Home | History | Annotate | Line # | Download | only in marvell
if_mvxpe.c revision 1.9
      1 /*	$NetBSD: if_mvxpe.c,v 1.9 2016/02/13 06:12:46 hikaru Exp $	*/
      2 /*
      3  * Copyright (c) 2015 Internet Initiative Japan Inc.
      4  * All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
     19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
     24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     25  * POSSIBILITY OF SUCH DAMAGE.
     26  */
     27 #include <sys/cdefs.h>
     28 __KERNEL_RCSID(0, "$NetBSD: if_mvxpe.c,v 1.9 2016/02/13 06:12:46 hikaru Exp $");
     29 
     30 #include "opt_multiprocessor.h"
     31 
     32 #include <sys/param.h>
     33 #include <sys/bus.h>
     34 #include <sys/callout.h>
     35 #include <sys/device.h>
     36 #include <sys/endian.h>
     37 #include <sys/errno.h>
     38 #include <sys/evcnt.h>
     39 #include <sys/kernel.h>
     40 #include <sys/kmem.h>
     41 #include <sys/mutex.h>
     42 #include <sys/sockio.h>
     43 #include <sys/sysctl.h>
     44 #include <sys/syslog.h>
     45 #include <sys/rndsource.h>
     46 
     47 #include <net/if.h>
     48 #include <net/if_ether.h>
     49 #include <net/if_media.h>
     50 #include <net/bpf.h>
     51 
     52 #include <netinet/in.h>
     53 #include <netinet/in_systm.h>
     54 #include <netinet/ip.h>
     55 
     56 #include <dev/mii/mii.h>
     57 #include <dev/mii/miivar.h>
     58 
     59 #include <dev/marvell/marvellreg.h>
     60 #include <dev/marvell/marvellvar.h>
     61 #include <dev/marvell/mvxpbmvar.h>
     62 #include <dev/marvell/if_mvxpereg.h>
     63 #include <dev/marvell/if_mvxpevar.h>
     64 
     65 #include "locators.h"
     66 
     67 #if BYTE_ORDER == BIG_ENDIAN
     68 #error "BIG ENDIAN not supported"
     69 #endif
     70 
     71 #ifdef MVXPE_DEBUG
     72 #define STATIC /* nothing */
     73 #else
     74 #define STATIC static
     75 #endif
     76 
     77 /* autoconf(9) */
     78 STATIC int mvxpe_match(device_t, struct cfdata *, void *);
     79 STATIC void mvxpe_attach(device_t, device_t, void *);
     80 STATIC int mvxpe_evcnt_attach(struct mvxpe_softc *);
     81 CFATTACH_DECL_NEW(mvxpe_mbus, sizeof(struct mvxpe_softc),
     82     mvxpe_match, mvxpe_attach, NULL, NULL);
     83 STATIC void mvxpe_sc_lock(struct mvxpe_softc *);
     84 STATIC void mvxpe_sc_unlock(struct mvxpe_softc *);
     85 
     86 /* MII */
     87 STATIC int mvxpe_miibus_readreg(device_t, int, int);
     88 STATIC void mvxpe_miibus_writereg(device_t, int, int, int);
     89 STATIC void mvxpe_miibus_statchg(struct ifnet *);
     90 
     91 /* Addres Decoding Window */
     92 STATIC void mvxpe_wininit(struct mvxpe_softc *, enum marvell_tags *);
     93 
     94 /* Device Register Initialization */
     95 STATIC int mvxpe_initreg(struct ifnet *);
     96 
     97 /* Descriptor Ring Control for each of queues */
     98 STATIC void *mvxpe_dma_memalloc(struct mvxpe_softc *, bus_dmamap_t *, size_t);
     99 STATIC int mvxpe_ring_alloc_queue(struct mvxpe_softc *, int);
    100 STATIC void mvxpe_ring_dealloc_queue(struct mvxpe_softc *, int);
    101 STATIC void mvxpe_ring_init_queue(struct mvxpe_softc *, int);
    102 STATIC void mvxpe_ring_flush_queue(struct mvxpe_softc *, int);
    103 STATIC void mvxpe_ring_sync_rx(struct mvxpe_softc *, int, int, int, int);
    104 STATIC void mvxpe_ring_sync_tx(struct mvxpe_softc *, int, int, int, int);
    105 
    106 /* Rx/Tx Queue Control */
    107 STATIC int mvxpe_rx_queue_init(struct ifnet *, int);
    108 STATIC int mvxpe_tx_queue_init(struct ifnet *, int);
    109 STATIC int mvxpe_rx_queue_enable(struct ifnet *, int);
    110 STATIC int mvxpe_tx_queue_enable(struct ifnet *, int);
    111 STATIC void mvxpe_rx_lockq(struct mvxpe_softc *, int);
    112 STATIC void mvxpe_rx_unlockq(struct mvxpe_softc *, int);
    113 STATIC void mvxpe_tx_lockq(struct mvxpe_softc *, int);
    114 STATIC void mvxpe_tx_unlockq(struct mvxpe_softc *, int);
    115 
    116 /* Interrupt Handlers */
    117 STATIC void mvxpe_disable_intr(struct mvxpe_softc *);
    118 STATIC void mvxpe_enable_intr(struct mvxpe_softc *);
    119 STATIC int mvxpe_rxtxth_intr(void *);
    120 STATIC int mvxpe_misc_intr(void *);
    121 STATIC int mvxpe_rxtx_intr(void *);
    122 STATIC void mvxpe_tick(void *);
    123 
    124 /* struct ifnet and mii callbacks*/
    125 STATIC void mvxpe_start(struct ifnet *);
    126 STATIC int mvxpe_ioctl(struct ifnet *, u_long, void *);
    127 STATIC int mvxpe_init(struct ifnet *);
    128 STATIC void mvxpe_stop(struct ifnet *, int);
    129 STATIC void mvxpe_watchdog(struct ifnet *);
    130 STATIC int mvxpe_ifflags_cb(struct ethercom *);
    131 STATIC int mvxpe_mediachange(struct ifnet *);
    132 STATIC void mvxpe_mediastatus(struct ifnet *, struct ifmediareq *);
    133 
    134 /* Link State Notify */
    135 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc);
    136 STATIC void mvxpe_linkup(struct mvxpe_softc *);
    137 STATIC void mvxpe_linkdown(struct mvxpe_softc *);
    138 STATIC void mvxpe_linkreset(struct mvxpe_softc *);
    139 
    140 /* Tx Subroutines */
    141 STATIC int mvxpe_tx_queue_select(struct mvxpe_softc *, struct mbuf *);
    142 STATIC int mvxpe_tx_queue(struct mvxpe_softc *, struct mbuf *, int);
    143 STATIC void mvxpe_tx_set_csumflag(struct ifnet *,
    144     struct mvxpe_tx_desc *, struct mbuf *);
    145 STATIC void mvxpe_tx_complete(struct mvxpe_softc *, uint32_t);
    146 STATIC void mvxpe_tx_queue_complete(struct mvxpe_softc *, int);
    147 
    148 /* Rx Subroutines */
    149 STATIC void mvxpe_rx(struct mvxpe_softc *, uint32_t);
    150 STATIC void mvxpe_rx_queue(struct mvxpe_softc *, int, int);
    151 STATIC int mvxpe_rx_queue_select(struct mvxpe_softc *, uint32_t, int *);
    152 STATIC void mvxpe_rx_refill(struct mvxpe_softc *, uint32_t);
    153 STATIC void mvxpe_rx_queue_refill(struct mvxpe_softc *, int);
    154 STATIC int mvxpe_rx_queue_add(struct mvxpe_softc *, int);
    155 STATIC void mvxpe_rx_set_csumflag(struct ifnet *,
    156     struct mvxpe_rx_desc *, struct mbuf *);
    157 
    158 /* MAC address filter */
    159 STATIC uint8_t mvxpe_crc8(const uint8_t *, size_t);
    160 STATIC void mvxpe_filter_setup(struct mvxpe_softc *);
    161 
    162 /* sysctl(9) */
    163 STATIC int sysctl_read_mib(SYSCTLFN_PROTO);
    164 STATIC int sysctl_clear_mib(SYSCTLFN_PROTO);
    165 STATIC int sysctl_set_queue_length(SYSCTLFN_PROTO);
    166 STATIC int sysctl_set_queue_rxthtime(SYSCTLFN_PROTO);
    167 STATIC void sysctl_mvxpe_init(struct mvxpe_softc *);
    168 
    169 /* MIB */
    170 STATIC void mvxpe_clear_mib(struct mvxpe_softc *);
    171 STATIC void mvxpe_update_mib(struct mvxpe_softc *);
    172 
    173 /* for Debug */
    174 STATIC void mvxpe_dump_txdesc(struct mvxpe_tx_desc *, int) __attribute__((__unused__));
    175 STATIC void mvxpe_dump_rxdesc(struct mvxpe_rx_desc *, int) __attribute__((__unused__));
    176 
    177 STATIC int mvxpe_root_num;
    178 STATIC kmutex_t mii_mutex;
    179 STATIC int mii_init = 0;
    180 #ifdef MVXPE_DEBUG
    181 STATIC int mvxpe_debug = MVXPE_DEBUG;
    182 #endif
    183 
    184 /*
    185  * List of MIB register and names
    186  */
    187 STATIC struct mvxpe_mib_def {
    188 	uint32_t regnum;
    189 	int reg64;
    190 	const char *sysctl_name;
    191 	const char *desc;
    192 } mvxpe_mib_list[] = {
    193 	{MVXPE_MIB_RX_GOOD_OCT, 1,	"rx_good_oct",
    194 	    "Good Octets Rx"},
    195 	{MVXPE_MIB_RX_BAD_OCT, 0,	"rx_bad_oct",
    196 	    "Bad  Octets Rx"},
    197 	{MVXPE_MIB_RX_MAC_TRNS_ERR, 0,	"rx_mac_err",
    198 	    "MAC Transmit Error"},
    199 	{MVXPE_MIB_RX_GOOD_FRAME, 0,	"rx_good_frame",
    200 	    "Good Frames Rx"},
    201 	{MVXPE_MIB_RX_BAD_FRAME, 0,	"rx_bad_frame",
    202 	    "Bad Frames Rx"},
    203 	{MVXPE_MIB_RX_BCAST_FRAME, 0,	"rx_bcast_frame",
    204 	    "Broadcast Frames Rx"},
    205 	{MVXPE_MIB_RX_MCAST_FRAME, 0,	"rx_mcast_frame",
    206 	    "Multicast Frames Rx"},
    207 	{MVXPE_MIB_RX_FRAME64_OCT, 0,	"rx_frame_1_64",
    208 	    "Frame Size    1 -   64"},
    209 	{MVXPE_MIB_RX_FRAME127_OCT, 0,	"rx_frame_65_127",
    210 	    "Frame Size   65 -  127"},
    211 	{MVXPE_MIB_RX_FRAME255_OCT, 0,	"rx_frame_128_255",
    212 	    "Frame Size  128 -  255"},
    213 	{MVXPE_MIB_RX_FRAME511_OCT, 0,	"rx_frame_256_511",
    214 	    "Frame Size  256 -  511"},
    215 	{MVXPE_MIB_RX_FRAME1023_OCT, 0,	"rx_frame_512_1023",
    216 	    "Frame Size  512 - 1023"},
    217 	{MVXPE_MIB_RX_FRAMEMAX_OCT, 0,	"rx_fame_1024_max",
    218 	    "Frame Size 1024 -  Max"},
    219 	{MVXPE_MIB_TX_GOOD_OCT, 1,	"tx_good_oct",
    220 	    "Good Octets Tx"},
    221 	{MVXPE_MIB_TX_GOOD_FRAME, 0,	"tx_good_frame",
    222 	    "Good Frames Tx"},
    223 	{MVXPE_MIB_TX_EXCES_COL, 0,	"tx_exces_collision",
    224 	    "Excessive Collision"},
    225 	{MVXPE_MIB_TX_MCAST_FRAME, 0,	"tx_mcast_frame",
    226 	    "Multicast Frames Tx"},
    227 	{MVXPE_MIB_TX_BCAST_FRAME, 0,	"tx_bcast_frame",
    228 	    "Broadcast Frames Tx"},
    229 	{MVXPE_MIB_TX_MAC_CTL_ERR, 0,	"tx_mac_err",
    230 	    "Unknown MAC Control"},
    231 	{MVXPE_MIB_FC_SENT, 0,		"fc_tx",
    232 	    "Flow Control Tx"},
    233 	{MVXPE_MIB_FC_GOOD, 0,		"fc_rx_good",
    234 	    "Good Flow Control Rx"},
    235 	{MVXPE_MIB_FC_BAD, 0,		"fc_rx_bad",
    236 	    "Bad Flow Control Rx"},
    237 	{MVXPE_MIB_PKT_UNDERSIZE, 0,	"pkt_undersize",
    238 	    "Undersized Packets Rx"},
    239 	{MVXPE_MIB_PKT_FRAGMENT, 0,	"pkt_fragment",
    240 	    "Fragmented Packets Rx"},
    241 	{MVXPE_MIB_PKT_OVERSIZE, 0,	"pkt_oversize",
    242 	    "Oversized Packets Rx"},
    243 	{MVXPE_MIB_PKT_JABBER, 0,	"pkt_jabber",
    244 	    "Jabber Packets Rx"},
    245 	{MVXPE_MIB_MAC_RX_ERR, 0,	"mac_rx_err",
    246 	    "MAC Rx Errors"},
    247 	{MVXPE_MIB_MAC_CRC_ERR, 0,	"mac_crc_err",
    248 	    "MAC CRC Errors"},
    249 	{MVXPE_MIB_MAC_COL, 0,		"mac_collision",
    250 	    "MAC Collision"},
    251 	{MVXPE_MIB_MAC_LATE_COL, 0,	"mac_late_collision",
    252 	    "MAC Late Collision"},
    253 };
    254 
    255 /*
    256  * autoconf(9)
    257  */
    258 /* ARGSUSED */
    259 STATIC int
    260 mvxpe_match(device_t parent, cfdata_t match, void *aux)
    261 {
    262 	struct marvell_attach_args *mva = aux;
    263 	bus_size_t pv_off;
    264 	uint32_t pv;
    265 
    266 	if (strcmp(mva->mva_name, match->cf_name) != 0)
    267 		return 0;
    268 	if (mva->mva_offset == MVA_OFFSET_DEFAULT)
    269 		return 0;
    270 
    271 	/* check port version */
    272 	pv_off = mva->mva_offset + MVXPE_PV;
    273 	pv = bus_space_read_4(mva->mva_iot, mva->mva_ioh, pv_off);
    274 	if (MVXPE_PV_GET_VERSION(pv) < 0x10)
    275 		return 0; /* old version is not supported */
    276 
    277 	return 1;
    278 }
    279 
    280 /* ARGSUSED */
    281 STATIC void
    282 mvxpe_attach(device_t parent, device_t self, void *aux)
    283 {
    284 	struct mvxpe_softc *sc = device_private(self);
    285 	struct mii_softc *mii;
    286 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    287 	struct marvell_attach_args *mva = aux;
    288 	prop_dictionary_t dict;
    289 	prop_data_t enaddrp = NULL;
    290 	uint32_t phyaddr, maddrh, maddrl;
    291 	uint8_t enaddr[ETHER_ADDR_LEN];
    292 	int q;
    293 
    294 	aprint_naive("\n");
    295 	aprint_normal(": Marvell ARMADA GbE Controller\n");
    296 	memset(sc, 0, sizeof(*sc));
    297 	sc->sc_dev = self;
    298 	sc->sc_port = mva->mva_unit;
    299 	sc->sc_iot = mva->mva_iot;
    300 	sc->sc_dmat = mva->mva_dmat;
    301 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
    302 	callout_init(&sc->sc_tick_ch, 0);
    303 	callout_setfunc(&sc->sc_tick_ch, mvxpe_tick, sc);
    304 
    305 	/*
    306 	 * BUS space
    307 	 */
    308 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
    309 	    mva->mva_offset, mva->mva_size, &sc->sc_ioh)) {
    310 		aprint_error_dev(self, "Cannot map registers\n");
    311 		goto fail;
    312 	}
    313 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
    314 	    mva->mva_offset + MVXPE_PORTMIB_BASE, MVXPE_PORTMIB_SIZE,
    315 	    &sc->sc_mibh)) {
    316 		aprint_error_dev(self,
    317 		    "Cannot map destination address filter registers\n");
    318 		goto fail;
    319 	}
    320 	sc->sc_version = MVXPE_READ(sc, MVXPE_PV);
    321 	aprint_normal_dev(self, "Port Version %#x\n", sc->sc_version);
    322 
    323 	/*
    324 	 * Buffer Manager(BM) subsystem.
    325 	 */
    326 	sc->sc_bm = mvxpbm_device(mva);
    327 	if (sc->sc_bm == NULL) {
    328 		aprint_error_dev(self, "no Buffer Manager.\n");
    329 		goto fail;
    330 	}
    331 	aprint_normal_dev(self,
    332 	    "Using Buffer Manager: %s\n", mvxpbm_xname(sc->sc_bm));
    333 	aprint_normal_dev(sc->sc_dev,
    334 	    "%zu kbytes managed buffer, %zu bytes * %u entries allocated.\n",
    335 	    mvxpbm_buf_size(sc->sc_bm) / 1024,
    336 	    mvxpbm_chunk_size(sc->sc_bm), mvxpbm_chunk_count(sc->sc_bm));
    337 
    338 	/*
    339 	 * make sure DMA engines are in reset state
    340 	 */
    341 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
    342 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
    343 
    344 	/*
    345 	 * Address decoding window
    346 	 */
    347 	mvxpe_wininit(sc, mva->mva_tags);
    348 
    349 	/*
    350 	 * MAC address
    351 	 */
    352 	dict = device_properties(self);
    353 	if (dict)
    354 		enaddrp = prop_dictionary_get(dict, "mac-address");
    355 	if (enaddrp) {
    356 		memcpy(enaddr, prop_data_data_nocopy(enaddrp), ETHER_ADDR_LEN);
    357 		maddrh  = enaddr[0] << 24;
    358 		maddrh |= enaddr[1] << 16;
    359 		maddrh |= enaddr[2] << 8;
    360 		maddrh |= enaddr[3];
    361 		maddrl  = enaddr[4] << 8;
    362 		maddrl |= enaddr[5];
    363 		MVXPE_WRITE(sc, MVXPE_MACAH, maddrh);
    364 		MVXPE_WRITE(sc, MVXPE_MACAL, maddrl);
    365 	}
    366 	else {
    367 		/*
    368 		 * even if enaddr is not found in dictionary,
    369 		 * the port may be initialized by IPL program such as U-BOOT.
    370 		 */
    371 		maddrh = MVXPE_READ(sc, MVXPE_MACAH);
    372 		maddrl = MVXPE_READ(sc, MVXPE_MACAL);
    373 		if ((maddrh | maddrl) == 0) {
    374 			aprint_error_dev(self, "No Ethernet address\n");
    375 			return;
    376 		}
    377 	}
    378 	sc->sc_enaddr[0] = maddrh >> 24;
    379 	sc->sc_enaddr[1] = maddrh >> 16;
    380 	sc->sc_enaddr[2] = maddrh >> 8;
    381 	sc->sc_enaddr[3] = maddrh >> 0;
    382 	sc->sc_enaddr[4] = maddrl >> 8;
    383 	sc->sc_enaddr[5] = maddrl >> 0;
    384 	aprint_normal_dev(self, "Ethernet address %s\n",
    385 	    ether_sprintf(sc->sc_enaddr));
    386 
    387 	/*
    388 	 * Register interrupt handlers
    389 	 * XXX: handle Ethernet unit intr. and Error intr.
    390 	 */
    391 	mvxpe_disable_intr(sc);
    392 	marvell_intr_establish(mva->mva_irq, IPL_NET, mvxpe_rxtxth_intr, sc);
    393 
    394 	/*
    395 	 * MIB buffer allocation
    396 	 */
    397 	sc->sc_sysctl_mib_size =
    398 	    __arraycount(mvxpe_mib_list) * sizeof(struct mvxpe_sysctl_mib);
    399 	sc->sc_sysctl_mib = kmem_alloc(sc->sc_sysctl_mib_size, KM_NOSLEEP);
    400 	if (sc->sc_sysctl_mib == NULL)
    401 		goto fail;
    402 	memset(sc->sc_sysctl_mib, 0, sc->sc_sysctl_mib_size);
    403 
    404 	/*
    405 	 * Device DMA Buffer allocation
    406 	 */
    407 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    408 		if (mvxpe_ring_alloc_queue(sc, q) != 0)
    409 			goto fail;
    410 		mvxpe_ring_init_queue(sc, q);
    411 	}
    412 
    413 	/*
    414 	 * We can support 802.1Q VLAN-sized frames and jumbo
    415 	 * Ethernet frames.
    416 	 */
    417 	sc->sc_ethercom.ec_capabilities |=
    418 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    419 	ifp->if_softc = sc;
    420 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    421 	ifp->if_start = mvxpe_start;
    422 	ifp->if_ioctl = mvxpe_ioctl;
    423 	ifp->if_init = mvxpe_init;
    424 	ifp->if_stop = mvxpe_stop;
    425 	ifp->if_watchdog = mvxpe_watchdog;
    426 
    427 	/*
    428 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
    429 	 */
    430 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
    431 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
    432 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
    433 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
    434 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx;
    435 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx;
    436 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Tx;
    437 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Rx;
    438 	ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Tx;
    439 	ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Rx;
    440 
    441 	/*
    442 	 * Initialize struct ifnet
    443 	 */
    444 	IFQ_SET_MAXLEN(&ifp->if_snd, max(MVXPE_TX_RING_CNT - 1, IFQ_MAXLEN));
    445 	IFQ_SET_READY(&ifp->if_snd);
    446 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
    447 
    448 	/*
    449 	 * Enable DMA engines and Initiazlie Device Regisers.
    450 	 */
    451 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
    452 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
    453 	MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
    454 	mvxpe_sc_lock(sc); /* XXX */
    455 	mvxpe_filter_setup(sc);
    456 	mvxpe_sc_unlock(sc);
    457 	mvxpe_initreg(ifp);
    458 
    459 	/*
    460 	 * Now MAC is working, setup MII.
    461 	 */
    462 	if (mii_init == 0) {
    463 		/*
    464 		 * MII bus is shared by all MACs and all PHYs in SoC.
    465 		 * serializing the bus access should be safe.
    466 		 */
    467 		mutex_init(&mii_mutex, MUTEX_DEFAULT, IPL_NET);
    468 		mii_init = 1;
    469 	}
    470 	sc->sc_mii.mii_ifp = ifp;
    471 	sc->sc_mii.mii_readreg = mvxpe_miibus_readreg;
    472 	sc->sc_mii.mii_writereg = mvxpe_miibus_writereg;
    473 	sc->sc_mii.mii_statchg = mvxpe_miibus_statchg;
    474 
    475 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    476 	ifmedia_init(&sc->sc_mii.mii_media, 0,
    477 	    mvxpe_mediachange, mvxpe_mediastatus);
    478 	/*
    479 	 * XXX: phy addressing highly depends on Board Design.
    480 	 * we assume phyaddress == MAC unit number here,
    481 	 * but some boards may not.
    482 	 */
    483 	mii_attach(self, &sc->sc_mii, 0xffffffff,
    484 	    MII_PHY_ANY, sc->sc_dev->dv_unit, 0);
    485 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
    486 	if (mii == NULL) {
    487 		aprint_error_dev(self, "no PHY found!\n");
    488 		ifmedia_add(&sc->sc_mii.mii_media,
    489 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    490 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
    491 	} else {
    492 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
    493 		phyaddr = MVXPE_PHYADDR_PHYAD(mii->mii_phy);
    494 		MVXPE_WRITE(sc, MVXPE_PHYADDR, phyaddr);
    495 		DPRINTSC(sc, 1, "PHYADDR: %#x\n", MVXPE_READ(sc, MVXPE_PHYADDR));
    496 	}
    497 
    498 	/*
    499 	 * Call MI attach routines.
    500 	 */
    501 	if_attach(ifp);
    502 
    503 	ether_ifattach(ifp, sc->sc_enaddr);
    504 	ether_set_ifflags_cb(&sc->sc_ethercom, mvxpe_ifflags_cb);
    505 
    506 	sysctl_mvxpe_init(sc);
    507 	mvxpe_evcnt_attach(sc);
    508 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
    509 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    510 
    511 	return;
    512 
    513 fail:
    514 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++)
    515 		mvxpe_ring_dealloc_queue(sc, q);
    516 	if (sc->sc_sysctl_mib)
    517 		kmem_free(sc->sc_sysctl_mib, sc->sc_sysctl_mib_size);
    518 
    519 	return;
    520 }
    521 
    522 STATIC int
    523 mvxpe_evcnt_attach(struct mvxpe_softc *sc)
    524 {
    525 #ifdef MVXPE_EVENT_COUNTERS
    526 	int q;
    527 
    528 	/* Master Interrupt Handler */
    529 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtxth, EVCNT_TYPE_INTR,
    530 	    NULL, device_xname(sc->sc_dev), "RxTxTH Intr.");
    531 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtx, EVCNT_TYPE_INTR,
    532 	    NULL, device_xname(sc->sc_dev), "RxTx Intr.");
    533 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_misc, EVCNT_TYPE_INTR,
    534 	    NULL, device_xname(sc->sc_dev), "MISC Intr.");
    535 
    536 	/* RXTXTH Interrupt */
    537 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtxth_txerr, EVCNT_TYPE_INTR,
    538 	    NULL, device_xname(sc->sc_dev), "RxTxTH Tx error summary");
    539 
    540 	/* MISC Interrupt */
    541 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_phystatuschng, EVCNT_TYPE_INTR,
    542 	    NULL, device_xname(sc->sc_dev), "MISC phy status changed");
    543 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_linkchange, EVCNT_TYPE_INTR,
    544 	    NULL, device_xname(sc->sc_dev), "MISC link status changed");
    545 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_iae, EVCNT_TYPE_INTR,
    546 	    NULL, device_xname(sc->sc_dev), "MISC internal address error");
    547 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxoverrun, EVCNT_TYPE_INTR,
    548 	    NULL, device_xname(sc->sc_dev), "MISC Rx FIFO overrun");
    549 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxcrc, EVCNT_TYPE_INTR,
    550 	    NULL, device_xname(sc->sc_dev), "MISC Rx CRC error");
    551 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxlargepacket, EVCNT_TYPE_INTR,
    552 	    NULL, device_xname(sc->sc_dev), "MISC Rx too large frame");
    553 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txunderrun, EVCNT_TYPE_INTR,
    554 	    NULL, device_xname(sc->sc_dev), "MISC Tx FIFO underrun");
    555 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_prbserr, EVCNT_TYPE_INTR,
    556 	    NULL, device_xname(sc->sc_dev), "MISC SERDES loopback test err");
    557 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_srse, EVCNT_TYPE_INTR,
    558 	    NULL, device_xname(sc->sc_dev), "MISC SERDES sync error");
    559 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txreq, EVCNT_TYPE_INTR,
    560 	    NULL, device_xname(sc->sc_dev), "MISC Tx resource erorr");
    561 
    562 	/* RxTx Interrupt */
    563 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rreq, EVCNT_TYPE_INTR,
    564 	    NULL, device_xname(sc->sc_dev), "RxTx Rx resource erorr");
    565 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rpq, EVCNT_TYPE_INTR,
    566 	    NULL, device_xname(sc->sc_dev), "RxTx Rx pakcet");
    567 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_tbrq, EVCNT_TYPE_INTR,
    568 	    NULL, device_xname(sc->sc_dev), "RxTx Tx complete");
    569 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rxtxth, EVCNT_TYPE_INTR,
    570 	    NULL, device_xname(sc->sc_dev), "RxTx RxTxTH summary");
    571 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_txerr, EVCNT_TYPE_INTR,
    572 	    NULL, device_xname(sc->sc_dev), "RxTx Tx error summary");
    573 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_misc, EVCNT_TYPE_INTR,
    574 	    NULL, device_xname(sc->sc_dev), "RxTx MISC summary");
    575 
    576 	/* Link */
    577 	evcnt_attach_dynamic(&sc->sc_ev.ev_link_up, EVCNT_TYPE_MISC,
    578 	    NULL, device_xname(sc->sc_dev), "link up");
    579 	evcnt_attach_dynamic(&sc->sc_ev.ev_link_down, EVCNT_TYPE_MISC,
    580 	    NULL, device_xname(sc->sc_dev), "link down");
    581 
    582 	/* Rx Descriptor */
    583 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_ce, EVCNT_TYPE_MISC,
    584 	    NULL, device_xname(sc->sc_dev), "Rx CRC error counter");
    585 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_or, EVCNT_TYPE_MISC,
    586 	    NULL, device_xname(sc->sc_dev), "Rx FIFO overrun counter");
    587 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_mf, EVCNT_TYPE_MISC,
    588 	    NULL, device_xname(sc->sc_dev), "Rx too large frame counter");
    589 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_re, EVCNT_TYPE_MISC,
    590 	    NULL, device_xname(sc->sc_dev), "Rx resource error counter");
    591 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_scat, EVCNT_TYPE_MISC,
    592 	    NULL, device_xname(sc->sc_dev), "Rx unexpected scatter bufs");
    593 
    594 	/* Tx Descriptor */
    595 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_lc, EVCNT_TYPE_MISC,
    596 	    NULL, device_xname(sc->sc_dev), "Tx late collision counter");
    597 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_rl, EVCNT_TYPE_MISC,
    598 	    NULL, device_xname(sc->sc_dev), "Tx excess. collision counter");
    599 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_ur, EVCNT_TYPE_MISC,
    600 	    NULL, device_xname(sc->sc_dev), "Tx FIFO underrun counter");
    601 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_oth, EVCNT_TYPE_MISC,
    602 	    NULL, device_xname(sc->sc_dev), "Tx unkonwn erorr counter");
    603 
    604 	/* Status Registers */
    605 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pdfc, EVCNT_TYPE_MISC,
    606 	    NULL, device_xname(sc->sc_dev), "Rx discard counter");
    607 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pofc, EVCNT_TYPE_MISC,
    608 	    NULL, device_xname(sc->sc_dev), "Rx overrun counter");
    609 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txbadfcs, EVCNT_TYPE_MISC,
    610 	    NULL, device_xname(sc->sc_dev), "Tx bad FCS counter");
    611 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txdropped, EVCNT_TYPE_MISC,
    612 	    NULL, device_xname(sc->sc_dev), "Tx dorpped counter");
    613 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_lpic, EVCNT_TYPE_MISC,
    614 	    NULL, device_xname(sc->sc_dev), "LP_IDLE counter");
    615 
    616 	/* Device Driver Errors */
    617 	evcnt_attach_dynamic(&sc->sc_ev.ev_drv_wdogsoft, EVCNT_TYPE_MISC,
    618 	    NULL, device_xname(sc->sc_dev), "watchdog timer expired");
    619 	evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txerr, EVCNT_TYPE_MISC,
    620 	    NULL, device_xname(sc->sc_dev), "Tx descriptor alloc failed");
    621 #define MVXPE_QUEUE_DESC(q) "Rx success in queue " # q
    622 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    623 		static const char *rxq_desc[] = {
    624 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
    625 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
    626 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
    627 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
    628 		};
    629 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxq[q], EVCNT_TYPE_MISC,
    630 		    NULL, device_xname(sc->sc_dev), rxq_desc[q]);
    631 	}
    632 #undef MVXPE_QUEUE_DESC
    633 #define MVXPE_QUEUE_DESC(q) "Tx success in queue " # q
    634 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    635 		static const char *txq_desc[] = {
    636 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
    637 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
    638 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
    639 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
    640 		};
    641 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txq[q], EVCNT_TYPE_MISC,
    642 		    NULL, device_xname(sc->sc_dev), txq_desc[q]);
    643 	}
    644 #undef MVXPE_QUEUE_DESC
    645 #define MVXPE_QUEUE_DESC(q) "Rx error in queue " # q
    646 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    647 		static const char *rxqe_desc[] = {
    648 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
    649 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
    650 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
    651 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
    652 		};
    653 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxqe[q], EVCNT_TYPE_MISC,
    654 		    NULL, device_xname(sc->sc_dev), rxqe_desc[q]);
    655 	}
    656 #undef MVXPE_QUEUE_DESC
    657 #define MVXPE_QUEUE_DESC(q) "Tx error in queue " # q
    658 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    659 		static const char *txqe_desc[] = {
    660 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
    661 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
    662 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
    663 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
    664 		};
    665 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txqe[q], EVCNT_TYPE_MISC,
    666 		    NULL, device_xname(sc->sc_dev), txqe_desc[q]);
    667 	}
    668 #undef MVXPE_QUEUE_DESC
    669 
    670 #endif /* MVXPE_EVENT_COUNTERS */
    671 	return 0;
    672 }
    673 
    674 STATIC void
    675 mvxpe_sc_lock(struct mvxpe_softc *sc)
    676 {
    677 	mutex_enter(&sc->sc_mtx);
    678 }
    679 
    680 STATIC void
    681 mvxpe_sc_unlock(struct mvxpe_softc *sc)
    682 {
    683 	mutex_exit(&sc->sc_mtx);
    684 }
    685 
    686 /*
    687  * MII
    688  */
    689 STATIC int
    690 mvxpe_miibus_readreg(device_t dev, int phy, int reg)
    691 {
    692 	struct mvxpe_softc *sc = device_private(dev);
    693 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    694 	uint32_t smi, val;
    695 	int i;
    696 
    697 	mutex_enter(&mii_mutex);
    698 
    699 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
    700 		DELAY(1);
    701 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
    702 			break;
    703 	}
    704 	if (i == MVXPE_PHY_TIMEOUT) {
    705 		aprint_error_ifnet(ifp, "SMI busy timeout\n");
    706 		mutex_exit(&mii_mutex);
    707 		return -1;
    708 	}
    709 
    710 	smi =
    711 	    MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) | MVXPE_SMI_OPCODE_READ;
    712 	MVXPE_WRITE(sc, MVXPE_SMI, smi);
    713 
    714 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
    715 		DELAY(1);
    716 		smi = MVXPE_READ(sc, MVXPE_SMI);
    717 		if (smi & MVXPE_SMI_READVALID)
    718 			break;
    719 	}
    720 
    721 	mutex_exit(&mii_mutex);
    722 
    723 	DPRINTDEV(dev, 9, "i=%d, timeout=%d\n", i, MVXPE_PHY_TIMEOUT);
    724 
    725 	val = smi & MVXPE_SMI_DATA_MASK;
    726 
    727 	DPRINTDEV(dev, 9, "phy=%d, reg=%#x, val=%#x\n", phy, reg, val);
    728 
    729 	return val;
    730 }
    731 
    732 STATIC void
    733 mvxpe_miibus_writereg(device_t dev, int phy, int reg, int val)
    734 {
    735 	struct mvxpe_softc *sc = device_private(dev);
    736 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    737 	uint32_t smi;
    738 	int i;
    739 
    740 	DPRINTDEV(dev, 9, "phy=%d reg=%#x val=%#x\n", phy, reg, val);
    741 
    742 	mutex_enter(&mii_mutex);
    743 
    744 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
    745 		DELAY(1);
    746 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
    747 			break;
    748 	}
    749 	if (i == MVXPE_PHY_TIMEOUT) {
    750 		aprint_error_ifnet(ifp, "SMI busy timeout\n");
    751 		mutex_exit(&mii_mutex);
    752 		return;
    753 	}
    754 
    755 	smi = MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) |
    756 	    MVXPE_SMI_OPCODE_WRITE | (val & MVXPE_SMI_DATA_MASK);
    757 	MVXPE_WRITE(sc, MVXPE_SMI, smi);
    758 
    759 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
    760 		DELAY(1);
    761 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
    762 			break;
    763 	}
    764 
    765 	mutex_exit(&mii_mutex);
    766 
    767 	if (i == MVXPE_PHY_TIMEOUT)
    768 		aprint_error_ifnet(ifp, "phy write timed out\n");
    769 }
    770 
    771 STATIC void
    772 mvxpe_miibus_statchg(struct ifnet *ifp)
    773 {
    774 
    775 	/* nothing to do */
    776 }
    777 
    778 /*
    779  * Address Decoding Window
    780  */
    781 STATIC void
    782 mvxpe_wininit(struct mvxpe_softc *sc, enum marvell_tags *tags)
    783 {
    784 	device_t pdev = device_parent(sc->sc_dev);
    785 	uint64_t base;
    786 	uint32_t en, ac, size;
    787 	int window, target, attr, rv, i;
    788 
    789 	/* First disable all address decode windows */
    790 	en = MVXPE_BARE_EN_MASK;
    791 	MVXPE_WRITE(sc, MVXPE_BARE, en);
    792 
    793 	ac = 0;
    794 	for (window = 0, i = 0;
    795 	    tags[i] != MARVELL_TAG_UNDEFINED && window < MVXPE_NWINDOW; i++) {
    796 		rv = marvell_winparams_by_tag(pdev, tags[i],
    797 		    &target, &attr, &base, &size);
    798 		if (rv != 0 || size == 0)
    799 			continue;
    800 
    801 		if (base > 0xffffffffULL) {
    802 			if (window >= MVXPE_NREMAP) {
    803 				aprint_error_dev(sc->sc_dev,
    804 				    "can't remap window %d\n", window);
    805 				continue;
    806 			}
    807 			MVXPE_WRITE(sc, MVXPE_HA(window),
    808 			    (base >> 32) & 0xffffffff);
    809 		}
    810 
    811 		MVXPE_WRITE(sc, MVXPE_BASEADDR(window),
    812 		    MVXPE_BASEADDR_TARGET(target)	|
    813 		    MVXPE_BASEADDR_ATTR(attr)		|
    814 		    MVXPE_BASEADDR_BASE(base));
    815 		MVXPE_WRITE(sc, MVXPE_S(window), MVXPE_S_SIZE(size));
    816 
    817 		DPRINTSC(sc, 1, "Window %d Base 0x%016llx: Size 0x%08x\n",
    818 				window, base, size);
    819 
    820 		en &= ~(1 << window);
    821 		/* set full access (r/w) */
    822 		ac |= MVXPE_EPAP_EPAR(window, MVXPE_EPAP_AC_FA);
    823 		window++;
    824 	}
    825 	/* allow to access decode window */
    826 	MVXPE_WRITE(sc, MVXPE_EPAP, ac);
    827 
    828 	MVXPE_WRITE(sc, MVXPE_BARE, en);
    829 }
    830 
    831 /*
    832  * Device Register Initialization
    833  *  reset device registers to device driver default value.
    834  *  the device is not enabled here.
    835  */
    836 STATIC int
    837 mvxpe_initreg(struct ifnet *ifp)
    838 {
    839 	struct mvxpe_softc *sc = ifp->if_softc;
    840 	int serdes = 0;
    841 	uint32_t reg;
    842 	int q, i;
    843 
    844 	DPRINTIFNET(ifp, 1, "initializing device register\n");
    845 
    846 	/* Init TX/RX Queue Registers */
    847 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
    848 		mvxpe_rx_lockq(sc, q);
    849 		if (mvxpe_rx_queue_init(ifp, q) != 0) {
    850 			aprint_error_ifnet(ifp,
    851 			    "initialization failed: cannot initialize queue\n");
    852 			mvxpe_rx_unlockq(sc, q);
    853 			return ENOBUFS;
    854 		}
    855 		mvxpe_rx_unlockq(sc, q);
    856 
    857 		mvxpe_tx_lockq(sc, q);
    858 		if (mvxpe_tx_queue_init(ifp, q) != 0) {
    859 			aprint_error_ifnet(ifp,
    860 			    "initialization failed: cannot initialize queue\n");
    861 			mvxpe_tx_unlockq(sc, q);
    862 			return ENOBUFS;
    863 		}
    864 		mvxpe_tx_unlockq(sc, q);
    865 	}
    866 
    867 	/* Tx MTU Limit */
    868 	MVXPE_WRITE(sc, MVXPE_TXMTU, MVXPE_MTU);
    869 
    870 	/* Check SGMII or SERDES(asume IPL/U-BOOT initialize this) */
    871 	reg = MVXPE_READ(sc, MVXPE_PMACC0);
    872 	if ((reg & MVXPE_PMACC0_PORTTYPE) != 0)
    873 		serdes = 1;
    874 
    875 	/* Ethernet Unit Control */
    876 	reg = MVXPE_READ(sc, MVXPE_EUC);
    877 	reg |= MVXPE_EUC_POLLING;
    878 	MVXPE_WRITE(sc, MVXPE_EUC, reg);
    879 
    880 	/* Auto Negotiation */
    881 	reg  = MVXPE_PANC_MUSTSET;	/* must write 0x1 */
    882 	reg |= MVXPE_PANC_FORCELINKFAIL;/* force link state down */
    883 	reg |= MVXPE_PANC_ANSPEEDEN;	/* interface speed negotiation */
    884 	reg |= MVXPE_PANC_ANDUPLEXEN;	/* negotiate duplex mode */
    885 	if (serdes) {
    886 		reg |= MVXPE_PANC_INBANDANEN; /* In Band negotiation */
    887 		reg |= MVXPE_PANC_INBANDANBYPASSEN; /* bypass negotiation */
    888 		reg |= MVXPE_PANC_SETFULLDX; /* set full-duplex on failure */
    889 	}
    890 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
    891 
    892 	/* EEE: Low Power Idle */
    893 	reg  = MVXPE_LPIC0_LILIMIT(MVXPE_LPI_LI);
    894 	reg |= MVXPE_LPIC0_TSLIMIT(MVXPE_LPI_TS);
    895 	MVXPE_WRITE(sc, MVXPE_LPIC0, reg);
    896 
    897 	reg  = MVXPE_LPIC1_TWLIMIT(MVXPE_LPI_TS);
    898 	MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
    899 
    900 	reg = MVXPE_LPIC2_MUSTSET;
    901 	MVXPE_WRITE(sc, MVXPE_LPIC2, reg);
    902 
    903 	/* Port MAC Control set 0 */
    904 	reg  = MVXPE_PMACC0_MUSTSET;	/* must write 0x1 */
    905 	reg &= ~MVXPE_PMACC0_PORTEN;	/* port is still disabled */
    906 	reg |= MVXPE_PMACC0_FRAMESIZELIMIT(MVXPE_MRU);
    907 	if (serdes)
    908 		reg |= MVXPE_PMACC0_PORTTYPE;
    909 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
    910 
    911 	/* Port MAC Control set 1 is only used for loop-back test */
    912 
    913 	/* Port MAC Control set 2 */
    914 	reg = MVXPE_READ(sc, MVXPE_PMACC2);
    915 	reg &= (MVXPE_PMACC2_PCSEN | MVXPE_PMACC2_RGMIIEN);
    916 	reg |= MVXPE_PMACC2_MUSTSET;
    917 	MVXPE_WRITE(sc, MVXPE_PMACC2, reg);
    918 
    919 	/* Port MAC Control set 3 is used for IPG tune */
    920 
    921 	/* Port MAC Control set 4 is not used */
    922 
    923 	/* Port Configuration Extended: enable Tx CRC generation */
    924 	reg = MVXPE_READ(sc, MVXPE_PXCX);
    925 	reg &= ~MVXPE_PXCX_TXCRCDIS;
    926 	MVXPE_WRITE(sc, MVXPE_PXCX, reg);
    927 
    928 	/* clear MIB counter registers(clear by read) */
    929 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++)
    930 		MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum));
    931 
    932 	/* Set SDC register except IPGINT bits */
    933 	reg  = MVXPE_SDC_RXBSZ_16_64BITWORDS;
    934 	reg |= MVXPE_SDC_TXBSZ_16_64BITWORDS;
    935 	reg |= MVXPE_SDC_BLMR;
    936 	reg |= MVXPE_SDC_BLMT;
    937 	MVXPE_WRITE(sc, MVXPE_SDC, reg);
    938 
    939 	return 0;
    940 }
    941 
    942 /*
    943  * Descriptor Ring Controls for each of queues
    944  */
    945 STATIC void *
    946 mvxpe_dma_memalloc(struct mvxpe_softc *sc, bus_dmamap_t *map, size_t size)
    947 {
    948 	bus_dma_segment_t segs;
    949 	void *kva = NULL;
    950 	int nsegs;
    951 
    952 	/*
    953 	 * Allocate the descriptor queues.
    954 	 * struct mvxpe_ring_data contians array of descriptor per queue.
    955 	 */
    956 	if (bus_dmamem_alloc(sc->sc_dmat,
    957 	    size, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) {
    958 		aprint_error_dev(sc->sc_dev,
    959 		    "can't alloc device memory (%zu bytes)\n", size);
    960 		return NULL;
    961 	}
    962 	if (bus_dmamem_map(sc->sc_dmat,
    963 	    &segs, nsegs, size, &kva, BUS_DMA_NOWAIT)) {
    964 		aprint_error_dev(sc->sc_dev,
    965 		    "can't map dma buffers (%zu bytes)\n", size);
    966 		goto fail1;
    967 	}
    968 
    969 	if (bus_dmamap_create(sc->sc_dmat,
    970 	    size, 1, size, 0, BUS_DMA_NOWAIT, map)) {
    971 		aprint_error_dev(sc->sc_dev, "can't create dma map\n");
    972 		goto fail2;
    973 	}
    974 	if (bus_dmamap_load(sc->sc_dmat,
    975 	    *map, kva, size, NULL, BUS_DMA_NOWAIT)) {
    976 		aprint_error_dev(sc->sc_dev, "can't load dma map\n");
    977 		goto fail3;
    978 	}
    979 	memset(kva, 0, size);
    980 	return kva;
    981 
    982 fail3:
    983 	bus_dmamap_destroy(sc->sc_dmat, *map);
    984 	memset(map, 0, sizeof(*map));
    985 fail2:
    986 	bus_dmamem_unmap(sc->sc_dmat, kva, size);
    987 fail1:
    988 	bus_dmamem_free(sc->sc_dmat, &segs, nsegs);
    989 	return NULL;
    990 }
    991 
    992 STATIC int
    993 mvxpe_ring_alloc_queue(struct mvxpe_softc *sc, int q)
    994 {
    995 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
    996 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
    997 
    998 	/*
    999 	 * MVXPE_RX_RING_CNT and MVXPE_TX_RING_CNT is a hard limit of
   1000 	 * queue length. real queue length is limited by
   1001 	 * sc->sc_rx_ring[q].rx_queue_len and sc->sc_tx_ring[q].tx_queue_len.
   1002 	 *
   1003 	 * because descriptor ring reallocation needs reprogramming of
   1004 	 * DMA registers, we allocate enough descriptor for hard limit
   1005 	 * of queue length.
   1006 	 */
   1007 	rx->rx_descriptors =
   1008 	    mvxpe_dma_memalloc(sc, &rx->rx_descriptors_map,
   1009 		(sizeof(struct mvxpe_rx_desc) * MVXPE_RX_RING_CNT));
   1010 	if (rx->rx_descriptors == NULL)
   1011 		goto fail;
   1012 
   1013 	tx->tx_descriptors =
   1014 	    mvxpe_dma_memalloc(sc, &tx->tx_descriptors_map,
   1015 		(sizeof(struct mvxpe_tx_desc) * MVXPE_TX_RING_CNT));
   1016 	if (tx->tx_descriptors == NULL)
   1017 		goto fail;
   1018 
   1019 	return 0;
   1020 fail:
   1021 	mvxpe_ring_dealloc_queue(sc, q);
   1022 	aprint_error_dev(sc->sc_dev, "DMA Ring buffer allocation failure.\n");
   1023 	return ENOMEM;
   1024 }
   1025 
   1026 STATIC void
   1027 mvxpe_ring_dealloc_queue(struct mvxpe_softc *sc, int q)
   1028 {
   1029 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1030 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1031 	bus_dma_segment_t *segs;
   1032 	bus_size_t size;
   1033 	void *kva;
   1034 	int nsegs;
   1035 
   1036 	/* Rx */
   1037 	kva = (void *)MVXPE_RX_RING_MEM_VA(sc, q);
   1038 	if (kva) {
   1039 		segs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_segs;
   1040 		nsegs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_nsegs;
   1041 		size = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_mapsize;
   1042 
   1043 		bus_dmamap_unload(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
   1044 		bus_dmamap_destroy(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
   1045 		bus_dmamem_unmap(sc->sc_dmat, kva, size);
   1046 		bus_dmamem_free(sc->sc_dmat, segs, nsegs);
   1047 	}
   1048 
   1049 	/* Tx */
   1050 	kva = (void *)MVXPE_TX_RING_MEM_VA(sc, q);
   1051 	if (kva) {
   1052 		segs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_segs;
   1053 		nsegs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_nsegs;
   1054 		size = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_mapsize;
   1055 
   1056 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
   1057 		bus_dmamap_destroy(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
   1058 		bus_dmamem_unmap(sc->sc_dmat, kva, size);
   1059 		bus_dmamem_free(sc->sc_dmat, segs, nsegs);
   1060 	}
   1061 
   1062 	/* Clear doungling pointers all */
   1063 	memset(rx, 0, sizeof(*rx));
   1064 	memset(tx, 0, sizeof(*tx));
   1065 }
   1066 
   1067 STATIC void
   1068 mvxpe_ring_init_queue(struct mvxpe_softc *sc, int q)
   1069 {
   1070 	struct mvxpe_rx_desc *rxd = MVXPE_RX_RING_MEM_VA(sc, q);
   1071 	struct mvxpe_tx_desc *txd = MVXPE_TX_RING_MEM_VA(sc, q);
   1072 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1073 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1074 	static const int rx_default_queue_len[] = {
   1075 		MVXPE_RX_QUEUE_LIMIT_0, MVXPE_RX_QUEUE_LIMIT_1,
   1076 		MVXPE_RX_QUEUE_LIMIT_2, MVXPE_RX_QUEUE_LIMIT_3,
   1077 		MVXPE_RX_QUEUE_LIMIT_4, MVXPE_RX_QUEUE_LIMIT_5,
   1078 		MVXPE_RX_QUEUE_LIMIT_6, MVXPE_RX_QUEUE_LIMIT_7,
   1079 	};
   1080 	static const int tx_default_queue_len[] = {
   1081 		MVXPE_TX_QUEUE_LIMIT_0, MVXPE_TX_QUEUE_LIMIT_1,
   1082 		MVXPE_TX_QUEUE_LIMIT_2, MVXPE_TX_QUEUE_LIMIT_3,
   1083 		MVXPE_TX_QUEUE_LIMIT_4, MVXPE_TX_QUEUE_LIMIT_5,
   1084 		MVXPE_TX_QUEUE_LIMIT_6, MVXPE_TX_QUEUE_LIMIT_7,
   1085 	};
   1086 	extern uint32_t mvTclk;
   1087 	int i;
   1088 
   1089 	/* Rx handle */
   1090 	for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
   1091 		MVXPE_RX_DESC(sc, q, i) = &rxd[i];
   1092 		MVXPE_RX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_rx_desc) * i;
   1093 		MVXPE_RX_PKTBUF(sc, q, i) = NULL;
   1094 	}
   1095 	mutex_init(&rx->rx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
   1096 	rx->rx_dma = rx->rx_cpu = 0;
   1097 	rx->rx_queue_len = rx_default_queue_len[q];
   1098 	if (rx->rx_queue_len > MVXPE_RX_RING_CNT)
   1099 		rx->rx_queue_len = MVXPE_RX_RING_CNT;
   1100 	rx->rx_queue_th_received = rx->rx_queue_len / MVXPE_RXTH_RATIO;
   1101 	rx->rx_queue_th_free = rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
   1102 	rx->rx_queue_th_time = (mvTclk / 1000) / 2; /* 0.5 [ms] */
   1103 
   1104 	/* Tx handle */
   1105 	for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
   1106 		MVXPE_TX_DESC(sc, q, i) = &txd[i];
   1107 		MVXPE_TX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_tx_desc) * i;
   1108 		MVXPE_TX_MBUF(sc, q, i) = NULL;
   1109 		/* Tx handle needs DMA map for busdma_load_mbuf() */
   1110 		if (bus_dmamap_create(sc->sc_dmat,
   1111 		    mvxpbm_chunk_size(sc->sc_bm),
   1112 		    MVXPE_TX_SEGLIMIT, mvxpbm_chunk_size(sc->sc_bm), 0,
   1113 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
   1114 		    &MVXPE_TX_MAP(sc, q, i))) {
   1115 			aprint_error_dev(sc->sc_dev,
   1116 			    "can't create dma map (tx ring %d)\n", i);
   1117 		}
   1118 	}
   1119 	mutex_init(&tx->tx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
   1120 	tx->tx_dma = tx->tx_cpu = 0;
   1121 	tx->tx_queue_len = tx_default_queue_len[q];
   1122 	if (tx->tx_queue_len > MVXPE_TX_RING_CNT)
   1123 		tx->tx_queue_len = MVXPE_TX_RING_CNT;
   1124        	tx->tx_used = 0;
   1125 	tx->tx_queue_th_free = tx->tx_queue_len / MVXPE_TXTH_RATIO;
   1126 }
   1127 
   1128 STATIC void
   1129 mvxpe_ring_flush_queue(struct mvxpe_softc *sc, int q)
   1130 {
   1131 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1132 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1133 	int i;
   1134 
   1135 	KASSERT_RX_MTX(sc, q);
   1136 	KASSERT_TX_MTX(sc, q);
   1137 
   1138 	/* Rx handle */
   1139 	for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
   1140 		if (MVXPE_RX_PKTBUF(sc, q, i) == NULL)
   1141 			continue;
   1142 		mvxpbm_free_chunk(MVXPE_RX_PKTBUF(sc, q, i));
   1143 		MVXPE_RX_PKTBUF(sc, q, i) = NULL;
   1144 	}
   1145 	rx->rx_dma = rx->rx_cpu = 0;
   1146 
   1147 	/* Tx handle */
   1148 	for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
   1149 		if (MVXPE_TX_MBUF(sc, q, i) == NULL)
   1150 			continue;
   1151 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, i));
   1152 		m_freem(MVXPE_TX_MBUF(sc, q, i));
   1153 		MVXPE_TX_MBUF(sc, q, i) = NULL;
   1154 	}
   1155 	tx->tx_dma = tx->tx_cpu = 0;
   1156        	tx->tx_used = 0;
   1157 }
   1158 
   1159 STATIC void
   1160 mvxpe_ring_sync_rx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
   1161 {
   1162 	int wrap;
   1163 
   1164 	KASSERT_RX_MTX(sc, q);
   1165 	KASSERT(count > 0 && count <= MVXPE_RX_RING_CNT);
   1166 	KASSERT(idx >= 0 && idx < MVXPE_RX_RING_CNT);
   1167 
   1168 	wrap = (idx + count) - MVXPE_RX_RING_CNT;
   1169 	if (wrap > 0) {
   1170 		count -= wrap;
   1171 		KASSERT(count > 0);
   1172 		bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
   1173 		    0, sizeof(struct mvxpe_rx_desc) * wrap, ops);
   1174 	}
   1175 	bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
   1176 	    MVXPE_RX_DESC_OFF(sc, q, idx),
   1177 	    sizeof(struct mvxpe_rx_desc) * count, ops);
   1178 }
   1179 
   1180 STATIC void
   1181 mvxpe_ring_sync_tx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
   1182 {
   1183 	int wrap = 0;
   1184 
   1185 	KASSERT_TX_MTX(sc, q);
   1186 	KASSERT(count > 0 && count <= MVXPE_TX_RING_CNT);
   1187 	KASSERT(idx >= 0 && idx < MVXPE_TX_RING_CNT);
   1188 
   1189 	wrap = (idx + count) - MVXPE_TX_RING_CNT;
   1190 	if (wrap > 0)  {
   1191 		count -= wrap;
   1192 		bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
   1193 		    0, sizeof(struct mvxpe_tx_desc) * wrap, ops);
   1194 	}
   1195 	bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
   1196 	    MVXPE_TX_DESC_OFF(sc, q, idx),
   1197 	    sizeof(struct mvxpe_tx_desc) * count, ops);
   1198 }
   1199 
   1200 /*
   1201  * Rx/Tx Queue Control
   1202  */
   1203 STATIC int
   1204 mvxpe_rx_queue_init(struct ifnet *ifp, int q)
   1205 {
   1206 	struct mvxpe_softc *sc = ifp->if_softc;
   1207 	uint32_t reg;
   1208 
   1209 	KASSERT_RX_MTX(sc, q);
   1210 	KASSERT(MVXPE_RX_RING_MEM_PA(sc, q) != 0);
   1211 
   1212 	/* descriptor address */
   1213 	MVXPE_WRITE(sc, MVXPE_PRXDQA(q), MVXPE_RX_RING_MEM_PA(sc, q));
   1214 
   1215 	/* Rx buffer size and descriptor ring size */
   1216 	reg  = MVXPE_PRXDQS_BUFFERSIZE(mvxpbm_chunk_size(sc->sc_bm) >> 3);
   1217 	reg |= MVXPE_PRXDQS_DESCRIPTORSQUEUESIZE(MVXPE_RX_RING_CNT);
   1218 	MVXPE_WRITE(sc, MVXPE_PRXDQS(q), reg);
   1219 	DPRINTIFNET(ifp, 1, "PRXDQS(%d): %#x\n",
   1220 	    q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
   1221 
   1222 	/* Rx packet offset address */
   1223 	reg = MVXPE_PRXC_PACKETOFFSET(mvxpbm_packet_offset(sc->sc_bm) >> 3);
   1224 	MVXPE_WRITE(sc, MVXPE_PRXC(q), reg);
   1225 	DPRINTIFNET(ifp, 1, "PRXC(%d): %#x\n",
   1226 	    q, MVXPE_READ(sc, MVXPE_PRXC(q)));
   1227 
   1228 	/* Rx DMA SNOOP */
   1229 	reg  = MVXPE_PRXSNP_SNOOPNOOFBYTES(MVXPE_MRU);
   1230 	reg |= MVXPE_PRXSNP_L2DEPOSITNOOFBYTES(MVXPE_MRU);
   1231 	MVXPE_WRITE(sc, MVXPE_PRXSNP(q), reg);
   1232 
   1233 	/* if DMA is not working, register is not updated */
   1234 	KASSERT(MVXPE_READ(sc, MVXPE_PRXDQA(q)) == MVXPE_RX_RING_MEM_PA(sc, q));
   1235 	return 0;
   1236 }
   1237 
   1238 STATIC int
   1239 mvxpe_tx_queue_init(struct ifnet *ifp, int q)
   1240 {
   1241 	struct mvxpe_softc *sc = ifp->if_softc;
   1242 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1243 	uint32_t reg;
   1244 
   1245 	KASSERT_TX_MTX(sc, q);
   1246 	KASSERT(MVXPE_TX_RING_MEM_PA(sc, q) != 0);
   1247 
   1248 	/* descriptor address */
   1249 	MVXPE_WRITE(sc, MVXPE_PTXDQA(q), MVXPE_TX_RING_MEM_PA(sc, q));
   1250 
   1251 	/* Tx threshold, and descriptor ring size */
   1252 	reg  = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
   1253 	reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
   1254 	MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
   1255 	DPRINTIFNET(ifp, 1, "PTXDQS(%d): %#x\n",
   1256 	    q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
   1257 
   1258 	/* if DMA is not working, register is not updated */
   1259 	KASSERT(MVXPE_READ(sc, MVXPE_PTXDQA(q)) == MVXPE_TX_RING_MEM_PA(sc, q));
   1260 	return 0;
   1261 }
   1262 
   1263 STATIC int
   1264 mvxpe_rx_queue_enable(struct ifnet *ifp, int q)
   1265 {
   1266 	struct mvxpe_softc *sc = ifp->if_softc;
   1267 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1268 	uint32_t reg;
   1269 
   1270 	KASSERT_RX_MTX(sc, q);
   1271 
   1272 	/* Set Rx interrupt threshold */
   1273 	reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
   1274 	reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
   1275 	MVXPE_WRITE(sc, MVXPE_PRXDQTH(q), reg);
   1276 
   1277 	reg  = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
   1278 	MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
   1279 
   1280 	/* Unmask RXTX_TH Intr. */
   1281 	reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
   1282 	reg |= MVXPE_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
   1283 	reg |= MVXPE_PRXTXTI_RDTAQ(q); /* Rx Descriptor Alart */
   1284 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
   1285 
   1286 	/* Enable Rx queue */
   1287 	reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
   1288 	reg |= MVXPE_RQC_ENQ(q);
   1289 	MVXPE_WRITE(sc, MVXPE_RQC, reg);
   1290 
   1291 	return 0;
   1292 }
   1293 
   1294 STATIC int
   1295 mvxpe_tx_queue_enable(struct ifnet *ifp, int q)
   1296 {
   1297 	struct mvxpe_softc *sc = ifp->if_softc;
   1298 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1299 	uint32_t reg;
   1300 
   1301 	KASSERT_TX_MTX(sc, q);
   1302 
   1303 	/* Set Tx interrupt threshold */
   1304 	reg  = MVXPE_READ(sc, MVXPE_PTXDQS(q));
   1305 	reg &= ~MVXPE_PTXDQS_TBT_MASK; /* keep queue size */
   1306 	reg |= MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
   1307 	MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
   1308 
   1309 	/* Unmask RXTX_TH Intr. */
   1310 	reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
   1311 	reg |= MVXPE_PRXTXTI_TBTCQ(q); /* Tx Threshold cross */
   1312 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
   1313 
   1314 	/* Don't update MVXPE_TQC here, there is no packet yet. */
   1315 	return 0;
   1316 }
   1317 
   1318 STATIC void
   1319 mvxpe_rx_lockq(struct mvxpe_softc *sc, int q)
   1320 {
   1321 	KASSERT(q >= 0);
   1322 	KASSERT(q < MVXPE_QUEUE_SIZE);
   1323 	mutex_enter(&sc->sc_rx_ring[q].rx_ring_mtx);
   1324 }
   1325 
   1326 STATIC void
   1327 mvxpe_rx_unlockq(struct mvxpe_softc *sc, int q)
   1328 {
   1329 	KASSERT(q >= 0);
   1330 	KASSERT(q < MVXPE_QUEUE_SIZE);
   1331 	mutex_exit(&sc->sc_rx_ring[q].rx_ring_mtx);
   1332 }
   1333 
   1334 STATIC void
   1335 mvxpe_tx_lockq(struct mvxpe_softc *sc, int q)
   1336 {
   1337 	KASSERT(q >= 0);
   1338 	KASSERT(q < MVXPE_QUEUE_SIZE);
   1339 	mutex_enter(&sc->sc_tx_ring[q].tx_ring_mtx);
   1340 }
   1341 
   1342 STATIC void
   1343 mvxpe_tx_unlockq(struct mvxpe_softc *sc, int q)
   1344 {
   1345 	KASSERT(q >= 0);
   1346 	KASSERT(q < MVXPE_QUEUE_SIZE);
   1347 	mutex_exit(&sc->sc_tx_ring[q].tx_ring_mtx);
   1348 }
   1349 
   1350 /*
   1351  * Interrupt Handlers
   1352  */
   1353 STATIC void
   1354 mvxpe_disable_intr(struct mvxpe_softc *sc)
   1355 {
   1356 	MVXPE_WRITE(sc, MVXPE_EUIM, 0);
   1357 	MVXPE_WRITE(sc, MVXPE_EUIC, 0);
   1358 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, 0);
   1359 	MVXPE_WRITE(sc, MVXPE_PRXTXTIC, 0);
   1360 	MVXPE_WRITE(sc, MVXPE_PRXTXIM, 0);
   1361 	MVXPE_WRITE(sc, MVXPE_PRXTXIC, 0);
   1362 	MVXPE_WRITE(sc, MVXPE_PMIM, 0);
   1363 	MVXPE_WRITE(sc, MVXPE_PMIC, 0);
   1364 	MVXPE_WRITE(sc, MVXPE_PIE, 0);
   1365 }
   1366 
   1367 STATIC void
   1368 mvxpe_enable_intr(struct mvxpe_softc *sc)
   1369 {
   1370 	uint32_t reg;
   1371 
   1372 	/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
   1373 	reg  = MVXPE_READ(sc, MVXPE_PMIM);
   1374 	reg |= MVXPE_PMI_PHYSTATUSCHNG;
   1375 	reg |= MVXPE_PMI_LINKCHANGE;
   1376 	reg |= MVXPE_PMI_IAE;
   1377 	reg |= MVXPE_PMI_RXOVERRUN;
   1378 	reg |= MVXPE_PMI_RXCRCERROR;
   1379 	reg |= MVXPE_PMI_RXLARGEPACKET;
   1380 	reg |= MVXPE_PMI_TXUNDRN;
   1381 #if 0
   1382 	/*
   1383 	 * The device may raise false interrupts for SERDES even if the device
   1384 	 * is not configured to use SERDES connection.
   1385 	 */
   1386 	reg |= MVXPE_PMI_PRBSERROR;
   1387 	reg |= MVXPE_PMI_SRSE;
   1388 #else
   1389 	reg &= ~MVXPE_PMI_PRBSERROR;
   1390 	reg &= ~MVXPE_PMI_SRSE;
   1391 #endif
   1392 	reg |= MVXPE_PMI_TREQ_MASK;
   1393 	MVXPE_WRITE(sc, MVXPE_PMIM, reg);
   1394 
   1395 	/* Enable Summary Bit to check all interrupt cause. */
   1396 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
   1397 	reg |= MVXPE_PRXTXTI_PMISCICSUMMARY;
   1398 	reg |= MVXPE_PRXTXTI_PTXERRORSUMMARY;
   1399 	reg |= MVXPE_PRXTXTI_PRXTXICSUMMARY;
   1400 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
   1401 
   1402 	/* Enable All Queue Interrupt */
   1403 	reg  = MVXPE_READ(sc, MVXPE_PIE);
   1404 	reg |= MVXPE_PIE_RXPKTINTRPTENB_MASK;
   1405 	reg |= MVXPE_PIE_TXPKTINTRPTENB_MASK;
   1406 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
   1407 }
   1408 
   1409 STATIC int
   1410 mvxpe_rxtxth_intr(void *arg)
   1411 {
   1412 	struct mvxpe_softc *sc = arg;
   1413 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1414 	uint32_t ic, queues, datum = 0;
   1415 
   1416 	DPRINTSC(sc, 2, "got RXTX_TH_Intr\n");
   1417 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtxth);
   1418 
   1419 	mvxpe_sc_lock(sc);
   1420 	ic = MVXPE_READ(sc, MVXPE_PRXTXTIC);
   1421 	if (ic == 0) {
   1422 		mvxpe_sc_unlock(sc);
   1423 		return 0;
   1424 	}
   1425 	MVXPE_WRITE(sc, MVXPE_PRXTXTIC, ~ic);
   1426 	datum = datum ^ ic;
   1427 
   1428 	DPRINTIFNET(ifp, 2, "PRXTXTIC: %#x\n", ic);
   1429 
   1430 	/* ack maintance interrupt first */
   1431 	if (ic & MVXPE_PRXTXTI_PTXERRORSUMMARY) {
   1432 		DPRINTIFNET(ifp, 1, "PRXTXTIC: +PTXERRORSUMMARY\n");
   1433 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtxth_txerr);
   1434 	}
   1435 	if ((ic & MVXPE_PRXTXTI_PMISCICSUMMARY)) {
   1436 		DPRINTIFNET(ifp, 2, "PTXTXTIC: +PMISCICSUMMARY\n");
   1437 		mvxpe_misc_intr(sc);
   1438 	}
   1439 	if (ic & MVXPE_PRXTXTI_PRXTXICSUMMARY) {
   1440 		DPRINTIFNET(ifp, 2, "PTXTXTIC: +PRXTXICSUMMARY\n");
   1441 		mvxpe_rxtx_intr(sc);
   1442 	}
   1443 	if (!(ifp->if_flags & IFF_RUNNING)) {
   1444 		mvxpe_sc_unlock(sc);
   1445 		return 1;
   1446 	}
   1447 
   1448 	/* RxTxTH interrupt */
   1449 	queues = MVXPE_PRXTXTI_GET_RBICTAPQ(ic);
   1450 	if (queues) {
   1451 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +RXEOF\n");
   1452 		mvxpe_rx(sc, queues);
   1453 	}
   1454 	queues = MVXPE_PRXTXTI_GET_TBTCQ(ic);
   1455 	if (queues) {
   1456 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +TBTCQ\n");
   1457 		mvxpe_tx_complete(sc, queues);
   1458 	}
   1459 	queues = MVXPE_PRXTXTI_GET_RDTAQ(ic);
   1460 	if (queues) {
   1461 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +RDTAQ\n");
   1462 		mvxpe_rx_refill(sc, queues);
   1463 	}
   1464 	mvxpe_sc_unlock(sc);
   1465 
   1466 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   1467 		mvxpe_start(ifp);
   1468 
   1469 	rnd_add_uint32(&sc->sc_rnd_source, datum);
   1470 
   1471 	return 1;
   1472 }
   1473 
   1474 STATIC int
   1475 mvxpe_misc_intr(void *arg)
   1476 {
   1477 	struct mvxpe_softc *sc = arg;
   1478 #ifdef MVXPE_DEBUG
   1479 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1480 #endif
   1481 	uint32_t ic;
   1482 	uint32_t datum = 0;
   1483 	int claimed = 0;
   1484 
   1485 	DPRINTSC(sc, 2, "got MISC_INTR\n");
   1486 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_misc);
   1487 
   1488 	KASSERT_SC_MTX(sc);
   1489 
   1490 	for (;;) {
   1491 		ic = MVXPE_READ(sc, MVXPE_PMIC);
   1492 		ic &= MVXPE_READ(sc, MVXPE_PMIM);
   1493 		if (ic == 0)
   1494 			break;
   1495 		MVXPE_WRITE(sc, MVXPE_PMIC, ~ic);
   1496 		datum = datum ^ ic;
   1497 		claimed = 1;
   1498 
   1499 		DPRINTIFNET(ifp, 2, "PMIC=%#x\n", ic);
   1500 		if (ic & MVXPE_PMI_PHYSTATUSCHNG) {
   1501 			DPRINTIFNET(ifp, 2, "+PHYSTATUSCHNG\n");
   1502 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_phystatuschng);
   1503 		}
   1504 		if (ic & MVXPE_PMI_LINKCHANGE) {
   1505 			DPRINTIFNET(ifp, 2, "+LINKCHANGE\n");
   1506 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_linkchange);
   1507 			mvxpe_linkupdate(sc);
   1508 		}
   1509 		if (ic & MVXPE_PMI_IAE) {
   1510 			DPRINTIFNET(ifp, 2, "+IAE\n");
   1511 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_iae);
   1512 		}
   1513 		if (ic & MVXPE_PMI_RXOVERRUN) {
   1514 			DPRINTIFNET(ifp, 2, "+RXOVERRUN\n");
   1515 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxoverrun);
   1516 		}
   1517 		if (ic & MVXPE_PMI_RXCRCERROR) {
   1518 			DPRINTIFNET(ifp, 2, "+RXCRCERROR\n");
   1519 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxcrc);
   1520 		}
   1521 		if (ic & MVXPE_PMI_RXLARGEPACKET) {
   1522 			DPRINTIFNET(ifp, 2, "+RXLARGEPACKET\n");
   1523 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxlargepacket);
   1524 		}
   1525 		if (ic & MVXPE_PMI_TXUNDRN) {
   1526 			DPRINTIFNET(ifp, 2, "+TXUNDRN\n");
   1527 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txunderrun);
   1528 		}
   1529 		if (ic & MVXPE_PMI_PRBSERROR) {
   1530 			DPRINTIFNET(ifp, 2, "+PRBSERROR\n");
   1531 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_prbserr);
   1532 		}
   1533 		if (ic & MVXPE_PMI_TREQ_MASK) {
   1534 			DPRINTIFNET(ifp, 2, "+TREQ\n");
   1535 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txreq);
   1536 		}
   1537 	}
   1538 	if (datum)
   1539 		rnd_add_uint32(&sc->sc_rnd_source, datum);
   1540 
   1541 	return claimed;
   1542 }
   1543 
   1544 STATIC int
   1545 mvxpe_rxtx_intr(void *arg)
   1546 {
   1547 	struct mvxpe_softc *sc = arg;
   1548 #ifdef MVXPE_DEBUG
   1549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1550 #endif
   1551 	uint32_t datum = 0;
   1552 	uint32_t prxtxic;
   1553 	int claimed = 0;
   1554 
   1555 	DPRINTSC(sc, 2, "got RXTX_Intr\n");
   1556 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtx);
   1557 
   1558 	KASSERT_SC_MTX(sc);
   1559 
   1560 	for (;;) {
   1561 		prxtxic = MVXPE_READ(sc, MVXPE_PRXTXIC);
   1562 		prxtxic &= MVXPE_READ(sc, MVXPE_PRXTXIM);
   1563 		if (prxtxic == 0)
   1564 			break;
   1565 		MVXPE_WRITE(sc, MVXPE_PRXTXIC, ~prxtxic);
   1566 		datum = datum ^ prxtxic;
   1567 		claimed = 1;
   1568 
   1569 		DPRINTSC(sc, 2, "PRXTXIC: %#x\n", prxtxic);
   1570 
   1571 		if (prxtxic & MVXPE_PRXTXI_RREQ_MASK) {
   1572 			DPRINTIFNET(ifp, 1, "Rx Resource Error.\n");
   1573 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rreq);
   1574 		}
   1575 		if (prxtxic & MVXPE_PRXTXI_RPQ_MASK) {
   1576 			DPRINTIFNET(ifp, 1, "Rx Packet in Queue.\n");
   1577 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rpq);
   1578 		}
   1579 		if (prxtxic & MVXPE_PRXTXI_TBRQ_MASK) {
   1580 			DPRINTIFNET(ifp, 1, "Tx Buffer Return.\n");
   1581 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_tbrq);
   1582 		}
   1583 		if (prxtxic & MVXPE_PRXTXI_PRXTXTHICSUMMARY) {
   1584 			DPRINTIFNET(ifp, 1, "PRXTXTHIC Sumary\n");
   1585 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rxtxth);
   1586 		}
   1587 		if (prxtxic & MVXPE_PRXTXI_PTXERRORSUMMARY) {
   1588 			DPRINTIFNET(ifp, 1, "PTXERROR Sumary\n");
   1589 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_txerr);
   1590 		}
   1591 		if (prxtxic & MVXPE_PRXTXI_PMISCICSUMMARY) {
   1592 			DPRINTIFNET(ifp, 1, "PMISCIC Sumary\n");
   1593 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_misc);
   1594 		}
   1595 	}
   1596 	if (datum)
   1597 		rnd_add_uint32(&sc->sc_rnd_source, datum);
   1598 
   1599 	return claimed;
   1600 }
   1601 
   1602 STATIC void
   1603 mvxpe_tick(void *arg)
   1604 {
   1605 	struct mvxpe_softc *sc = arg;
   1606 	struct mii_data *mii = &sc->sc_mii;
   1607 
   1608 	mvxpe_sc_lock(sc);
   1609 
   1610 	mii_tick(mii);
   1611 	mii_pollstat(&sc->sc_mii);
   1612 
   1613 	/* read mib regisers(clear by read) */
   1614 	mvxpe_update_mib(sc);
   1615 
   1616 	/* read counter registers(clear by read) */
   1617 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pdfc,
   1618 	    MVXPE_READ(sc, MVXPE_PDFC));
   1619 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pofc,
   1620 	    MVXPE_READ(sc, MVXPE_POFC));
   1621 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txbadfcs,
   1622 	    MVXPE_READ(sc, MVXPE_TXBADFCS));
   1623 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txdropped,
   1624 	    MVXPE_READ(sc, MVXPE_TXDROPPED));
   1625 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_lpic,
   1626 	    MVXPE_READ(sc, MVXPE_LPIC));
   1627 
   1628 	mvxpe_sc_unlock(sc);
   1629 
   1630 	callout_schedule(&sc->sc_tick_ch, hz);
   1631 }
   1632 
   1633 
   1634 /*
   1635  * struct ifnet and mii callbacks
   1636  */
   1637 STATIC void
   1638 mvxpe_start(struct ifnet *ifp)
   1639 {
   1640 	struct mvxpe_softc *sc = ifp->if_softc;
   1641 	struct mbuf *m;
   1642 	int q;
   1643 
   1644 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
   1645 		DPRINTIFNET(ifp, 1, "not running\n");
   1646 		return;
   1647 	}
   1648 
   1649 	mvxpe_sc_lock(sc);
   1650 	if (!MVXPE_IS_LINKUP(sc)) {
   1651 		/* If Link is DOWN, can't start TX */
   1652 		DPRINTIFNET(ifp, 1, "link fail\n");
   1653 		for (;;) {
   1654 			/*
   1655 			 * discard stale packets all.
   1656 			 * these may confuse DAD, ARP or timer based protocols.
   1657 			 */
   1658 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1659 			if (m == NULL)
   1660 				break;
   1661 			m_freem(m);
   1662 		}
   1663 		mvxpe_sc_unlock(sc);
   1664 		return;
   1665 	}
   1666 	for (;;) {
   1667 		/*
   1668 		 * don't use IFQ_POLL().
   1669 		 * there is lock problem between IFQ_POLL and IFQ_DEQUEUE
   1670 		 * on SMP enabled networking stack.
   1671 		 */
   1672 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1673 		if (m == NULL)
   1674 			break;
   1675 
   1676 		q = mvxpe_tx_queue_select(sc, m);
   1677 		if (q < 0)
   1678 			break;
   1679 		/* mutex is held in mvxpe_tx_queue_select() */
   1680 
   1681 		if (mvxpe_tx_queue(sc, m, q) != 0) {
   1682 			DPRINTIFNET(ifp, 1, "cannot add packet to tx ring\n");
   1683 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txerr);
   1684 			mvxpe_tx_unlockq(sc, q);
   1685 			break;
   1686 		}
   1687 		mvxpe_tx_unlockq(sc, q);
   1688 		KASSERT(sc->sc_tx_ring[q].tx_used >= 0);
   1689 		KASSERT(sc->sc_tx_ring[q].tx_used <=
   1690 		    sc->sc_tx_ring[q].tx_queue_len);
   1691 		DPRINTIFNET(ifp, 1, "a packet is added to tx ring\n");
   1692 		sc->sc_tx_pending++;
   1693 		ifp->if_timer = 1;
   1694 		sc->sc_wdogsoft = 1;
   1695 		bpf_mtap(ifp, m);
   1696 	}
   1697 	mvxpe_sc_unlock(sc);
   1698 
   1699 	return;
   1700 }
   1701 
   1702 STATIC int
   1703 mvxpe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1704 {
   1705 	struct mvxpe_softc *sc = ifp->if_softc;
   1706 	struct ifreq *ifr = data;
   1707 	int error = 0;
   1708 	int s;
   1709 
   1710 	switch (cmd) {
   1711 	case SIOCGIFMEDIA:
   1712 	case SIOCSIFMEDIA:
   1713 		DPRINTIFNET(ifp, 2, "mvxpe_ioctl MEDIA\n");
   1714 		s = splnet(); /* XXX: is there suitable mutex? */
   1715 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1716 		splx(s);
   1717 		break;
   1718 	default:
   1719 		DPRINTIFNET(ifp, 2, "mvxpe_ioctl ETHER\n");
   1720 		error = ether_ioctl(ifp, cmd, data);
   1721 		if (error == ENETRESET) {
   1722 			if (ifp->if_flags & IFF_RUNNING) {
   1723 				mvxpe_sc_lock(sc);
   1724 				mvxpe_filter_setup(sc);
   1725 				mvxpe_sc_unlock(sc);
   1726 			}
   1727 			error = 0;
   1728 		}
   1729 		break;
   1730 	}
   1731 
   1732 	return error;
   1733 }
   1734 
   1735 STATIC int
   1736 mvxpe_init(struct ifnet *ifp)
   1737 {
   1738 	struct mvxpe_softc *sc = ifp->if_softc;
   1739 	struct mii_data *mii = &sc->sc_mii;
   1740 	uint32_t reg;
   1741 	int q;
   1742 
   1743 	mvxpe_sc_lock(sc);
   1744 
   1745 	/* Start DMA Engine */
   1746 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
   1747 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
   1748 	MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
   1749 
   1750 	/* Enable port */
   1751 	reg  = MVXPE_READ(sc, MVXPE_PMACC0);
   1752 	reg |= MVXPE_PMACC0_PORTEN;
   1753 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
   1754 
   1755 	/* Link up */
   1756 	mvxpe_linkup(sc);
   1757 
   1758 	/* Enable All Queue and interrupt of each Queue */
   1759 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   1760 		mvxpe_rx_lockq(sc, q);
   1761 		mvxpe_rx_queue_enable(ifp, q);
   1762 		mvxpe_rx_queue_refill(sc, q);
   1763 		mvxpe_rx_unlockq(sc, q);
   1764 
   1765 		mvxpe_tx_lockq(sc, q);
   1766 		mvxpe_tx_queue_enable(ifp, q);
   1767 		mvxpe_tx_unlockq(sc, q);
   1768 	}
   1769 
   1770 	/* Enable interrupt */
   1771 	mvxpe_enable_intr(sc);
   1772 
   1773 	/* Set Counter */
   1774 	callout_schedule(&sc->sc_tick_ch, hz);
   1775 
   1776 	/* Media check */
   1777 	mii_mediachg(mii);
   1778 
   1779 	ifp->if_flags |= IFF_RUNNING;
   1780 	ifp->if_flags &= ~IFF_OACTIVE;
   1781 
   1782 	mvxpe_sc_unlock(sc);
   1783 	return 0;
   1784 }
   1785 
   1786 /* ARGSUSED */
   1787 STATIC void
   1788 mvxpe_stop(struct ifnet *ifp, int disable)
   1789 {
   1790 	struct mvxpe_softc *sc = ifp->if_softc;
   1791 	uint32_t reg;
   1792 	int q, cnt;
   1793 
   1794 	DPRINTIFNET(ifp, 1, "stop device dma and interrupts.\n");
   1795 
   1796 	mvxpe_sc_lock(sc);
   1797 
   1798 	callout_stop(&sc->sc_tick_ch);
   1799 
   1800 	/* Link down */
   1801 	mvxpe_linkdown(sc);
   1802 
   1803 	/* Disable Rx interrupt */
   1804 	reg  = MVXPE_READ(sc, MVXPE_PIE);
   1805 	reg &= ~MVXPE_PIE_RXPKTINTRPTENB_MASK;
   1806 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
   1807 
   1808 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
   1809 	reg &= ~MVXPE_PRXTXTI_RBICTAPQ_MASK;
   1810 	reg &= ~MVXPE_PRXTXTI_RDTAQ_MASK;
   1811 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
   1812 
   1813 	/* Wait for all Rx activity to terminate. */
   1814 	reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
   1815 	reg = MVXPE_RQC_DIS(reg);
   1816 	MVXPE_WRITE(sc, MVXPE_RQC, reg);
   1817 	cnt = 0;
   1818 	do {
   1819 		if (cnt >= RX_DISABLE_TIMEOUT) {
   1820 			aprint_error_ifnet(ifp,
   1821 			    "timeout for RX stopped. rqc 0x%x\n", reg);
   1822 			break;
   1823 		}
   1824 		cnt++;
   1825 		reg = MVXPE_READ(sc, MVXPE_RQC);
   1826 	} while (reg & MVXPE_RQC_EN_MASK);
   1827 
   1828 	/* Wait for all Tx activety to terminate. */
   1829 	reg  = MVXPE_READ(sc, MVXPE_PIE);
   1830 	reg &= ~MVXPE_PIE_TXPKTINTRPTENB_MASK;
   1831 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
   1832 
   1833 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
   1834 	reg &= ~MVXPE_PRXTXTI_TBTCQ_MASK;
   1835 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
   1836 
   1837 	reg = MVXPE_READ(sc, MVXPE_TQC) & MVXPE_TQC_EN_MASK;
   1838 	reg = MVXPE_TQC_DIS(reg);
   1839 	MVXPE_WRITE(sc, MVXPE_TQC, reg);
   1840 	cnt = 0;
   1841 	do {
   1842 		if (cnt >= TX_DISABLE_TIMEOUT) {
   1843 			aprint_error_ifnet(ifp,
   1844 			    "timeout for TX stopped. tqc 0x%x\n", reg);
   1845 			break;
   1846 		}
   1847 		cnt++;
   1848 		reg = MVXPE_READ(sc, MVXPE_TQC);
   1849 	} while (reg & MVXPE_TQC_EN_MASK);
   1850 
   1851 	/* Wait for all Tx FIFO is empty */
   1852 	cnt = 0;
   1853 	do {
   1854 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
   1855 			aprint_error_ifnet(ifp,
   1856 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
   1857 			break;
   1858 		}
   1859 		cnt++;
   1860 		reg = MVXPE_READ(sc, MVXPE_PS0);
   1861 	} while (!(reg & MVXPE_PS0_TXFIFOEMP) && (reg & MVXPE_PS0_TXINPROG));
   1862 
   1863 	/* Reset the MAC Port Enable bit */
   1864 	reg = MVXPE_READ(sc, MVXPE_PMACC0);
   1865 	reg &= ~MVXPE_PMACC0_PORTEN;
   1866 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
   1867 
   1868 	/* Disable each of queue */
   1869 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   1870 		struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   1871 
   1872 		mvxpe_rx_lockq(sc, q);
   1873 		mvxpe_tx_lockq(sc, q);
   1874 
   1875 		/* Disable Rx packet buffer refill request */
   1876 		reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
   1877 		reg |= MVXPE_PRXDQTH_NODT(0);
   1878 		MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
   1879 
   1880 		if (disable) {
   1881 			/*
   1882 			 * Hold Reset state of DMA Engine
   1883 			 * (must write 0x0 to restart it)
   1884 			 */
   1885 			MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
   1886 			MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
   1887 			mvxpe_ring_flush_queue(sc, q);
   1888 		}
   1889 
   1890 		mvxpe_tx_unlockq(sc, q);
   1891 		mvxpe_rx_unlockq(sc, q);
   1892 	}
   1893 
   1894 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1895 
   1896 	mvxpe_sc_unlock(sc);
   1897 }
   1898 
   1899 STATIC void
   1900 mvxpe_watchdog(struct ifnet *ifp)
   1901 {
   1902 	struct mvxpe_softc *sc = ifp->if_softc;
   1903 	int q;
   1904 
   1905 	mvxpe_sc_lock(sc);
   1906 
   1907 	/*
   1908 	 * Reclaim first as there is a possibility of losing Tx completion
   1909 	 * interrupts.
   1910 	 */
   1911 	mvxpe_tx_complete(sc, 0xff);
   1912 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   1913 		struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   1914 
   1915 		if (tx->tx_dma != tx->tx_cpu) {
   1916 			if (sc->sc_wdogsoft) {
   1917 				/*
   1918 				 * There is race condition between CPU and DMA
   1919 				 * engine. When DMA engine encounters queue end,
   1920 				 * it clears MVXPE_TQC_ENQ bit.
   1921 				 * XXX: how about enhanced mode?
   1922 				 */
   1923 				MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
   1924 				ifp->if_timer = 5;
   1925 				sc->sc_wdogsoft = 0;
   1926 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_wdogsoft);
   1927 			} else {
   1928 				aprint_error_ifnet(ifp, "watchdog timeout\n");
   1929 				ifp->if_oerrors++;
   1930 				mvxpe_linkreset(sc);
   1931 				mvxpe_sc_unlock(sc);
   1932 
   1933 				/* trigger reinitialize sequence */
   1934 				mvxpe_stop(ifp, 1);
   1935 				mvxpe_init(ifp);
   1936 
   1937 				mvxpe_sc_lock(sc);
   1938 			}
   1939 		}
   1940 	}
   1941 	mvxpe_sc_unlock(sc);
   1942 }
   1943 
   1944 STATIC int
   1945 mvxpe_ifflags_cb(struct ethercom *ec)
   1946 {
   1947 	struct ifnet *ifp = &ec->ec_if;
   1948 	struct mvxpe_softc *sc = ifp->if_softc;
   1949 	int change = ifp->if_flags ^ sc->sc_if_flags;
   1950 
   1951 	mvxpe_sc_lock(sc);
   1952 
   1953 	if (change != 0)
   1954 		sc->sc_if_flags = ifp->if_flags;
   1955 
   1956 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) {
   1957 		mvxpe_sc_unlock(sc);
   1958 		return ENETRESET;
   1959 	}
   1960 
   1961 	if ((change & IFF_PROMISC) != 0)
   1962 		mvxpe_filter_setup(sc);
   1963 
   1964 	if ((change & IFF_UP) != 0)
   1965 		mvxpe_linkreset(sc);
   1966 
   1967 	mvxpe_sc_unlock(sc);
   1968 	return 0;
   1969 }
   1970 
   1971 STATIC int
   1972 mvxpe_mediachange(struct ifnet *ifp)
   1973 {
   1974 	return ether_mediachange(ifp);
   1975 }
   1976 
   1977 STATIC void
   1978 mvxpe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1979 {
   1980 	ether_mediastatus(ifp, ifmr);
   1981 }
   1982 
   1983 /*
   1984  * Link State Notify
   1985  */
   1986 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc)
   1987 {
   1988 	int linkup; /* bool */
   1989 
   1990 	KASSERT_SC_MTX(sc);
   1991 
   1992 	/* tell miibus */
   1993 	mii_pollstat(&sc->sc_mii);
   1994 
   1995 	/* syslog */
   1996 	linkup = MVXPE_IS_LINKUP(sc);
   1997 	if (sc->sc_linkstate == linkup)
   1998 		return;
   1999 
   2000 #ifdef DEBUG
   2001 	log(LOG_DEBUG,
   2002 	    "%s: link %s\n", device_xname(sc->sc_dev), linkup ? "up" : "down");
   2003 #endif
   2004 	if (linkup)
   2005 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_up);
   2006 	else
   2007 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_down);
   2008 
   2009 	sc->sc_linkstate = linkup;
   2010 }
   2011 
   2012 STATIC void
   2013 mvxpe_linkup(struct mvxpe_softc *sc)
   2014 {
   2015 	uint32_t reg;
   2016 
   2017 	KASSERT_SC_MTX(sc);
   2018 
   2019 	/* set EEE parameters */
   2020 	reg = MVXPE_READ(sc, MVXPE_LPIC1);
   2021 	if (sc->sc_cf.cf_lpi)
   2022 		reg |= MVXPE_LPIC1_LPIRE;
   2023 	else
   2024 		reg &= ~MVXPE_LPIC1_LPIRE;
   2025 	MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
   2026 
   2027 	/* set auto-negotiation parameters */
   2028 	reg  = MVXPE_READ(sc, MVXPE_PANC);
   2029 	if (sc->sc_cf.cf_fc) {
   2030 		/* flow control negotiation */
   2031 		reg |= MVXPE_PANC_PAUSEADV;
   2032 		reg |= MVXPE_PANC_ANFCEN;
   2033 	}
   2034 	else {
   2035 		reg &= ~MVXPE_PANC_PAUSEADV;
   2036 		reg &= ~MVXPE_PANC_ANFCEN;
   2037 	}
   2038 	reg &= ~MVXPE_PANC_FORCELINKFAIL;
   2039 	reg &= ~MVXPE_PANC_FORCELINKPASS;
   2040 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
   2041 
   2042 	mii_mediachg(&sc->sc_mii);
   2043 }
   2044 
   2045 STATIC void
   2046 mvxpe_linkdown(struct mvxpe_softc *sc)
   2047 {
   2048 	struct mii_softc *mii;
   2049 	uint32_t reg;
   2050 
   2051 	KASSERT_SC_MTX(sc);
   2052 	return;
   2053 
   2054 	reg  = MVXPE_READ(sc, MVXPE_PANC);
   2055 	reg |= MVXPE_PANC_FORCELINKFAIL;
   2056 	reg &= MVXPE_PANC_FORCELINKPASS;
   2057 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
   2058 
   2059 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
   2060 	if (mii)
   2061 		mii_phy_down(mii);
   2062 }
   2063 
   2064 STATIC void
   2065 mvxpe_linkreset(struct mvxpe_softc *sc)
   2066 {
   2067 	struct mii_softc *mii;
   2068 
   2069 	KASSERT_SC_MTX(sc);
   2070 
   2071 	/* force reset PHY first */
   2072 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
   2073 	if (mii)
   2074 		mii_phy_reset(mii);
   2075 
   2076 	/* reinit MAC and PHY */
   2077 	mvxpe_linkdown(sc);
   2078 	if ((sc->sc_if_flags & IFF_UP) != 0)
   2079 		mvxpe_linkup(sc);
   2080 }
   2081 
   2082 /*
   2083  * Tx Subroutines
   2084  */
   2085 STATIC int
   2086 mvxpe_tx_queue_select(struct mvxpe_softc *sc, struct mbuf *m)
   2087 {
   2088 	int q = 0;
   2089 
   2090 	/* XXX: get attribute from ALTQ framework? */
   2091 	mvxpe_tx_lockq(sc, q);
   2092 	return 0;
   2093 }
   2094 
   2095 STATIC int
   2096 mvxpe_tx_queue(struct mvxpe_softc *sc, struct mbuf *m, int q)
   2097 {
   2098 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2099 	bus_dma_segment_t *txsegs;
   2100 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   2101 	struct mvxpe_tx_desc *t = NULL;
   2102 	uint32_t ptxsu;
   2103 	int txnsegs;
   2104 	int start, used;
   2105 	int i;
   2106 
   2107 	KASSERT_TX_MTX(sc, q);
   2108 	KASSERT(tx->tx_used >= 0);
   2109 	KASSERT(tx->tx_used <= tx->tx_queue_len);
   2110 
   2111 	/* load mbuf using dmamap of 1st descriptor */
   2112 	if (bus_dmamap_load_mbuf(sc->sc_dmat,
   2113 	    MVXPE_TX_MAP(sc, q, tx->tx_cpu), m, BUS_DMA_NOWAIT) != 0) {
   2114 		m_freem(m);
   2115 		return ENOBUFS;
   2116 	}
   2117 	txsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_segs;
   2118 	txnsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_nsegs;
   2119 	if (txnsegs <= 0 || (txnsegs + tx->tx_used) > tx->tx_queue_len) {
   2120 		/* we have no enough descriptors or mbuf is broken */
   2121 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, tx->tx_cpu));
   2122 		m_freem(m);
   2123 		return ENOBUFS;
   2124 	}
   2125 	DPRINTSC(sc, 2, "send packet %p descriptor %d\n", m, tx->tx_cpu);
   2126 	KASSERT(MVXPE_TX_MBUF(sc, q, tx->tx_cpu) == NULL);
   2127 
   2128 	/* remember mbuf using 1st descriptor */
   2129 	MVXPE_TX_MBUF(sc, q, tx->tx_cpu) = m;
   2130 	bus_dmamap_sync(sc->sc_dmat,
   2131 	    MVXPE_TX_MAP(sc, q, tx->tx_cpu), 0, m->m_pkthdr.len,
   2132 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2133 
   2134 	/* load to tx descriptors */
   2135 	start = tx->tx_cpu;
   2136 	used = 0;
   2137 	for (i = 0; i < txnsegs; i++) {
   2138 		if (__predict_false(txsegs[i].ds_len == 0))
   2139 			continue;
   2140 		t = MVXPE_TX_DESC(sc, q, tx->tx_cpu);
   2141 		t->command = 0;
   2142 		t->l4ichk = 0;
   2143 		t->flags = 0;
   2144 		if (i == 0) {
   2145 			/* 1st descriptor */
   2146 			t->command |= MVXPE_TX_CMD_W_PACKET_OFFSET(0);
   2147 			t->command |= MVXPE_TX_CMD_PADDING;
   2148 			t->command |= MVXPE_TX_CMD_F;
   2149 			mvxpe_tx_set_csumflag(ifp, t, m);
   2150 		}
   2151 		t->bufptr = txsegs[i].ds_addr;
   2152 		t->bytecnt = txsegs[i].ds_len;
   2153 		tx->tx_cpu = tx_counter_adv(tx->tx_cpu, 1);
   2154 		tx->tx_used++;
   2155 		used++;
   2156 	}
   2157 	/* t is last descriptor here */
   2158 	KASSERT(t != NULL);
   2159 	t->command |= MVXPE_TX_CMD_L;
   2160 
   2161 	DPRINTSC(sc, 2, "queue %d, %d descriptors used\n", q, used);
   2162 #ifdef MVXPE_DEBUG
   2163 	if (mvxpe_debug > 2)
   2164 		for (i = start; i <= tx->tx_cpu; i++) {
   2165 			t = MVXPE_TX_DESC(sc, q, i);
   2166 			mvxpe_dump_txdesc(t, i);
   2167 		}
   2168 #endif
   2169 	mvxpe_ring_sync_tx(sc, q, start, used,
   2170 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   2171 
   2172 	while (used > 255) {
   2173 		ptxsu = MVXPE_PTXSU_NOWD(255);
   2174 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
   2175 		used -= 255;
   2176 	}
   2177 	if (used > 0) {
   2178 		ptxsu = MVXPE_PTXSU_NOWD(used);
   2179 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
   2180 	}
   2181 	MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
   2182 
   2183 	DPRINTSC(sc, 2,
   2184 	    "PTXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQA(q)));
   2185 	DPRINTSC(sc, 2,
   2186 	    "PTXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
   2187 	DPRINTSC(sc, 2,
   2188 	    "PTXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXS(q)));
   2189 	DPRINTSC(sc, 2,
   2190 	    "PTXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PTXDI(q)));
   2191 	DPRINTSC(sc, 2, "TQC: %#x\n", MVXPE_READ(sc, MVXPE_TQC));
   2192 	DPRINTIFNET(ifp, 2,
   2193 	    "Tx: tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
   2194 	    tx->tx_cpu, tx->tx_dma, tx->tx_used);
   2195 	return 0;
   2196 }
   2197 
   2198 STATIC void
   2199 mvxpe_tx_set_csumflag(struct ifnet *ifp,
   2200     struct mvxpe_tx_desc *t, struct mbuf *m)
   2201 {
   2202 	struct ether_header *eh;
   2203 	int csum_flags;
   2204 	uint32_t iphl = 0, ipoff = 0;
   2205 
   2206 
   2207        	csum_flags = ifp->if_csum_flags_tx & m->m_pkthdr.csum_flags;
   2208 
   2209 	eh = mtod(m, struct ether_header *);
   2210 	switch (htons(eh->ether_type)) {
   2211 	case ETHERTYPE_IP:
   2212 	case ETHERTYPE_IPV6:
   2213 		ipoff = ETHER_HDR_LEN;
   2214 		break;
   2215 	case ETHERTYPE_VLAN:
   2216 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   2217 		break;
   2218 	}
   2219 
   2220 	if (csum_flags & (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   2221 		iphl = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
   2222 		t->command |= MVXPE_TX_CMD_L3_IP4;
   2223 	}
   2224 	else if (csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
   2225 		iphl = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   2226 		t->command |= MVXPE_TX_CMD_L3_IP6;
   2227 	}
   2228 	else {
   2229 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
   2230 		return;
   2231 	}
   2232 
   2233 
   2234 	/* L3 */
   2235 	if (csum_flags & M_CSUM_IPv4) {
   2236 		t->command |= MVXPE_TX_CMD_IP4_CHECKSUM;
   2237 	}
   2238 
   2239 	/* L4 */
   2240 	if ((csum_flags &
   2241 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0) {
   2242 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
   2243 	}
   2244 	else if (csum_flags & M_CSUM_TCPv4) {
   2245 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
   2246 		t->command |= MVXPE_TX_CMD_L4_TCP;
   2247 	}
   2248 	else if (csum_flags & M_CSUM_UDPv4) {
   2249 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
   2250 		t->command |= MVXPE_TX_CMD_L4_UDP;
   2251 	}
   2252 	else if (csum_flags & M_CSUM_TCPv6) {
   2253 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
   2254 		t->command |= MVXPE_TX_CMD_L4_TCP;
   2255 	}
   2256 	else if (csum_flags & M_CSUM_UDPv6) {
   2257 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
   2258 		t->command |= MVXPE_TX_CMD_L4_UDP;
   2259 	}
   2260 
   2261 	t->l4ichk = 0;
   2262 	t->command |= MVXPE_TX_CMD_IP_HEADER_LEN(iphl >> 2);
   2263 	t->command |= MVXPE_TX_CMD_L3_OFFSET(ipoff);
   2264 }
   2265 
   2266 STATIC void
   2267 mvxpe_tx_complete(struct mvxpe_softc *sc, uint32_t queues)
   2268 {
   2269 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2270 	int q;
   2271 
   2272 	DPRINTSC(sc, 2, "tx completed.\n");
   2273 
   2274 	KASSERT_SC_MTX(sc);
   2275 
   2276 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   2277 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
   2278 			continue;
   2279 		mvxpe_tx_lockq(sc, q);
   2280 		mvxpe_tx_queue_complete(sc, q);
   2281 		mvxpe_tx_unlockq(sc, q);
   2282 	}
   2283 	KASSERT(sc->sc_tx_pending >= 0);
   2284 	if (sc->sc_tx_pending == 0)
   2285 		ifp->if_timer = 0;
   2286 }
   2287 
   2288 STATIC void
   2289 mvxpe_tx_queue_complete(struct mvxpe_softc *sc, int q)
   2290 {
   2291 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
   2292 	struct mvxpe_tx_desc *t;
   2293 	uint32_t ptxs, ptxsu, ndesc;
   2294 	int i;
   2295 
   2296 	KASSERT_TX_MTX(sc, q);
   2297 
   2298 	ptxs = MVXPE_READ(sc, MVXPE_PTXS(q));
   2299 	ndesc = MVXPE_PTXS_GET_TBC(ptxs);
   2300 	if (ndesc == 0)
   2301 		return;
   2302 
   2303 	DPRINTSC(sc, 2,
   2304 	    "tx complete queue %d, %d descriptors.\n", q, ndesc);
   2305 
   2306 	mvxpe_ring_sync_tx(sc, q, tx->tx_dma, ndesc,
   2307 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2308 
   2309 	for (i = 0; i < ndesc; i++) {
   2310 		int error = 0;
   2311 
   2312 		t = MVXPE_TX_DESC(sc, q, tx->tx_dma);
   2313 		if (t->flags & MVXPE_TX_F_ES) {
   2314 			DPRINTSC(sc, 1,
   2315 			    "tx error queue %d desc %d\n",
   2316 			    q, tx->tx_dma);
   2317 			switch (t->flags & MVXPE_TX_F_EC_MASK) {
   2318 			case MVXPE_TX_F_EC_LC:
   2319 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_lc);
   2320 				break;
   2321 			case MVXPE_TX_F_EC_UR:
   2322 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_ur);
   2323 				break;
   2324 			case MVXPE_TX_F_EC_RL:
   2325 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_rl);
   2326 				break;
   2327 			default:
   2328 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_oth);
   2329 				break;
   2330 			}
   2331 			error = 1;
   2332 		}
   2333 		if (MVXPE_TX_MBUF(sc, q, tx->tx_dma) != NULL) {
   2334 			KASSERT((t->command & MVXPE_TX_CMD_F) != 0);
   2335 			bus_dmamap_unload(sc->sc_dmat,
   2336 			    MVXPE_TX_MAP(sc, q, tx->tx_dma));
   2337 			m_freem(MVXPE_TX_MBUF(sc, q, tx->tx_dma));
   2338 			MVXPE_TX_MBUF(sc, q, tx->tx_dma) = NULL;
   2339 			sc->sc_tx_pending--;
   2340 		}
   2341 		else
   2342 			KASSERT((t->flags & MVXPE_TX_CMD_F) == 0);
   2343 		tx->tx_dma = tx_counter_adv(tx->tx_dma, 1);
   2344 		tx->tx_used--;
   2345 		if (error)
   2346 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txqe[q]);
   2347 		else
   2348 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txq[q]);
   2349 	}
   2350 	KASSERT(tx->tx_used >= 0);
   2351 	KASSERT(tx->tx_used <= tx->tx_queue_len);
   2352 	while (ndesc > 255) {
   2353 		ptxsu = MVXPE_PTXSU_NORB(255);
   2354 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
   2355 		ndesc -= 255;
   2356 	}
   2357 	if (ndesc > 0) {
   2358 		ptxsu = MVXPE_PTXSU_NORB(ndesc);
   2359 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
   2360 	}
   2361 	DPRINTSC(sc, 2,
   2362 	    "Tx complete q %d, tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
   2363 	    q, tx->tx_cpu, tx->tx_dma, tx->tx_used);
   2364 }
   2365 
   2366 /*
   2367  * Rx Subroutines
   2368  */
   2369 STATIC void
   2370 mvxpe_rx(struct mvxpe_softc *sc, uint32_t queues)
   2371 {
   2372 	int q, npkt;
   2373 
   2374 	KASSERT_SC_MTX(sc);
   2375 
   2376 	while ( (npkt = mvxpe_rx_queue_select(sc, queues, &q))) {
   2377 		/* mutex is held by rx_queue_select */
   2378 		mvxpe_rx_queue(sc, q, npkt);
   2379 		mvxpe_rx_unlockq(sc, q);
   2380 	}
   2381 }
   2382 
   2383 STATIC void
   2384 mvxpe_rx_queue(struct mvxpe_softc *sc, int q, int npkt)
   2385 {
   2386 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2387 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   2388 	struct mvxpe_rx_desc *r;
   2389 	struct mvxpbm_chunk *chunk;
   2390 	struct mbuf *m;
   2391 	uint32_t prxsu;
   2392 	int error = 0;
   2393 	int i;
   2394 
   2395 	KASSERT_RX_MTX(sc, q);
   2396 
   2397 	mvxpe_ring_sync_rx(sc, q, rx->rx_dma, npkt,
   2398 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   2399 
   2400 	for (i = 0; i < npkt; i++) {
   2401 		/* get descriptor and packet */
   2402 		chunk = MVXPE_RX_PKTBUF(sc, q, rx->rx_dma);
   2403 		MVXPE_RX_PKTBUF(sc, q, rx->rx_dma) = NULL;
   2404 		r = MVXPE_RX_DESC(sc, q, rx->rx_dma);
   2405 		mvxpbm_dmamap_sync(chunk, r->bytecnt, BUS_DMASYNC_POSTREAD);
   2406 
   2407 		/* check errors */
   2408 		if (r->status & MVXPE_RX_ES) {
   2409 			switch (r->status & MVXPE_RX_EC_MASK) {
   2410 			case MVXPE_RX_EC_CE:
   2411 				DPRINTIFNET(ifp, 1, "CRC error\n");
   2412 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_ce);
   2413 				break;
   2414 			case MVXPE_RX_EC_OR:
   2415 				DPRINTIFNET(ifp, 1, "Rx FIFO overrun\n");
   2416 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_or);
   2417 				break;
   2418 			case MVXPE_RX_EC_MF:
   2419 				DPRINTIFNET(ifp, 1, "Rx too large frame\n");
   2420 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_mf);
   2421 				break;
   2422 			case MVXPE_RX_EC_RE:
   2423 				DPRINTIFNET(ifp, 1, "Rx resource error\n");
   2424 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_re);
   2425 				break;
   2426 			}
   2427 			error = 1;
   2428 			goto rx_done;
   2429 		}
   2430 		if (!(r->status & MVXPE_RX_F) || !(r->status & MVXPE_RX_L)) {
   2431 			DPRINTIFNET(ifp, 1, "not support scatter buf\n");
   2432 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_scat);
   2433 			error = 1;
   2434 			goto rx_done;
   2435 		}
   2436 
   2437 		if (chunk == NULL) {
   2438 			device_printf(sc->sc_dev,
   2439 			    "got rx interrupt, but no chunk\n");
   2440 			error = 1;
   2441 			goto rx_done;
   2442 		}
   2443 
   2444 		/* extract packet buffer */
   2445 		if (mvxpbm_init_mbuf_hdr(chunk) != 0) {
   2446 			error = 1;
   2447 			goto rx_done;
   2448 		}
   2449 		m = chunk->m;
   2450 		m->m_pkthdr.rcvif = ifp;
   2451 		m->m_pkthdr.len = m->m_len = r->bytecnt - ETHER_CRC_LEN;
   2452 		m_adj(m, MVXPE_HWHEADER_SIZE); /* strip MH */
   2453 		mvxpe_rx_set_csumflag(ifp, r, m);
   2454 		ifp->if_ipackets++;
   2455 		bpf_mtap(ifp, m);
   2456 		if_percpuq_enqueue(ifp->if_percpuq, m);
   2457 		chunk = NULL; /* the BM chunk goes to networking stack now */
   2458 rx_done:
   2459 		if (chunk) {
   2460 			/* rx error. just return the chunk to BM. */
   2461 			mvxpbm_free_chunk(chunk);
   2462 		}
   2463 		if (error)
   2464 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxqe[q]);
   2465 		else
   2466 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxq[q]);
   2467 		rx->rx_dma = rx_counter_adv(rx->rx_dma, 1);
   2468 	}
   2469 	/* DMA status update */
   2470 	DPRINTSC(sc, 2, "%d packets received from queue %d\n", npkt, q);
   2471 	while (npkt > 255) {
   2472 		prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
   2473 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
   2474 		npkt -= 255;
   2475 	}
   2476 	if (npkt > 0) {
   2477 		prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(npkt);
   2478 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
   2479 	}
   2480 
   2481 	DPRINTSC(sc, 2,
   2482 	    "PRXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQA(q)));
   2483 	DPRINTSC(sc, 2,
   2484 	    "PRXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
   2485 	DPRINTSC(sc, 2,
   2486 	    "PRXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXS(q)));
   2487 	DPRINTSC(sc, 2,
   2488 	    "PRXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PRXDI(q)));
   2489 	DPRINTSC(sc, 2, "RQC: %#x\n", MVXPE_READ(sc, MVXPE_RQC));
   2490 	DPRINTIFNET(ifp, 2, "Rx: rx_cpu = %d, rx_dma = %d\n",
   2491 	    rx->rx_cpu, rx->rx_dma);
   2492 }
   2493 
   2494 STATIC int
   2495 mvxpe_rx_queue_select(struct mvxpe_softc *sc, uint32_t queues, int *queue)
   2496 {
   2497 	uint32_t prxs, npkt;
   2498 	int q;
   2499 
   2500 	KASSERT_SC_MTX(sc);
   2501 	KASSERT(queue != NULL);
   2502 	DPRINTSC(sc, 2, "selecting rx queue\n");
   2503 
   2504 	for (q = MVXPE_QUEUE_SIZE - 1; q >= 0; q--) {
   2505 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
   2506 			continue;
   2507 
   2508 		prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
   2509 		npkt = MVXPE_PRXS_GET_ODC(prxs);
   2510 		if (npkt == 0)
   2511 			continue;
   2512 
   2513 		DPRINTSC(sc, 2,
   2514 		    "queue %d selected: prxs=%#x, %u pakcet received.\n",
   2515 		    q, prxs, npkt);
   2516 		*queue = q;
   2517 		mvxpe_rx_lockq(sc, q);
   2518 		return npkt;
   2519 	}
   2520 
   2521 	return 0;
   2522 }
   2523 
   2524 STATIC void
   2525 mvxpe_rx_refill(struct mvxpe_softc *sc, uint32_t queues)
   2526 {
   2527 	int q;
   2528 
   2529 	KASSERT_SC_MTX(sc);
   2530 
   2531 	/* XXX: check rx bit array */
   2532 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   2533 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
   2534 			continue;
   2535 
   2536 		mvxpe_rx_lockq(sc, q);
   2537 		mvxpe_rx_queue_refill(sc, q);
   2538 		mvxpe_rx_unlockq(sc, q);
   2539 	}
   2540 }
   2541 
   2542 STATIC void
   2543 mvxpe_rx_queue_refill(struct mvxpe_softc *sc, int q)
   2544 {
   2545 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   2546 	uint32_t prxs, prxsu, ndesc;
   2547 	int idx, refill = 0;
   2548 	int npkt;
   2549 
   2550 	KASSERT_RX_MTX(sc, q);
   2551 
   2552 	prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
   2553 	ndesc = MVXPE_PRXS_GET_NODC(prxs) + MVXPE_PRXS_GET_ODC(prxs);
   2554 	refill = rx->rx_queue_len - ndesc;
   2555 	if (refill <= 0)
   2556 		return;
   2557 	DPRINTPRXS(2, q);
   2558 	DPRINTSC(sc, 2, "%d buffers to refill.\n", refill);
   2559 
   2560 	idx = rx->rx_cpu;
   2561 	for (npkt = 0; npkt < refill; npkt++)
   2562 		if (mvxpe_rx_queue_add(sc, q) != 0)
   2563 			break;
   2564 	DPRINTSC(sc, 2, "queue %d, %d buffer refilled.\n", q, npkt);
   2565 	if (npkt == 0)
   2566 		return;
   2567 
   2568 	mvxpe_ring_sync_rx(sc, q, idx, npkt,
   2569 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2570 
   2571 	while (npkt > 255) {
   2572 		prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(255);
   2573 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
   2574 		npkt -= 255;
   2575 	}
   2576 	if (npkt > 0) {
   2577 		prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(npkt);
   2578 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
   2579 	}
   2580 	DPRINTPRXS(2, q);
   2581 	return;
   2582 }
   2583 
   2584 STATIC int
   2585 mvxpe_rx_queue_add(struct mvxpe_softc *sc, int q)
   2586 {
   2587 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
   2588 	struct mvxpe_rx_desc *r;
   2589 	struct mvxpbm_chunk *chunk = NULL;
   2590 
   2591 	KASSERT_RX_MTX(sc, q);
   2592 
   2593 	/* Allocate the packet buffer */
   2594 	chunk = mvxpbm_alloc(sc->sc_bm);
   2595 	if (chunk == NULL) {
   2596 		DPRINTSC(sc, 1, "BM chunk allocation failed.\n");
   2597 		return ENOBUFS;
   2598 	}
   2599 
   2600 	/* Add the packet to descritor */
   2601 	KASSERT(MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) == NULL);
   2602 	MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) = chunk;
   2603 	mvxpbm_dmamap_sync(chunk, BM_SYNC_ALL, BUS_DMASYNC_PREREAD);
   2604 
   2605 	r = MVXPE_RX_DESC(sc, q, rx->rx_cpu);
   2606 	r->bufptr = chunk->buf_pa;
   2607 	DPRINTSC(sc, 9, "chunk added to index %d\n", rx->rx_cpu);
   2608 	rx->rx_cpu = rx_counter_adv(rx->rx_cpu, 1);
   2609 	return 0;
   2610 }
   2611 
   2612 STATIC void
   2613 mvxpe_rx_set_csumflag(struct ifnet *ifp,
   2614     struct mvxpe_rx_desc *r, struct mbuf *m0)
   2615 {
   2616 	uint32_t csum_flags = 0;
   2617 
   2618 	if ((r->status & (MVXPE_RX_IP_HEADER_OK|MVXPE_RX_L3_IP)) == 0)
   2619 		return; /* not a IP packet */
   2620 
   2621 	/* L3 */
   2622 	if (r->status & MVXPE_RX_L3_IP) {
   2623 		csum_flags |= M_CSUM_IPv4 & ifp->if_csum_flags_rx;
   2624 		if ((r->status & MVXPE_RX_IP_HEADER_OK) == 0 &&
   2625 		    (csum_flags & M_CSUM_IPv4) != 0) {
   2626 			csum_flags |= M_CSUM_IPv4_BAD;
   2627 			goto finish;
   2628 		}
   2629 		else if (r->status & MVXPE_RX_IPV4_FRAGMENT) {
   2630 			/*
   2631 			 * r->l4chk has partial checksum of each framgment.
   2632 			 * but there is no way to use it in NetBSD.
   2633 			 */
   2634 			return;
   2635 		}
   2636 	}
   2637 
   2638 	/* L4 */
   2639 	switch (r->status & MVXPE_RX_L4_MASK) {
   2640 	case MVXPE_RX_L4_TCP:
   2641 		if (r->status & MVXPE_RX_L3_IP)
   2642 			csum_flags |= M_CSUM_TCPv4 & ifp->if_csum_flags_rx;
   2643 		else
   2644 			csum_flags |= M_CSUM_TCPv6 & ifp->if_csum_flags_rx;
   2645 		break;
   2646 	case MVXPE_RX_L4_UDP:
   2647 		if (r->status & MVXPE_RX_L3_IP)
   2648 			csum_flags |= M_CSUM_UDPv4 & ifp->if_csum_flags_rx;
   2649 		else
   2650 			csum_flags |= M_CSUM_UDPv6 & ifp->if_csum_flags_rx;
   2651 		break;
   2652 	case MVXPE_RX_L4_OTH:
   2653 	default:
   2654 		break;
   2655 	}
   2656 	if ((r->status & MVXPE_RX_L4_CHECKSUM_OK) == 0 && (csum_flags &
   2657 	    (M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
   2658 		csum_flags |= M_CSUM_TCP_UDP_BAD;
   2659 finish:
   2660 	m0->m_pkthdr.csum_flags = csum_flags;
   2661 }
   2662 
   2663 /*
   2664  * MAC address filter
   2665  */
   2666 STATIC uint8_t
   2667 mvxpe_crc8(const uint8_t *data, size_t size)
   2668 {
   2669 	int bit;
   2670 	uint8_t byte;
   2671 	uint8_t crc = 0;
   2672 	const uint8_t poly = 0x07;
   2673 
   2674 	while(size--)
   2675 	  for (byte = *data++, bit = NBBY-1; bit >= 0; bit--)
   2676 	    crc = (crc << 1) ^ ((((crc >> 7) ^ (byte >> bit)) & 1) ? poly : 0);
   2677 
   2678 	return crc;
   2679 }
   2680 
   2681 CTASSERT(MVXPE_NDFSMT == MVXPE_NDFOMT);
   2682 
   2683 STATIC void
   2684 mvxpe_filter_setup(struct mvxpe_softc *sc)
   2685 {
   2686 	struct ethercom *ec = &sc->sc_ethercom;
   2687 	struct ifnet *ifp= &sc->sc_ethercom.ec_if;
   2688 	struct ether_multi *enm;
   2689 	struct ether_multistep step;
   2690 	uint32_t dfut[MVXPE_NDFUT], dfsmt[MVXPE_NDFSMT], dfomt[MVXPE_NDFOMT];
   2691 	uint32_t pxc;
   2692 	int i;
   2693 	const uint8_t special[ETHER_ADDR_LEN] = {0x01,0x00,0x5e,0x00,0x00,0x00};
   2694 
   2695 	KASSERT_SC_MTX(sc);
   2696 
   2697 	memset(dfut, 0, sizeof(dfut));
   2698 	memset(dfsmt, 0, sizeof(dfsmt));
   2699 	memset(dfomt, 0, sizeof(dfomt));
   2700 
   2701 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
   2702 		goto allmulti;
   2703 	}
   2704 
   2705 	ETHER_FIRST_MULTI(step, ec, enm);
   2706 	while (enm != NULL) {
   2707 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2708 			/* ranges are complex and somewhat rare */
   2709 			goto allmulti;
   2710 		}
   2711 		/* chip handles some IPv4 multicast specially */
   2712 		if (memcmp(enm->enm_addrlo, special, 5) == 0) {
   2713 			i = enm->enm_addrlo[5];
   2714 			dfsmt[i>>2] |=
   2715 			    MVXPE_DF(i&3, MVXPE_DF_QUEUE_ALL | MVXPE_DF_PASS);
   2716 		} else {
   2717 			i = mvxpe_crc8(enm->enm_addrlo, ETHER_ADDR_LEN);
   2718 			dfomt[i>>2] |=
   2719 			    MVXPE_DF(i&3, MVXPE_DF_QUEUE_ALL | MVXPE_DF_PASS);
   2720 		}
   2721 
   2722 		ETHER_NEXT_MULTI(step, enm);
   2723 	}
   2724 	goto set;
   2725 
   2726 allmulti:
   2727 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
   2728 		for (i = 0; i < MVXPE_NDFSMT; i++) {
   2729 			dfsmt[i] = dfomt[i] =
   2730 			    MVXPE_DF(0, MVXPE_DF_QUEUE_ALL | MVXPE_DF_PASS) |
   2731 			    MVXPE_DF(1, MVXPE_DF_QUEUE_ALL | MVXPE_DF_PASS) |
   2732 			    MVXPE_DF(2, MVXPE_DF_QUEUE_ALL | MVXPE_DF_PASS) |
   2733 			    MVXPE_DF(3, MVXPE_DF_QUEUE_ALL | MVXPE_DF_PASS);
   2734 		}
   2735 	}
   2736 
   2737 set:
   2738 	pxc = MVXPE_READ(sc, MVXPE_PXC);
   2739 	pxc &= ~MVXPE_PXC_UPM;
   2740 	pxc |= MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP;
   2741 	if (ifp->if_flags & IFF_BROADCAST) {
   2742 		pxc &= ~(MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP);
   2743 	}
   2744 	if (ifp->if_flags & IFF_PROMISC) {
   2745 		pxc |= MVXPE_PXC_UPM;
   2746 	}
   2747 	MVXPE_WRITE(sc, MVXPE_PXC, pxc);
   2748 
   2749 	/* Set Destination Address Filter Unicast Table */
   2750 	i = sc->sc_enaddr[5] & 0xf;		/* last nibble */
   2751 	dfut[i>>2] = MVXPE_DF(i&3, MVXPE_DF_QUEUE_ALL | MVXPE_DF_PASS);
   2752 	MVXPE_WRITE_REGION(sc, MVXPE_DFUT(0), dfut, MVXPE_NDFUT);
   2753 
   2754 	/* Set Destination Address Filter Multicast Tables */
   2755 	MVXPE_WRITE_REGION(sc, MVXPE_DFSMT(0), dfsmt, MVXPE_NDFSMT);
   2756 	MVXPE_WRITE_REGION(sc, MVXPE_DFOMT(0), dfomt, MVXPE_NDFOMT);
   2757 }
   2758 
   2759 /*
   2760  * sysctl(9)
   2761  */
   2762 SYSCTL_SETUP(sysctl_mvxpe, "sysctl mvxpe subtree setup")
   2763 {
   2764 	int rc;
   2765 	const struct sysctlnode *node;
   2766 
   2767 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   2768 	    0, CTLTYPE_NODE, "mvxpe",
   2769 	    SYSCTL_DESCR("mvxpe interface controls"),
   2770 	    NULL, 0, NULL, 0,
   2771 	    CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   2772 		goto err;
   2773 	}
   2774 
   2775 	mvxpe_root_num = node->sysctl_num;
   2776 	return;
   2777 
   2778 err:
   2779 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
   2780 }
   2781 
   2782 STATIC int
   2783 sysctl_read_mib(SYSCTLFN_ARGS)
   2784 {
   2785 	struct mvxpe_sysctl_mib *arg;
   2786 	struct mvxpe_softc *sc;
   2787 	struct sysctlnode node;
   2788 	uint64_t val;
   2789 	int err;
   2790 
   2791 	node = *rnode;
   2792 	arg = (struct mvxpe_sysctl_mib *)rnode->sysctl_data;
   2793 	if (arg == NULL)
   2794 		return EINVAL;
   2795 
   2796 	sc = arg->sc;
   2797 	if (sc == NULL)
   2798 		return EINVAL;
   2799 	if (arg->index < 0 || arg->index > __arraycount(mvxpe_mib_list))
   2800 		return EINVAL;
   2801 
   2802 	mvxpe_sc_lock(sc);
   2803 	val = arg->counter;
   2804 	mvxpe_sc_unlock(sc);
   2805 
   2806 	node.sysctl_data = &val;
   2807 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   2808 	if (err)
   2809 	       return err;
   2810 	if (newp)
   2811 		return EINVAL;
   2812 
   2813 	return 0;
   2814 }
   2815 
   2816 
   2817 STATIC int
   2818 sysctl_clear_mib(SYSCTLFN_ARGS)
   2819 {
   2820 	struct mvxpe_softc *sc;
   2821 	struct sysctlnode node;
   2822 	int val;
   2823 	int err;
   2824 
   2825 	node = *rnode;
   2826 	sc = (struct mvxpe_softc *)rnode->sysctl_data;
   2827 	if (sc == NULL)
   2828 		return EINVAL;
   2829 
   2830 	val = 0;
   2831 	node.sysctl_data = &val;
   2832 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   2833 	if (err || newp == NULL)
   2834 		return err;
   2835 	if (val < 0 || val > 1)
   2836 		return EINVAL;
   2837 	if (val == 1) {
   2838 		mvxpe_sc_lock(sc);
   2839 		mvxpe_clear_mib(sc);
   2840 		mvxpe_sc_unlock(sc);
   2841 	}
   2842 
   2843 	return 0;
   2844 }
   2845 
   2846 STATIC int
   2847 sysctl_set_queue_length(SYSCTLFN_ARGS)
   2848 {
   2849 	struct mvxpe_sysctl_queue *arg;
   2850 	struct mvxpe_rx_ring *rx = NULL;
   2851 	struct mvxpe_tx_ring *tx = NULL;
   2852 	struct mvxpe_softc *sc;
   2853 	struct sysctlnode node;
   2854 	uint32_t reg;
   2855 	int val;
   2856 	int err;
   2857 
   2858 	node = *rnode;
   2859 
   2860 	arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
   2861 	if (arg == NULL)
   2862 		return EINVAL;
   2863 	if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
   2864 		return EINVAL;
   2865 	if (arg->rxtx != MVXPE_SYSCTL_RX && arg->rxtx != MVXPE_SYSCTL_TX)
   2866 		return EINVAL;
   2867 
   2868 	sc = arg->sc;
   2869 	if (sc == NULL)
   2870 		return EINVAL;
   2871 
   2872 	/* read queue length */
   2873 	mvxpe_sc_lock(sc);
   2874 	switch (arg->rxtx) {
   2875 	case  MVXPE_SYSCTL_RX:
   2876 		mvxpe_rx_lockq(sc, arg->queue);
   2877 		rx = MVXPE_RX_RING(sc, arg->queue);
   2878 		val = rx->rx_queue_len;
   2879 		mvxpe_rx_unlockq(sc, arg->queue);
   2880 		break;
   2881 	case  MVXPE_SYSCTL_TX:
   2882 		mvxpe_tx_lockq(sc, arg->queue);
   2883 		tx = MVXPE_TX_RING(sc, arg->queue);
   2884 		val = tx->tx_queue_len;
   2885 		mvxpe_tx_unlockq(sc, arg->queue);
   2886 		break;
   2887 	}
   2888 
   2889 	node.sysctl_data = &val;
   2890 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   2891 	if (err || newp == NULL) {
   2892 		mvxpe_sc_unlock(sc);
   2893 		return err;
   2894 	}
   2895 
   2896 	/* update queue length */
   2897 	if (val < 8 || val > MVXPE_RX_RING_CNT) {
   2898 		mvxpe_sc_unlock(sc);
   2899 		return EINVAL;
   2900 	}
   2901 	switch (arg->rxtx) {
   2902 	case  MVXPE_SYSCTL_RX:
   2903 		mvxpe_rx_lockq(sc, arg->queue);
   2904 		rx->rx_queue_len = val;
   2905 		rx->rx_queue_th_received =
   2906 		    rx->rx_queue_len / MVXPE_RXTH_RATIO;
   2907 		rx->rx_queue_th_free =
   2908 		    rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
   2909 
   2910 		reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
   2911 		reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
   2912 		MVXPE_WRITE(sc, MVXPE_PRXDQTH(arg->queue), reg);
   2913 
   2914 		mvxpe_rx_unlockq(sc, arg->queue);
   2915 		break;
   2916 	case  MVXPE_SYSCTL_TX:
   2917 		mvxpe_tx_lockq(sc, arg->queue);
   2918 		tx->tx_queue_len = val;
   2919 		tx->tx_queue_th_free =
   2920 		    tx->tx_queue_len / MVXPE_TXTH_RATIO;
   2921 
   2922 		reg  = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
   2923 		reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
   2924 		MVXPE_WRITE(sc, MVXPE_PTXDQS(arg->queue), reg);
   2925 
   2926 		mvxpe_tx_unlockq(sc, arg->queue);
   2927 		break;
   2928 	}
   2929 	mvxpe_sc_unlock(sc);
   2930 
   2931 	return 0;
   2932 }
   2933 
   2934 STATIC int
   2935 sysctl_set_queue_rxthtime(SYSCTLFN_ARGS)
   2936 {
   2937 	struct mvxpe_sysctl_queue *arg;
   2938 	struct mvxpe_rx_ring *rx = NULL;
   2939 	struct mvxpe_softc *sc;
   2940 	struct sysctlnode node;
   2941 	extern uint32_t mvTclk;
   2942 	uint32_t reg, time_mvtclk;
   2943 	int time_us;
   2944 	int err;
   2945 
   2946 	node = *rnode;
   2947 
   2948 	arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
   2949 	if (arg == NULL)
   2950 		return EINVAL;
   2951 	if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
   2952 		return EINVAL;
   2953 	if (arg->rxtx != MVXPE_SYSCTL_RX)
   2954 		return EINVAL;
   2955 
   2956 	sc = arg->sc;
   2957 	if (sc == NULL)
   2958 		return EINVAL;
   2959 
   2960 	/* read queue length */
   2961 	mvxpe_sc_lock(sc);
   2962 	mvxpe_rx_lockq(sc, arg->queue);
   2963 	rx = MVXPE_RX_RING(sc, arg->queue);
   2964 	time_mvtclk = rx->rx_queue_th_time;
   2965 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvTclk;
   2966 	node.sysctl_data = &time_us;
   2967 	DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n",
   2968 	    arg->queue, MVXPE_READ(sc, MVXPE_PRXITTH(arg->queue)));
   2969 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
   2970 	if (err || newp == NULL) {
   2971 		mvxpe_rx_unlockq(sc, arg->queue);
   2972 		mvxpe_sc_unlock(sc);
   2973 		return err;
   2974 	}
   2975 
   2976 	/* update queue length (0[sec] - 1[sec]) */
   2977 	if (time_us < 0 || time_us > (1000 * 1000)) {
   2978 		mvxpe_rx_unlockq(sc, arg->queue);
   2979 		mvxpe_sc_unlock(sc);
   2980 		return EINVAL;
   2981 	}
   2982 	time_mvtclk =
   2983 	    (uint64_t)mvTclk * (uint64_t)time_us / (1000ULL * 1000ULL);
   2984 	rx->rx_queue_th_time = time_mvtclk;
   2985 	reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
   2986 	MVXPE_WRITE(sc, MVXPE_PRXITTH(arg->queue), reg);
   2987 	DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n", arg->queue, reg);
   2988 	mvxpe_rx_unlockq(sc, arg->queue);
   2989 	mvxpe_sc_unlock(sc);
   2990 
   2991 	return 0;
   2992 }
   2993 
   2994 
   2995 STATIC void
   2996 sysctl_mvxpe_init(struct mvxpe_softc *sc)
   2997 {
   2998 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2999 	const struct sysctlnode *node;
   3000 	int mvxpe_nodenum;
   3001 	int mvxpe_mibnum;
   3002 	int mvxpe_rxqueuenum;
   3003 	int mvxpe_txqueuenum;
   3004 	int q, i;
   3005 
   3006 	/* hw.mvxpe.mvxpe[unit] */
   3007 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3008 	    0, CTLTYPE_NODE, ifp->if_xname,
   3009 	    SYSCTL_DESCR("mvxpe per-controller controls"),
   3010 	    NULL, 0, NULL, 0,
   3011 	    CTL_HW, mvxpe_root_num, CTL_CREATE,
   3012 	    CTL_EOL) != 0) {
   3013 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3014 		return;
   3015 	}
   3016 	mvxpe_nodenum = node->sysctl_num;
   3017 
   3018 	/* hw.mvxpe.mvxpe[unit].mib */
   3019 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3020 	    0, CTLTYPE_NODE, "mib",
   3021 	    SYSCTL_DESCR("mvxpe per-controller MIB counters"),
   3022 	    NULL, 0, NULL, 0,
   3023 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
   3024 	    CTL_EOL) != 0) {
   3025 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3026 		return;
   3027 	}
   3028 	mvxpe_mibnum = node->sysctl_num;
   3029 
   3030 	/* hw.mvxpe.mvxpe[unit].rx */
   3031 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3032 	    0, CTLTYPE_NODE, "rx",
   3033 	    SYSCTL_DESCR("Rx Queues"),
   3034 	    NULL, 0, NULL, 0,
   3035 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
   3036 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3037 		return;
   3038 	}
   3039 	mvxpe_rxqueuenum = node->sysctl_num;
   3040 
   3041 	/* hw.mvxpe.mvxpe[unit].tx */
   3042 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3043 	    0, CTLTYPE_NODE, "tx",
   3044 	    SYSCTL_DESCR("Tx Queues"),
   3045 	    NULL, 0, NULL, 0,
   3046 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
   3047 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3048 		return;
   3049 	}
   3050 	mvxpe_txqueuenum = node->sysctl_num;
   3051 
   3052 #ifdef MVXPE_DEBUG
   3053 	/* hw.mvxpe.debug */
   3054 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3055 	    CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
   3056 	    SYSCTL_DESCR("mvgbe device driver debug control"),
   3057 	    NULL, 0, &mvxpe_debug, 0,
   3058 	    CTL_HW, mvxpe_root_num, CTL_CREATE, CTL_EOL) != 0) {
   3059 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3060 		return;
   3061 	}
   3062 #endif
   3063 	/*
   3064 	 * MIB access
   3065 	 */
   3066 	/* hw.mvxpe.mvxpe[unit].mib.<mibs> */
   3067 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
   3068 		const char *name = mvxpe_mib_list[i].sysctl_name;
   3069 		const char *desc = mvxpe_mib_list[i].desc;
   3070 		struct mvxpe_sysctl_mib *mib_arg = &sc->sc_sysctl_mib[i];
   3071 
   3072 		mib_arg->sc = sc;
   3073 		mib_arg->index = i;
   3074 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3075 		    CTLFLAG_READONLY, CTLTYPE_QUAD, name, desc,
   3076 		    sysctl_read_mib, 0, (void *)mib_arg, 0,
   3077 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_mibnum,
   3078 		    CTL_CREATE, CTL_EOL) != 0) {
   3079 			aprint_normal_dev(sc->sc_dev,
   3080 			    "couldn't create sysctl node\n");
   3081 			break;
   3082 		}
   3083 	}
   3084 
   3085 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
   3086 		struct mvxpe_sysctl_queue *rxarg = &sc->sc_sysctl_rx_queue[q];
   3087 		struct mvxpe_sysctl_queue *txarg = &sc->sc_sysctl_tx_queue[q];
   3088 #define MVXPE_SYSCTL_NAME(num) "queue" # num
   3089 		static const char *sysctl_queue_names[] = {
   3090 			MVXPE_SYSCTL_NAME(0), MVXPE_SYSCTL_NAME(1),
   3091 			MVXPE_SYSCTL_NAME(2), MVXPE_SYSCTL_NAME(3),
   3092 			MVXPE_SYSCTL_NAME(4), MVXPE_SYSCTL_NAME(5),
   3093 			MVXPE_SYSCTL_NAME(6), MVXPE_SYSCTL_NAME(7),
   3094 		};
   3095 #undef MVXPE_SYSCTL_NAME
   3096 #ifdef SYSCTL_INCLUDE_DESCR
   3097 #define MVXPE_SYSCTL_DESCR(num) "configuration parameters for queue " # num
   3098 		static const char *sysctl_queue_descrs[] = {
   3099 			MVXPE_SYSCTL_DESC(0), MVXPE_SYSCTL_DESC(1),
   3100 			MVXPE_SYSCTL_DESC(2), MVXPE_SYSCTL_DESC(3),
   3101 			MVXPE_SYSCTL_DESC(4), MVXPE_SYSCTL_DESC(5),
   3102 			MVXPE_SYSCTL_DESC(6), MVXPE_SYSCTL_DESC(7),
   3103 		};
   3104 #undef MVXPE_SYSCTL_DESCR
   3105 #endif /* SYSCTL_INCLUDE_DESCR */
   3106 		int mvxpe_curnum;
   3107 
   3108 		rxarg->sc = txarg->sc = sc;
   3109 		rxarg->queue = txarg->queue = q;
   3110 		rxarg->rxtx = MVXPE_SYSCTL_RX;
   3111 		txarg->rxtx = MVXPE_SYSCTL_TX;
   3112 
   3113 		/* hw.mvxpe.mvxpe[unit].rx.[queue] */
   3114 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3115 		    0, CTLTYPE_NODE,
   3116 		    sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descrs[q]),
   3117 		    NULL, 0, NULL, 0,
   3118 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
   3119 		    CTL_CREATE, CTL_EOL) != 0) {
   3120 			aprint_normal_dev(sc->sc_dev,
   3121 			    "couldn't create sysctl node\n");
   3122 			break;
   3123 		}
   3124 		mvxpe_curnum = node->sysctl_num;
   3125 
   3126 		/* hw.mvxpe.mvxpe[unit].rx.[queue].length */
   3127 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3128 		    CTLFLAG_READWRITE, CTLTYPE_INT, "length",
   3129 		    SYSCTL_DESCR("maximum length of the queue"),
   3130 		    sysctl_set_queue_length, 0, (void *)rxarg, 0,
   3131 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
   3132 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
   3133 			aprint_normal_dev(sc->sc_dev,
   3134 			    "couldn't create sysctl node\n");
   3135 			break;
   3136 		}
   3137 
   3138 		/* hw.mvxpe.mvxpe[unit].rx.[queue].threshold_timer_us */
   3139 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3140 		    CTLFLAG_READWRITE, CTLTYPE_INT, "threshold_timer_us",
   3141 		    SYSCTL_DESCR("interrupt coalescing threshold timer [us]"),
   3142 		    sysctl_set_queue_rxthtime, 0, (void *)rxarg, 0,
   3143 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
   3144 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
   3145 			aprint_normal_dev(sc->sc_dev,
   3146 			    "couldn't create sysctl node\n");
   3147 			break;
   3148 		}
   3149 
   3150 		/* hw.mvxpe.mvxpe[unit].tx.[queue] */
   3151 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3152 		    0, CTLTYPE_NODE,
   3153 		    sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descs[q]),
   3154 		    NULL, 0, NULL, 0,
   3155 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
   3156 		    CTL_CREATE, CTL_EOL) != 0) {
   3157 			aprint_normal_dev(sc->sc_dev,
   3158 			    "couldn't create sysctl node\n");
   3159 			break;
   3160 		}
   3161 		mvxpe_curnum = node->sysctl_num;
   3162 
   3163 		/* hw.mvxpe.mvxpe[unit].tx.length[queue] */
   3164 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3165 		    CTLFLAG_READWRITE, CTLTYPE_INT, "length",
   3166 		    SYSCTL_DESCR("maximum length of the queue"),
   3167 		    sysctl_set_queue_length, 0, (void *)txarg, 0,
   3168 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
   3169 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
   3170 			aprint_normal_dev(sc->sc_dev,
   3171 			    "couldn't create sysctl node\n");
   3172 			break;
   3173 		}
   3174 	}
   3175 
   3176 	/* hw.mvxpe.mvxpe[unit].clear_mib */
   3177 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
   3178 	    CTLFLAG_READWRITE, CTLTYPE_INT, "clear_mib",
   3179 	    SYSCTL_DESCR("mvgbe device driver debug control"),
   3180 	    sysctl_clear_mib, 0, (void *)sc, 0,
   3181 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
   3182 	    CTL_EOL) != 0) {
   3183 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
   3184 		return;
   3185 	}
   3186 
   3187 }
   3188 
   3189 /*
   3190  * MIB
   3191  */
   3192 STATIC void
   3193 mvxpe_clear_mib(struct mvxpe_softc *sc)
   3194 {
   3195 	int i;
   3196 
   3197 	KASSERT_SC_MTX(sc);
   3198 
   3199 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
   3200 		if (mvxpe_mib_list[i].reg64)
   3201 			MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum + 4));
   3202 		MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
   3203 		sc->sc_sysctl_mib[i].counter = 0;
   3204 	}
   3205 }
   3206 
   3207 STATIC void
   3208 mvxpe_update_mib(struct mvxpe_softc *sc)
   3209 {
   3210 	int i;
   3211 
   3212 	KASSERT_SC_MTX(sc);
   3213 
   3214 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
   3215 		uint32_t val_hi;
   3216 		uint32_t val_lo;
   3217 
   3218 		if (mvxpe_mib_list[i].reg64) {
   3219 			/* XXX: implement bus_space_read_8() */
   3220 			val_lo = MVXPE_READ_MIB(sc,
   3221 			    (mvxpe_mib_list[i].regnum + 4));
   3222 			val_hi = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
   3223 		}
   3224 		else {
   3225 			val_lo = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
   3226 			val_hi = 0;
   3227 		}
   3228 
   3229 		if ((val_lo | val_hi) == 0)
   3230 			continue;
   3231 
   3232 		sc->sc_sysctl_mib[i].counter +=
   3233 	       	    ((uint64_t)val_hi << 32) | (uint64_t)val_lo;
   3234 	}
   3235 }
   3236 
   3237 /*
   3238  * for Debug
   3239  */
   3240 STATIC void
   3241 mvxpe_dump_txdesc(struct mvxpe_tx_desc *desc, int idx)
   3242 {
   3243 #define DESC_PRINT(X)					\
   3244 	if (X)						\
   3245 		printf("txdesc[%d]." #X "=%#x\n", idx, X);
   3246 
   3247        DESC_PRINT(desc->command);
   3248        DESC_PRINT(desc->l4ichk);
   3249        DESC_PRINT(desc->bytecnt);
   3250        DESC_PRINT(desc->bufptr);
   3251        DESC_PRINT(desc->flags);
   3252 #undef DESC_PRINT
   3253 }
   3254 
   3255 STATIC void
   3256 mvxpe_dump_rxdesc(struct mvxpe_rx_desc *desc, int idx)
   3257 {
   3258 #define DESC_PRINT(X)					\
   3259 	if (X)						\
   3260 		printf("rxdesc[%d]." #X "=%#x\n", idx, X);
   3261 
   3262        DESC_PRINT(desc->status);
   3263        DESC_PRINT(desc->bytecnt);
   3264        DESC_PRINT(desc->bufptr);
   3265        DESC_PRINT(desc->l4chk);
   3266 #undef DESC_PRINT
   3267 }
   3268