 MVXPE_SYSCTL_DESCR(6), MVXPE_SYSCTL_DESCR(7),
3133 };
3134 #undef MVXPE_SYSCTL_DESCR
3135 #endif /* SYSCTL_INCLUDE_DESCR */
3136 int mvxpe_curnum;
3137
3138 rxarg->sc = txarg->sc = sc;
3139 rxarg->queue = txarg->queue = q;
3140 rxarg->rxtx = MVXPE_SYSCTL_RX;
3141 txarg->rxtx = MVXPE_SYSCTL_TX;
3142
3143 /* hw.mvxpe.mvxpe[unit].rx.[queue] */
3144 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3145 0, CTLTYPE_NODE,
3146 sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descrs[q]),
3147 NULL, 0, NULL, 0,
3148 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3149 CTL_CREATE, CTL_EOL) != 0) {
3150 aprint_normal_dev(sc->sc_dev,
3151 "couldn't create sysctl node\n");
3152 break;
3153 }
3154 mvxpe_curnum = node->sysctl_num;
3155
3156 /* hw.mvxpe.mvxpe[unit].rx.[queue].length */
3157 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3158 CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3159 SYSCTL_DESCR("maximum length of the queue"),
3160 sysctl_set_queue_length, 0, (void *)rxarg, 0,
3161 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3162 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3163 aprint_normal_dev(sc->sc_dev,
3164 "couldn't create sysctl node\n");
3165 break;
3166 }
3167
3168 /* hw.mvxpe.mvxpe[unit].rx.[queue].threshold_timer_us */
3169 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3170 CTLFLAG_READWRITE, CTLTYPE_INT, "threshold_timer_us",
3171 SYSCTL_DESCR("interrupt coalescing threshold timer [us]"),
3172 sysctl_set_queue_rxthtime, 0, (void *)rxarg, 0,
3173 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3174 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3175 aprint_normal_dev(sc->sc_dev,
3176 "couldn't create sysctl node\n");
3177 break;
3178 }
3179
3180 /* hw.mvxpe.mvxpe[unit].tx.[queue] */
3181 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3182 0, CTLTYPE_NODE,
3183 sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descs[q]),
3184 NULL, 0, NULL, 0,
3185 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3186 CTL_CREATE, CTL_EOL) != 0) {
3187 aprint_normal_dev(sc->sc_dev,
3188 "couldn't create sysctl node\n");
3189 break;
3190 }
3191 mvxpe_curnum = node->sysctl_num;
3192
3193 /* hw.mvxpe.mvxpe[unit].tx.length[queue] */
3194 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3195 CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3196 SYSCTL_DESCR("maximum length of the queue"),
3197 sysctl_set_queue_length, 0, (void *)txarg, 0,
3198 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3199 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3200 aprint_normal_dev(sc->sc_dev,
3201 "couldn't create sysctl node\n");
3202 break;
3203 }
3204 }
3205
3206 /* hw.mvxpe.mvxpe[unit].clear_mib */
3207 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3208 CTLFLAG_READWRITE, CTLTYPE_INT, "clear_mib",
3209 SYSCTL_DESCR("mvxpe device driver debug control"),
3210 sysctl_clear_mib, 0, (void *)sc, 0,
3211 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3212 CTL_EOL) != 0) {
3213 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3214 return;
3215 }
3216
3217 }
3218
3219 /*
3220 * MIB
3221 */
3222 STATIC void
3223 mvxpe_clear_mib(struct mvxpe_softc *sc)
3224 {
3225 int i;
3226
3227 KASSERT_SC_MTX(sc);
3228
3229 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3230 if (mvxpe_mib_list[i].reg64)
3231 MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum + 4));
3232 MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3233 sc->sc_sysctl_mib[i].counter = 0;
3234 }
3235 }
3236
3237 STATIC void
3238 mvxpe_update_mib(struct mvxpe_softc *sc)
3239 {
3240 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3241 int i;
3242
3243 KASSERT_SC_MTX(sc);
3244
3245 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3246 uint32_t val_hi;
3247 uint32_t val_lo;
3248 uint64_t val;
3249
3250 if (mvxpe_mib_list[i].reg64) {
3251 /* XXX: implement bus_space_read_8() */
3252 val_lo = MVXPE_READ_MIB(sc,
3253 (mvxpe_mib_list[i].regnum + 4));
3254 val_hi = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3255 }
3256 else {
3257 val_lo = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3258 val_hi = 0;
3259 }
3260
3261 if ((val_lo | val_hi) == 0)
3262 continue;
3263
3264 val = ((uint64_t)val_hi << 32) | (uint64_t)val_lo;
3265 sc->sc_sysctl_mib[i].counter += val;
3266
3267 switch (mvxpe_mib_list[i].ext) {
3268 case MVXPE_MIBEXT_IF_OERRORS:
3269 ifp->if_oerrors += val;
3270 break;
3271 case MVXPE_MIBEXT_IF_IERRORS:
3272 ifp->if_ierrors += val;
3273 break;
3274 case MVXPE_MIBEXT_IF_COLLISIONS:
3275 ifp->if_collisions += val;
3276 break;
3277 default:
3278 break;
3279 }
3280
3281 }
3282 }
3283
3284 /*
3285 * for Debug
3286 */
3287 STATIC void
3288 mvxpe_dump_txdesc(struct mvxpe_tx_desc *desc, int idx)
3289 {
3290 #define DESC_PRINT(X) \
3291 if (X) \
3292 printf("txdesc[%d]." #X "=%#x\n", idx, X);
3293
3294 DESC_PRINT(desc->command);
3295 DESC_PRINT(desc->l4ichk);
3296 DESC_PRINT(desc->bytecnt);
3297 DESC_PRINT(desc->bufptr);
3298 DESC_PRINT(desc->flags);
3299 #undef DESC_PRINT
3300 }
3301
3302 STATIC void
3303 mvxpe_dump_rxdesc(struct mvxpe_rx_desc *desc, int idx)
3304 {
3305 #define DESC_PRINT(X) \
3306 if (X) \
3307 printf("rxdesc[%d]." #X "=%#x\n", idx, X);
3308
3309 DESC_PRINT(desc->status);
3310 DESC_PRINT(desc->bytecnt);
3311 DESC_PRINT(desc->bufptr);
3312 DESC_PRINT(desc->l4chk);
3313 #undef DESC_PRINT
3314 }
3315