if_mvxpe.c revision 1.44 1 /* $NetBSD: if_mvxpe.c,v 1.44 2025/10/04 04:44:20 thorpej Exp $ */
2 /*
3 * Copyright (c) 2015 Internet Initiative Japan Inc.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: if_mvxpe.c,v 1.44 2025/10/04 04:44:20 thorpej Exp $");
29
30 #include "opt_multiprocessor.h"
31
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/callout.h>
35 #include <sys/device.h>
36 #include <sys/endian.h>
37 #include <sys/errno.h>
38 #include <sys/evcnt.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/mutex.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/syslog.h>
45 #include <sys/rndsource.h>
46
47 #include <net/if.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/bpf.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55
56 #include <dev/mii/mii.h>
57 #include <dev/mii/miivar.h>
58
59 #include <dev/marvell/marvellreg.h>
60 #include <dev/marvell/marvellvar.h>
61 #include <dev/marvell/mvxpbmvar.h>
62 #include <dev/marvell/if_mvxpereg.h>
63 #include <dev/marvell/if_mvxpevar.h>
64
65 #include "locators.h"
66
67 #if BYTE_ORDER == BIG_ENDIAN
68 #error "BIG ENDIAN not supported"
69 #endif
70
71 #ifdef MVXPE_DEBUG
72 #define STATIC /* nothing */
73 #else
74 #define STATIC static
75 #endif
76
77 /* autoconf(9) */
78 STATIC int mvxpe_match(device_t, struct cfdata *, void *);
79 STATIC void mvxpe_attach(device_t, device_t, void *);
80 STATIC int mvxpe_evcnt_attach(struct mvxpe_softc *);
81 CFATTACH_DECL_NEW(mvxpe_mbus, sizeof(struct mvxpe_softc),
82 mvxpe_match, mvxpe_attach, NULL, NULL);
83 STATIC void mvxpe_sc_lock(struct mvxpe_softc *);
84 STATIC void mvxpe_sc_unlock(struct mvxpe_softc *);
85
86 /* MII */
87 STATIC int mvxpe_miibus_readreg(device_t, int, int, uint16_t *);
88 STATIC int mvxpe_miibus_writereg(device_t, int, int, uint16_t);
89 STATIC void mvxpe_miibus_statchg(struct ifnet *);
90
91 /* Address Decoding Window */
92 STATIC void mvxpe_wininit(struct mvxpe_softc *, enum marvell_tags *);
93
94 /* Device Register Initialization */
95 STATIC int mvxpe_initreg(struct ifnet *);
96
97 /* Descriptor Ring Control for each of queues */
98 STATIC void *mvxpe_dma_memalloc(struct mvxpe_softc *, bus_dmamap_t *, size_t);
99 STATIC int mvxpe_ring_alloc_queue(struct mvxpe_softc *, int);
100 STATIC void mvxpe_ring_dealloc_queue(struct mvxpe_softc *, int);
101 STATIC void mvxpe_ring_init_queue(struct mvxpe_softc *, int);
102 STATIC void mvxpe_ring_flush_queue(struct mvxpe_softc *, int);
103 STATIC void mvxpe_ring_sync_rx(struct mvxpe_softc *, int, int, int, int);
104 STATIC void mvxpe_ring_sync_tx(struct mvxpe_softc *, int, int, int, int);
105
106 /* Rx/Tx Queue Control */
107 STATIC int mvxpe_rx_queue_init(struct ifnet *, int);
108 STATIC int mvxpe_tx_queue_init(struct ifnet *, int);
109 STATIC int mvxpe_rx_queue_enable(struct ifnet *, int);
110 STATIC int mvxpe_tx_queue_enable(struct ifnet *, int);
111 STATIC void mvxpe_rx_lockq(struct mvxpe_softc *, int);
112 STATIC void mvxpe_rx_unlockq(struct mvxpe_softc *, int);
113 STATIC void mvxpe_tx_lockq(struct mvxpe_softc *, int);
114 STATIC void mvxpe_tx_unlockq(struct mvxpe_softc *, int);
115
116 /* Interrupt Handlers */
117 STATIC void mvxpe_disable_intr(struct mvxpe_softc *);
118 STATIC void mvxpe_enable_intr(struct mvxpe_softc *);
119 STATIC int mvxpe_rxtxth_intr(void *);
120 STATIC int mvxpe_misc_intr(void *);
121 STATIC int mvxpe_rxtx_intr(void *);
122 STATIC void mvxpe_tick(void *);
123
124 /* struct ifnet and mii callbacks*/
125 STATIC void mvxpe_start(struct ifnet *);
126 STATIC int mvxpe_ioctl(struct ifnet *, u_long, void *);
127 STATIC int mvxpe_init(struct ifnet *);
128 STATIC void mvxpe_stop(struct ifnet *, int);
129 STATIC void mvxpe_watchdog(struct ifnet *);
130 STATIC int mvxpe_ifflags_cb(struct ethercom *);
131 STATIC int mvxpe_mediachange(struct ifnet *);
132 STATIC void mvxpe_mediastatus(struct ifnet *, struct ifmediareq *);
133
134 /* Link State Notify */
135 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc);
136 STATIC void mvxpe_linkup(struct mvxpe_softc *);
137 STATIC void mvxpe_linkdown(struct mvxpe_softc *);
138 STATIC void mvxpe_linkreset(struct mvxpe_softc *);
139
140 /* Tx Subroutines */
141 STATIC int mvxpe_tx_queue_select(struct mvxpe_softc *, struct mbuf *);
142 STATIC int mvxpe_tx_queue(struct mvxpe_softc *, struct mbuf *, int);
143 STATIC void mvxpe_tx_set_csumflag(struct ifnet *,
144 struct mvxpe_tx_desc *, struct mbuf *);
145 STATIC void mvxpe_tx_complete(struct mvxpe_softc *, uint32_t);
146 STATIC void mvxpe_tx_queue_complete(struct mvxpe_softc *, int);
147
148 /* Rx Subroutines */
149 STATIC void mvxpe_rx(struct mvxpe_softc *, uint32_t);
150 STATIC void mvxpe_rx_queue(struct mvxpe_softc *, int, int);
151 STATIC int mvxpe_rx_queue_select(struct mvxpe_softc *, uint32_t, int *);
152 STATIC void mvxpe_rx_refill(struct mvxpe_softc *, uint32_t);
153 STATIC void mvxpe_rx_queue_refill(struct mvxpe_softc *, int);
154 STATIC int mvxpe_rx_queue_add(struct mvxpe_softc *, int);
155 STATIC void mvxpe_rx_set_csumflag(struct ifnet *,
156 struct mvxpe_rx_desc *, struct mbuf *);
157
158 /* MAC address filter */
159 STATIC uint8_t mvxpe_crc8(const uint8_t *, size_t);
160 STATIC void mvxpe_filter_setup(struct mvxpe_softc *);
161
162 /* sysctl(9) */
163 STATIC int sysctl_read_mib(SYSCTLFN_PROTO);
164 STATIC int sysctl_clear_mib(SYSCTLFN_PROTO);
165 STATIC int sysctl_set_queue_length(SYSCTLFN_PROTO);
166 STATIC int sysctl_set_queue_rxthtime(SYSCTLFN_PROTO);
167 STATIC void sysctl_mvxpe_init(struct mvxpe_softc *);
168
169 /* MIB */
170 STATIC void mvxpe_clear_mib(struct mvxpe_softc *);
171 STATIC void mvxpe_update_mib(struct mvxpe_softc *);
172
173 /* for Debug */
174 STATIC void mvxpe_dump_txdesc(struct mvxpe_tx_desc *, int) __attribute__((__unused__));
175 STATIC void mvxpe_dump_rxdesc(struct mvxpe_rx_desc *, int) __attribute__((__unused__));
176
177 STATIC int mvxpe_root_num;
178 STATIC kmutex_t mii_mutex;
179 STATIC int mii_init = 0;
180 #ifdef MVXPE_DEBUG
181 STATIC int mvxpe_debug = MVXPE_DEBUG;
182 #endif
183
184 /*
185 * List of MIB register and names
186 */
187 STATIC struct mvxpe_mib_def {
188 uint32_t regnum;
189 int reg64;
190 const char *sysctl_name;
191 const char *desc;
192 int ext;
193 #define MVXPE_MIBEXT_IF_OERRORS 1
194 #define MVXPE_MIBEXT_IF_IERRORS 2
195 #define MVXPE_MIBEXT_IF_COLLISIONS 3
196 } mvxpe_mib_list[] = {
197 {MVXPE_MIB_RX_GOOD_OCT, 1, "rx_good_oct",
198 "Good Octets Rx", 0},
199 {MVXPE_MIB_RX_BAD_OCT, 0, "rx_bad_oct",
200 "Bad Octets Rx", 0},
201 {MVXPE_MIB_TX_MAC_TRNS_ERR, 0, "tx_mac_err",
202 "MAC Transmit Error", MVXPE_MIBEXT_IF_OERRORS},
203 {MVXPE_MIB_RX_GOOD_FRAME, 0, "rx_good_frame",
204 "Good Frames Rx", 0},
205 {MVXPE_MIB_RX_BAD_FRAME, 0, "rx_bad_frame",
206 "Bad Frames Rx", 0},
207 {MVXPE_MIB_RX_BCAST_FRAME, 0, "rx_bcast_frame",
208 "Broadcast Frames Rx", 0},
209 {MVXPE_MIB_RX_MCAST_FRAME, 0, "rx_mcast_frame",
210 "Multicast Frames Rx", 0},
211 {MVXPE_MIB_RX_FRAME64_OCT, 0, "rx_frame_1_64",
212 "Frame Size 1 - 64", 0},
213 {MVXPE_MIB_RX_FRAME127_OCT, 0, "rx_frame_65_127",
214 "Frame Size 65 - 127", 0},
215 {MVXPE_MIB_RX_FRAME255_OCT, 0, "rx_frame_128_255",
216 "Frame Size 128 - 255", 0},
217 {MVXPE_MIB_RX_FRAME511_OCT, 0, "rx_frame_256_511",
218 "Frame Size 256 - 511"},
219 {MVXPE_MIB_RX_FRAME1023_OCT, 0, "rx_frame_512_1023",
220 "Frame Size 512 - 1023", 0},
221 {MVXPE_MIB_RX_FRAMEMAX_OCT, 0, "rx_frame_1024_max",
222 "Frame Size 1024 - Max", 0},
223 {MVXPE_MIB_TX_GOOD_OCT, 1, "tx_good_oct",
224 "Good Octets Tx", 0},
225 {MVXPE_MIB_TX_GOOD_FRAME, 0, "tx_good_frame",
226 "Good Frames Tx", 0},
227 {MVXPE_MIB_TX_EXCES_COL, 0, "tx_exces_collision",
228 "Excessive Collision", MVXPE_MIBEXT_IF_OERRORS},
229 {MVXPE_MIB_TX_MCAST_FRAME, 0, "tx_mcast_frame",
230 "Multicast Frames Tx"},
231 {MVXPE_MIB_TX_BCAST_FRAME, 0, "tx_bcast_frame",
232 "Broadcast Frames Tx"},
233 {MVXPE_MIB_TX_MAC_CTL_ERR, 0, "tx_mac_err",
234 "Unknown MAC Control", 0},
235 {MVXPE_MIB_FC_SENT, 0, "fc_tx",
236 "Flow Control Tx", 0},
237 {MVXPE_MIB_FC_GOOD, 0, "fc_rx_good",
238 "Good Flow Control Rx", 0},
239 {MVXPE_MIB_FC_BAD, 0, "fc_rx_bad",
240 "Bad Flow Control Rx", 0},
241 {MVXPE_MIB_PKT_UNDERSIZE, 0, "pkt_undersize",
242 "Undersized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
243 {MVXPE_MIB_PKT_FRAGMENT, 0, "pkt_fragment",
244 "Fragmented Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
245 {MVXPE_MIB_PKT_OVERSIZE, 0, "pkt_oversize",
246 "Oversized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
247 {MVXPE_MIB_PKT_JABBER, 0, "pkt_jabber",
248 "Jabber Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
249 {MVXPE_MIB_MAC_RX_ERR, 0, "mac_rx_err",
250 "MAC Rx Errors", MVXPE_MIBEXT_IF_IERRORS},
251 {MVXPE_MIB_MAC_CRC_ERR, 0, "mac_crc_err",
252 "MAC CRC Errors", MVXPE_MIBEXT_IF_IERRORS},
253 {MVXPE_MIB_MAC_COL, 0, "mac_collision",
254 "MAC Collision", MVXPE_MIBEXT_IF_COLLISIONS},
255 {MVXPE_MIB_MAC_LATE_COL, 0, "mac_late_collision",
256 "MAC Late Collision", MVXPE_MIBEXT_IF_OERRORS},
257 };
258
259 /*
260 * autoconf(9)
261 */
262 /* ARGSUSED */
263 STATIC int
264 mvxpe_match(device_t parent, cfdata_t match, void *aux)
265 {
266 struct marvell_attach_args *mva = aux;
267 bus_size_t pv_off;
268 uint32_t pv;
269
270 if (strcmp(mva->mva_name, match->cf_name) != 0)
271 return 0;
272 if (mva->mva_offset == MVA_OFFSET_DEFAULT)
273 return 0;
274
275 /* check port version */
276 pv_off = mva->mva_offset + MVXPE_PV;
277 pv = bus_space_read_4(mva->mva_iot, mva->mva_ioh, pv_off);
278 if (MVXPE_PV_GET_VERSION(pv) < 0x10)
279 return 0; /* old version is not supported */
280
281 return 1;
282 }
283
284 /* ARGSUSED */
285 STATIC void
286 mvxpe_attach(device_t parent, device_t self, void *aux)
287 {
288 struct mvxpe_softc *sc = device_private(self);
289 struct mii_softc *child;
290 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
291 struct mii_data * const mii = &sc->sc_mii;
292 struct marvell_attach_args *mva = aux;
293 uint32_t phyaddr, maddrh, maddrl;
294 uint8_t enaddr[ETHER_ADDR_LEN];
295 int q;
296
297 aprint_naive("\n");
298 aprint_normal(": Marvell ARMADA GbE Controller\n");
299 memset(sc, 0, sizeof(*sc));
300 sc->sc_dev = self;
301 sc->sc_port = mva->mva_unit;
302 sc->sc_iot = mva->mva_iot;
303 sc->sc_dmat = mva->mva_dmat;
304 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
305 callout_init(&sc->sc_tick_ch, 0);
306 callout_setfunc(&sc->sc_tick_ch, mvxpe_tick, sc);
307
308 /*
309 * BUS space
310 */
311 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
312 mva->mva_offset, mva->mva_size, &sc->sc_ioh)) {
313 aprint_error_dev(self, "Cannot map registers\n");
314 goto fail;
315 }
316 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
317 mva->mva_offset + MVXPE_PORTMIB_BASE, MVXPE_PORTMIB_SIZE,
318 &sc->sc_mibh)) {
319 aprint_error_dev(self,
320 "Cannot map destination address filter registers\n");
321 goto fail;
322 }
323 sc->sc_version = MVXPE_READ(sc, MVXPE_PV);
324 aprint_normal_dev(self, "Port Version %#x\n", sc->sc_version);
325
326 /*
327 * Buffer Manager(BM) subsystem.
328 */
329 sc->sc_bm = mvxpbm_device(mva);
330 if (sc->sc_bm == NULL) {
331 aprint_error_dev(self, "no Buffer Manager.\n");
332 goto fail;
333 }
334 aprint_normal_dev(self,
335 "Using Buffer Manager: %s\n", mvxpbm_xname(sc->sc_bm));
336 aprint_normal_dev(sc->sc_dev,
337 "%zu kbytes managed buffer, %zu bytes * %u entries allocated.\n",
338 mvxpbm_buf_size(sc->sc_bm) / 1024,
339 mvxpbm_chunk_size(sc->sc_bm), mvxpbm_chunk_count(sc->sc_bm));
340
341 /*
342 * make sure DMA engines are in reset state
343 */
344 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
345 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
346
347 /*
348 * Address decoding window
349 */
350 mvxpe_wininit(sc, mva->mva_tags);
351
352 /*
353 * MAC address
354 */
355 if (ether_getaddr(self, enaddr)) {
356 maddrh = enaddr[0] << 24;
357 maddrh |= enaddr[1] << 16;
358 maddrh |= enaddr[2] << 8;
359 maddrh |= enaddr[3];
360 maddrl = enaddr[4] << 8;
361 maddrl |= enaddr[5];
362 MVXPE_WRITE(sc, MVXPE_MACAH, maddrh);
363 MVXPE_WRITE(sc, MVXPE_MACAL, maddrl);
364 }
365 else {
366 /*
367 * even if enaddr is not found in device properties,
368 * the port may be initialized by IPL program such as U-BOOT.
369 */
370 maddrh = MVXPE_READ(sc, MVXPE_MACAH);
371 maddrl = MVXPE_READ(sc, MVXPE_MACAL);
372 if ((maddrh | maddrl) == 0) {
373 aprint_error_dev(self, "No Ethernet address\n");
374 return;
375 }
376 }
377 sc->sc_enaddr[0] = maddrh >> 24;
378 sc->sc_enaddr[1] = maddrh >> 16;
379 sc->sc_enaddr[2] = maddrh >> 8;
380 sc->sc_enaddr[3] = maddrh >> 0;
381 sc->sc_enaddr[4] = maddrl >> 8;
382 sc->sc_enaddr[5] = maddrl >> 0;
383 aprint_normal_dev(self, "Ethernet address %s\n",
384 ether_sprintf(sc->sc_enaddr));
385
386 /*
387 * Register interrupt handlers
388 * XXX: handle Ethernet unit intr. and Error intr.
389 */
390 mvxpe_disable_intr(sc);
391 marvell_intr_establish(mva->mva_irq, IPL_NET, mvxpe_rxtxth_intr, sc);
392
393 /*
394 * MIB buffer allocation
395 */
396 sc->sc_sysctl_mib_size =
397 __arraycount(mvxpe_mib_list) * sizeof(struct mvxpe_sysctl_mib);
398 sc->sc_sysctl_mib = kmem_alloc(sc->sc_sysctl_mib_size, KM_SLEEP);
399 memset(sc->sc_sysctl_mib, 0, sc->sc_sysctl_mib_size);
400
401 /*
402 * Device DMA Buffer allocation
403 */
404 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
405 if (mvxpe_ring_alloc_queue(sc, q) != 0)
406 goto fail;
407 mvxpe_ring_init_queue(sc, q);
408 }
409
410 /*
411 * We can support 802.1Q VLAN-sized frames and jumbo
412 * Ethernet frames.
413 */
414 sc->sc_ethercom.ec_capabilities |=
415 ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
416 ifp->if_softc = sc;
417 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
418 ifp->if_start = mvxpe_start;
419 ifp->if_ioctl = mvxpe_ioctl;
420 ifp->if_init = mvxpe_init;
421 ifp->if_stop = mvxpe_stop;
422 ifp->if_watchdog = mvxpe_watchdog;
423
424 /*
425 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
426 */
427 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
428 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
429 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
430 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
431 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx;
432 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx;
433 ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Tx;
434 ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Rx;
435 ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Tx;
436 ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Rx;
437
438 /*
439 * Initialize struct ifnet
440 */
441 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(MVXPE_TX_RING_CNT - 1, IFQ_MAXLEN));
442 IFQ_SET_READY(&ifp->if_snd);
443 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
444
445 /*
446 * Enable DMA engines and Initialize Device Registers.
447 */
448 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
449 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
450 MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
451 mvxpe_sc_lock(sc); /* XXX */
452 mvxpe_filter_setup(sc);
453 mvxpe_sc_unlock(sc);
454 mvxpe_initreg(ifp);
455
456 /*
457 * Now MAC is working, setup MII.
458 */
459 if (mii_init == 0) {
460 /*
461 * MII bus is shared by all MACs and all PHYs in SoC.
462 * serializing the bus access should be safe.
463 */
464 mutex_init(&mii_mutex, MUTEX_DEFAULT, IPL_NET);
465 mii_init = 1;
466 }
467 mii->mii_ifp = ifp;
468 mii->mii_readreg = mvxpe_miibus_readreg;
469 mii->mii_writereg = mvxpe_miibus_writereg;
470 mii->mii_statchg = mvxpe_miibus_statchg;
471
472 sc->sc_ethercom.ec_mii = mii;
473 ifmedia_init(&mii->mii_media, 0, mvxpe_mediachange, mvxpe_mediastatus);
474 /*
475 * XXX: phy addressing highly depends on Board Design.
476 * we assume phyaddress == MAC unit number here,
477 * but some boards may not.
478 */
479 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, device_unit(sc->sc_dev),
480 0);
481 child = LIST_FIRST(&mii->mii_phys);
482 if (child == NULL) {
483 aprint_error_dev(self, "no PHY found!\n");
484 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
485 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
486 } else {
487 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
488 phyaddr = MVXPE_PHYADDR_PHYAD(child->mii_phy);
489 MVXPE_WRITE(sc, MVXPE_PHYADDR, phyaddr);
490 DPRINTSC(sc, 1, "PHYADDR: %#x\n", MVXPE_READ(sc, MVXPE_PHYADDR));
491 }
492
493 /*
494 * Call MI attach routines.
495 */
496 if_attach(ifp);
497 if_deferred_start_init(ifp, NULL);
498
499 ether_ifattach(ifp, sc->sc_enaddr);
500 ether_set_ifflags_cb(&sc->sc_ethercom, mvxpe_ifflags_cb);
501
502 sysctl_mvxpe_init(sc);
503 mvxpe_evcnt_attach(sc);
504 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
505 RND_TYPE_NET, RND_FLAG_DEFAULT);
506
507 return;
508
509 fail:
510 for (q = 0; q < MVXPE_QUEUE_SIZE; q++)
511 mvxpe_ring_dealloc_queue(sc, q);
512 if (sc->sc_sysctl_mib)
513 kmem_free(sc->sc_sysctl_mib, sc->sc_sysctl_mib_size);
514
515 return;
516 }
517
518 STATIC int
519 mvxpe_evcnt_attach(struct mvxpe_softc *sc)
520 {
521 #ifdef MVXPE_EVENT_COUNTERS
522 int q;
523
524 /* Master Interrupt Handler */
525 evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtxth, EVCNT_TYPE_INTR,
526 NULL, device_xname(sc->sc_dev), "RxTxTH Intr.");
527 evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtx, EVCNT_TYPE_INTR,
528 NULL, device_xname(sc->sc_dev), "RxTx Intr.");
529 evcnt_attach_dynamic(&sc->sc_ev.ev_i_misc, EVCNT_TYPE_INTR,
530 NULL, device_xname(sc->sc_dev), "MISC Intr.");
531
532 /* RXTXTH Interrupt */
533 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtxth_txerr, EVCNT_TYPE_INTR,
534 NULL, device_xname(sc->sc_dev), "RxTxTH Tx error summary");
535
536 /* MISC Interrupt */
537 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_phystatuschng, EVCNT_TYPE_INTR,
538 NULL, device_xname(sc->sc_dev), "MISC phy status changed");
539 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_linkchange, EVCNT_TYPE_INTR,
540 NULL, device_xname(sc->sc_dev), "MISC link status changed");
541 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_iae, EVCNT_TYPE_INTR,
542 NULL, device_xname(sc->sc_dev), "MISC internal address error");
543 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxoverrun, EVCNT_TYPE_INTR,
544 NULL, device_xname(sc->sc_dev), "MISC Rx FIFO overrun");
545 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxcrc, EVCNT_TYPE_INTR,
546 NULL, device_xname(sc->sc_dev), "MISC Rx CRC error");
547 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxlargepacket, EVCNT_TYPE_INTR,
548 NULL, device_xname(sc->sc_dev), "MISC Rx too large frame");
549 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txunderrun, EVCNT_TYPE_INTR,
550 NULL, device_xname(sc->sc_dev), "MISC Tx FIFO underrun");
551 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_prbserr, EVCNT_TYPE_INTR,
552 NULL, device_xname(sc->sc_dev), "MISC SERDES loopback test err");
553 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_srse, EVCNT_TYPE_INTR,
554 NULL, device_xname(sc->sc_dev), "MISC SERDES sync error");
555 evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txreq, EVCNT_TYPE_INTR,
556 NULL, device_xname(sc->sc_dev), "MISC Tx resource error");
557
558 /* RxTx Interrupt */
559 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rreq, EVCNT_TYPE_INTR,
560 NULL, device_xname(sc->sc_dev), "RxTx Rx resource error");
561 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rpq, EVCNT_TYPE_INTR,
562 NULL, device_xname(sc->sc_dev), "RxTx Rx packet");
563 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_tbrq, EVCNT_TYPE_INTR,
564 NULL, device_xname(sc->sc_dev), "RxTx Tx complete");
565 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rxtxth, EVCNT_TYPE_INTR,
566 NULL, device_xname(sc->sc_dev), "RxTx RxTxTH summary");
567 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_txerr, EVCNT_TYPE_INTR,
568 NULL, device_xname(sc->sc_dev), "RxTx Tx error summary");
569 evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_misc, EVCNT_TYPE_INTR,
570 NULL, device_xname(sc->sc_dev), "RxTx MISC summary");
571
572 /* Link */
573 evcnt_attach_dynamic(&sc->sc_ev.ev_link_up, EVCNT_TYPE_MISC,
574 NULL, device_xname(sc->sc_dev), "link up");
575 evcnt_attach_dynamic(&sc->sc_ev.ev_link_down, EVCNT_TYPE_MISC,
576 NULL, device_xname(sc->sc_dev), "link down");
577
578 /* Rx Descriptor */
579 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_ce, EVCNT_TYPE_MISC,
580 NULL, device_xname(sc->sc_dev), "Rx CRC error counter");
581 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_or, EVCNT_TYPE_MISC,
582 NULL, device_xname(sc->sc_dev), "Rx FIFO overrun counter");
583 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_mf, EVCNT_TYPE_MISC,
584 NULL, device_xname(sc->sc_dev), "Rx too large frame counter");
585 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_re, EVCNT_TYPE_MISC,
586 NULL, device_xname(sc->sc_dev), "Rx resource error counter");
587 evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_scat, EVCNT_TYPE_MISC,
588 NULL, device_xname(sc->sc_dev), "Rx unexpected scatter bufs");
589
590 /* Tx Descriptor */
591 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_lc, EVCNT_TYPE_MISC,
592 NULL, device_xname(sc->sc_dev), "Tx late collision counter");
593 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_rl, EVCNT_TYPE_MISC,
594 NULL, device_xname(sc->sc_dev), "Tx excess. collision counter");
595 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_ur, EVCNT_TYPE_MISC,
596 NULL, device_xname(sc->sc_dev), "Tx FIFO underrun counter");
597 evcnt_attach_dynamic(&sc->sc_ev.ev_txd_oth, EVCNT_TYPE_MISC,
598 NULL, device_xname(sc->sc_dev), "Tx unknown error counter");
599
600 /* Status Registers */
601 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pdfc, EVCNT_TYPE_MISC,
602 NULL, device_xname(sc->sc_dev), "Rx discard counter");
603 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pofc, EVCNT_TYPE_MISC,
604 NULL, device_xname(sc->sc_dev), "Rx overrun counter");
605 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txbadfcs, EVCNT_TYPE_MISC,
606 NULL, device_xname(sc->sc_dev), "Tx bad FCS counter");
607 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txdropped, EVCNT_TYPE_MISC,
608 NULL, device_xname(sc->sc_dev), "Tx dropped counter");
609 evcnt_attach_dynamic(&sc->sc_ev.ev_reg_lpic, EVCNT_TYPE_MISC,
610 NULL, device_xname(sc->sc_dev), "LP_IDLE counter");
611
612 /* Device Driver Errors */
613 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_wdogsoft, EVCNT_TYPE_MISC,
614 NULL, device_xname(sc->sc_dev), "watchdog timer expired");
615 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txerr, EVCNT_TYPE_MISC,
616 NULL, device_xname(sc->sc_dev), "Tx descriptor alloc failed");
617 #define MVXPE_QUEUE_DESC(q) "Rx success in queue " # q
618 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
619 static const char *rxq_desc[] = {
620 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
621 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
622 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
623 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
624 };
625 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxq[q], EVCNT_TYPE_MISC,
626 NULL, device_xname(sc->sc_dev), rxq_desc[q]);
627 }
628 #undef MVXPE_QUEUE_DESC
629 #define MVXPE_QUEUE_DESC(q) "Tx success in queue " # q
630 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
631 static const char *txq_desc[] = {
632 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
633 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
634 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
635 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
636 };
637 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txq[q], EVCNT_TYPE_MISC,
638 NULL, device_xname(sc->sc_dev), txq_desc[q]);
639 }
640 #undef MVXPE_QUEUE_DESC
641 #define MVXPE_QUEUE_DESC(q) "Rx error in queue " # q
642 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
643 static const char *rxqe_desc[] = {
644 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
645 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
646 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
647 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
648 };
649 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxqe[q], EVCNT_TYPE_MISC,
650 NULL, device_xname(sc->sc_dev), rxqe_desc[q]);
651 }
652 #undef MVXPE_QUEUE_DESC
653 #define MVXPE_QUEUE_DESC(q) "Tx error in queue " # q
654 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
655 static const char *txqe_desc[] = {
656 MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
657 MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
658 MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
659 MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
660 };
661 evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txqe[q], EVCNT_TYPE_MISC,
662 NULL, device_xname(sc->sc_dev), txqe_desc[q]);
663 }
664 #undef MVXPE_QUEUE_DESC
665
666 #endif /* MVXPE_EVENT_COUNTERS */
667 return 0;
668 }
669
670 STATIC void
671 mvxpe_sc_lock(struct mvxpe_softc *sc)
672 {
673 mutex_enter(&sc->sc_mtx);
674 }
675
676 STATIC void
677 mvxpe_sc_unlock(struct mvxpe_softc *sc)
678 {
679 mutex_exit(&sc->sc_mtx);
680 }
681
682 /*
683 * MII
684 */
685 STATIC int
686 mvxpe_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
687 {
688 struct mvxpe_softc *sc = device_private(dev);
689 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
690 uint32_t smi;
691 int i, rv = 0;
692
693 mutex_enter(&mii_mutex);
694
695 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
696 DELAY(1);
697 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
698 break;
699 }
700 if (i == MVXPE_PHY_TIMEOUT) {
701 aprint_error_ifnet(ifp, "SMI busy timeout\n");
702 rv = ETIMEDOUT;
703 goto out;
704 }
705
706 smi =
707 MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) | MVXPE_SMI_OPCODE_READ;
708 MVXPE_WRITE(sc, MVXPE_SMI, smi);
709
710 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
711 DELAY(1);
712 smi = MVXPE_READ(sc, MVXPE_SMI);
713 if (smi & MVXPE_SMI_READVALID) {
714 *val = smi & MVXPE_SMI_DATA_MASK;
715 break;
716 }
717 }
718 DPRINTDEV(dev, 9, "i=%d, timeout=%d\n", i, MVXPE_PHY_TIMEOUT);
719 if (i >= MVXPE_PHY_TIMEOUT)
720 rv = ETIMEDOUT;
721
722 out:
723 mutex_exit(&mii_mutex);
724
725 DPRINTDEV(dev, 9, "phy=%d, reg=%#x, val=%#hx\n", phy, reg, *val);
726
727 return rv;
728 }
729
730 STATIC int
731 mvxpe_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
732 {
733 struct mvxpe_softc *sc = device_private(dev);
734 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
735 uint32_t smi;
736 int i, rv = 0;
737
738 DPRINTDEV(dev, 9, "phy=%d reg=%#x val=%#hx\n", phy, reg, val);
739
740 mutex_enter(&mii_mutex);
741
742 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
743 DELAY(1);
744 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
745 break;
746 }
747 if (i == MVXPE_PHY_TIMEOUT) {
748 aprint_error_ifnet(ifp, "SMI busy timeout\n");
749 rv = ETIMEDOUT;
750 goto out;
751 }
752
753 smi = MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) |
754 MVXPE_SMI_OPCODE_WRITE | (val & MVXPE_SMI_DATA_MASK);
755 MVXPE_WRITE(sc, MVXPE_SMI, smi);
756
757 for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
758 DELAY(1);
759 if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
760 break;
761 }
762
763 if (i == MVXPE_PHY_TIMEOUT) {
764 aprint_error_ifnet(ifp, "phy write timed out\n");
765 rv = ETIMEDOUT;
766 }
767
768 out:
769 mutex_exit(&mii_mutex);
770
771 return rv;
772 }
773
774 STATIC void
775 mvxpe_miibus_statchg(struct ifnet *ifp)
776 {
777
778 /* nothing to do */
779 }
780
781 /*
782 * Address Decoding Window
783 */
784 STATIC void
785 mvxpe_wininit(struct mvxpe_softc *sc, enum marvell_tags *tags)
786 {
787 device_t pdev = device_parent(sc->sc_dev);
788 uint64_t base;
789 uint32_t en, ac, size;
790 int window, target, attr, rv, i;
791
792 /* First disable all address decode windows */
793 en = MVXPE_BARE_EN_MASK;
794 MVXPE_WRITE(sc, MVXPE_BARE, en);
795
796 ac = 0;
797 for (window = 0, i = 0;
798 tags[i] != MARVELL_TAG_UNDEFINED && window < MVXPE_NWINDOW; i++) {
799 rv = marvell_winparams_by_tag(pdev, tags[i],
800 &target, &attr, &base, &size);
801 if (rv != 0 || size == 0)
802 continue;
803
804 if (base > 0xffffffffULL) {
805 if (window >= MVXPE_NREMAP) {
806 aprint_error_dev(sc->sc_dev,
807 "can't remap window %d\n", window);
808 continue;
809 }
810 MVXPE_WRITE(sc, MVXPE_HA(window),
811 (base >> 32) & 0xffffffff);
812 }
813
814 MVXPE_WRITE(sc, MVXPE_BASEADDR(window),
815 MVXPE_BASEADDR_TARGET(target) |
816 MVXPE_BASEADDR_ATTR(attr) |
817 MVXPE_BASEADDR_BASE(base));
818 MVXPE_WRITE(sc, MVXPE_S(window), MVXPE_S_SIZE(size));
819
820 DPRINTSC(sc, 1, "Window %d Base 0x%016llx: Size 0x%08x\n",
821 window, base, size);
822
823 en &= ~(1 << window);
824 /* set full access (r/w) */
825 ac |= MVXPE_EPAP_EPAR(window, MVXPE_EPAP_AC_FA);
826 window++;
827 }
828 /* allow to access decode window */
829 MVXPE_WRITE(sc, MVXPE_EPAP, ac);
830
831 MVXPE_WRITE(sc, MVXPE_BARE, en);
832 }
833
834 /*
835 * Device Register Initialization
836 * reset device registers to device driver default value.
837 * the device is not enabled here.
838 */
839 STATIC int
840 mvxpe_initreg(struct ifnet *ifp)
841 {
842 struct mvxpe_softc *sc = ifp->if_softc;
843 int serdes = 0;
844 uint32_t reg;
845 int q, i;
846
847 DPRINTIFNET(ifp, 1, "initializing device register\n");
848
849 /* Init TX/RX Queue Registers */
850 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
851 mvxpe_rx_lockq(sc, q);
852 if (mvxpe_rx_queue_init(ifp, q) != 0) {
853 aprint_error_ifnet(ifp,
854 "initialization failed: cannot initialize queue\n");
855 mvxpe_rx_unlockq(sc, q);
856 return ENOBUFS;
857 }
858 mvxpe_rx_unlockq(sc, q);
859
860 mvxpe_tx_lockq(sc, q);
861 if (mvxpe_tx_queue_init(ifp, q) != 0) {
862 aprint_error_ifnet(ifp,
863 "initialization failed: cannot initialize queue\n");
864 mvxpe_tx_unlockq(sc, q);
865 return ENOBUFS;
866 }
867 mvxpe_tx_unlockq(sc, q);
868 }
869
870 /* Tx MTU Limit */
871 MVXPE_WRITE(sc, MVXPE_TXMTU, MVXPE_MTU);
872
873 /* Check SGMII or SERDES(assume IPL/U-BOOT initialize this) */
874 reg = MVXPE_READ(sc, MVXPE_PMACC0);
875 if ((reg & MVXPE_PMACC0_PORTTYPE) != 0)
876 serdes = 1;
877
878 /* Ethernet Unit Control */
879 reg = MVXPE_READ(sc, MVXPE_EUC);
880 reg |= MVXPE_EUC_POLLING;
881 MVXPE_WRITE(sc, MVXPE_EUC, reg);
882
883 /* Auto Negotiation */
884 reg = MVXPE_PANC_MUSTSET; /* must write 0x1 */
885 reg |= MVXPE_PANC_FORCELINKFAIL;/* force link state down */
886 reg |= MVXPE_PANC_ANSPEEDEN; /* interface speed negotiation */
887 reg |= MVXPE_PANC_ANDUPLEXEN; /* negotiate duplex mode */
888 if (serdes) {
889 reg |= MVXPE_PANC_INBANDANEN; /* In Band negotiation */
890 reg |= MVXPE_PANC_INBANDANBYPASSEN; /* bypass negotiation */
891 reg |= MVXPE_PANC_SETFULLDX; /* set full-duplex on failure */
892 }
893 MVXPE_WRITE(sc, MVXPE_PANC, reg);
894
895 /* EEE: Low Power Idle */
896 reg = MVXPE_LPIC0_LILIMIT(MVXPE_LPI_LI);
897 reg |= MVXPE_LPIC0_TSLIMIT(MVXPE_LPI_TS);
898 MVXPE_WRITE(sc, MVXPE_LPIC0, reg);
899
900 reg = MVXPE_LPIC1_TWLIMIT(MVXPE_LPI_TS);
901 MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
902
903 reg = MVXPE_LPIC2_MUSTSET;
904 MVXPE_WRITE(sc, MVXPE_LPIC2, reg);
905
906 /* Port MAC Control set 0 */
907 reg = MVXPE_PMACC0_MUSTSET; /* must write 0x1 */
908 reg &= ~MVXPE_PMACC0_PORTEN; /* port is still disabled */
909 reg |= MVXPE_PMACC0_FRAMESIZELIMIT(MVXPE_MRU);
910 if (serdes)
911 reg |= MVXPE_PMACC0_PORTTYPE;
912 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
913
914 /* Port MAC Control set 1 is only used for loop-back test */
915
916 /* Port MAC Control set 2 */
917 reg = MVXPE_READ(sc, MVXPE_PMACC2);
918 reg &= (MVXPE_PMACC2_PCSEN | MVXPE_PMACC2_RGMIIEN);
919 reg |= MVXPE_PMACC2_MUSTSET;
920 MVXPE_WRITE(sc, MVXPE_PMACC2, reg);
921
922 /* Port MAC Control set 3 is used for IPG tune */
923
924 /* Port MAC Control set 4 is not used */
925
926 /* Port Configuration */
927 /* Use queue 0 only */
928 reg = MVXPE_READ(sc, MVXPE_PXC);
929 reg &= ~(MVXPE_PXC_RXQ_MASK | MVXPE_PXC_RXQARP_MASK |
930 MVXPE_PXC_TCPQ_MASK | MVXPE_PXC_UDPQ_MASK | MVXPE_PXC_BPDUQ_MASK);
931 MVXPE_WRITE(sc, MVXPE_PXC, reg);
932
933 /* Port Configuration Extended: enable Tx CRC generation */
934 reg = MVXPE_READ(sc, MVXPE_PXCX);
935 reg &= ~MVXPE_PXCX_TXCRCDIS;
936 MVXPE_WRITE(sc, MVXPE_PXCX, reg);
937
938 /* clear MIB counter registers(clear by read) */
939 for (i = 0; i < __arraycount(mvxpe_mib_list); i++)
940 MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum));
941
942 /* Set SDC register except IPGINT bits */
943 reg = MVXPE_SDC_RXBSZ_16_64BITWORDS;
944 reg |= MVXPE_SDC_TXBSZ_16_64BITWORDS;
945 reg |= MVXPE_SDC_BLMR;
946 reg |= MVXPE_SDC_BLMT;
947 MVXPE_WRITE(sc, MVXPE_SDC, reg);
948
949 return 0;
950 }
951
952 /*
953 * Descriptor Ring Controls for each of queues
954 */
955 STATIC void *
956 mvxpe_dma_memalloc(struct mvxpe_softc *sc, bus_dmamap_t *map, size_t size)
957 {
958 bus_dma_segment_t segs;
959 void *kva = NULL;
960 int nsegs;
961
962 /*
963 * Allocate the descriptor queues.
964 * struct mvxpe_ring_data contains array of descriptors per queue.
965 */
966 if (bus_dmamem_alloc(sc->sc_dmat,
967 size, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) {
968 aprint_error_dev(sc->sc_dev,
969 "can't alloc device memory (%zu bytes)\n", size);
970 return NULL;
971 }
972 if (bus_dmamem_map(sc->sc_dmat,
973 &segs, nsegs, size, &kva, BUS_DMA_NOWAIT)) {
974 aprint_error_dev(sc->sc_dev,
975 "can't map dma buffers (%zu bytes)\n", size);
976 goto fail1;
977 }
978
979 if (bus_dmamap_create(sc->sc_dmat,
980 size, 1, size, 0, BUS_DMA_NOWAIT, map)) {
981 aprint_error_dev(sc->sc_dev, "can't create dma map\n");
982 goto fail2;
983 }
984 if (bus_dmamap_load(sc->sc_dmat,
985 *map, kva, size, NULL, BUS_DMA_NOWAIT)) {
986 aprint_error_dev(sc->sc_dev, "can't load dma map\n");
987 goto fail3;
988 }
989 memset(kva, 0, size);
990 return kva;
991
992 fail3:
993 bus_dmamap_destroy(sc->sc_dmat, *map);
994 memset(map, 0, sizeof(*map));
995 fail2:
996 bus_dmamem_unmap(sc->sc_dmat, kva, size);
997 fail1:
998 bus_dmamem_free(sc->sc_dmat, &segs, nsegs);
999 return NULL;
1000 }
1001
1002 STATIC int
1003 mvxpe_ring_alloc_queue(struct mvxpe_softc *sc, int q)
1004 {
1005 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1006 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1007
1008 /*
1009 * MVXPE_RX_RING_CNT and MVXPE_TX_RING_CNT is a hard limit of
1010 * queue length. real queue length is limited by
1011 * sc->sc_rx_ring[q].rx_queue_len and sc->sc_tx_ring[q].tx_queue_len.
1012 *
1013 * because descriptor ring reallocation needs reprogramming of
1014 * DMA registers, we allocate enough descriptor for hard limit
1015 * of queue length.
1016 */
1017 rx->rx_descriptors =
1018 mvxpe_dma_memalloc(sc, &rx->rx_descriptors_map,
1019 (sizeof(struct mvxpe_rx_desc) * MVXPE_RX_RING_CNT));
1020 if (rx->rx_descriptors == NULL)
1021 goto fail;
1022
1023 tx->tx_descriptors =
1024 mvxpe_dma_memalloc(sc, &tx->tx_descriptors_map,
1025 (sizeof(struct mvxpe_tx_desc) * MVXPE_TX_RING_CNT));
1026 if (tx->tx_descriptors == NULL)
1027 goto fail;
1028
1029 return 0;
1030 fail:
1031 mvxpe_ring_dealloc_queue(sc, q);
1032 aprint_error_dev(sc->sc_dev, "DMA Ring buffer allocation failure.\n");
1033 return ENOMEM;
1034 }
1035
1036 STATIC void
1037 mvxpe_ring_dealloc_queue(struct mvxpe_softc *sc, int q)
1038 {
1039 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1040 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1041 bus_dma_segment_t *segs;
1042 bus_size_t size;
1043 void *kva;
1044 int nsegs;
1045
1046 /* Rx */
1047 kva = (void *)MVXPE_RX_RING_MEM_VA(sc, q);
1048 if (kva) {
1049 segs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_segs;
1050 nsegs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_nsegs;
1051 size = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_mapsize;
1052
1053 bus_dmamap_unload(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1054 bus_dmamap_destroy(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1055 bus_dmamem_unmap(sc->sc_dmat, kva, size);
1056 bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1057 }
1058
1059 /* Tx */
1060 kva = (void *)MVXPE_TX_RING_MEM_VA(sc, q);
1061 if (kva) {
1062 segs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_segs;
1063 nsegs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_nsegs;
1064 size = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_mapsize;
1065
1066 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1067 bus_dmamap_destroy(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1068 bus_dmamem_unmap(sc->sc_dmat, kva, size);
1069 bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1070 }
1071
1072 /* Clear doungling pointers all */
1073 memset(rx, 0, sizeof(*rx));
1074 memset(tx, 0, sizeof(*tx));
1075 }
1076
1077 STATIC void
1078 mvxpe_ring_init_queue(struct mvxpe_softc *sc, int q)
1079 {
1080 struct mvxpe_rx_desc *rxd = MVXPE_RX_RING_MEM_VA(sc, q);
1081 struct mvxpe_tx_desc *txd = MVXPE_TX_RING_MEM_VA(sc, q);
1082 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1083 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1084 static const int rx_default_queue_len[] = {
1085 MVXPE_RX_QUEUE_LIMIT_0, MVXPE_RX_QUEUE_LIMIT_1,
1086 MVXPE_RX_QUEUE_LIMIT_2, MVXPE_RX_QUEUE_LIMIT_3,
1087 MVXPE_RX_QUEUE_LIMIT_4, MVXPE_RX_QUEUE_LIMIT_5,
1088 MVXPE_RX_QUEUE_LIMIT_6, MVXPE_RX_QUEUE_LIMIT_7,
1089 };
1090 static const int tx_default_queue_len[] = {
1091 MVXPE_TX_QUEUE_LIMIT_0, MVXPE_TX_QUEUE_LIMIT_1,
1092 MVXPE_TX_QUEUE_LIMIT_2, MVXPE_TX_QUEUE_LIMIT_3,
1093 MVXPE_TX_QUEUE_LIMIT_4, MVXPE_TX_QUEUE_LIMIT_5,
1094 MVXPE_TX_QUEUE_LIMIT_6, MVXPE_TX_QUEUE_LIMIT_7,
1095 };
1096 extern uint32_t mvTclk;
1097 int i;
1098
1099 /* Rx handle */
1100 for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1101 MVXPE_RX_DESC(sc, q, i) = &rxd[i];
1102 MVXPE_RX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_rx_desc) * i;
1103 MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1104 }
1105 mutex_init(&rx->rx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1106 rx->rx_dma = rx->rx_cpu = 0;
1107 rx->rx_queue_len = rx_default_queue_len[q];
1108 if (rx->rx_queue_len > MVXPE_RX_RING_CNT)
1109 rx->rx_queue_len = MVXPE_RX_RING_CNT;
1110 rx->rx_queue_th_received = rx->rx_queue_len / MVXPE_RXTH_RATIO;
1111 rx->rx_queue_th_free = rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
1112 rx->rx_queue_th_time = (mvTclk / 1000) / 2; /* 0.5 [ms] */
1113
1114 /* Tx handle */
1115 for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1116 MVXPE_TX_DESC(sc, q, i) = &txd[i];
1117 MVXPE_TX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_tx_desc) * i;
1118 MVXPE_TX_MBUF(sc, q, i) = NULL;
1119 /* Tx handle needs DMA map for busdma_load_mbuf() */
1120 if (bus_dmamap_create(sc->sc_dmat,
1121 mvxpbm_chunk_size(sc->sc_bm),
1122 MVXPE_TX_SEGLIMIT, mvxpbm_chunk_size(sc->sc_bm), 0,
1123 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1124 &MVXPE_TX_MAP(sc, q, i))) {
1125 aprint_error_dev(sc->sc_dev,
1126 "can't create dma map (tx ring %d)\n", i);
1127 }
1128 }
1129 mutex_init(&tx->tx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1130 tx->tx_dma = tx->tx_cpu = 0;
1131 tx->tx_queue_len = tx_default_queue_len[q];
1132 if (tx->tx_queue_len > MVXPE_TX_RING_CNT)
1133 tx->tx_queue_len = MVXPE_TX_RING_CNT;
1134 tx->tx_used = 0;
1135 tx->tx_queue_th_free = tx->tx_queue_len / MVXPE_TXTH_RATIO;
1136 }
1137
1138 STATIC void
1139 mvxpe_ring_flush_queue(struct mvxpe_softc *sc, int q)
1140 {
1141 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1142 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1143 struct mbuf *m;
1144 int i;
1145
1146 KASSERT_RX_MTX(sc, q);
1147 KASSERT_TX_MTX(sc, q);
1148
1149 /* Rx handle */
1150 for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1151 if (MVXPE_RX_PKTBUF(sc, q, i) == NULL)
1152 continue;
1153 mvxpbm_free_chunk(MVXPE_RX_PKTBUF(sc, q, i));
1154 MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1155 }
1156 rx->rx_dma = rx->rx_cpu = 0;
1157
1158 /* Tx handle */
1159 for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1160 m = MVXPE_TX_MBUF(sc, q, i);
1161 if (m == NULL)
1162 continue;
1163 MVXPE_TX_MBUF(sc, q, i) = NULL;
1164 bus_dmamap_sync(sc->sc_dmat,
1165 MVXPE_TX_MAP(sc, q, i), 0, m->m_pkthdr.len,
1166 BUS_DMASYNC_POSTWRITE);
1167 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, i));
1168 m_freem(m);
1169 }
1170 tx->tx_dma = tx->tx_cpu = 0;
1171 tx->tx_used = 0;
1172 }
1173
1174 STATIC void
1175 mvxpe_ring_sync_rx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1176 {
1177 int wrap;
1178
1179 KASSERT_RX_MTX(sc, q);
1180 KASSERT(count > 0 && count <= MVXPE_RX_RING_CNT);
1181 KASSERT(idx >= 0 && idx < MVXPE_RX_RING_CNT);
1182
1183 wrap = (idx + count) - MVXPE_RX_RING_CNT;
1184 if (wrap > 0) {
1185 count -= wrap;
1186 KASSERT(count > 0);
1187 bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1188 0, sizeof(struct mvxpe_rx_desc) * wrap, ops);
1189 }
1190 bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1191 MVXPE_RX_DESC_OFF(sc, q, idx),
1192 sizeof(struct mvxpe_rx_desc) * count, ops);
1193 }
1194
1195 STATIC void
1196 mvxpe_ring_sync_tx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1197 {
1198 int wrap = 0;
1199
1200 KASSERT_TX_MTX(sc, q);
1201 KASSERT(count > 0 && count <= MVXPE_TX_RING_CNT);
1202 KASSERT(idx >= 0 && idx < MVXPE_TX_RING_CNT);
1203
1204 wrap = (idx + count) - MVXPE_TX_RING_CNT;
1205 if (wrap > 0) {
1206 count -= wrap;
1207 bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1208 0, sizeof(struct mvxpe_tx_desc) * wrap, ops);
1209 }
1210 bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1211 MVXPE_TX_DESC_OFF(sc, q, idx),
1212 sizeof(struct mvxpe_tx_desc) * count, ops);
1213 }
1214
1215 /*
1216 * Rx/Tx Queue Control
1217 */
1218 STATIC int
1219 mvxpe_rx_queue_init(struct ifnet *ifp, int q)
1220 {
1221 struct mvxpe_softc *sc = ifp->if_softc;
1222 uint32_t reg;
1223
1224 KASSERT_RX_MTX(sc, q);
1225 KASSERT(MVXPE_RX_RING_MEM_PA(sc, q) != 0);
1226
1227 /* descriptor address */
1228 MVXPE_WRITE(sc, MVXPE_PRXDQA(q), MVXPE_RX_RING_MEM_PA(sc, q));
1229
1230 /* Rx buffer size and descriptor ring size */
1231 reg = MVXPE_PRXDQS_BUFFERSIZE(mvxpbm_chunk_size(sc->sc_bm) >> 3);
1232 reg |= MVXPE_PRXDQS_DESCRIPTORSQUEUESIZE(MVXPE_RX_RING_CNT);
1233 MVXPE_WRITE(sc, MVXPE_PRXDQS(q), reg);
1234 DPRINTIFNET(ifp, 1, "PRXDQS(%d): %#x\n",
1235 q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
1236
1237 /* Rx packet offset address */
1238 reg = MVXPE_PRXC_PACKETOFFSET(mvxpbm_packet_offset(sc->sc_bm) >> 3);
1239 MVXPE_WRITE(sc, MVXPE_PRXC(q), reg);
1240 DPRINTIFNET(ifp, 1, "PRXC(%d): %#x\n",
1241 q, MVXPE_READ(sc, MVXPE_PRXC(q)));
1242
1243 /* Rx DMA SNOOP */
1244 reg = MVXPE_PRXSNP_SNOOPNOOFBYTES(MVXPE_MRU);
1245 reg |= MVXPE_PRXSNP_L2DEPOSITNOOFBYTES(MVXPE_MRU);
1246 MVXPE_WRITE(sc, MVXPE_PRXSNP(q), reg);
1247
1248 /* if DMA is not working, register is not updated */
1249 KASSERT(MVXPE_READ(sc, MVXPE_PRXDQA(q)) == MVXPE_RX_RING_MEM_PA(sc, q));
1250 return 0;
1251 }
1252
1253 STATIC int
1254 mvxpe_tx_queue_init(struct ifnet *ifp, int q)
1255 {
1256 struct mvxpe_softc *sc = ifp->if_softc;
1257 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1258 uint32_t reg;
1259
1260 KASSERT_TX_MTX(sc, q);
1261 KASSERT(MVXPE_TX_RING_MEM_PA(sc, q) != 0);
1262
1263 /* descriptor address */
1264 MVXPE_WRITE(sc, MVXPE_PTXDQA(q), MVXPE_TX_RING_MEM_PA(sc, q));
1265
1266 /* Tx threshold, and descriptor ring size */
1267 reg = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1268 reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
1269 MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1270 DPRINTIFNET(ifp, 1, "PTXDQS(%d): %#x\n",
1271 q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
1272
1273 /* if DMA is not working, register is not updated */
1274 KASSERT(MVXPE_READ(sc, MVXPE_PTXDQA(q)) == MVXPE_TX_RING_MEM_PA(sc, q));
1275 return 0;
1276 }
1277
1278 STATIC int
1279 mvxpe_rx_queue_enable(struct ifnet *ifp, int q)
1280 {
1281 struct mvxpe_softc *sc = ifp->if_softc;
1282 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1283 uint32_t reg;
1284
1285 KASSERT_RX_MTX(sc, q);
1286
1287 /* Set Rx interrupt threshold */
1288 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1289 reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
1290 MVXPE_WRITE(sc, MVXPE_PRXDQTH(q), reg);
1291
1292 reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
1293 MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1294
1295 /* Unmask RXTX_TH Intr. */
1296 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1297 reg |= MVXPE_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalesce */
1298 reg |= MVXPE_PRXTXTI_RDTAQ(q); /* Rx Descriptor Alert */
1299 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1300
1301 /* Enable Rx queue */
1302 reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1303 reg |= MVXPE_RQC_ENQ(q);
1304 MVXPE_WRITE(sc, MVXPE_RQC, reg);
1305
1306 return 0;
1307 }
1308
1309 STATIC int
1310 mvxpe_tx_queue_enable(struct ifnet *ifp, int q)
1311 {
1312 struct mvxpe_softc *sc = ifp->if_softc;
1313 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1314 uint32_t reg;
1315
1316 KASSERT_TX_MTX(sc, q);
1317
1318 /* Set Tx interrupt threshold */
1319 reg = MVXPE_READ(sc, MVXPE_PTXDQS(q));
1320 reg &= ~MVXPE_PTXDQS_TBT_MASK; /* keep queue size */
1321 reg |= MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1322 MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1323
1324 /* Unmask RXTX_TH Intr. */
1325 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1326 reg |= MVXPE_PRXTXTI_TBTCQ(q); /* Tx Threshold cross */
1327 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1328
1329 /* Don't update MVXPE_TQC here, there is no packet yet. */
1330 return 0;
1331 }
1332
1333 STATIC void
1334 mvxpe_rx_lockq(struct mvxpe_softc *sc, int q)
1335 {
1336 KASSERT(q >= 0);
1337 KASSERT(q < MVXPE_QUEUE_SIZE);
1338 mutex_enter(&sc->sc_rx_ring[q].rx_ring_mtx);
1339 }
1340
1341 STATIC void
1342 mvxpe_rx_unlockq(struct mvxpe_softc *sc, int q)
1343 {
1344 KASSERT(q >= 0);
1345 KASSERT(q < MVXPE_QUEUE_SIZE);
1346 mutex_exit(&sc->sc_rx_ring[q].rx_ring_mtx);
1347 }
1348
1349 STATIC void
1350 mvxpe_tx_lockq(struct mvxpe_softc *sc, int q)
1351 {
1352 KASSERT(q >= 0);
1353 KASSERT(q < MVXPE_QUEUE_SIZE);
1354 mutex_enter(&sc->sc_tx_ring[q].tx_ring_mtx);
1355 }
1356
1357 STATIC void
1358 mvxpe_tx_unlockq(struct mvxpe_softc *sc, int q)
1359 {
1360 KASSERT(q >= 0);
1361 KASSERT(q < MVXPE_QUEUE_SIZE);
1362 mutex_exit(&sc->sc_tx_ring[q].tx_ring_mtx);
1363 }
1364
1365 /*
1366 * Interrupt Handlers
1367 */
1368 STATIC void
1369 mvxpe_disable_intr(struct mvxpe_softc *sc)
1370 {
1371 MVXPE_WRITE(sc, MVXPE_EUIM, 0);
1372 MVXPE_WRITE(sc, MVXPE_EUIC, 0);
1373 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, 0);
1374 MVXPE_WRITE(sc, MVXPE_PRXTXTIC, 0);
1375 MVXPE_WRITE(sc, MVXPE_PRXTXIM, 0);
1376 MVXPE_WRITE(sc, MVXPE_PRXTXIC, 0);
1377 MVXPE_WRITE(sc, MVXPE_PMIM, 0);
1378 MVXPE_WRITE(sc, MVXPE_PMIC, 0);
1379 MVXPE_WRITE(sc, MVXPE_PIE, 0);
1380 }
1381
1382 STATIC void
1383 mvxpe_enable_intr(struct mvxpe_softc *sc)
1384 {
1385 uint32_t reg;
1386
1387 /* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1388 reg = MVXPE_READ(sc, MVXPE_PMIM);
1389 reg |= MVXPE_PMI_PHYSTATUSCHNG;
1390 reg |= MVXPE_PMI_LINKCHANGE;
1391 reg |= MVXPE_PMI_IAE;
1392 reg |= MVXPE_PMI_RXOVERRUN;
1393 reg |= MVXPE_PMI_RXCRCERROR;
1394 reg |= MVXPE_PMI_RXLARGEPACKET;
1395 reg |= MVXPE_PMI_TXUNDRN;
1396 #if 0
1397 /*
1398 * The device may raise false interrupts for SERDES even if the device
1399 * is not configured to use SERDES connection.
1400 */
1401 reg |= MVXPE_PMI_PRBSERROR;
1402 reg |= MVXPE_PMI_SRSE;
1403 #else
1404 reg &= ~MVXPE_PMI_PRBSERROR;
1405 reg &= ~MVXPE_PMI_SRSE;
1406 #endif
1407 reg |= MVXPE_PMI_TREQ_MASK;
1408 MVXPE_WRITE(sc, MVXPE_PMIM, reg);
1409
1410 /* Enable Summary Bit to check all interrupt cause. */
1411 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1412 reg |= MVXPE_PRXTXTI_PMISCICSUMMARY;
1413 reg |= MVXPE_PRXTXTI_PTXERRORSUMMARY;
1414 reg |= MVXPE_PRXTXTI_PRXTXICSUMMARY;
1415 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1416
1417 /* Enable All Queue Interrupt */
1418 reg = MVXPE_READ(sc, MVXPE_PIE);
1419 reg |= MVXPE_PIE_RXPKTINTRPTENB_MASK;
1420 reg |= MVXPE_PIE_TXPKTINTRPTENB_MASK;
1421 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1422 }
1423
1424 STATIC int
1425 mvxpe_rxtxth_intr(void *arg)
1426 {
1427 struct mvxpe_softc *sc = arg;
1428 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1429 uint32_t ic, queues, datum = 0;
1430
1431 DPRINTSC(sc, 2, "got RXTX_TH_Intr\n");
1432 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtxth);
1433
1434 mvxpe_sc_lock(sc);
1435 ic = MVXPE_READ(sc, MVXPE_PRXTXTIC);
1436 if (ic == 0) {
1437 mvxpe_sc_unlock(sc);
1438 return 0;
1439 }
1440 MVXPE_WRITE(sc, MVXPE_PRXTXTIC, ~ic);
1441 datum = datum ^ ic;
1442
1443 DPRINTIFNET(ifp, 2, "PRXTXTIC: %#x\n", ic);
1444
1445 /* ack maintenance interrupt first */
1446 if (ic & MVXPE_PRXTXTI_PTXERRORSUMMARY) {
1447 DPRINTIFNET(ifp, 1, "PRXTXTIC: +PTXERRORSUMMARY\n");
1448 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtxth_txerr);
1449 }
1450 if ((ic & MVXPE_PRXTXTI_PMISCICSUMMARY)) {
1451 DPRINTIFNET(ifp, 2, "PTXTXTIC: +PMISCICSUMMARY\n");
1452 mvxpe_misc_intr(sc);
1453 }
1454 if (ic & MVXPE_PRXTXTI_PRXTXICSUMMARY) {
1455 DPRINTIFNET(ifp, 2, "PTXTXTIC: +PRXTXICSUMMARY\n");
1456 mvxpe_rxtx_intr(sc);
1457 }
1458 if (!(ifp->if_flags & IFF_RUNNING)) {
1459 mvxpe_sc_unlock(sc);
1460 return 1;
1461 }
1462
1463 /* RxTxTH interrupt */
1464 queues = MVXPE_PRXTXTI_GET_RBICTAPQ(ic);
1465 if (queues) {
1466 DPRINTIFNET(ifp, 2, "PRXTXTIC: +RXEOF\n");
1467 mvxpe_rx(sc, queues);
1468 }
1469 queues = MVXPE_PRXTXTI_GET_TBTCQ(ic);
1470 if (queues) {
1471 DPRINTIFNET(ifp, 2, "PRXTXTIC: +TBTCQ\n");
1472 mvxpe_tx_complete(sc, queues);
1473 }
1474 queues = MVXPE_PRXTXTI_GET_RDTAQ(ic);
1475 if (queues) {
1476 DPRINTIFNET(ifp, 2, "PRXTXTIC: +RDTAQ\n");
1477 mvxpe_rx_refill(sc, queues);
1478 }
1479 mvxpe_sc_unlock(sc);
1480
1481 if_schedule_deferred_start(ifp);
1482
1483 rnd_add_uint32(&sc->sc_rnd_source, datum);
1484
1485 return 1;
1486 }
1487
1488 STATIC int
1489 mvxpe_misc_intr(void *arg)
1490 {
1491 struct mvxpe_softc *sc = arg;
1492 #ifdef MVXPE_DEBUG
1493 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1494 #endif
1495 uint32_t ic;
1496 uint32_t datum = 0;
1497 int claimed = 0;
1498
1499 DPRINTSC(sc, 2, "got MISC_INTR\n");
1500 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_misc);
1501
1502 KASSERT_SC_MTX(sc);
1503
1504 for (;;) {
1505 ic = MVXPE_READ(sc, MVXPE_PMIC);
1506 ic &= MVXPE_READ(sc, MVXPE_PMIM);
1507 if (ic == 0)
1508 break;
1509 MVXPE_WRITE(sc, MVXPE_PMIC, ~ic);
1510 datum = datum ^ ic;
1511 claimed = 1;
1512
1513 DPRINTIFNET(ifp, 2, "PMIC=%#x\n", ic);
1514 if (ic & MVXPE_PMI_PHYSTATUSCHNG) {
1515 DPRINTIFNET(ifp, 2, "+PHYSTATUSCHNG\n");
1516 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_phystatuschng);
1517 }
1518 if (ic & MVXPE_PMI_LINKCHANGE) {
1519 DPRINTIFNET(ifp, 2, "+LINKCHANGE\n");
1520 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_linkchange);
1521 mvxpe_linkupdate(sc);
1522 }
1523 if (ic & MVXPE_PMI_IAE) {
1524 DPRINTIFNET(ifp, 2, "+IAE\n");
1525 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_iae);
1526 }
1527 if (ic & MVXPE_PMI_RXOVERRUN) {
1528 DPRINTIFNET(ifp, 2, "+RXOVERRUN\n");
1529 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxoverrun);
1530 }
1531 if (ic & MVXPE_PMI_RXCRCERROR) {
1532 DPRINTIFNET(ifp, 2, "+RXCRCERROR\n");
1533 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxcrc);
1534 }
1535 if (ic & MVXPE_PMI_RXLARGEPACKET) {
1536 DPRINTIFNET(ifp, 2, "+RXLARGEPACKET\n");
1537 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxlargepacket);
1538 }
1539 if (ic & MVXPE_PMI_TXUNDRN) {
1540 DPRINTIFNET(ifp, 2, "+TXUNDRN\n");
1541 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txunderrun);
1542 }
1543 if (ic & MVXPE_PMI_PRBSERROR) {
1544 DPRINTIFNET(ifp, 2, "+PRBSERROR\n");
1545 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_prbserr);
1546 }
1547 if (ic & MVXPE_PMI_TREQ_MASK) {
1548 DPRINTIFNET(ifp, 2, "+TREQ\n");
1549 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txreq);
1550 }
1551 }
1552 if (datum)
1553 rnd_add_uint32(&sc->sc_rnd_source, datum);
1554
1555 return claimed;
1556 }
1557
1558 STATIC int
1559 mvxpe_rxtx_intr(void *arg)
1560 {
1561 struct mvxpe_softc *sc = arg;
1562 #ifdef MVXPE_DEBUG
1563 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1564 #endif
1565 uint32_t datum = 0;
1566 uint32_t prxtxic;
1567 int claimed = 0;
1568
1569 DPRINTSC(sc, 2, "got RXTX_Intr\n");
1570 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtx);
1571
1572 KASSERT_SC_MTX(sc);
1573
1574 for (;;) {
1575 prxtxic = MVXPE_READ(sc, MVXPE_PRXTXIC);
1576 prxtxic &= MVXPE_READ(sc, MVXPE_PRXTXIM);
1577 if (prxtxic == 0)
1578 break;
1579 MVXPE_WRITE(sc, MVXPE_PRXTXIC, ~prxtxic);
1580 datum = datum ^ prxtxic;
1581 claimed = 1;
1582
1583 DPRINTSC(sc, 2, "PRXTXIC: %#x\n", prxtxic);
1584
1585 if (prxtxic & MVXPE_PRXTXI_RREQ_MASK) {
1586 DPRINTIFNET(ifp, 1, "Rx Resource Error.\n");
1587 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rreq);
1588 }
1589 if (prxtxic & MVXPE_PRXTXI_RPQ_MASK) {
1590 DPRINTIFNET(ifp, 1, "Rx Packet in Queue.\n");
1591 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rpq);
1592 }
1593 if (prxtxic & MVXPE_PRXTXI_TBRQ_MASK) {
1594 DPRINTIFNET(ifp, 1, "Tx Buffer Return.\n");
1595 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_tbrq);
1596 }
1597 if (prxtxic & MVXPE_PRXTXI_PRXTXTHICSUMMARY) {
1598 DPRINTIFNET(ifp, 1, "PRXTXTHIC Summary\n");
1599 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rxtxth);
1600 }
1601 if (prxtxic & MVXPE_PRXTXI_PTXERRORSUMMARY) {
1602 DPRINTIFNET(ifp, 1, "PTXERROR Summary\n");
1603 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_txerr);
1604 }
1605 if (prxtxic & MVXPE_PRXTXI_PMISCICSUMMARY) {
1606 DPRINTIFNET(ifp, 1, "PMISCIC Summary\n");
1607 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_misc);
1608 }
1609 }
1610 if (datum)
1611 rnd_add_uint32(&sc->sc_rnd_source, datum);
1612
1613 return claimed;
1614 }
1615
1616 STATIC void
1617 mvxpe_tick(void *arg)
1618 {
1619 struct mvxpe_softc *sc = arg;
1620 struct mii_data *mii = &sc->sc_mii;
1621
1622 mvxpe_sc_lock(sc);
1623
1624 mii_tick(mii);
1625 mii_pollstat(&sc->sc_mii);
1626
1627 /* read mib registers(clear by read) */
1628 mvxpe_update_mib(sc);
1629
1630 /* read counter registers(clear by read) */
1631 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pdfc,
1632 MVXPE_READ(sc, MVXPE_PDFC));
1633 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pofc,
1634 MVXPE_READ(sc, MVXPE_POFC));
1635 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txbadfcs,
1636 MVXPE_READ(sc, MVXPE_TXBADFCS));
1637 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txdropped,
1638 MVXPE_READ(sc, MVXPE_TXDROPPED));
1639 MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_lpic,
1640 MVXPE_READ(sc, MVXPE_LPIC));
1641
1642 mvxpe_sc_unlock(sc);
1643
1644 callout_schedule(&sc->sc_tick_ch, hz);
1645 }
1646
1647
1648 /*
1649 * struct ifnet and mii callbacks
1650 */
1651 STATIC void
1652 mvxpe_start(struct ifnet *ifp)
1653 {
1654 struct mvxpe_softc *sc = ifp->if_softc;
1655 struct mbuf *m;
1656 int q;
1657
1658 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1659 DPRINTIFNET(ifp, 1, "not running\n");
1660 return;
1661 }
1662
1663 mvxpe_sc_lock(sc);
1664 if (!MVXPE_IS_LINKUP(sc)) {
1665 /* If Link is DOWN, can't start TX */
1666 DPRINTIFNET(ifp, 1, "link fail\n");
1667 for (;;) {
1668 /*
1669 * discard stale packets all.
1670 * these may confuse DAD, ARP or timer based protocols.
1671 */
1672 IFQ_DEQUEUE(&ifp->if_snd, m);
1673 if (m == NULL)
1674 break;
1675 m_freem(m);
1676 }
1677 mvxpe_sc_unlock(sc);
1678 return;
1679 }
1680 for (;;) {
1681 /*
1682 * don't use IFQ_POLL().
1683 * there is lock problem between IFQ_POLL and IFQ_DEQUEUE
1684 * on SMP enabled networking stack.
1685 */
1686 IFQ_DEQUEUE(&ifp->if_snd, m);
1687 if (m == NULL)
1688 break;
1689
1690 q = mvxpe_tx_queue_select(sc, m);
1691 if (q < 0)
1692 break;
1693 /* mutex is held in mvxpe_tx_queue_select() */
1694
1695 if (mvxpe_tx_queue(sc, m, q) != 0) {
1696 DPRINTIFNET(ifp, 1, "cannot add packet to tx ring\n");
1697 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txerr);
1698 mvxpe_tx_unlockq(sc, q);
1699 break;
1700 }
1701 mvxpe_tx_unlockq(sc, q);
1702 KASSERT(sc->sc_tx_ring[q].tx_used >= 0);
1703 KASSERT(sc->sc_tx_ring[q].tx_used <=
1704 sc->sc_tx_ring[q].tx_queue_len);
1705 DPRINTIFNET(ifp, 1, "a packet is added to tx ring\n");
1706 sc->sc_tx_pending++;
1707 if_statinc(ifp, if_opackets);
1708 ifp->if_timer = 1;
1709 sc->sc_wdogsoft = 1;
1710 bpf_mtap(ifp, m, BPF_D_OUT);
1711 }
1712 mvxpe_sc_unlock(sc);
1713
1714 return;
1715 }
1716
1717 STATIC int
1718 mvxpe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1719 {
1720 struct mvxpe_softc *sc = ifp->if_softc;
1721 int error = 0;
1722
1723 switch (cmd) {
1724 default:
1725 DPRINTIFNET(ifp, 2, "mvxpe_ioctl ETHER\n");
1726 error = ether_ioctl(ifp, cmd, data);
1727 if (error == ENETRESET) {
1728 if (ifp->if_flags & IFF_RUNNING) {
1729 mvxpe_sc_lock(sc);
1730 mvxpe_filter_setup(sc);
1731 mvxpe_sc_unlock(sc);
1732 }
1733 error = 0;
1734 }
1735 break;
1736 }
1737
1738 return error;
1739 }
1740
1741 STATIC int
1742 mvxpe_init(struct ifnet *ifp)
1743 {
1744 struct mvxpe_softc *sc = ifp->if_softc;
1745 struct mii_data *mii = &sc->sc_mii;
1746 uint32_t reg;
1747 int q;
1748
1749 mvxpe_sc_lock(sc);
1750
1751 /* Start DMA Engine */
1752 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
1753 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
1754 MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
1755
1756 /* Enable port */
1757 reg = MVXPE_READ(sc, MVXPE_PMACC0);
1758 reg |= MVXPE_PMACC0_PORTEN;
1759 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1760
1761 /* Link up */
1762 mvxpe_linkup(sc);
1763
1764 /* Enable All Queue and interrupt of each Queue */
1765 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1766 mvxpe_rx_lockq(sc, q);
1767 mvxpe_rx_queue_enable(ifp, q);
1768 mvxpe_rx_queue_refill(sc, q);
1769 mvxpe_rx_unlockq(sc, q);
1770
1771 mvxpe_tx_lockq(sc, q);
1772 mvxpe_tx_queue_enable(ifp, q);
1773 mvxpe_tx_unlockq(sc, q);
1774 }
1775
1776 /* Enable interrupt */
1777 mvxpe_enable_intr(sc);
1778
1779 /* Set Counter */
1780 callout_schedule(&sc->sc_tick_ch, hz);
1781
1782 /* Media check */
1783 mii_mediachg(mii);
1784
1785 ifp->if_flags |= IFF_RUNNING;
1786 ifp->if_flags &= ~IFF_OACTIVE;
1787
1788 mvxpe_sc_unlock(sc);
1789 return 0;
1790 }
1791
1792 /* ARGSUSED */
1793 STATIC void
1794 mvxpe_stop(struct ifnet *ifp, int disable)
1795 {
1796 struct mvxpe_softc *sc = ifp->if_softc;
1797 uint32_t reg;
1798 int q, cnt;
1799
1800 DPRINTIFNET(ifp, 1, "stop device dma and interrupts.\n");
1801
1802 mvxpe_sc_lock(sc);
1803
1804 callout_stop(&sc->sc_tick_ch);
1805
1806 /* Link down */
1807 mvxpe_linkdown(sc);
1808
1809 /* Disable Rx interrupt */
1810 reg = MVXPE_READ(sc, MVXPE_PIE);
1811 reg &= ~MVXPE_PIE_RXPKTINTRPTENB_MASK;
1812 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1813
1814 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1815 reg &= ~MVXPE_PRXTXTI_RBICTAPQ_MASK;
1816 reg &= ~MVXPE_PRXTXTI_RDTAQ_MASK;
1817 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1818
1819 /* Wait for all Rx activity to terminate. */
1820 reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1821 reg = MVXPE_RQC_DIS(reg);
1822 MVXPE_WRITE(sc, MVXPE_RQC, reg);
1823 cnt = 0;
1824 do {
1825 if (cnt >= RX_DISABLE_TIMEOUT) {
1826 aprint_error_ifnet(ifp,
1827 "timeout for RX stopped. rqc 0x%x\n", reg);
1828 break;
1829 }
1830 cnt++;
1831 reg = MVXPE_READ(sc, MVXPE_RQC);
1832 } while (reg & MVXPE_RQC_EN_MASK);
1833
1834 /* Wait for all Tx activity to terminate. */
1835 reg = MVXPE_READ(sc, MVXPE_PIE);
1836 reg &= ~MVXPE_PIE_TXPKTINTRPTENB_MASK;
1837 MVXPE_WRITE(sc, MVXPE_PIE, reg);
1838
1839 reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1840 reg &= ~MVXPE_PRXTXTI_TBTCQ_MASK;
1841 MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1842
1843 reg = MVXPE_READ(sc, MVXPE_TQC) & MVXPE_TQC_EN_MASK;
1844 reg = MVXPE_TQC_DIS(reg);
1845 MVXPE_WRITE(sc, MVXPE_TQC, reg);
1846 cnt = 0;
1847 do {
1848 if (cnt >= TX_DISABLE_TIMEOUT) {
1849 aprint_error_ifnet(ifp,
1850 "timeout for TX stopped. tqc 0x%x\n", reg);
1851 break;
1852 }
1853 cnt++;
1854 reg = MVXPE_READ(sc, MVXPE_TQC);
1855 } while (reg & MVXPE_TQC_EN_MASK);
1856
1857 /* Wait for all Tx FIFO is empty */
1858 cnt = 0;
1859 do {
1860 if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1861 aprint_error_ifnet(ifp,
1862 "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1863 break;
1864 }
1865 cnt++;
1866 reg = MVXPE_READ(sc, MVXPE_PS0);
1867 } while (!(reg & MVXPE_PS0_TXFIFOEMP) && (reg & MVXPE_PS0_TXINPROG));
1868
1869 /* Reset the MAC Port Enable bit */
1870 reg = MVXPE_READ(sc, MVXPE_PMACC0);
1871 reg &= ~MVXPE_PMACC0_PORTEN;
1872 MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1873
1874 /* Disable each of queue */
1875 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1876 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1877
1878 mvxpe_rx_lockq(sc, q);
1879 mvxpe_tx_lockq(sc, q);
1880
1881 /* Disable Rx packet buffer refill request */
1882 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1883 reg |= MVXPE_PRXDQTH_NODT(0);
1884 MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1885
1886 if (disable) {
1887 /*
1888 * Hold Reset state of DMA Engine
1889 * (must write 0x0 to restart it)
1890 */
1891 MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
1892 MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
1893 mvxpe_ring_flush_queue(sc, q);
1894 }
1895
1896 mvxpe_tx_unlockq(sc, q);
1897 mvxpe_rx_unlockq(sc, q);
1898 }
1899
1900 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1901
1902 mvxpe_sc_unlock(sc);
1903 }
1904
1905 STATIC void
1906 mvxpe_watchdog(struct ifnet *ifp)
1907 {
1908 struct mvxpe_softc *sc = ifp->if_softc;
1909 int q;
1910
1911 mvxpe_sc_lock(sc);
1912
1913 /*
1914 * Reclaim first as there is a possibility of losing Tx completion
1915 * interrupts.
1916 */
1917 mvxpe_tx_complete(sc, 0xff);
1918 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1919 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1920
1921 if (tx->tx_dma != tx->tx_cpu) {
1922 if (sc->sc_wdogsoft) {
1923 /*
1924 * There is race condition between CPU and DMA
1925 * engine. When DMA engine encounters queue end,
1926 * it clears MVXPE_TQC_ENQ bit.
1927 * XXX: how about enhanced mode?
1928 */
1929 MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
1930 ifp->if_timer = 5;
1931 sc->sc_wdogsoft = 0;
1932 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_wdogsoft);
1933 } else {
1934 aprint_error_ifnet(ifp, "watchdog timeout\n");
1935 if_statinc(ifp, if_oerrors);
1936 mvxpe_linkreset(sc);
1937 mvxpe_sc_unlock(sc);
1938
1939 /* trigger reinitialize sequence */
1940 mvxpe_stop(ifp, 1);
1941 mvxpe_init(ifp);
1942
1943 mvxpe_sc_lock(sc);
1944 }
1945 }
1946 }
1947 mvxpe_sc_unlock(sc);
1948 }
1949
1950 STATIC int
1951 mvxpe_ifflags_cb(struct ethercom *ec)
1952 {
1953 struct ifnet *ifp = &ec->ec_if;
1954 struct mvxpe_softc *sc = ifp->if_softc;
1955 u_short change = ifp->if_flags ^ sc->sc_if_flags;
1956
1957 mvxpe_sc_lock(sc);
1958
1959 if (change != 0)
1960 sc->sc_if_flags = ifp->if_flags;
1961
1962 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
1963 mvxpe_sc_unlock(sc);
1964 return ENETRESET;
1965 }
1966
1967 if ((change & IFF_PROMISC) != 0)
1968 mvxpe_filter_setup(sc);
1969
1970 if ((change & IFF_UP) != 0)
1971 mvxpe_linkreset(sc);
1972
1973 mvxpe_sc_unlock(sc);
1974 return 0;
1975 }
1976
1977 STATIC int
1978 mvxpe_mediachange(struct ifnet *ifp)
1979 {
1980 return ether_mediachange(ifp);
1981 }
1982
1983 STATIC void
1984 mvxpe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1985 {
1986 ether_mediastatus(ifp, ifmr);
1987 }
1988
1989 /*
1990 * Link State Notify
1991 */
1992 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc)
1993 {
1994 int linkup; /* bool */
1995
1996 KASSERT_SC_MTX(sc);
1997
1998 /* tell miibus */
1999 mii_pollstat(&sc->sc_mii);
2000
2001 /* syslog */
2002 linkup = MVXPE_IS_LINKUP(sc);
2003 if (sc->sc_linkstate == linkup)
2004 return;
2005
2006 #ifdef DEBUG
2007 log(LOG_DEBUG,
2008 "%s: link %s\n", device_xname(sc->sc_dev), linkup ? "up" : "down");
2009 #endif
2010 if (linkup)
2011 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_up);
2012 else
2013 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_down);
2014
2015 sc->sc_linkstate = linkup;
2016 }
2017
2018 STATIC void
2019 mvxpe_linkup(struct mvxpe_softc *sc)
2020 {
2021 uint32_t reg;
2022
2023 KASSERT_SC_MTX(sc);
2024
2025 /* set EEE parameters */
2026 reg = MVXPE_READ(sc, MVXPE_LPIC1);
2027 if (sc->sc_cf.cf_lpi)
2028 reg |= MVXPE_LPIC1_LPIRE;
2029 else
2030 reg &= ~MVXPE_LPIC1_LPIRE;
2031 MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
2032
2033 /* set auto-negotiation parameters */
2034 reg = MVXPE_READ(sc, MVXPE_PANC);
2035 if (sc->sc_cf.cf_fc) {
2036 /* flow control negotiation */
2037 reg |= MVXPE_PANC_PAUSEADV;
2038 reg |= MVXPE_PANC_ANFCEN;
2039 }
2040 else {
2041 reg &= ~MVXPE_PANC_PAUSEADV;
2042 reg &= ~MVXPE_PANC_ANFCEN;
2043 }
2044 reg &= ~MVXPE_PANC_FORCELINKFAIL;
2045 reg &= ~MVXPE_PANC_FORCELINKPASS;
2046 MVXPE_WRITE(sc, MVXPE_PANC, reg);
2047
2048 mii_mediachg(&sc->sc_mii);
2049 }
2050
2051 STATIC void
2052 mvxpe_linkdown(struct mvxpe_softc *sc)
2053 {
2054 struct mii_softc *mii;
2055 uint32_t reg;
2056
2057 KASSERT_SC_MTX(sc);
2058 return;
2059
2060 reg = MVXPE_READ(sc, MVXPE_PANC);
2061 reg |= MVXPE_PANC_FORCELINKFAIL;
2062 reg &= MVXPE_PANC_FORCELINKPASS;
2063 MVXPE_WRITE(sc, MVXPE_PANC, reg);
2064
2065 mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2066 if (mii)
2067 mii_phy_down(mii);
2068 }
2069
2070 STATIC void
2071 mvxpe_linkreset(struct mvxpe_softc *sc)
2072 {
2073 struct mii_softc *mii;
2074
2075 KASSERT_SC_MTX(sc);
2076
2077 /* force reset PHY first */
2078 mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2079 if (mii)
2080 mii_phy_reset(mii);
2081
2082 /* reinit MAC and PHY */
2083 mvxpe_linkdown(sc);
2084 if ((sc->sc_if_flags & IFF_UP) != 0)
2085 mvxpe_linkup(sc);
2086 }
2087
2088 /*
2089 * Tx Subroutines
2090 */
2091 STATIC int
2092 mvxpe_tx_queue_select(struct mvxpe_softc *sc, struct mbuf *m)
2093 {
2094 int q = 0;
2095
2096 /* XXX: get attribute from ALTQ framework? */
2097 mvxpe_tx_lockq(sc, q);
2098 return 0;
2099 }
2100
2101 STATIC int
2102 mvxpe_tx_queue(struct mvxpe_softc *sc, struct mbuf *m, int q)
2103 {
2104 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2105 bus_dma_segment_t *txsegs;
2106 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2107 struct mvxpe_tx_desc *t = NULL;
2108 uint32_t ptxsu;
2109 int txnsegs;
2110 int start, used;
2111 int i;
2112
2113 KASSERT_TX_MTX(sc, q);
2114 KASSERT(tx->tx_used >= 0);
2115 KASSERT(tx->tx_used <= tx->tx_queue_len);
2116
2117 /* load mbuf using dmamap of 1st descriptor */
2118 if (bus_dmamap_load_mbuf(sc->sc_dmat,
2119 MVXPE_TX_MAP(sc, q, tx->tx_cpu), m, BUS_DMA_NOWAIT) != 0) {
2120 m_freem(m);
2121 return ENOBUFS;
2122 }
2123 txsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_segs;
2124 txnsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_nsegs;
2125 if (txnsegs <= 0 || (txnsegs + tx->tx_used) > tx->tx_queue_len) {
2126 /* we have no enough descriptors or mbuf is broken */
2127 bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, tx->tx_cpu));
2128 m_freem(m);
2129 return ENOBUFS;
2130 }
2131 DPRINTSC(sc, 2, "send packet %p descriptor %d\n", m, tx->tx_cpu);
2132 KASSERT(MVXPE_TX_MBUF(sc, q, tx->tx_cpu) == NULL);
2133
2134 /* remember mbuf using 1st descriptor */
2135 MVXPE_TX_MBUF(sc, q, tx->tx_cpu) = m;
2136 bus_dmamap_sync(sc->sc_dmat,
2137 MVXPE_TX_MAP(sc, q, tx->tx_cpu), 0, m->m_pkthdr.len,
2138 BUS_DMASYNC_PREWRITE);
2139
2140 /* load to tx descriptors */
2141 start = tx->tx_cpu;
2142 used = 0;
2143 for (i = 0; i < txnsegs; i++) {
2144 if (__predict_false(txsegs[i].ds_len == 0))
2145 continue;
2146 t = MVXPE_TX_DESC(sc, q, tx->tx_cpu);
2147 t->command = 0;
2148 t->l4ichk = 0;
2149 t->flags = 0;
2150 if (i == 0) {
2151 /* 1st descriptor */
2152 t->command |= MVXPE_TX_CMD_W_PACKET_OFFSET(0);
2153 t->command |= MVXPE_TX_CMD_PADDING;
2154 t->command |= MVXPE_TX_CMD_F;
2155 mvxpe_tx_set_csumflag(ifp, t, m);
2156 }
2157 t->bufptr = txsegs[i].ds_addr;
2158 t->bytecnt = txsegs[i].ds_len;
2159 tx->tx_cpu = tx_counter_adv(tx->tx_cpu, 1);
2160 tx->tx_used++;
2161 used++;
2162 }
2163 /* t is last descriptor here */
2164 KASSERT(t != NULL);
2165 t->command |= MVXPE_TX_CMD_L;
2166
2167 DPRINTSC(sc, 2, "queue %d, %d descriptors used\n", q, used);
2168 #ifdef MVXPE_DEBUG
2169 if (mvxpe_debug > 2)
2170 for (i = start; i <= tx->tx_cpu; i++) {
2171 t = MVXPE_TX_DESC(sc, q, i);
2172 mvxpe_dump_txdesc(t, i);
2173 }
2174 #endif
2175 mvxpe_ring_sync_tx(sc, q, start, used,
2176 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2177
2178 while (used > 255) {
2179 ptxsu = MVXPE_PTXSU_NOWD(255);
2180 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2181 used -= 255;
2182 }
2183 if (used > 0) {
2184 ptxsu = MVXPE_PTXSU_NOWD(used);
2185 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2186 }
2187 MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
2188
2189 DPRINTSC(sc, 2,
2190 "PTXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQA(q)));
2191 DPRINTSC(sc, 2,
2192 "PTXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
2193 DPRINTSC(sc, 2,
2194 "PTXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXS(q)));
2195 DPRINTSC(sc, 2,
2196 "PTXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PTXDI(q)));
2197 DPRINTSC(sc, 2, "TQC: %#x\n", MVXPE_READ(sc, MVXPE_TQC));
2198 DPRINTIFNET(ifp, 2,
2199 "Tx: tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2200 tx->tx_cpu, tx->tx_dma, tx->tx_used);
2201 return 0;
2202 }
2203
2204 STATIC void
2205 mvxpe_tx_set_csumflag(struct ifnet *ifp,
2206 struct mvxpe_tx_desc *t, struct mbuf *m)
2207 {
2208 struct ether_header *eh;
2209 int csum_flags;
2210 uint32_t iphl = 0, ipoff = 0;
2211
2212 csum_flags = ifp->if_csum_flags_tx & m->m_pkthdr.csum_flags;
2213
2214 eh = mtod(m, struct ether_header *);
2215 switch (htons(eh->ether_type)) {
2216 case ETHERTYPE_IP:
2217 case ETHERTYPE_IPV6:
2218 ipoff = ETHER_HDR_LEN;
2219 break;
2220 case ETHERTYPE_VLAN:
2221 ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2222 break;
2223 }
2224
2225 if (csum_flags & (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
2226 iphl = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2227 t->command |= MVXPE_TX_CMD_L3_IP4;
2228 }
2229 else if (csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
2230 iphl = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2231 t->command |= MVXPE_TX_CMD_L3_IP6;
2232 }
2233 else {
2234 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2235 return;
2236 }
2237
2238
2239 /* L3 */
2240 if (csum_flags & M_CSUM_IPv4) {
2241 t->command |= MVXPE_TX_CMD_IP4_CHECKSUM;
2242 }
2243
2244 /* L4 */
2245 if ((csum_flags &
2246 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0) {
2247 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2248 }
2249 else if (csum_flags & M_CSUM_TCPv4) {
2250 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2251 t->command |= MVXPE_TX_CMD_L4_TCP;
2252 }
2253 else if (csum_flags & M_CSUM_UDPv4) {
2254 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2255 t->command |= MVXPE_TX_CMD_L4_UDP;
2256 }
2257 else if (csum_flags & M_CSUM_TCPv6) {
2258 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2259 t->command |= MVXPE_TX_CMD_L4_TCP;
2260 }
2261 else if (csum_flags & M_CSUM_UDPv6) {
2262 t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2263 t->command |= MVXPE_TX_CMD_L4_UDP;
2264 }
2265
2266 t->l4ichk = 0;
2267 t->command |= MVXPE_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2268 t->command |= MVXPE_TX_CMD_L3_OFFSET(ipoff);
2269 }
2270
2271 STATIC void
2272 mvxpe_tx_complete(struct mvxpe_softc *sc, uint32_t queues)
2273 {
2274 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2275 int q;
2276
2277 DPRINTSC(sc, 2, "tx completed.\n");
2278
2279 KASSERT_SC_MTX(sc);
2280
2281 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2282 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2283 continue;
2284 mvxpe_tx_lockq(sc, q);
2285 mvxpe_tx_queue_complete(sc, q);
2286 mvxpe_tx_unlockq(sc, q);
2287 }
2288 KASSERT(sc->sc_tx_pending >= 0);
2289 if (sc->sc_tx_pending == 0)
2290 ifp->if_timer = 0;
2291 }
2292
2293 STATIC void
2294 mvxpe_tx_queue_complete(struct mvxpe_softc *sc, int q)
2295 {
2296 struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2297 struct mvxpe_tx_desc *t;
2298 struct mbuf *m;
2299 uint32_t ptxs, ptxsu, ndesc;
2300 int i;
2301
2302 KASSERT_TX_MTX(sc, q);
2303
2304 ptxs = MVXPE_READ(sc, MVXPE_PTXS(q));
2305 ndesc = MVXPE_PTXS_GET_TBC(ptxs);
2306 if (ndesc == 0)
2307 return;
2308
2309 DPRINTSC(sc, 2,
2310 "tx complete queue %d, %d descriptors.\n", q, ndesc);
2311
2312 mvxpe_ring_sync_tx(sc, q, tx->tx_dma, ndesc,
2313 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2314
2315 for (i = 0; i < ndesc; i++) {
2316 int error = 0;
2317
2318 t = MVXPE_TX_DESC(sc, q, tx->tx_dma);
2319 if (t->flags & MVXPE_TX_F_ES) {
2320 DPRINTSC(sc, 1,
2321 "tx error queue %d desc %d\n",
2322 q, tx->tx_dma);
2323 switch (t->flags & MVXPE_TX_F_EC_MASK) {
2324 case MVXPE_TX_F_EC_LC:
2325 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_lc);
2326 break;
2327 case MVXPE_TX_F_EC_UR:
2328 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_ur);
2329 break;
2330 case MVXPE_TX_F_EC_RL:
2331 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_rl);
2332 break;
2333 default:
2334 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_oth);
2335 break;
2336 }
2337 error = 1;
2338 }
2339 m = MVXPE_TX_MBUF(sc, q, tx->tx_dma);
2340 if (m != NULL) {
2341 KASSERT((t->command & MVXPE_TX_CMD_F) != 0);
2342 MVXPE_TX_MBUF(sc, q, tx->tx_dma) = NULL;
2343 bus_dmamap_sync(sc->sc_dmat,
2344 MVXPE_TX_MAP(sc, q, tx->tx_dma), 0, m->m_pkthdr.len,
2345 BUS_DMASYNC_POSTWRITE);
2346 bus_dmamap_unload(sc->sc_dmat,
2347 MVXPE_TX_MAP(sc, q, tx->tx_dma));
2348 m_freem(m);
2349 sc->sc_tx_pending--;
2350 }
2351 else
2352 KASSERT((t->flags & MVXPE_TX_CMD_F) == 0);
2353 tx->tx_dma = tx_counter_adv(tx->tx_dma, 1);
2354 tx->tx_used--;
2355 if (error)
2356 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txqe[q]);
2357 else
2358 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txq[q]);
2359 }
2360 KASSERT(tx->tx_used >= 0);
2361 KASSERT(tx->tx_used <= tx->tx_queue_len);
2362 while (ndesc > 255) {
2363 ptxsu = MVXPE_PTXSU_NORB(255);
2364 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2365 ndesc -= 255;
2366 }
2367 if (ndesc > 0) {
2368 ptxsu = MVXPE_PTXSU_NORB(ndesc);
2369 MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2370 }
2371 DPRINTSC(sc, 2,
2372 "Tx complete q %d, tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2373 q, tx->tx_cpu, tx->tx_dma, tx->tx_used);
2374 }
2375
2376 /*
2377 * Rx Subroutines
2378 */
2379 STATIC void
2380 mvxpe_rx(struct mvxpe_softc *sc, uint32_t queues)
2381 {
2382 int q, npkt;
2383
2384 KASSERT_SC_MTX(sc);
2385
2386 while ( (npkt = mvxpe_rx_queue_select(sc, queues, &q))) {
2387 /* mutex is held by rx_queue_select */
2388 mvxpe_rx_queue(sc, q, npkt);
2389 mvxpe_rx_unlockq(sc, q);
2390 }
2391 }
2392
2393 STATIC void
2394 mvxpe_rx_queue(struct mvxpe_softc *sc, int q, int npkt)
2395 {
2396 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2397 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2398 struct mvxpe_rx_desc *r;
2399 struct mvxpbm_chunk *chunk;
2400 struct mbuf *m;
2401 uint32_t prxsu;
2402 int error = 0;
2403 int i;
2404
2405 KASSERT_RX_MTX(sc, q);
2406
2407 mvxpe_ring_sync_rx(sc, q, rx->rx_dma, npkt,
2408 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2409
2410 for (i = 0; i < npkt; i++) {
2411 /* get descriptor and packet */
2412 chunk = MVXPE_RX_PKTBUF(sc, q, rx->rx_dma);
2413 MVXPE_RX_PKTBUF(sc, q, rx->rx_dma) = NULL;
2414 r = MVXPE_RX_DESC(sc, q, rx->rx_dma);
2415 mvxpbm_dmamap_sync(chunk, r->bytecnt, BUS_DMASYNC_POSTREAD);
2416
2417 /* check errors */
2418 if (r->status & MVXPE_RX_ES) {
2419 switch (r->status & MVXPE_RX_EC_MASK) {
2420 case MVXPE_RX_EC_CE:
2421 DPRINTIFNET(ifp, 1, "CRC error\n");
2422 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_ce);
2423 break;
2424 case MVXPE_RX_EC_OR:
2425 DPRINTIFNET(ifp, 1, "Rx FIFO overrun\n");
2426 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_or);
2427 break;
2428 case MVXPE_RX_EC_MF:
2429 DPRINTIFNET(ifp, 1, "Rx too large frame\n");
2430 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_mf);
2431 break;
2432 case MVXPE_RX_EC_RE:
2433 DPRINTIFNET(ifp, 1, "Rx resource error\n");
2434 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_re);
2435 break;
2436 }
2437 error = 1;
2438 goto rx_done;
2439 }
2440 if (!(r->status & MVXPE_RX_F) || !(r->status & MVXPE_RX_L)) {
2441 DPRINTIFNET(ifp, 1, "not support scatter buf\n");
2442 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_scat);
2443 error = 1;
2444 goto rx_done;
2445 }
2446
2447 if (chunk == NULL) {
2448 device_printf(sc->sc_dev,
2449 "got rx interrupt, but no chunk\n");
2450 error = 1;
2451 goto rx_done;
2452 }
2453
2454 /* extract packet buffer */
2455 if (mvxpbm_init_mbuf_hdr(chunk) != 0) {
2456 error = 1;
2457 goto rx_done;
2458 }
2459 m = chunk->m;
2460 m_set_rcvif(m, ifp);
2461 m->m_pkthdr.len = m->m_len = r->bytecnt - ETHER_CRC_LEN;
2462 m_adj(m, MVXPE_HWHEADER_SIZE); /* strip MH */
2463 mvxpe_rx_set_csumflag(ifp, r, m);
2464 if_percpuq_enqueue(ifp->if_percpuq, m);
2465 chunk = NULL; /* the BM chunk goes to networking stack now */
2466 rx_done:
2467 if (chunk) {
2468 /* rx error. just return the chunk to BM. */
2469 mvxpbm_free_chunk(chunk);
2470 }
2471 if (error)
2472 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxqe[q]);
2473 else
2474 MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxq[q]);
2475 rx->rx_dma = rx_counter_adv(rx->rx_dma, 1);
2476 }
2477 /* DMA status update */
2478 DPRINTSC(sc, 2, "%d packets received from queue %d\n", npkt, q);
2479 while (npkt > 255) {
2480 prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2481 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2482 npkt -= 255;
2483 }
2484 if (npkt > 0) {
2485 prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(npkt);
2486 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2487 }
2488
2489 DPRINTSC(sc, 2,
2490 "PRXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQA(q)));
2491 DPRINTSC(sc, 2,
2492 "PRXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
2493 DPRINTSC(sc, 2,
2494 "PRXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXS(q)));
2495 DPRINTSC(sc, 2,
2496 "PRXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PRXDI(q)));
2497 DPRINTSC(sc, 2, "RQC: %#x\n", MVXPE_READ(sc, MVXPE_RQC));
2498 DPRINTIFNET(ifp, 2, "Rx: rx_cpu = %d, rx_dma = %d\n",
2499 rx->rx_cpu, rx->rx_dma);
2500 }
2501
2502 STATIC int
2503 mvxpe_rx_queue_select(struct mvxpe_softc *sc, uint32_t queues, int *queue)
2504 {
2505 uint32_t prxs, npkt;
2506 int q;
2507
2508 KASSERT_SC_MTX(sc);
2509 KASSERT(queue != NULL);
2510 DPRINTSC(sc, 2, "selecting rx queue\n");
2511
2512 for (q = MVXPE_QUEUE_SIZE - 1; q >= 0; q--) {
2513 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2514 continue;
2515
2516 prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2517 npkt = MVXPE_PRXS_GET_ODC(prxs);
2518 if (npkt == 0)
2519 continue;
2520
2521 DPRINTSC(sc, 2,
2522 "queue %d selected: prxs=%#x, %u packet received.\n",
2523 q, prxs, npkt);
2524 *queue = q;
2525 mvxpe_rx_lockq(sc, q);
2526 return npkt;
2527 }
2528
2529 return 0;
2530 }
2531
2532 STATIC void
2533 mvxpe_rx_refill(struct mvxpe_softc *sc, uint32_t queues)
2534 {
2535 int q;
2536
2537 KASSERT_SC_MTX(sc);
2538
2539 /* XXX: check rx bit array */
2540 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2541 if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2542 continue;
2543
2544 mvxpe_rx_lockq(sc, q);
2545 mvxpe_rx_queue_refill(sc, q);
2546 mvxpe_rx_unlockq(sc, q);
2547 }
2548 }
2549
2550 STATIC void
2551 mvxpe_rx_queue_refill(struct mvxpe_softc *sc, int q)
2552 {
2553 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2554 uint32_t prxs, prxsu, ndesc;
2555 int idx, refill = 0;
2556 int npkt;
2557
2558 KASSERT_RX_MTX(sc, q);
2559
2560 prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2561 ndesc = MVXPE_PRXS_GET_NODC(prxs) + MVXPE_PRXS_GET_ODC(prxs);
2562 refill = rx->rx_queue_len - ndesc;
2563 if (refill <= 0)
2564 return;
2565 DPRINTPRXS(2, q);
2566 DPRINTSC(sc, 2, "%d buffers to refill.\n", refill);
2567
2568 idx = rx->rx_cpu;
2569 for (npkt = 0; npkt < refill; npkt++)
2570 if (mvxpe_rx_queue_add(sc, q) != 0)
2571 break;
2572 DPRINTSC(sc, 2, "queue %d, %d buffer refilled.\n", q, npkt);
2573 if (npkt == 0)
2574 return;
2575
2576 mvxpe_ring_sync_rx(sc, q, idx, npkt,
2577 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2578
2579 while (npkt > 255) {
2580 prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(255);
2581 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2582 npkt -= 255;
2583 }
2584 if (npkt > 0) {
2585 prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(npkt);
2586 MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2587 }
2588 DPRINTPRXS(2, q);
2589 return;
2590 }
2591
2592 STATIC int
2593 mvxpe_rx_queue_add(struct mvxpe_softc *sc, int q)
2594 {
2595 struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2596 struct mvxpe_rx_desc *r;
2597 struct mvxpbm_chunk *chunk = NULL;
2598
2599 KASSERT_RX_MTX(sc, q);
2600
2601 /* Allocate the packet buffer */
2602 chunk = mvxpbm_alloc(sc->sc_bm);
2603 if (chunk == NULL) {
2604 DPRINTSC(sc, 1, "BM chunk allocation failed.\n");
2605 return ENOBUFS;
2606 }
2607
2608 /* Add the packet to descriptor */
2609 KASSERT(MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) == NULL);
2610 MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) = chunk;
2611 mvxpbm_dmamap_sync(chunk, BM_SYNC_ALL, BUS_DMASYNC_PREREAD);
2612
2613 r = MVXPE_RX_DESC(sc, q, rx->rx_cpu);
2614 r->bufptr = chunk->buf_pa;
2615 DPRINTSC(sc, 9, "chunk added to index %d\n", rx->rx_cpu);
2616 rx->rx_cpu = rx_counter_adv(rx->rx_cpu, 1);
2617 return 0;
2618 }
2619
2620 STATIC void
2621 mvxpe_rx_set_csumflag(struct ifnet *ifp,
2622 struct mvxpe_rx_desc *r, struct mbuf *m0)
2623 {
2624 uint32_t csum_flags = 0;
2625
2626 if ((r->status & (MVXPE_RX_IP_HEADER_OK | MVXPE_RX_L3_IP)) == 0)
2627 return; /* not a IP packet */
2628
2629 /* L3 */
2630 if (r->status & MVXPE_RX_L3_IP) {
2631 csum_flags |= M_CSUM_IPv4 & ifp->if_csum_flags_rx;
2632 if ((r->status & MVXPE_RX_IP_HEADER_OK) == 0 &&
2633 (csum_flags & M_CSUM_IPv4) != 0) {
2634 csum_flags |= M_CSUM_IPv4_BAD;
2635 goto finish;
2636 }
2637 else if (r->status & MVXPE_RX_IPV4_FRAGMENT) {
2638 /*
2639 * r->l4chk has partial checksum of each fragment.
2640 * but there is no way to use it in NetBSD.
2641 */
2642 return;
2643 }
2644 }
2645
2646 /* L4 */
2647 switch (r->status & MVXPE_RX_L4_MASK) {
2648 case MVXPE_RX_L4_TCP:
2649 if (r->status & MVXPE_RX_L3_IP)
2650 csum_flags |= M_CSUM_TCPv4 & ifp->if_csum_flags_rx;
2651 else
2652 csum_flags |= M_CSUM_TCPv6 & ifp->if_csum_flags_rx;
2653 break;
2654 case MVXPE_RX_L4_UDP:
2655 if (r->status & MVXPE_RX_L3_IP)
2656 csum_flags |= M_CSUM_UDPv4 & ifp->if_csum_flags_rx;
2657 else
2658 csum_flags |= M_CSUM_UDPv6 & ifp->if_csum_flags_rx;
2659 break;
2660 case MVXPE_RX_L4_OTH:
2661 default:
2662 break;
2663 }
2664 if ((r->status & MVXPE_RX_L4_CHECKSUM_OK) == 0 && (csum_flags &
2665 (M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2666 csum_flags |= M_CSUM_TCP_UDP_BAD;
2667 finish:
2668 m0->m_pkthdr.csum_flags = csum_flags;
2669 }
2670
2671 /*
2672 * MAC address filter
2673 */
2674 STATIC uint8_t
2675 mvxpe_crc8(const uint8_t *data, size_t size)
2676 {
2677 int bit;
2678 uint8_t byte;
2679 uint8_t crc = 0;
2680 const uint8_t poly = 0x07;
2681
2682 while (size--)
2683 for (byte = *data++, bit = NBBY-1; bit >= 0; bit--)
2684 crc = (crc << 1) ^ ((((crc >> 7) ^ (byte >> bit)) & 1) ? poly : 0);
2685
2686 return crc;
2687 }
2688
2689 CTASSERT(MVXPE_NDFSMT == MVXPE_NDFOMT);
2690
2691 STATIC void
2692 mvxpe_filter_setup(struct mvxpe_softc *sc)
2693 {
2694 struct ethercom *ec = &sc->sc_ethercom;
2695 struct ifnet *ifp= &sc->sc_ethercom.ec_if;
2696 struct ether_multi *enm;
2697 struct ether_multistep step;
2698 uint32_t dfut[MVXPE_NDFUT], dfsmt[MVXPE_NDFSMT], dfomt[MVXPE_NDFOMT];
2699 uint32_t pxc;
2700 int i;
2701 const uint8_t special[ETHER_ADDR_LEN] = {0x01,0x00,0x5e,0x00,0x00,0x00};
2702
2703 KASSERT_SC_MTX(sc);
2704
2705 memset(dfut, 0, sizeof(dfut));
2706 memset(dfsmt, 0, sizeof(dfsmt));
2707 memset(dfomt, 0, sizeof(dfomt));
2708
2709 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
2710 goto allmulti;
2711 }
2712
2713 ETHER_LOCK(ec);
2714 ETHER_FIRST_MULTI(step, ec, enm);
2715 while (enm != NULL) {
2716 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2717 /* ranges are complex and somewhat rare */
2718 ETHER_UNLOCK(ec);
2719 goto allmulti;
2720 }
2721 /* chip handles some IPv4 multicast specially */
2722 if (memcmp(enm->enm_addrlo, special, 5) == 0) {
2723 i = enm->enm_addrlo[5];
2724 dfsmt[i>>2] |=
2725 MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2726 } else {
2727 i = mvxpe_crc8(enm->enm_addrlo, ETHER_ADDR_LEN);
2728 dfomt[i>>2] |=
2729 MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2730 }
2731
2732 ETHER_NEXT_MULTI(step, enm);
2733 }
2734 ETHER_UNLOCK(ec);
2735 goto set;
2736
2737 allmulti:
2738 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
2739 for (i = 0; i < MVXPE_NDFSMT; i++) {
2740 dfsmt[i] = dfomt[i] =
2741 MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2742 MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2743 MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2744 MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2745 }
2746 }
2747
2748 set:
2749 pxc = MVXPE_READ(sc, MVXPE_PXC);
2750 pxc &= ~MVXPE_PXC_UPM;
2751 pxc |= MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP;
2752 if (ifp->if_flags & IFF_BROADCAST) {
2753 pxc &= ~(MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP);
2754 }
2755 if (ifp->if_flags & IFF_PROMISC) {
2756 pxc |= MVXPE_PXC_UPM;
2757 }
2758 MVXPE_WRITE(sc, MVXPE_PXC, pxc);
2759
2760 /* Set Destination Address Filter Unicast Table */
2761 if (ifp->if_flags & IFF_PROMISC) {
2762 /* pass all unicast addresses */
2763 for (i = 0; i < MVXPE_NDFUT; i++) {
2764 dfut[i] =
2765 MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2766 MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2767 MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2768 MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2769 }
2770 }
2771 else {
2772 i = sc->sc_enaddr[5] & 0xf; /* last nibble */
2773 dfut[i>>2] = MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2774 }
2775 MVXPE_WRITE_REGION(sc, MVXPE_DFUT(0), dfut, MVXPE_NDFUT);
2776
2777 /* Set Destination Address Filter Multicast Tables */
2778 MVXPE_WRITE_REGION(sc, MVXPE_DFSMT(0), dfsmt, MVXPE_NDFSMT);
2779 MVXPE_WRITE_REGION(sc, MVXPE_DFOMT(0), dfomt, MVXPE_NDFOMT);
2780 }
2781
2782 /*
2783 * sysctl(9)
2784 */
2785 SYSCTL_SETUP(sysctl_mvxpe, "sysctl mvxpe subtree setup")
2786 {
2787 int rc;
2788 const struct sysctlnode *node;
2789
2790 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2791 0, CTLTYPE_NODE, "mvxpe",
2792 SYSCTL_DESCR("mvxpe interface controls"),
2793 NULL, 0, NULL, 0,
2794 CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2795 goto err;
2796 }
2797
2798 mvxpe_root_num = node->sysctl_num;
2799 return;
2800
2801 err:
2802 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2803 }
2804
2805 STATIC int
2806 sysctl_read_mib(SYSCTLFN_ARGS)
2807 {
2808 struct mvxpe_sysctl_mib *arg;
2809 struct mvxpe_softc *sc;
2810 struct sysctlnode node;
2811 uint64_t val;
2812 int err;
2813
2814 node = *rnode;
2815 arg = (struct mvxpe_sysctl_mib *)rnode->sysctl_data;
2816 if (arg == NULL)
2817 return EINVAL;
2818
2819 sc = arg->sc;
2820 if (sc == NULL)
2821 return EINVAL;
2822 if (arg->index < 0 || arg->index > __arraycount(mvxpe_mib_list))
2823 return EINVAL;
2824
2825 mvxpe_sc_lock(sc);
2826 val = arg->counter;
2827 mvxpe_sc_unlock(sc);
2828
2829 node.sysctl_data = &val;
2830 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2831 if (err)
2832 return err;
2833 if (newp)
2834 return EINVAL;
2835
2836 return 0;
2837 }
2838
2839
2840 STATIC int
2841 sysctl_clear_mib(SYSCTLFN_ARGS)
2842 {
2843 struct mvxpe_softc *sc;
2844 struct sysctlnode node;
2845 int val;
2846 int err;
2847
2848 node = *rnode;
2849 sc = (struct mvxpe_softc *)rnode->sysctl_data;
2850 if (sc == NULL)
2851 return EINVAL;
2852
2853 val = 0;
2854 node.sysctl_data = &val;
2855 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2856 if (err || newp == NULL)
2857 return err;
2858 if (val < 0 || val > 1)
2859 return EINVAL;
2860 if (val == 1) {
2861 mvxpe_sc_lock(sc);
2862 mvxpe_clear_mib(sc);
2863 mvxpe_sc_unlock(sc);
2864 }
2865
2866 return 0;
2867 }
2868
2869 STATIC int
2870 sysctl_set_queue_length(SYSCTLFN_ARGS)
2871 {
2872 struct mvxpe_sysctl_queue *arg;
2873 struct mvxpe_rx_ring *rx = NULL;
2874 struct mvxpe_tx_ring *tx = NULL;
2875 struct mvxpe_softc *sc;
2876 struct sysctlnode node;
2877 uint32_t reg;
2878 int val;
2879 int err;
2880
2881 node = *rnode;
2882
2883 arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2884 if (arg == NULL)
2885 return EINVAL;
2886 if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2887 return EINVAL;
2888 if (arg->rxtx != MVXPE_SYSCTL_RX && arg->rxtx != MVXPE_SYSCTL_TX)
2889 return EINVAL;
2890
2891 sc = arg->sc;
2892 if (sc == NULL)
2893 return EINVAL;
2894
2895 /* read queue length */
2896 mvxpe_sc_lock(sc);
2897 switch (arg->rxtx) {
2898 case MVXPE_SYSCTL_RX:
2899 mvxpe_rx_lockq(sc, arg->queue);
2900 rx = MVXPE_RX_RING(sc, arg->queue);
2901 val = rx->rx_queue_len;
2902 mvxpe_rx_unlockq(sc, arg->queue);
2903 break;
2904 case MVXPE_SYSCTL_TX:
2905 mvxpe_tx_lockq(sc, arg->queue);
2906 tx = MVXPE_TX_RING(sc, arg->queue);
2907 val = tx->tx_queue_len;
2908 mvxpe_tx_unlockq(sc, arg->queue);
2909 break;
2910 }
2911
2912 node.sysctl_data = &val;
2913 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2914 if (err || newp == NULL) {
2915 mvxpe_sc_unlock(sc);
2916 return err;
2917 }
2918
2919 /* update queue length */
2920 if (val < 8 || val > MVXPE_RX_RING_CNT) {
2921 mvxpe_sc_unlock(sc);
2922 return EINVAL;
2923 }
2924 switch (arg->rxtx) {
2925 case MVXPE_SYSCTL_RX:
2926 mvxpe_rx_lockq(sc, arg->queue);
2927 rx->rx_queue_len = val;
2928 rx->rx_queue_th_received =
2929 rx->rx_queue_len / MVXPE_RXTH_RATIO;
2930 rx->rx_queue_th_free =
2931 rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
2932
2933 reg = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
2934 reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
2935 MVXPE_WRITE(sc, MVXPE_PRXDQTH(arg->queue), reg);
2936
2937 mvxpe_rx_unlockq(sc, arg->queue);
2938 break;
2939 case MVXPE_SYSCTL_TX:
2940 mvxpe_tx_lockq(sc, arg->queue);
2941 tx->tx_queue_len = val;
2942 tx->tx_queue_th_free =
2943 tx->tx_queue_len / MVXPE_TXTH_RATIO;
2944
2945 reg = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
2946 reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
2947 MVXPE_WRITE(sc, MVXPE_PTXDQS(arg->queue), reg);
2948
2949 mvxpe_tx_unlockq(sc, arg->queue);
2950 break;
2951 }
2952 mvxpe_sc_unlock(sc);
2953
2954 return 0;
2955 }
2956
2957 STATIC int
2958 sysctl_set_queue_rxthtime(SYSCTLFN_ARGS)
2959 {
2960 struct mvxpe_sysctl_queue *arg;
2961 struct mvxpe_rx_ring *rx = NULL;
2962 struct mvxpe_softc *sc;
2963 struct sysctlnode node;
2964 extern uint32_t mvTclk;
2965 uint32_t reg, time_mvtclk;
2966 int time_us;
2967 int err;
2968
2969 node = *rnode;
2970
2971 arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2972 if (arg == NULL)
2973 return EINVAL;
2974 if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2975 return EINVAL;
2976 if (arg->rxtx != MVXPE_SYSCTL_RX)
2977 return EINVAL;
2978
2979 sc = arg->sc;
2980 if (sc == NULL)
2981 return EINVAL;
2982
2983 /* read queue length */
2984 mvxpe_sc_lock(sc);
2985 mvxpe_rx_lockq(sc, arg->queue);
2986 rx = MVXPE_RX_RING(sc, arg->queue);
2987 time_mvtclk = rx->rx_queue_th_time;
2988 time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvTclk;
2989 node.sysctl_data = &time_us;
2990 DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n",
2991 arg->queue, MVXPE_READ(sc, MVXPE_PRXITTH(arg->queue)));
2992 err = sysctl_lookup(SYSCTLFN_CALL(&node));
2993 if (err || newp == NULL) {
2994 mvxpe_rx_unlockq(sc, arg->queue);
2995 mvxpe_sc_unlock(sc);
2996 return err;
2997 }
2998
2999 /* update queue length (0[sec] - 1[sec]) */
3000 if (time_us < 0 || time_us > (1000 * 1000)) {
3001 mvxpe_rx_unlockq(sc, arg->queue);
3002 mvxpe_sc_unlock(sc);
3003 return EINVAL;
3004 }
3005 time_mvtclk =
3006 (uint64_t)mvTclk * (uint64_t)time_us / (1000ULL * 1000ULL);
3007 rx->rx_queue_th_time = time_mvtclk;
3008 reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
3009 MVXPE_WRITE(sc, MVXPE_PRXITTH(arg->queue), reg);
3010 DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n", arg->queue, reg);
3011 mvxpe_rx_unlockq(sc, arg->queue);
3012 mvxpe_sc_unlock(sc);
3013
3014 return 0;
3015 }
3016
3017
3018 STATIC void
3019 sysctl_mvxpe_init(struct mvxpe_softc *sc)
3020 {
3021 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3022 const struct sysctlnode *node;
3023 int mvxpe_nodenum;
3024 int mvxpe_mibnum;
3025 int mvxpe_rxqueuenum;
3026 int mvxpe_txqueuenum;
3027 int q, i;
3028
3029 /* hw.mvxpe.mvxpe[unit] */
3030 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3031 0, CTLTYPE_NODE, ifp->if_xname,
3032 SYSCTL_DESCR("mvxpe per-controller controls"),
3033 NULL, 0, NULL, 0,
3034 CTL_HW, mvxpe_root_num, CTL_CREATE,
3035 CTL_EOL) != 0) {
3036 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3037 return;
3038 }
3039 mvxpe_nodenum = node->sysctl_num;
3040
3041 /* hw.mvxpe.mvxpe[unit].mib */
3042 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3043 0, CTLTYPE_NODE, "mib",
3044 SYSCTL_DESCR("mvxpe per-controller MIB counters"),
3045 NULL, 0, NULL, 0,
3046 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3047 CTL_EOL) != 0) {
3048 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3049 return;
3050 }
3051 mvxpe_mibnum = node->sysctl_num;
3052
3053 /* hw.mvxpe.mvxpe[unit].rx */
3054 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3055 0, CTLTYPE_NODE, "rx",
3056 SYSCTL_DESCR("Rx Queues"),
3057 NULL, 0, NULL, 0,
3058 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3059 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3060 return;
3061 }
3062 mvxpe_rxqueuenum = node->sysctl_num;
3063
3064 /* hw.mvxpe.mvxpe[unit].tx */
3065 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3066 0, CTLTYPE_NODE, "tx",
3067 SYSCTL_DESCR("Tx Queues"),
3068 NULL, 0, NULL, 0,
3069 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3070 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3071 return;
3072 }
3073 mvxpe_txqueuenum = node->sysctl_num;
3074
3075 #ifdef MVXPE_DEBUG
3076 /* hw.mvxpe.debug */
3077 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3078 CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
3079 SYSCTL_DESCR("mvxpe device driver debug control"),
3080 NULL, 0, &mvxpe_debug, 0,
3081 CTL_HW, mvxpe_root_num, CTL_CREATE, CTL_EOL) != 0) {
3082 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3083 return;
3084 }
3085 #endif
3086 /*
3087 * MIB access
3088 */
3089 /* hw.mvxpe.mvxpe[unit].mib.<mibs> */
3090 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3091 const char *name = mvxpe_mib_list[i].sysctl_name;
3092 const char *desc = mvxpe_mib_list[i].desc;
3093 struct mvxpe_sysctl_mib *mib_arg = &sc->sc_sysctl_mib[i];
3094
3095 mib_arg->sc = sc;
3096 mib_arg->index = i;
3097 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3098 CTLFLAG_READONLY, CTLTYPE_QUAD, name, desc,
3099 sysctl_read_mib, 0, (void *)mib_arg, 0,
3100 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_mibnum,
3101 CTL_CREATE, CTL_EOL) != 0) {
3102 aprint_normal_dev(sc->sc_dev,
3103 "couldn't create sysctl node\n");
3104 break;
3105 }
3106 }
3107
3108 for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
3109 struct mvxpe_sysctl_queue *rxarg = &sc->sc_sysctl_rx_queue[q];
3110 struct mvxpe_sysctl_queue *txarg = &sc->sc_sysctl_tx_queue[q];
3111 #define MVXPE_SYSCTL_NAME(num) "queue" # num
3112 static const char *sysctl_queue_names[] = {
3113 MVXPE_SYSCTL_NAME(0), MVXPE_SYSCTL_NAME(1),
3114 MVXPE_SYSCTL_NAME(2), MVXPE_SYSCTL_NAME(3),
3115 MVXPE_SYSCTL_NAME(4), MVXPE_SYSCTL_NAME(5),
3116 MVXPE_SYSCTL_NAME(6), MVXPE_SYSCTL_NAME(7),
3117 };
3118 #undef MVXPE_SYSCTL_NAME
3119 #ifdef SYSCTL_INCLUDE_DESCR
3120 #define MVXPE_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3121 static const char *sysctl_queue_descrs[] = {
3122 MVXPE_SYSCTL_DESCR(0), MVXPE_SYSCTL_DESCR(1),
3123 MVXPE_SYSCTL_DESCR(2), MVXPE_SYSCTL_DESCR(3),
3124 MVXPE_SYSCTL_DESCR(4), MVXPE_SYSCTL_DESCR(5),
3125 MVXPE_SYSCTL_DESCR(6), MVXPE_SYSCTL_DESCR(7),
3126 };
3127 #undef MVXPE_SYSCTL_DESCR
3128 #endif /* SYSCTL_INCLUDE_DESCR */
3129 int mvxpe_curnum;
3130
3131 rxarg->sc = txarg->sc = sc;
3132 rxarg->queue = txarg->queue = q;
3133 rxarg->rxtx = MVXPE_SYSCTL_RX;
3134 txarg->rxtx = MVXPE_SYSCTL_TX;
3135
3136 /* hw.mvxpe.mvxpe[unit].rx.[queue] */
3137 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3138 0, CTLTYPE_NODE,
3139 sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descrs[q]),
3140 NULL, 0, NULL, 0,
3141 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3142 CTL_CREATE, CTL_EOL) != 0) {
3143 aprint_normal_dev(sc->sc_dev,
3144 "couldn't create sysctl node\n");
3145 break;
3146 }
3147 mvxpe_curnum = node->sysctl_num;
3148
3149 /* hw.mvxpe.mvxpe[unit].rx.[queue].length */
3150 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3151 CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3152 SYSCTL_DESCR("maximum length of the queue"),
3153 sysctl_set_queue_length, 0, (void *)rxarg, 0,
3154 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3155 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3156 aprint_normal_dev(sc->sc_dev,
3157 "couldn't create sysctl node\n");
3158 break;
3159 }
3160
3161 /* hw.mvxpe.mvxpe[unit].rx.[queue].threshold_timer_us */
3162 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3163 CTLFLAG_READWRITE, CTLTYPE_INT, "threshold_timer_us",
3164 SYSCTL_DESCR("interrupt coalescing threshold timer [us]"),
3165 sysctl_set_queue_rxthtime, 0, (void *)rxarg, 0,
3166 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3167 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3168 aprint_normal_dev(sc->sc_dev,
3169 "couldn't create sysctl node\n");
3170 break;
3171 }
3172
3173 /* hw.mvxpe.mvxpe[unit].tx.[queue] */
3174 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3175 0, CTLTYPE_NODE,
3176 sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descs[q]),
3177 NULL, 0, NULL, 0,
3178 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3179 CTL_CREATE, CTL_EOL) != 0) {
3180 aprint_normal_dev(sc->sc_dev,
3181 "couldn't create sysctl node\n");
3182 break;
3183 }
3184 mvxpe_curnum = node->sysctl_num;
3185
3186 /* hw.mvxpe.mvxpe[unit].tx.length[queue] */
3187 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3188 CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3189 SYSCTL_DESCR("maximum length of the queue"),
3190 sysctl_set_queue_length, 0, (void *)txarg, 0,
3191 CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3192 mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3193 aprint_normal_dev(sc->sc_dev,
3194 "couldn't create sysctl node\n");
3195 break;
3196 }
3197 }
3198
3199 /* hw.mvxpe.mvxpe[unit].clear_mib */
3200 if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3201 CTLFLAG_READWRITE, CTLTYPE_INT, "clear_mib",
3202 SYSCTL_DESCR("mvxpe device driver debug control"),
3203 sysctl_clear_mib, 0, (void *)sc, 0,
3204 CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3205 CTL_EOL) != 0) {
3206 aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3207 return;
3208 }
3209
3210 }
3211
3212 /*
3213 * MIB
3214 */
3215 STATIC void
3216 mvxpe_clear_mib(struct mvxpe_softc *sc)
3217 {
3218 int i;
3219
3220 KASSERT_SC_MTX(sc);
3221
3222 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3223 if (mvxpe_mib_list[i].reg64)
3224 MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum + 4));
3225 MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3226 sc->sc_sysctl_mib[i].counter = 0;
3227 }
3228 }
3229
3230 STATIC void
3231 mvxpe_update_mib(struct mvxpe_softc *sc)
3232 {
3233 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3234 int i;
3235
3236 KASSERT_SC_MTX(sc);
3237
3238 for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3239 uint32_t val_hi;
3240 uint32_t val_lo;
3241 uint64_t val;
3242
3243 if (mvxpe_mib_list[i].reg64) {
3244 /* XXX: implement bus_space_read_8() */
3245 val_lo = MVXPE_READ_MIB(sc,
3246 (mvxpe_mib_list[i].regnum + 4));
3247 val_hi = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3248 }
3249 else {
3250 val_lo = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3251 val_hi = 0;
3252 }
3253
3254 if ((val_lo | val_hi) == 0)
3255 continue;
3256
3257 val = ((uint64_t)val_hi << 32) | (uint64_t)val_lo;
3258 sc->sc_sysctl_mib[i].counter += val;
3259
3260 switch (mvxpe_mib_list[i].ext) {
3261 case MVXPE_MIBEXT_IF_OERRORS:
3262 if_statadd(ifp, if_oerrors, val);
3263 break;
3264 case MVXPE_MIBEXT_IF_IERRORS:
3265 if_statadd(ifp, if_ierrors, val);
3266 break;
3267 case MVXPE_MIBEXT_IF_COLLISIONS:
3268 if_statadd(ifp, if_collisions, val);
3269 break;
3270 default:
3271 break;
3272 }
3273
3274 }
3275 }
3276
3277 /*
3278 * for Debug
3279 */
3280 STATIC void
3281 mvxpe_dump_txdesc(struct mvxpe_tx_desc *desc, int idx)
3282 {
3283 #define DESC_PRINT(X) \
3284 if (X) \
3285 printf("txdesc[%d]." #X "=%#x\n", idx, X);
3286
3287 DESC_PRINT(desc->command);
3288 DESC_PRINT(desc->l4ichk);
3289 DESC_PRINT(desc->bytecnt);
3290 DESC_PRINT(desc->bufptr);
3291 DESC_PRINT(desc->flags);
3292 #undef DESC_PRINT
3293 }
3294
3295 STATIC void
3296 mvxpe_dump_rxdesc(struct mvxpe_rx_desc *desc, int idx)
3297 {
3298 #define DESC_PRINT(X) \
3299 if (X) \
3300 printf("rxdesc[%d]." #X "=%#x\n", idx, X);
3301
3302 DESC_PRINT(desc->status);
3303 DESC_PRINT(desc->bytecnt);
3304 DESC_PRINT(desc->bufptr);
3305 DESC_PRINT(desc->l4chk);
3306 #undef DESC_PRINT
3307 }
3308