Home | History | Annotate | Line # | Download | only in aic7xxx
      1  1.17   andvar /*	$NetBSD: aic79xx.seq,v 1.17 2022/06/27 22:41:29 andvar Exp $	*/
      2   1.4  thorpej 
      3   1.1     fvdl /*
      4   1.1     fvdl  * Adaptec U320 device driver firmware for Linux and FreeBSD.
      5   1.1     fvdl  *
      6   1.1     fvdl  * Copyright (c) 1994-2001 Justin T. Gibbs.
      7   1.1     fvdl  * Copyright (c) 2000-2002 Adaptec Inc.
      8   1.1     fvdl  * All rights reserved.
      9   1.1     fvdl  *
     10   1.1     fvdl  * Redistribution and use in source and binary forms, with or without
     11   1.1     fvdl  * modification, are permitted provided that the following conditions
     12   1.1     fvdl  * are met:
     13   1.1     fvdl  * 1. Redistributions of source code must retain the above copyright
     14   1.1     fvdl  *    notice, this list of conditions, and the following disclaimer,
     15   1.1     fvdl  *    without modification.
     16   1.1     fvdl  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     17   1.1     fvdl  *    substantially similar to the "NO WARRANTY" disclaimer below
     18   1.1     fvdl  *    ("Disclaimer") and any redistribution must be conditioned upon
     19   1.1     fvdl  *    including a substantially similar Disclaimer requirement for further
     20   1.1     fvdl  *    binary redistribution.
     21   1.1     fvdl  * 3. Neither the names of the above-listed copyright holders nor the names
     22   1.1     fvdl  *    of any contributors may be used to endorse or promote products derived
     23   1.1     fvdl  *    from this software without specific prior written permission.
     24   1.1     fvdl  *
     25   1.1     fvdl  * Alternatively, this software may be distributed under the terms of the
     26   1.1     fvdl  * GNU General Public License ("GPL") version 2 as published by the Free
     27   1.1     fvdl  * Software Foundation.
     28   1.1     fvdl  *
     29   1.1     fvdl  * NO WARRANTY
     30   1.1     fvdl  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     31   1.1     fvdl  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     32   1.1     fvdl  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
     33   1.1     fvdl  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     34   1.1     fvdl  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35   1.1     fvdl  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36   1.1     fvdl  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37   1.1     fvdl  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     38   1.1     fvdl  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     39   1.1     fvdl  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     40   1.1     fvdl  * POSSIBILITY OF SUCH DAMAGES.
     41   1.1     fvdl  *
     42   1.8  thorpej  * $FreeBSD: src/sys/dev/aic7xxx/aic79xx.seq,v 1.13 2003/06/28 04:44:10 gibbs Exp $
     43   1.1     fvdl  */
     44   1.1     fvdl 
     45   1.8  thorpej VERSION = "Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#96 $"
     46   1.1     fvdl PATCH_ARG_LIST = "struct ahd_softc *ahd"
     47   1.1     fvdl PREFIX = "ahd_"
     48   1.1     fvdl 
     49   1.1     fvdl #include <dev/microcode/aic7xxx/aic79xx.reg>
     50   1.1     fvdl #include <dev/scsipi/scsi_message.h>
     51   1.1     fvdl 
     52   1.1     fvdl restart:
     53   1.1     fvdl if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
     54   1.1     fvdl 	test	SEQINTCODE, 0xFF jz idle_loop;
     55   1.1     fvdl 	SET_SEQINTCODE(NO_SEQINT)
     56   1.1     fvdl }
     57   1.1     fvdl 
     58   1.1     fvdl idle_loop:
     59   1.1     fvdl 
     60   1.1     fvdl 	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
     61   1.1     fvdl 		/*
     62   1.1     fvdl 		 * Convert ERROR status into a sequencer
     63   1.1     fvdl 		 * interrupt to handle the case of an
     64   1.1     fvdl 		 * interrupt collision on the hardware
     65   1.1     fvdl 		 * setting of HWERR.
     66   1.1     fvdl 		 */
     67   1.1     fvdl 		test	ERROR, 0xFF jz no_error_set;
     68   1.1     fvdl 		SET_SEQINTCODE(SAW_HWERR)
     69   1.1     fvdl no_error_set:
     70   1.1     fvdl 	}
     71   1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
     72   1.1     fvdl 	test	SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
     73   1.1     fvdl 	test	SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus;
     74   1.1     fvdl 	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
     75   1.1     fvdl 	/*
     76   1.1     fvdl 	 * ENSELO is cleared by a SELDO, so we must test for SELDO
     77   1.1     fvdl 	 * one last time.
     78   1.1     fvdl 	 */
     79   1.1     fvdl BEGIN_CRITICAL;
     80   1.1     fvdl 	test	SSTAT0, SELDO jnz select_out;
     81   1.1     fvdl END_CRITICAL;
     82   1.1     fvdl 	call	start_selection;
     83   1.1     fvdl idle_loop_checkbus:
     84   1.1     fvdl BEGIN_CRITICAL;
     85   1.1     fvdl 	test	SSTAT0, SELDO jnz select_out;
     86   1.1     fvdl END_CRITICAL;
     87   1.1     fvdl 	test	SSTAT0, SELDI jnz select_in;
     88   1.1     fvdl 	test	SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
     89   1.1     fvdl 	test	SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
     90   1.1     fvdl 	call	unexpected_nonpkt_phase_find_ctxt;
     91   1.1     fvdl idle_loop_check_nonpackreq:
     92   1.1     fvdl 	test	SSTAT2, NONPACKREQ jz . + 2;
     93   1.1     fvdl 	call	unexpected_nonpkt_phase_find_ctxt;
     94   1.4  thorpej 	if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
     95   1.4  thorpej 		and	A, FIFO0FREE|FIFO1FREE, DFFSTAT;
     96   1.4  thorpej 		cmp	A, FIFO0FREE|FIFO1FREE jne . + 3;
     97   1.4  thorpej 		and	SBLKCTL, ~DIAGLEDEN|DIAGLEDON;
     98   1.4  thorpej 		jmp	. + 2;
     99   1.4  thorpej 		or	SBLKCTL, DIAGLEDEN|DIAGLEDON;
    100   1.4  thorpej 	}
    101   1.1     fvdl 	call	idle_loop_gsfifo_in_scsi_mode;
    102   1.1     fvdl 	call	idle_loop_service_fifos;
    103   1.1     fvdl 	call	idle_loop_cchan;
    104   1.1     fvdl 	jmp	idle_loop;
    105   1.1     fvdl 
    106   1.1     fvdl BEGIN_CRITICAL;
    107   1.1     fvdl idle_loop_gsfifo:
    108   1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
    109   1.1     fvdl idle_loop_gsfifo_in_scsi_mode:
    110   1.1     fvdl 	test	LQISTAT2, LQIGSAVAIL jz return;
    111   1.1     fvdl 	/*
    112   1.1     fvdl 	 * We have received good status for this transaction.  There may
    113   1.4  thorpej 	 * still be data in our FIFOs draining to the host.  Complete
    114   1.4  thorpej 	 * the SCB only if all data has transferred to the host.
    115   1.1     fvdl 	 */
    116   1.1     fvdl good_status_IU_done:
    117   1.1     fvdl 	bmov	SCBPTR, GSFIFO, 2;
    118   1.1     fvdl 	clr	SCB_SCSI_STATUS;
    119   1.1     fvdl 	/*
    120   1.1     fvdl 	 * If a command completed before an attempted task management
    121   1.1     fvdl 	 * function completed, notify the host after disabling any
    122   1.1     fvdl 	 * pending select-outs.
    123   1.1     fvdl 	 */
    124   1.1     fvdl 	test	SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
    125   1.1     fvdl 	test	SSTAT0, SELDO|SELINGO jnz . + 2;
    126   1.1     fvdl 	and	SCSISEQ0, ~ENSELO;
    127   1.1     fvdl 	SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
    128   1.1     fvdl gsfifo_complete_normally:
    129   1.1     fvdl 	or	SCB_CONTROL, STATUS_RCVD;
    130   1.1     fvdl 
    131   1.1     fvdl 	/*
    132   1.1     fvdl 	 * Since this status did not consume a FIFO, we have to
    133  1.16   andvar 	 * be a bit more diligent in how we check for FIFOs pertaining
    134   1.1     fvdl 	 * to this transaction.  There are two states that a FIFO still
    135   1.1     fvdl 	 * transferring data may be in.
    136   1.1     fvdl 	 *
    137   1.1     fvdl 	 * 1) Configured and draining to the host, with a FIFO handler.
    138   1.1     fvdl 	 * 2) Pending cfg4data, fifo not empty.
    139   1.1     fvdl 	 *
    140   1.4  thorpej 	 * Case 1 can be detected by noticing a non-zero FIFO active
    141   1.4  thorpej 	 * count in the SCB.  In this case, we allow the routine servicing
    142   1.4  thorpej 	 * the FIFO to complete the SCB.
    143   1.9    perry 	 *
    144   1.1     fvdl 	 * Case 2 implies either a pending or yet to occur save data
    145   1.1     fvdl 	 * pointers for this same context in the other FIFO.  So, if
    146   1.1     fvdl 	 * we detect case 1, we will properly defer the post of the SCB
    147   1.1     fvdl 	 * and achieve the desired result.  The pending cfg4data will
    148   1.1     fvdl 	 * notice that status has been received and complete the SCB.
    149   1.1     fvdl 	 */
    150   1.4  thorpej 	test	SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode;
    151   1.1     fvdl 	call	complete;
    152   1.1     fvdl END_CRITICAL;
    153   1.1     fvdl 	jmp	idle_loop_gsfifo_in_scsi_mode;
    154   1.1     fvdl 
    155   1.1     fvdl idle_loop_service_fifos:
    156   1.1     fvdl 	SET_MODE(M_DFF0, M_DFF0)
    157   1.1     fvdl 	test	LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
    158   1.1     fvdl 	call	longjmp;
    159   1.1     fvdl idle_loop_next_fifo:
    160   1.1     fvdl 	SET_MODE(M_DFF1, M_DFF1)
    161   1.1     fvdl 	test	LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
    162   1.4  thorpej return:
    163   1.1     fvdl 	ret;
    164   1.1     fvdl 
    165   1.1     fvdl idle_loop_cchan:
    166   1.1     fvdl 	SET_MODE(M_CCHAN, M_CCHAN)
    167   1.1     fvdl 	test	QOFF_CTLSTA, HS_MAILBOX_ACT jz	hs_mailbox_empty;
    168   1.1     fvdl 	mov	LOCAL_HS_MAILBOX, HS_MAILBOX;
    169   1.1     fvdl 	or	QOFF_CTLSTA, HS_MAILBOX_ACT;
    170   1.1     fvdl hs_mailbox_empty:
    171   1.1     fvdl BEGIN_CRITICAL;
    172   1.1     fvdl 	test	CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
    173   1.1     fvdl 	test	CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
    174   1.1     fvdl 	test	CCSCBCTL, CCSCBDONE jz return;
    175   1.1     fvdl END_CRITICAL;
    176   1.1     fvdl 	/* FALLTHROUGH */
    177   1.1     fvdl scbdma_tohost_done:
    178   1.1     fvdl 	test	CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
    179   1.1     fvdl 	/*
    180  1.14   andvar 	 * An SCB has been successfully uploaded to the host.
    181   1.4  thorpej 	 * If the SCB was uploaded for some reason other than
    182   1.4  thorpej 	 * bad SCSI status (currently only for underruns), we
    183   1.4  thorpej 	 * queue the SCB for normal completion.  Otherwise, we
    184   1.4  thorpej 	 * wait until any select-out activity has halted, and
    185   1.4  thorpej 	 * then notify the host so that the transaction can be
    186   1.4  thorpej 	 * dealt with.
    187   1.1     fvdl 	 */
    188   1.4  thorpej 	test	SCB_SCSI_STATUS, 0xff jnz scbdma_notify_host;
    189   1.4  thorpej 	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
    190   1.4  thorpej 	bmov	COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
    191   1.4  thorpej 	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
    192   1.4  thorpej 	bmov	COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
    193   1.4  thorpej scbdma_notify_host:
    194   1.4  thorpej 	SET_MODE(M_SCSI, M_SCSI)
    195   1.4  thorpej 	test	SCSISEQ0, ENSELO jnz return;
    196   1.4  thorpej 	test	SSTAT0, (SELDO|SELINGO) jnz return;
    197   1.4  thorpej 	SET_MODE(M_CCHAN, M_CCHAN)
    198   1.4  thorpej 	/*
    199   1.4  thorpej 	 * Remove SCB and notify host.
    200   1.4  thorpej 	 */
    201   1.4  thorpej 	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
    202   1.4  thorpej 	bmov	COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
    203   1.4  thorpej 	SET_SEQINTCODE(BAD_SCB_STATUS)
    204   1.4  thorpej 	ret;
    205   1.1     fvdl fill_qoutfifo_dmadone:
    206   1.1     fvdl 	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
    207   1.1     fvdl 	call	qoutfifo_updated;
    208   1.1     fvdl 	mvi	COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
    209   1.1     fvdl 	bmov	QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
    210   1.1     fvdl 	test	QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
    211   1.1     fvdl 	bmov	QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
    212   1.1     fvdl 	xor	QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
    213   1.1     fvdl 
    214   1.1     fvdl qoutfifo_updated:
    215   1.1     fvdl 	/*
    216   1.2      wiz 	 * If there are more commands waiting to be DMA'ed
    217   1.3      wiz 	 * to the host, always coalesce.  Otherwise honor the
    218   1.1     fvdl 	 * host's wishes.
    219   1.1     fvdl 	 */
    220   1.3      wiz 	cmp	COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
    221   1.3      wiz 	cmp	COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
    222   1.3      wiz 	test	LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt;
    223   1.1     fvdl 
    224   1.1     fvdl 	/*
    225   1.1     fvdl 	 * If we have relatively few commands outstanding, don't
    226   1.1     fvdl 	 * bother waiting for another command to complete.
    227   1.1     fvdl 	 */
    228   1.3      wiz 	test	CMDS_PENDING[1], 0xFF jnz coalesce_by_count;
    229   1.1     fvdl 	/* Add -1 so that jnc means <= not just < */
    230   1.3      wiz 	add	A, -1, INT_COALESCING_MINCMDS;
    231   1.1     fvdl 	add	NONE, A, CMDS_PENDING;
    232   1.1     fvdl 	jnc	issue_cmdcmplt;
    233   1.9    perry 
    234   1.1     fvdl 	/*
    235   1.3      wiz 	 * If coalescing, only coalesce up to the limit
    236   1.1     fvdl 	 * provided by the host driver.
    237   1.1     fvdl 	 */
    238   1.3      wiz coalesce_by_count:
    239   1.3      wiz 	mov	A, INT_COALESCING_MAXCMDS;
    240   1.3      wiz 	add	NONE, A, INT_COALESCING_CMDCOUNT;
    241   1.1     fvdl 	jc	issue_cmdcmplt;
    242   1.1     fvdl 	/*
    243   1.1     fvdl 	 * If the timer is not currently active,
    244   1.1     fvdl 	 * fire it up.
    245   1.1     fvdl 	 */
    246   1.1     fvdl 	test	INTCTL, SWTMINTMASK jz return;
    247   1.3      wiz 	bmov	SWTIMER, INT_COALESCING_TIMER, 2;
    248   1.1     fvdl 	mvi	CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
    249   1.1     fvdl 	or	INTCTL, SWTMINTEN|SWTIMER_START;
    250   1.1     fvdl 	and	INTCTL, ~SWTMINTMASK ret;
    251   1.1     fvdl 
    252   1.1     fvdl issue_cmdcmplt:
    253   1.1     fvdl 	mvi	INTSTAT, CMDCMPLT;
    254   1.3      wiz 	clr	INT_COALESCING_CMDCOUNT;
    255   1.1     fvdl 	or	INTCTL, SWTMINTMASK ret;
    256   1.1     fvdl 
    257   1.1     fvdl BEGIN_CRITICAL;
    258   1.1     fvdl fetch_new_scb_inprog:
    259   1.1     fvdl 	test	CCSCBCTL, ARRDONE jz return;
    260   1.1     fvdl fetch_new_scb_done:
    261   1.1     fvdl 	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
    262   1.1     fvdl 	bmov	REG0, SCBPTR, 2;
    263   1.1     fvdl 	clr	A;
    264   1.1     fvdl 	add	CMDS_PENDING, 1;
    265   1.1     fvdl 	adc	CMDS_PENDING[1], A;
    266   1.5  thorpej 	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
    267   1.5  thorpej 		/*
    268   1.5  thorpej 		 * "Short Luns" are not placed into outgoing LQ
    269   1.5  thorpej 		 * packets in the correct byte order.  Use a full
    270   1.5  thorpej 		 * sized lun field instead and fill it with the
    271   1.5  thorpej 		 * one byte of lun information we support.
    272   1.5  thorpej 		 */
    273   1.5  thorpej 		mov	SCB_PKT_LUN[6], SCB_LUN;
    274   1.5  thorpej 	}
    275   1.4  thorpej 	/*
    276   1.4  thorpej 	 * The FIFO use count field is shared with the
    277   1.4  thorpej 	 * tag set by the host so that our SCB dma engine
    278   1.4  thorpej 	 * knows the correct location to store the SCB.
    279   1.4  thorpej 	 * Set it to zero before processing the SCB.
    280   1.4  thorpej 	 */
    281   1.8  thorpej 	clr	SCB_FIFO_USE_COUNT;
    282   1.1     fvdl 	/* Update the next SCB address to download. */
    283   1.1     fvdl 	bmov	NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
    284   1.1     fvdl 	mvi	SCB_NEXT[1], SCB_LIST_NULL;
    285   1.1     fvdl 	mvi	SCB_NEXT2[1], SCB_LIST_NULL;
    286   1.1     fvdl 	/* Increment our position in the QINFIFO. */
    287   1.1     fvdl 	mov	NONE, SNSCB_QOFF;
    288   1.1     fvdl 	/*
    289   1.1     fvdl 	 * SCBs that want to send messages are always
    290   1.1     fvdl 	 * queued independently.  This ensures that they
    291   1.1     fvdl 	 * are at the head of the SCB list to select out
    292   1.1     fvdl 	 * to a target and we will see the MK_MESSAGE flag.
    293   1.1     fvdl 	 */
    294   1.1     fvdl 	test	SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb;
    295   1.1     fvdl 	shr	SINDEX, 3, SCB_SCSIID;
    296   1.1     fvdl 	and	SINDEX, ~0x1;
    297   1.1     fvdl 	mvi	SINDEX[1], (WAITING_SCB_TAILS >> 8);
    298   1.1     fvdl 	bmov	DINDEX, SINDEX, 2;
    299   1.1     fvdl 	bmov	SCBPTR, SINDIR, 2;
    300   1.1     fvdl 	bmov	DINDIR, REG0, 2;
    301   1.1     fvdl 	cmp	SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
    302   1.1     fvdl 	bmov	SCB_NEXT, REG0, 2 ret;
    303   1.1     fvdl first_new_target_scb:
    304   1.1     fvdl 	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
    305   1.1     fvdl 	bmov	SCBPTR, WAITING_TID_TAIL, 2;
    306   1.1     fvdl 	bmov	SCB_NEXT2, REG0, 2;
    307   1.1     fvdl 	bmov	WAITING_TID_TAIL, REG0, 2 ret;
    308   1.1     fvdl first_new_scb:
    309   1.1     fvdl 	bmov	WAITING_TID_HEAD, REG0, 2;
    310   1.1     fvdl 	bmov	WAITING_TID_TAIL, REG0, 2 ret;
    311   1.1     fvdl END_CRITICAL;
    312   1.1     fvdl 
    313   1.1     fvdl scbdma_idle:
    314   1.1     fvdl 	/*
    315   1.1     fvdl 	 * Give precedence to downloading new SCBs to execute
    316   1.1     fvdl 	 * unless select-outs are currently frozen.
    317   1.1     fvdl 	 */
    318   1.1     fvdl 	test	SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2;
    319   1.1     fvdl BEGIN_CRITICAL;
    320   1.1     fvdl 	test	QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
    321   1.1     fvdl 	cmp	COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
    322   1.1     fvdl 	cmp	COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
    323   1.1     fvdl 	/* FALLTHROUGH */
    324   1.1     fvdl fill_qoutfifo:
    325   1.1     fvdl 	/*
    326   1.2      wiz 	 * Keep track of the SCBs we are DMA'ing just
    327   1.1     fvdl 	 * in case the DMA fails or is aborted.
    328   1.1     fvdl 	 */
    329   1.1     fvdl 	mov	A, QOUTFIFO_ENTRY_VALID_TAG;
    330   1.1     fvdl 	bmov	COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
    331   1.1     fvdl 	mvi	CCSCBCTL, CCSCBRESET;
    332   1.1     fvdl 	bmov	SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
    333   1.1     fvdl 	bmov	SCBPTR, COMPLETE_SCB_HEAD, 2;
    334   1.1     fvdl fill_qoutfifo_loop:
    335   1.1     fvdl 	mov	CCSCBRAM, SCBPTR;
    336   1.1     fvdl 	or	CCSCBRAM, A, SCBPTR[1];
    337   1.1     fvdl 	mov	NONE, SDSCB_QOFF;
    338   1.3      wiz 	inc	INT_COALESCING_CMDCOUNT;
    339   1.1     fvdl 	add	CMDS_PENDING, -1;
    340   1.1     fvdl 	adc	CMDS_PENDING[1], -1;
    341   1.1     fvdl 	cmp	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
    342   1.1     fvdl 	cmp	CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
    343   1.1     fvdl 	test	QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
    344   1.1     fvdl 	bmov	SCBPTR, SCB_NEXT_COMPLETE, 2;
    345   1.1     fvdl 	jmp	fill_qoutfifo_loop;
    346   1.1     fvdl fill_qoutfifo_done:
    347   1.1     fvdl 	mov	SCBHCNT, CCSCBADDR;
    348   1.1     fvdl 	mvi	CCSCBCTL, CCSCBEN|CCSCBRESET;
    349   1.1     fvdl 	bmov	COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
    350   1.1     fvdl 	mvi	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
    351   1.1     fvdl 
    352   1.1     fvdl fetch_new_scb:
    353   1.1     fvdl 	bmov	SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
    354   1.1     fvdl 	mvi	CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
    355   1.1     fvdl dma_complete_scb:
    356   1.1     fvdl 	bmov	SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
    357   1.1     fvdl 	bmov	SCBHADDR, SCB_BUSADDR, 4;
    358   1.4  thorpej 	mvi	CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb;
    359   1.1     fvdl END_CRITICAL;
    360   1.1     fvdl 
    361   1.1     fvdl /*
    362   1.1     fvdl  * Either post or fetch an SCB from host memory.  The caller
    363   1.1     fvdl  * is responsible for polling for transfer completion.
    364   1.1     fvdl  *
    365  1.16   andvar  * Prerequisites: Mode == M_CCHAN
    366   1.1     fvdl  *		 SINDEX contains CCSCBCTL flags
    367   1.1     fvdl  *		 SCBHADDR set to Host SCB address
    368   1.1     fvdl  *		 SCBPTR set to SCB src location on "push" operations
    369   1.1     fvdl  */
    370   1.1     fvdl SET_SRC_MODE	M_CCHAN;
    371   1.1     fvdl SET_DST_MODE	M_CCHAN;
    372   1.1     fvdl dma_scb:
    373   1.1     fvdl 	mvi	SCBHCNT, SCB_TRANSFER_SIZE;
    374   1.1     fvdl 	mov	CCSCBCTL, SINDEX ret;
    375   1.1     fvdl 
    376   1.1     fvdl BEGIN_CRITICAL;
    377   1.1     fvdl setjmp:
    378   1.1     fvdl 	bmov	LONGJMP_ADDR, STACK, 2 ret;
    379   1.1     fvdl setjmp_inline:
    380   1.1     fvdl 	bmov	LONGJMP_ADDR, STACK, 2;
    381   1.1     fvdl longjmp:
    382   1.1     fvdl 	bmov	STACK, LONGJMP_ADDR, 2 ret;
    383   1.1     fvdl END_CRITICAL;
    384   1.1     fvdl 
    385   1.1     fvdl /*************************** Chip Bug Work Arounds ****************************/
    386   1.1     fvdl /*
    387   1.1     fvdl  * Must disable interrupts when setting the mode pointer
    388   1.1     fvdl  * register as an interrupt occurring mid update will
    389   1.1     fvdl  * fail to store the new mode value for restoration on
    390   1.1     fvdl  * an iret.
    391   1.1     fvdl  */
    392   1.1     fvdl if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
    393   1.1     fvdl set_mode_work_around:
    394   1.1     fvdl 	mvi	SEQINTCTL, INTVEC1DSL;
    395   1.1     fvdl 	mov	MODE_PTR, SINDEX;
    396   1.1     fvdl 	clr	SEQINTCTL ret;
    397   1.1     fvdl 
    398   1.1     fvdl toggle_dff_mode_work_around:
    399   1.1     fvdl 	mvi	SEQINTCTL, INTVEC1DSL;
    400   1.1     fvdl 	xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
    401   1.1     fvdl 	clr	SEQINTCTL ret;
    402   1.1     fvdl }
    403   1.1     fvdl 
    404   1.1     fvdl 
    405   1.1     fvdl if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
    406   1.1     fvdl set_seqint_work_around:
    407   1.1     fvdl 	mov	SEQINTCODE, SINDEX;
    408   1.1     fvdl 	mvi	SEQINTCODE, NO_SEQINT ret;
    409   1.1     fvdl }
    410   1.1     fvdl 
    411   1.1     fvdl /************************ Packetized LongJmp Routines *************************/
    412   1.1     fvdl SET_SRC_MODE	M_SCSI;
    413   1.1     fvdl SET_DST_MODE	M_SCSI;
    414   1.1     fvdl start_selection:
    415   1.1     fvdl BEGIN_CRITICAL;
    416   1.1     fvdl 	if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
    417   1.1     fvdl 		/*
    418   1.1     fvdl 		 * Razor #494
    419   1.1     fvdl 		 * Rev A hardware fails to update LAST/CURR/NEXTSCB
    420   1.1     fvdl 		 * correctly after a packetized selection in several
    421   1.1     fvdl 		 * situations:
    422   1.1     fvdl 		 *
    423   1.1     fvdl 		 * 1) If only one command existed in the queue, the
    424   1.1     fvdl 		 *    LAST/CURR/NEXTSCB are unchanged.
    425   1.1     fvdl 		 *
    426   1.1     fvdl 		 * 2) In a non QAS, protocol allowed phase change,
    427   1.1     fvdl 		 *    the queue is shifted 1 too far.  LASTSCB is
    428   1.1     fvdl 		 *    the last SCB that was correctly processed.
    429   1.9    perry 		 *
    430   1.1     fvdl 		 * 3) In the QAS case, if the full list of commands
    431   1.1     fvdl 		 *    was successfully sent, NEXTSCB is NULL and neither
    432   1.1     fvdl 		 *    CURRSCB nor LASTSCB can be trusted.  We must
    433   1.1     fvdl 		 *    manually walk the list counting MAXCMDCNT elements
    434   1.1     fvdl 		 *    to find the last SCB that was sent correctly.
    435   1.1     fvdl 		 *
    436   1.1     fvdl 		 * To simplify the workaround for this bug in SELDO
    437   1.1     fvdl 		 * handling, we initialize LASTSCB prior to enabling
    438   1.1     fvdl 		 * selection so we can rely on it even for case #1 above.
    439   1.1     fvdl 		 */
    440   1.1     fvdl 		bmov	LASTSCB, WAITING_TID_HEAD, 2;
    441   1.1     fvdl 	}
    442   1.1     fvdl 	bmov	CURRSCB, WAITING_TID_HEAD, 2;
    443   1.1     fvdl 	bmov	SCBPTR, WAITING_TID_HEAD, 2;
    444   1.1     fvdl 	shr	SELOID, 4, SCB_SCSIID;
    445   1.1     fvdl 	/*
    446   1.1     fvdl 	 * If we want to send a message to the device, ensure
    447   1.1     fvdl 	 * we are selecting with atn irregardless of our packetized
    448   1.1     fvdl 	 * agreement.  Since SPI4 only allows target reset or PPR
    449   1.1     fvdl 	 * messages if this is a packetized connection, the change
    450   1.1     fvdl 	 * to our negotiation table entry for this selection will
    451   1.1     fvdl 	 * be cleared when the message is acted on.
    452   1.1     fvdl 	 */
    453   1.1     fvdl 	test	SCB_CONTROL, MK_MESSAGE jz . + 3;
    454   1.1     fvdl 	mov	NEGOADDR, SELOID;
    455   1.1     fvdl 	or	NEGCONOPTS, ENAUTOATNO;
    456   1.1     fvdl 	or	SCSISEQ0, ENSELO ret;
    457   1.1     fvdl END_CRITICAL;
    458   1.1     fvdl 
    459   1.1     fvdl /*
    460   1.1     fvdl  * Allocate a FIFO for a non-packetized transaction.
    461   1.1     fvdl  * In RevA hardware, both FIFOs must be free before we
    462   1.1     fvdl  * can allocate a FIFO for a non-packetized transaction.
    463   1.1     fvdl  */
    464   1.1     fvdl allocate_fifo_loop:
    465   1.1     fvdl 	/*
    466   1.1     fvdl 	 * Do whatever work is required to free a FIFO.
    467   1.1     fvdl 	 */
    468   1.1     fvdl 	call	idle_loop_service_fifos;
    469   1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
    470   1.1     fvdl allocate_fifo:
    471   1.1     fvdl 	if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
    472   1.1     fvdl 		and	A, FIFO0FREE|FIFO1FREE, DFFSTAT;
    473   1.1     fvdl 		cmp	A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
    474   1.1     fvdl 	} else {
    475   1.1     fvdl 		test	DFFSTAT, FIFO1FREE jnz allocate_fifo1;
    476   1.1     fvdl 		test	DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
    477   1.1     fvdl 		mvi	DFFSTAT, B_CURRFIFO_0;
    478   1.1     fvdl 		SET_MODE(M_DFF0, M_DFF0)
    479   1.1     fvdl 		bmov	SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
    480   1.1     fvdl 	}
    481   1.1     fvdl SET_SRC_MODE	M_SCSI;
    482   1.1     fvdl SET_DST_MODE	M_SCSI;
    483   1.1     fvdl allocate_fifo1:
    484   1.1     fvdl 	mvi	DFFSTAT, CURRFIFO_1;
    485   1.1     fvdl 	SET_MODE(M_DFF1, M_DFF1)
    486   1.1     fvdl 	bmov	SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
    487   1.1     fvdl 
    488   1.1     fvdl /*
    489   1.1     fvdl  * We have been reselected as an initiator
    490   1.1     fvdl  * or selected as a target.
    491   1.1     fvdl  */
    492   1.1     fvdl SET_SRC_MODE	M_SCSI;
    493   1.1     fvdl SET_DST_MODE	M_SCSI;
    494   1.1     fvdl select_in:
    495   1.1     fvdl 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
    496   1.1     fvdl 		/*
    497   1.1     fvdl 		 * This exposes a window whereby a
    498   1.1     fvdl 		 * busfree just after a selection will
    499   1.1     fvdl 		 * be missed, but there is no other safe
    500   1.1     fvdl 		 * way to enable busfree detection if
    501   1.1     fvdl 		 * the busfreerev function is broken.
    502   1.1     fvdl 		 */
    503   1.1     fvdl 		mvi	CLRSINT1,CLRBUSFREE;
    504   1.1     fvdl 		or	SIMODE1, ENBUSFREE;
    505   1.1     fvdl 	}
    506   1.1     fvdl 	or	SXFRCTL0, SPIOEN;
    507   1.1     fvdl 	and	SAVED_SCSIID, SELID_MASK, SELID;
    508   1.1     fvdl 	and	A, OID, IOWNID;
    509   1.1     fvdl 	or	SAVED_SCSIID, A;
    510   1.1     fvdl 	mvi	CLRSINT0, CLRSELDI;
    511   1.1     fvdl 	jmp	ITloop;
    512   1.1     fvdl 
    513   1.1     fvdl /*
    514   1.1     fvdl  * We have successfully selected out.
    515   1.1     fvdl  *
    516   1.1     fvdl  * Clear SELDO.
    517   1.1     fvdl  * Dequeue all SCBs sent from the waiting queue
    518   1.1     fvdl  * Requeue all SCBs *not* sent to the tail of the waiting queue
    519   1.1     fvdl  * Take Razor #494 into account for above.
    520   1.1     fvdl  *
    521   1.1     fvdl  * In Packetized Mode:
    522   1.1     fvdl  *	Return to the idle loop.  Our interrupt handler will take
    523   1.1     fvdl  *	care of any incoming L_Qs.
    524   1.1     fvdl  *
    525   1.1     fvdl  * In Non-Packetize Mode:
    526   1.1     fvdl  *	Continue to our normal state machine.
    527   1.1     fvdl  */
    528   1.1     fvdl SET_SRC_MODE	M_SCSI;
    529   1.1     fvdl SET_DST_MODE	M_SCSI;
    530   1.1     fvdl select_out:
    531   1.1     fvdl BEGIN_CRITICAL;
    532   1.1     fvdl 	/* Clear out all SCBs that have been successfully sent. */
    533   1.1     fvdl 	if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
    534   1.1     fvdl 		/*
    535   1.1     fvdl 		 * For packetized, the LQO manager clears ENSELO on
    536   1.1     fvdl 		 * the assertion of SELDO.  If we are non-packetized,
    537   1.1     fvdl 		 * LASTSCB and CURRSCB are accurate.
    538   1.1     fvdl 		 */
    539   1.1     fvdl 		test	SCSISEQ0, ENSELO jnz use_lastscb;
    540   1.1     fvdl 
    541   1.1     fvdl 		/*
    542   1.1     fvdl 		 * The update is correct for LQOSTAT1 errors.  All
    543   1.1     fvdl 		 * but LQOBUSFREE are handled by kernel interrupts.
    544   1.1     fvdl 		 * If we see LQOBUSFREE, return to the idle loop.
    545   1.1     fvdl 		 * Once we are out of the select_out critical section,
    546   1.1     fvdl 		 * the kernel will cleanup the LQOBUSFREE and we will
    547   1.1     fvdl 		 * eventually restart the selection if appropriate.
    548   1.1     fvdl 		 */
    549   1.1     fvdl 		test	LQOSTAT1, LQOBUSFREE jnz idle_loop;
    550   1.1     fvdl 
    551   1.1     fvdl 		/*
    552  1.16   andvar 		 * On a phase change outside of packet boundaries,
    553   1.1     fvdl 		 * LASTSCB points to the currently active SCB context
    554   1.1     fvdl 		 * on the bus.
    555   1.1     fvdl 		 */
    556   1.1     fvdl 		test	LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
    557   1.1     fvdl 
    558   1.1     fvdl 		/*
    559   1.1     fvdl 		 * If the hardware has traversed the whole list, NEXTSCB
    560   1.1     fvdl 		 * will be NULL, CURRSCB and LASTSCB cannot be trusted,
    561   1.1     fvdl 		 * but MAXCMDCNT is accurate.  If we stop part way through
    562   1.1     fvdl 		 * the list or only had one command to issue, NEXTSCB[1] is
    563   1.1     fvdl 		 * not NULL and LASTSCB is the last command to go out.
    564   1.1     fvdl 		 */
    565   1.1     fvdl 		cmp	NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
    566   1.1     fvdl 
    567   1.1     fvdl 		/*
    568   1.1     fvdl 		 * Brute force walk.
    569   1.1     fvdl 		 */
    570   1.1     fvdl 		bmov	SCBPTR, WAITING_TID_HEAD, 2;
    571   1.1     fvdl 		mvi	SEQINTCTL, INTVEC1DSL;
    572   1.1     fvdl 		mvi	MODE_PTR, MK_MODE(M_CFG, M_CFG);
    573   1.1     fvdl 		mov	A, MAXCMDCNT;
    574   1.1     fvdl 		mvi	MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
    575   1.1     fvdl 		clr	SEQINTCTL;
    576   1.1     fvdl find_lastscb_loop:
    577   1.1     fvdl 		dec	A;
    578   1.1     fvdl 		test	A, 0xFF jz found_last_sent_scb;
    579   1.1     fvdl 		bmov	SCBPTR, SCB_NEXT, 2;
    580   1.1     fvdl 		jmp	find_lastscb_loop;
    581   1.1     fvdl use_lastscb:
    582   1.1     fvdl 		bmov	SCBPTR, LASTSCB, 2;
    583   1.1     fvdl found_last_sent_scb:
    584   1.1     fvdl 		bmov	CURRSCB, SCBPTR, 2;
    585   1.1     fvdl curscb_ww_done:
    586   1.1     fvdl 	} else {
    587   1.1     fvdl 		bmov	SCBPTR, CURRSCB, 2;
    588   1.1     fvdl 	}
    589   1.1     fvdl 
    590   1.1     fvdl 	/*
    591   1.1     fvdl 	 * Requeue any SCBs not sent, to the tail of the waiting Q.
    592   1.1     fvdl 	 */
    593   1.1     fvdl 	cmp	SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done;
    594   1.1     fvdl 
    595   1.1     fvdl 	/*
    596   1.1     fvdl 	 * We know that neither the per-TID list nor the list of
    597   1.1     fvdl 	 * TIDs is empty.  Use this knowledge to our advantage.
    598   1.1     fvdl 	 */
    599   1.1     fvdl 	bmov	REG0, SCB_NEXT, 2;
    600   1.1     fvdl 	bmov	SCBPTR, WAITING_TID_TAIL, 2;
    601   1.1     fvdl 	bmov	SCB_NEXT2, REG0, 2;
    602   1.1     fvdl 	bmov	WAITING_TID_TAIL, REG0, 2;
    603   1.1     fvdl 	jmp	select_out_inc_tid_q;
    604   1.1     fvdl 
    605   1.1     fvdl select_out_list_done:
    606   1.1     fvdl 	/*
    607   1.1     fvdl 	 * The whole list made it.  Just clear our TID's tail pointer
    608   1.1     fvdl 	 * unless we were queued independently due to our need to
    609   1.1     fvdl 	 * send a message.
    610   1.1     fvdl 	 */
    611   1.1     fvdl 	test	SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q;
    612   1.1     fvdl 	shr	DINDEX, 3, SCB_SCSIID;
    613   1.1     fvdl 	or	DINDEX, 1;	/* Want only the second byte */
    614   1.1     fvdl 	mvi	DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
    615   1.1     fvdl 	mvi	DINDIR, SCB_LIST_NULL;
    616   1.1     fvdl select_out_inc_tid_q:
    617   1.1     fvdl 	bmov	SCBPTR, WAITING_TID_HEAD, 2;
    618   1.1     fvdl 	bmov	WAITING_TID_HEAD, SCB_NEXT2, 2;
    619   1.1     fvdl 	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
    620   1.1     fvdl 	mvi	WAITING_TID_TAIL[1], SCB_LIST_NULL;
    621   1.1     fvdl 	bmov	SCBPTR, CURRSCB, 2;
    622   1.1     fvdl 	mvi	CLRSINT0, CLRSELDO;
    623   1.1     fvdl 	test	LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase;
    624   1.1     fvdl 	test	LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase;
    625   1.1     fvdl 
    626   1.1     fvdl 	/*
    627   1.1     fvdl 	 * If this is a packetized connection, return to our
    628   1.1     fvdl 	 * idle_loop and let our interrupt handler deal with
    629   1.1     fvdl 	 * any connection setup/teardown issues.  The only
    630   1.1     fvdl 	 * exceptions are the case of MK_MESSAGE and task management
    631   1.1     fvdl 	 * SCBs.
    632   1.1     fvdl 	 */
    633   1.1     fvdl 	if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
    634   1.1     fvdl 		/*
    635   1.1     fvdl 		 * In the A, the LQO manager transitions to LQOSTOP0 even if
    636   1.1     fvdl 		 * we have selected out with ATN asserted and the target
    637   1.1     fvdl 		 * REQs in a non-packet phase.
    638   1.1     fvdl 		 */
    639   1.1     fvdl 		test 	SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
    640   1.1     fvdl 		test	SCSISIGO, ATNO jnz select_out_non_packetized;
    641   1.1     fvdl select_out_no_message:
    642   1.1     fvdl 	}
    643   1.1     fvdl 	test	LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
    644   1.1     fvdl 	test	SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
    645   1.1     fvdl 	SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
    646   1.1     fvdl 	jmp	idle_loop;
    647   1.1     fvdl 
    648   1.1     fvdl select_out_non_packetized:
    649   1.1     fvdl 	/* Non packetized request. */
    650   1.1     fvdl 	and     SCSISEQ0, ~ENSELO;
    651   1.1     fvdl 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
    652   1.1     fvdl 		/*
    653   1.1     fvdl 		 * This exposes a window whereby a
    654   1.1     fvdl 		 * busfree just after a selection will
    655   1.1     fvdl 		 * be missed, but there is no other safe
    656   1.1     fvdl 		 * way to enable busfree detection if
    657   1.1     fvdl 		 * the busfreerev function is broken.
    658   1.1     fvdl 		 */
    659   1.1     fvdl 		mvi	CLRSINT1,CLRBUSFREE;
    660   1.1     fvdl 		or	SIMODE1, ENBUSFREE;
    661   1.1     fvdl 	}
    662   1.1     fvdl 	mov	SAVED_SCSIID, SCB_SCSIID;
    663   1.1     fvdl 	mov	SAVED_LUN, SCB_LUN;
    664   1.1     fvdl 	mvi	SEQ_FLAGS, NO_CDB_SENT;
    665   1.1     fvdl END_CRITICAL;
    666   1.1     fvdl 	or	SXFRCTL0, SPIOEN;
    667   1.1     fvdl 
    668   1.1     fvdl 	/*
    669   1.1     fvdl 	 * As soon as we get a successful selection, the target
    670   1.1     fvdl 	 * should go into the message out phase since we have ATN
    671   1.1     fvdl 	 * asserted.
    672   1.1     fvdl 	 */
    673   1.1     fvdl 	mvi	MSG_OUT, MSG_IDENTIFYFLAG;
    674   1.1     fvdl 
    675   1.1     fvdl 	/*
    676   1.1     fvdl 	 * Main loop for information transfer phases.  Wait for the
    677   1.1     fvdl 	 * target to assert REQ before checking MSG, C/D and I/O for
    678   1.1     fvdl 	 * the bus phase.
    679   1.1     fvdl 	 */
    680   1.1     fvdl mesgin_phasemis:
    681   1.1     fvdl ITloop:
    682   1.1     fvdl 	call	phase_lock;
    683   1.1     fvdl 
    684   1.1     fvdl 	mov	A, LASTPHASE;
    685   1.1     fvdl 
    686   1.1     fvdl 	test	A, ~P_DATAIN_DT	jz p_data;
    687   1.1     fvdl 	cmp	A,P_COMMAND	je p_command;
    688   1.1     fvdl 	cmp	A,P_MESGOUT	je p_mesgout;
    689   1.1     fvdl 	cmp	A,P_STATUS	je p_status;
    690   1.1     fvdl 	cmp	A,P_MESGIN	je p_mesgin;
    691   1.1     fvdl 
    692   1.1     fvdl 	SET_SEQINTCODE(BAD_PHASE)
    693   1.1     fvdl 	jmp	ITloop;			/* Try reading the bus again. */
    694   1.1     fvdl 
    695   1.1     fvdl /*
    696   1.1     fvdl  * Command phase.  Set up the DMA registers and let 'er rip.
    697   1.1     fvdl  */
    698   1.1     fvdl p_command:
    699   1.1     fvdl 	test	SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
    700   1.1     fvdl 	SET_SEQINTCODE(PROTO_VIOLATION)
    701   1.1     fvdl p_command_okay:
    702   1.1     fvdl 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
    703   1.1     fvdl 		jnz p_command_allocate_fifo;
    704   1.1     fvdl 	/*
    705   1.1     fvdl 	 * Command retry.  Free our current FIFO and
    706   1.1     fvdl 	 * re-allocate a FIFO so transfer state is
    707   1.1     fvdl 	 * reset.
    708   1.1     fvdl 	 */
    709   1.1     fvdl SET_SRC_MODE	M_DFF1;
    710   1.1     fvdl SET_DST_MODE	M_DFF1;
    711   1.1     fvdl 	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
    712   1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
    713   1.1     fvdl p_command_allocate_fifo:
    714   1.1     fvdl 	bmov	ALLOCFIFO_SCBPTR, SCBPTR, 2;
    715   1.1     fvdl 	call	allocate_fifo;
    716   1.1     fvdl SET_SRC_MODE	M_DFF1;
    717   1.1     fvdl SET_DST_MODE	M_DFF1;
    718   1.1     fvdl 	add	NONE, -17, SCB_CDB_LEN;
    719   1.1     fvdl 	jnc	p_command_embedded;
    720   1.1     fvdl p_command_from_host:
    721   1.1     fvdl 	bmov	HADDR[0], SCB_HOST_CDB_PTR, 9;
    722   1.1     fvdl 	mvi	SG_CACHE_PRE, LAST_SEG;
    723   1.1     fvdl 	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
    724   1.1     fvdl 	jmp	p_command_xfer;
    725   1.1     fvdl p_command_embedded:
    726   1.1     fvdl 	bmov	SHCNT[0], SCB_CDB_LEN,  1;
    727   1.9    perry 	bmov	DFDAT, SCB_CDB_STORE, 16;
    728   1.1     fvdl 	mvi	DFCNTRL, SCSIEN;
    729   1.1     fvdl p_command_xfer:
    730   1.1     fvdl 	and	SEQ_FLAGS, ~NO_CDB_SENT;
    731   1.1     fvdl 	test	DFCNTRL, SCSIEN jnz .;
    732   1.1     fvdl 	/*
    733   1.1     fvdl 	 * DMA Channel automatically disabled.
    734   1.1     fvdl 	 * Don't allow a data phase if the command
    735   1.1     fvdl 	 * was not fully transferred.
    736   1.1     fvdl 	 */
    737   1.1     fvdl 	test	SSTAT2, SDONE jnz ITloop;
    738   1.1     fvdl 	or	SEQ_FLAGS, NO_CDB_SENT;
    739   1.1     fvdl 	jmp	ITloop;
    740   1.1     fvdl 
    741   1.1     fvdl 
    742   1.1     fvdl /*
    743   1.1     fvdl  * Status phase.  Wait for the data byte to appear, then read it
    744   1.1     fvdl  * and store it into the SCB.
    745   1.1     fvdl  */
    746   1.1     fvdl SET_SRC_MODE	M_SCSI;
    747   1.1     fvdl SET_DST_MODE	M_SCSI;
    748   1.1     fvdl p_status:
    749   1.1     fvdl 	test	SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
    750   1.1     fvdl p_status_okay:
    751   1.1     fvdl 	mov	SCB_SCSI_STATUS, SCSIDAT;
    752   1.1     fvdl 	or	SCB_CONTROL, STATUS_RCVD;
    753   1.1     fvdl 	jmp	ITloop;
    754   1.1     fvdl 
    755   1.1     fvdl /*
    756   1.1     fvdl  * Message out phase.  If MSG_OUT is MSG_IDENTIFYFLAG, build a full
    757  1.16   andvar  * identify message sequence and send it to the target.  The host may
    758   1.1     fvdl  * override this behavior by setting the MK_MESSAGE bit in the SCB
    759   1.1     fvdl  * control byte.  This will cause us to interrupt the host and allow
    760   1.1     fvdl  * it to handle the message phase completely on its own.  If the bit
    761   1.1     fvdl  * associated with this target is set, we will also interrupt the host,
    762   1.1     fvdl  * thereby allowing it to send a message on the next selection regardless
    763   1.1     fvdl  * of the transaction being sent.
    764   1.9    perry  *
    765   1.1     fvdl  * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
    766   1.1     fvdl  * This is done to allow the host to send messages outside of an identify
    767  1.16   andvar  * sequence while protecting the sequencer from testing the MK_MESSAGE bit
    768   1.1     fvdl  * on an SCB that might not be for the current nexus. (For example, a
    769  1.16   andvar  * BDR message in response to a bad reselection would leave us pointed to
    770   1.1     fvdl  * an SCB that doesn't have anything to do with the current target).
    771   1.1     fvdl  *
    772   1.1     fvdl  * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
    773   1.1     fvdl  * bus device reset).
    774   1.1     fvdl  *
    775   1.1     fvdl  * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
    776   1.1     fvdl  * in case the target decides to put us in this phase for some strange
    777   1.1     fvdl  * reason.
    778   1.1     fvdl  */
    779   1.1     fvdl p_mesgout_retry:
    780   1.1     fvdl 	/* Turn on ATN for the retry */
    781   1.1     fvdl 	mvi	SCSISIGO, ATNO;
    782   1.1     fvdl p_mesgout:
    783   1.1     fvdl 	mov	SINDEX, MSG_OUT;
    784   1.1     fvdl 	cmp	SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
    785   1.1     fvdl 	test	SCB_CONTROL,MK_MESSAGE	jnz host_message_loop;
    786   1.1     fvdl p_mesgout_identify:
    787   1.1     fvdl 	or	SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
    788   1.1     fvdl 	test	SCB_CONTROL, DISCENB jnz . + 2;
    789   1.1     fvdl 	and	SINDEX, ~DISCENB;
    790   1.1     fvdl /*
    791   1.1     fvdl  * Send a tag message if TAG_ENB is set in the SCB control block.
    792   1.1     fvdl  * Use SCB_NONPACKET_TAG as the tag value.
    793   1.1     fvdl  */
    794   1.1     fvdl p_mesgout_tag:
    795   1.1     fvdl 	test	SCB_CONTROL,TAG_ENB jz  p_mesgout_onebyte;
    796   1.1     fvdl 	mov	SCSIDAT, SINDEX;	/* Send the identify message */
    797   1.1     fvdl 	call	phase_lock;
    798   1.1     fvdl 	cmp	LASTPHASE, P_MESGOUT	jne p_mesgout_done;
    799   1.1     fvdl 	and	SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
    800   1.1     fvdl 	call	phase_lock;
    801   1.1     fvdl 	cmp	LASTPHASE, P_MESGOUT	jne p_mesgout_done;
    802   1.1     fvdl 	mov	SCBPTR jmp p_mesgout_onebyte;
    803   1.1     fvdl /*
    804   1.1     fvdl  * Interrupt the driver, and allow it to handle this message
    805   1.1     fvdl  * phase and any required retries.
    806   1.1     fvdl  */
    807   1.1     fvdl p_mesgout_from_host:
    808   1.1     fvdl 	cmp	SINDEX, HOST_MSG	jne p_mesgout_onebyte;
    809   1.1     fvdl 	jmp	host_message_loop;
    810   1.1     fvdl 
    811   1.1     fvdl p_mesgout_onebyte:
    812   1.1     fvdl 	mvi	CLRSINT1, CLRATNO;
    813   1.1     fvdl 	mov	SCSIDAT, SINDEX;
    814   1.1     fvdl 
    815   1.1     fvdl /*
    816   1.1     fvdl  * If the next bus phase after ATN drops is message out, it means
    817   1.1     fvdl  * that the target is requesting that the last message(s) be resent.
    818   1.1     fvdl  */
    819   1.1     fvdl 	call	phase_lock;
    820   1.1     fvdl 	cmp	LASTPHASE, P_MESGOUT	je p_mesgout_retry;
    821   1.1     fvdl 
    822   1.1     fvdl p_mesgout_done:
    823   1.1     fvdl 	mvi	CLRSINT1,CLRATNO;	/* Be sure to turn ATNO off */
    824   1.1     fvdl 	mov	LAST_MSG, MSG_OUT;
    825   1.1     fvdl 	mvi	MSG_OUT, MSG_NOOP;	/* No message left */
    826   1.1     fvdl 	jmp	ITloop;
    827   1.1     fvdl 
    828   1.1     fvdl /*
    829   1.1     fvdl  * Message in phase.  Bytes are read using Automatic PIO mode.
    830   1.1     fvdl  */
    831   1.1     fvdl p_mesgin:
    832   1.1     fvdl 	/* read the 1st message byte */
    833   1.1     fvdl 	mvi	ACCUM		call inb_first;
    834   1.1     fvdl 
    835   1.1     fvdl 	test	A,MSG_IDENTIFYFLAG	jnz mesgin_identify;
    836   1.1     fvdl 	cmp	A,MSG_DISCONNECT	je mesgin_disconnect;
    837   1.1     fvdl 	cmp	A,MSG_SAVEDATAPOINTER	je mesgin_sdptrs;
    838   1.1     fvdl 	cmp	ALLZEROS,A		je mesgin_complete;
    839   1.1     fvdl 	cmp	A,MSG_RESTOREPOINTERS	je mesgin_rdptrs;
    840   1.1     fvdl 	cmp	A,MSG_IGN_WIDE_RESIDUE	je mesgin_ign_wide_residue;
    841   1.1     fvdl 	cmp	A,MSG_NOOP		je mesgin_done;
    842   1.1     fvdl 
    843   1.1     fvdl /*
    844   1.1     fvdl  * Pushed message loop to allow the kernel to
    845  1.11      snj  * run its own message state engine.  To avoid an
    846   1.1     fvdl  * extra nop instruction after signaling the kernel,
    847   1.1     fvdl  * we perform the phase_lock before checking to see
    848   1.1     fvdl  * if we should exit the loop and skip the phase_lock
    849   1.1     fvdl  * in the ITloop.  Performing back to back phase_locks
    850   1.1     fvdl  * shouldn't hurt, but why do it twice...
    851   1.1     fvdl  */
    852   1.1     fvdl host_message_loop:
    853   1.1     fvdl 	call	phase_lock;	/* Benign the first time through. */
    854   1.1     fvdl 	SET_SEQINTCODE(HOST_MSG_LOOP)
    855   1.1     fvdl 	cmp	RETURN_1, EXIT_MSG_LOOP	je ITloop;
    856   1.1     fvdl 	cmp	RETURN_1, CONT_MSG_LOOP_WRITE	jne . + 3;
    857   1.1     fvdl 	mov	SCSIDAT, RETURN_2;
    858   1.1     fvdl 	jmp	host_message_loop;
    859   1.1     fvdl 	/* Must be CONT_MSG_LOOP_READ */
    860   1.1     fvdl 	mov	NONE, SCSIDAT;	/* ACK Byte */
    861   1.1     fvdl 	jmp	host_message_loop;
    862   1.1     fvdl 
    863   1.1     fvdl mesgin_ign_wide_residue:
    864   1.1     fvdl 	mov	SAVED_MODE, MODE_PTR;
    865   1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
    866   1.1     fvdl 	shr	NEGOADDR, 4, SAVED_SCSIID;
    867   1.1     fvdl 	mov	A, NEGCONOPTS;
    868   1.1     fvdl 	RESTORE_MODE(SAVED_MODE)
    869   1.1     fvdl 	test	A, WIDEXFER jz mesgin_reject;
    870   1.1     fvdl 	/* Pull the residue byte */
    871   1.1     fvdl 	mvi	REG0	call inb_next;
    872   1.1     fvdl 	cmp	REG0, 0x01 jne mesgin_reject;
    873   1.1     fvdl 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
    874   1.6  thorpej 	test	SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done;
    875   1.6  thorpej 	SET_SEQINTCODE(IGN_WIDE_RES)
    876   1.1     fvdl 	jmp	mesgin_done;
    877   1.1     fvdl 
    878   1.1     fvdl mesgin_proto_violation:
    879   1.1     fvdl 	SET_SEQINTCODE(PROTO_VIOLATION)
    880   1.1     fvdl 	jmp	mesgin_done;
    881   1.1     fvdl mesgin_reject:
    882   1.1     fvdl 	mvi	MSG_MESSAGE_REJECT	call mk_mesg;
    883   1.1     fvdl mesgin_done:
    884   1.1     fvdl 	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
    885   1.1     fvdl 	jmp	ITloop;
    886   1.1     fvdl 
    887   1.1     fvdl #define INDEX_DISC_LIST(scsiid, lun)					\
    888   1.1     fvdl 	and	A, 0xC0, scsiid;					\
    889   1.1     fvdl 	or	SCBPTR, A, lun;						\
    890   1.1     fvdl 	clr	SCBPTR[1];						\
    891   1.1     fvdl 	and	SINDEX, 0x30, scsiid;					\
    892   1.1     fvdl 	shr	SINDEX, 3;	/* Multiply by 2 */			\
    893   1.1     fvdl 	add	SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF);		\
    894   1.1     fvdl 	mvi	SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
    895   1.1     fvdl 
    896   1.1     fvdl mesgin_identify:
    897   1.1     fvdl 	/*
    898   1.1     fvdl 	 * Determine whether a target is using tagged or non-tagged
    899   1.1     fvdl 	 * transactions by first looking at the transaction stored in
    900   1.1     fvdl 	 * the per-device, disconnected array.  If there is no untagged
    901   1.1     fvdl 	 * transaction for this target, this must be a tagged transaction.
    902   1.1     fvdl 	 */
    903   1.1     fvdl 	and	SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
    904   1.1     fvdl 	INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
    905   1.1     fvdl 	bmov	DINDEX, SINDEX, 2;
    906   1.1     fvdl 	bmov	REG0, SINDIR, 2;
    907   1.1     fvdl 	cmp	REG0[1], SCB_LIST_NULL je snoop_tag;
    908   1.1     fvdl 	/* Untagged.  Clear the busy table entry and setup the SCB. */
    909   1.1     fvdl 	bmov	DINDIR, ALLONES, 2;
    910   1.1     fvdl 	bmov	SCBPTR, REG0, 2;
    911   1.1     fvdl 	jmp	setup_SCB;
    912   1.1     fvdl 
    913   1.1     fvdl /*
    914   1.1     fvdl  * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
    915   1.1     fvdl  * If we get one, we use the tag returned to find the proper
    916   1.1     fvdl  * SCB.  After receiving the tag, look for the SCB at SCB locations tag and
    917   1.1     fvdl  * tag + 256.
    918   1.1     fvdl  */
    919   1.1     fvdl snoop_tag:
    920   1.1     fvdl 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    921   1.1     fvdl 		or	SEQ_FLAGS, 0x80;
    922   1.1     fvdl 	}
    923   1.1     fvdl 	mov	NONE, SCSIDAT;		/* ACK Identify MSG */
    924   1.1     fvdl 	call	phase_lock;
    925   1.1     fvdl 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    926   1.1     fvdl 		or	SEQ_FLAGS, 0x1;
    927   1.1     fvdl 	}
    928   1.1     fvdl 	cmp	LASTPHASE, P_MESGIN	jne not_found_ITloop;
    929   1.1     fvdl 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    930   1.1     fvdl 		or	SEQ_FLAGS, 0x2;
    931   1.1     fvdl 	}
    932   1.1     fvdl 	cmp	SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
    933   1.1     fvdl get_tag:
    934   1.1     fvdl 	clr	SCBPTR[1];
    935   1.1     fvdl 	mvi	SCBPTR	call inb_next;	/* tag value */
    936   1.1     fvdl verify_scb:
    937   1.1     fvdl 	test	SCB_CONTROL,DISCONNECTED jz verify_other_scb;
    938   1.1     fvdl 	mov	A, SAVED_SCSIID;
    939   1.1     fvdl 	cmp	SCB_SCSIID, A jne verify_other_scb;
    940   1.1     fvdl 	mov	A, SAVED_LUN;
    941   1.1     fvdl 	cmp	SCB_LUN, A je setup_SCB_disconnected;
    942   1.1     fvdl verify_other_scb:
    943   1.1     fvdl 	xor	SCBPTR[1], 1;
    944   1.1     fvdl 	test	SCBPTR[1], 0xFF jnz verify_scb;
    945   1.1     fvdl 	jmp	not_found;
    946   1.1     fvdl 
    947   1.1     fvdl /*
    948   1.1     fvdl  * Ensure that the SCB the tag points to is for
    949   1.1     fvdl  * an SCB transaction to the reconnecting target.
    950   1.1     fvdl  */
    951   1.1     fvdl setup_SCB:
    952   1.1     fvdl 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    953   1.1     fvdl 		or	SEQ_FLAGS, 0x10;
    954   1.1     fvdl 	}
    955   1.1     fvdl 	test	SCB_CONTROL,DISCONNECTED jz not_found;
    956   1.1     fvdl setup_SCB_disconnected:
    957   1.1     fvdl 	and	SCB_CONTROL,~DISCONNECTED;
    958   1.1     fvdl 	clr	SEQ_FLAGS;	/* make note of IDENTIFY */
    959   1.1     fvdl 	test	SCB_SGPTR, SG_LIST_NULL jnz . + 3;
    960   1.1     fvdl 	bmov	ALLOCFIFO_SCBPTR, SCBPTR, 2;
    961   1.1     fvdl 	call	allocate_fifo;
    962   1.1     fvdl 	/* See if the host wants to send a message upon reconnection */
    963   1.1     fvdl 	test	SCB_CONTROL, MK_MESSAGE jz mesgin_done;
    964   1.1     fvdl 	mvi	HOST_MSG	call mk_mesg;
    965   1.1     fvdl 	jmp	mesgin_done;
    966   1.1     fvdl 
    967   1.1     fvdl not_found:
    968   1.1     fvdl 	SET_SEQINTCODE(NO_MATCH)
    969   1.1     fvdl 	jmp	mesgin_done;
    970   1.1     fvdl 
    971   1.1     fvdl not_found_ITloop:
    972   1.1     fvdl 	SET_SEQINTCODE(NO_MATCH)
    973   1.1     fvdl 	jmp	ITloop;
    974   1.1     fvdl 
    975   1.1     fvdl /*
    976   1.1     fvdl  * We received a "command complete" message.  Put the SCB on the complete
    977   1.1     fvdl  * queue and trigger a completion interrupt via the idle loop.  Before doing
    978   1.1     fvdl  * so, check to see if there
    979   1.1     fvdl  * is a residual or the status byte is something other than STATUS_GOOD (0).
    980   1.1     fvdl  * In either of these conditions, we upload the SCB back to the host so it can
    981   1.9    perry  * process this information.  In the case of a non zero status byte, we
    982   1.1     fvdl  * additionally interrupt the kernel driver synchronously, allowing it to
    983   1.1     fvdl  * decide if sense should be retrieved.  If the kernel driver wishes to request
    984   1.1     fvdl  * sense, it will fill the kernel SCB with a request sense command, requeue
    985   1.9    perry  * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting
    986   1.1     fvdl  * RETURN_1 to SEND_SENSE.
    987   1.1     fvdl  */
    988   1.1     fvdl mesgin_complete:
    989   1.1     fvdl 
    990   1.1     fvdl 	/*
    991   1.1     fvdl 	 * If ATN is raised, we still want to give the target a message.
    992   1.1     fvdl 	 * Perhaps there was a parity error on this last message byte.
    993   1.1     fvdl 	 * Either way, the target should take us to message out phase
    994   1.1     fvdl 	 * and then attempt to complete the command again.  We should use a
    995   1.1     fvdl 	 * critical section here to guard against a timeout triggering
    996   1.1     fvdl 	 * for this command and setting ATN while we are still processing
    997   1.1     fvdl 	 * the completion.
    998   1.1     fvdl 	test	SCSISIGI, ATNI jnz mesgin_done;
    999   1.1     fvdl 	 */
   1000   1.1     fvdl 
   1001   1.1     fvdl 	/*
   1002   1.1     fvdl 	 * If we are identified and have successfully sent the CDB,
   1003   1.1     fvdl 	 * any status will do.  Optimize this fast path.
   1004   1.1     fvdl 	 */
   1005   1.1     fvdl 	test	SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
   1006   1.1     fvdl 	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
   1007   1.1     fvdl 
   1008   1.1     fvdl 	/*
   1009   1.1     fvdl 	 * If the target never sent an identify message but instead went
   1010   1.1     fvdl 	 * to mesgin to give an invalid message, let the host abort us.
   1011   1.1     fvdl 	 */
   1012   1.1     fvdl 	test	SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
   1013   1.1     fvdl 
   1014   1.1     fvdl 	/*
   1015  1.12  msaitoh 	 * If we received good status but never successfully sent the
   1016   1.1     fvdl 	 * cdb, abort the command.
   1017   1.1     fvdl 	 */
   1018   1.1     fvdl 	test	SCB_SCSI_STATUS,0xff	jnz complete_accepted;
   1019   1.1     fvdl 	test	SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
   1020   1.1     fvdl complete_accepted:
   1021   1.1     fvdl 
   1022   1.1     fvdl 	/*
   1023  1.17   andvar 	 * See if we attempted to deliver a message but the target ignored us.
   1024   1.1     fvdl 	 */
   1025   1.1     fvdl 	test	SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
   1026   1.1     fvdl 	SET_SEQINTCODE(MKMSG_FAILED)
   1027   1.1     fvdl complete_nomsg:
   1028   1.1     fvdl 	call	queue_scb_completion;
   1029   1.1     fvdl 	jmp	await_busfree;
   1030   1.1     fvdl 
   1031   1.1     fvdl freeze_queue:
   1032   1.1     fvdl 	/* Cancel any pending select-out. */
   1033   1.1     fvdl 	test	SSTAT0, SELDO|SELINGO jnz . + 2;
   1034   1.1     fvdl 	and	SCSISEQ0, ~ENSELO;
   1035   1.1     fvdl 	mov	ACCUM_SAVE, A;
   1036   1.1     fvdl 	clr	A;
   1037   1.1     fvdl 	add	QFREEZE_COUNT, 1;
   1038   1.1     fvdl 	adc	QFREEZE_COUNT[1], A;
   1039   1.1     fvdl 	or	SEQ_FLAGS2, SELECTOUT_QFROZEN;
   1040   1.1     fvdl 	mov	A, ACCUM_SAVE ret;
   1041   1.1     fvdl 
   1042   1.4  thorpej /*
   1043   1.4  thorpej  * Complete the current FIFO's SCB if data for this same
   1044   1.4  thorpej  * SCB is not transferring in the other FIFO.
   1045   1.4  thorpej  */
   1046   1.4  thorpej SET_SRC_MODE	M_DFF1;
   1047   1.4  thorpej SET_DST_MODE	M_DFF1;
   1048   1.4  thorpej pkt_complete_scb_if_fifos_idle:
   1049   1.4  thorpej 	bmov	ARG_1, SCBPTR, 2;
   1050   1.4  thorpej 	mvi	DFFSXFRCTL, CLRCHN;
   1051   1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
   1052   1.1     fvdl 	bmov	SCBPTR, ARG_1, 2;
   1053   1.4  thorpej 	test	SCB_FIFO_USE_COUNT, 0xFF jnz return;
   1054   1.1     fvdl queue_scb_completion:
   1055   1.1     fvdl 	test	SCB_SCSI_STATUS,0xff	jnz bad_status;
   1056   1.1     fvdl 	/*
   1057   1.1     fvdl 	 * Check for residuals
   1058   1.1     fvdl 	 */
   1059   1.1     fvdl 	test	SCB_SGPTR, SG_LIST_NULL jnz complete;	/* No xfer */
   1060   1.1     fvdl 	test	SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
   1061   1.1     fvdl 	test	SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
   1062   1.1     fvdl complete:
   1063   1.1     fvdl 	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
   1064   1.1     fvdl 	bmov	COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
   1065   1.1     fvdl bad_status:
   1066   1.1     fvdl 	cmp	SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
   1067   1.1     fvdl 	call	freeze_queue;
   1068   1.1     fvdl upload_scb:
   1069   1.4  thorpej 	/*
   1070   1.4  thorpej 	 * Restore SCB TAG since we reuse this field
   1071   1.4  thorpej 	 * in the sequencer.  We don't want to corrupt
   1072   1.4  thorpej 	 * it on the host.
   1073   1.4  thorpej 	 */
   1074   1.4  thorpej 	bmov	SCB_TAG, SCBPTR, 2;
   1075   1.1     fvdl 	bmov	SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2;
   1076   1.1     fvdl 	bmov	COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
   1077   1.1     fvdl 	or	SCB_SGPTR, SG_STATUS_VALID ret;
   1078   1.1     fvdl 
   1079   1.1     fvdl /*
   1080   1.1     fvdl  * Is it a disconnect message?  Set a flag in the SCB to remind us
   1081   1.1     fvdl  * and await the bus going free.  If this is an untagged transaction
   1082   1.1     fvdl  * store the SCB id for it in our untagged target table for lookup on
   1083  1.16   andvar  * a reselection.
   1084   1.1     fvdl  */
   1085   1.1     fvdl mesgin_disconnect:
   1086   1.1     fvdl 	/*
   1087   1.1     fvdl 	 * If ATN is raised, we still want to give the target a message.
   1088   1.1     fvdl 	 * Perhaps there was a parity error on this last message byte
   1089   1.1     fvdl 	 * or we want to abort this command.  Either way, the target
   1090   1.1     fvdl 	 * should take us to message out phase and then attempt to
   1091   1.1     fvdl 	 * disconnect again.
   1092   1.1     fvdl 	 * XXX - Wait for more testing.
   1093   1.1     fvdl 	test	SCSISIGI, ATNI jnz mesgin_done;
   1094   1.1     fvdl 	 */
   1095   1.1     fvdl 	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
   1096   1.1     fvdl 		jnz mesgin_proto_violation;
   1097   1.1     fvdl 	or	SCB_CONTROL,DISCONNECTED;
   1098   1.1     fvdl 	test	SCB_CONTROL, TAG_ENB jnz await_busfree;
   1099   1.1     fvdl queue_disc_scb:
   1100   1.1     fvdl 	bmov	REG0, SCBPTR, 2;
   1101   1.1     fvdl 	INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
   1102   1.1     fvdl 	bmov	DINDEX, SINDEX, 2;
   1103   1.1     fvdl 	bmov	DINDIR, REG0, 2;
   1104   1.1     fvdl 	bmov	SCBPTR, REG0, 2;
   1105   1.1     fvdl 	/* FALLTHROUGH */
   1106   1.1     fvdl await_busfree:
   1107   1.1     fvdl 	and	SIMODE1, ~ENBUSFREE;
   1108   1.1     fvdl 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
   1109   1.1     fvdl 		/*
   1110   1.1     fvdl 		 * In the BUSFREEREV_BUG case, the
   1111   1.1     fvdl 		 * busfree status was cleared at the
   1112   1.1     fvdl 		 * beginning of the connection.
   1113   1.1     fvdl 		 */
   1114   1.1     fvdl 		mvi	CLRSINT1,CLRBUSFREE;
   1115   1.1     fvdl 	}
   1116   1.1     fvdl 	mov	NONE, SCSIDAT;		/* Ack the last byte */
   1117   1.1     fvdl 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
   1118   1.1     fvdl 		jnz await_busfree_not_m_dff;
   1119   1.1     fvdl SET_SRC_MODE	M_DFF1;
   1120   1.1     fvdl SET_DST_MODE	M_DFF1;
   1121   1.1     fvdl await_busfree_clrchn:
   1122   1.1     fvdl 	mvi	DFFSXFRCTL, CLRCHN;
   1123   1.1     fvdl await_busfree_not_m_dff:
   1124   1.1     fvdl 	call	clear_target_state;
   1125   1.1     fvdl 	test	SSTAT1,REQINIT|BUSFREE	jz .;
   1126   1.1     fvdl 	test	SSTAT1, BUSFREE jnz idle_loop;
   1127   1.1     fvdl 	SET_SEQINTCODE(MISSED_BUSFREE)
   1128   1.1     fvdl 
   1129   1.1     fvdl 
   1130   1.1     fvdl /*
   1131   1.1     fvdl  * Save data pointers message:
   1132   1.1     fvdl  * Copying RAM values back to SCB, for Save Data Pointers message, but
   1133   1.1     fvdl  * only if we've actually been into a data phase to change them.  This
   1134   1.1     fvdl  * protects against bogus data in scratch ram and the residual counts
   1135   1.1     fvdl  * since they are only initialized when we go into data_in or data_out.
   1136   1.1     fvdl  * Ack the message as soon as possible.
   1137   1.1     fvdl  */
   1138   1.1     fvdl SET_SRC_MODE	M_DFF1;
   1139   1.1     fvdl SET_DST_MODE	M_DFF1;
   1140   1.1     fvdl mesgin_sdptrs:
   1141   1.1     fvdl 	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
   1142   1.1     fvdl 	test	SEQ_FLAGS, DPHASE	jz ITloop;
   1143   1.1     fvdl 	call	save_pointers;
   1144   1.1     fvdl 	jmp	ITloop;
   1145   1.1     fvdl 
   1146   1.1     fvdl save_pointers:
   1147   1.1     fvdl 	/*
   1148   1.1     fvdl 	 * If we are asked to save our position at the end of the
   1149   1.1     fvdl 	 * transfer, just mark us at the end rather than perform a
   1150   1.1     fvdl 	 * full save.
   1151   1.1     fvdl 	 */
   1152   1.1     fvdl 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
   1153   1.1     fvdl 	or	SCB_SGPTR, SG_LIST_NULL ret;
   1154   1.1     fvdl 
   1155   1.1     fvdl save_pointers_full:
   1156   1.1     fvdl 	/*
   1157   1.1     fvdl 	 * The SCB_DATAPTR becomes the current SHADDR.
   1158   1.1     fvdl 	 * All other information comes directly from our residual
   1159   1.1     fvdl 	 * state.
   1160   1.1     fvdl 	 */
   1161   1.1     fvdl 	bmov	SCB_DATAPTR, SHADDR, 8;
   1162   1.1     fvdl 	bmov	SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
   1163   1.1     fvdl 
   1164   1.1     fvdl /*
   1165   1.1     fvdl  * Restore pointers message?  Data pointers are recopied from the
   1166   1.1     fvdl  * SCB anytime we enter a data phase for the first time, so all
   1167   1.1     fvdl  * we need to do is clear the DPHASE flag and let the data phase
   1168   1.1     fvdl  * code do the rest.  We also reset/reallocate the FIFO to make
   1169   1.1     fvdl  * sure we have a clean start for the next data or command phase.
   1170   1.1     fvdl  */
   1171   1.1     fvdl mesgin_rdptrs:
   1172   1.1     fvdl 	and	SEQ_FLAGS, ~DPHASE;
   1173   1.1     fvdl 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
   1174   1.1     fvdl 	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
   1175   1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
   1176   1.1     fvdl msgin_rdptrs_get_fifo:
   1177   1.1     fvdl 	call	allocate_fifo;
   1178   1.1     fvdl 	jmp	mesgin_done;
   1179   1.1     fvdl 
   1180   1.1     fvdl clear_target_state:
   1181   1.1     fvdl 	mvi	LASTPHASE, P_BUSFREE;
   1182   1.1     fvdl 	/* clear target specific flags */
   1183   1.1     fvdl 	mvi	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret;
   1184   1.1     fvdl 
   1185   1.9    perry phase_lock:
   1186   1.1     fvdl 	if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
   1187   1.1     fvdl 		/*
   1188   1.1     fvdl 		 * Don't ignore persistent REQ assertions just because
   1189   1.1     fvdl 		 * they were asserted within the bus settle delay window.
   1190   1.1     fvdl 		 * This allows us to tolerate devices like the GEM318
   1191   1.1     fvdl 		 * that violate the SCSI spec.  We are careful not to
   1192   1.1     fvdl 		 * count REQ while we are waiting for it to fall during
   1193   1.1     fvdl 		 * an async phase due to our asserted ACK.  Each
   1194   1.1     fvdl 		 * sequencer instruction takes ~25ns, so the REQ must
   1195   1.1     fvdl 		 * last at least 100ns in order to be counted as a true
   1196   1.1     fvdl 		 * REQ.
   1197   1.1     fvdl 		 */
   1198   1.1     fvdl 		test	SCSIPHASE, 0xFF jnz phase_locked;
   1199   1.1     fvdl 		test	SCSISIGI, ACKI jnz phase_lock;
   1200   1.1     fvdl 		test	SCSISIGI, REQI jz phase_lock;
   1201   1.1     fvdl 		test	SCSIPHASE, 0xFF jnz phase_locked;
   1202   1.1     fvdl 		test	SCSISIGI, ACKI jnz phase_lock;
   1203   1.1     fvdl 		test	SCSISIGI, REQI jz phase_lock;
   1204   1.1     fvdl phase_locked:
   1205   1.1     fvdl 	} else {
   1206   1.1     fvdl 		test	SCSIPHASE, 0xFF jz .;
   1207   1.1     fvdl 	}
   1208   1.1     fvdl 	test	SSTAT1, SCSIPERR jnz phase_lock;
   1209   1.1     fvdl phase_lock_latch_phase:
   1210   1.1     fvdl 	and	LASTPHASE, PHASE_MASK, SCSISIGI ret;
   1211   1.1     fvdl 
   1212   1.1     fvdl /*
   1213   1.1     fvdl  * Functions to read data in Automatic PIO mode.
   1214   1.1     fvdl  *
   1215   1.1     fvdl  * An ACK is not sent on input from the target until SCSIDATL is read from.
   1216   1.1     fvdl  * So we wait until SCSIDATL is latched (the usual way), then read the data
   1217   1.1     fvdl  * byte directly off the bus using SCSIBUSL.  When we have pulled the ATN
   1218   1.1     fvdl  * line, or we just want to acknowledge the byte, then we do a dummy read
   1219   1.1     fvdl  * from SCISDATL.  The SCSI spec guarantees that the target will hold the
   1220   1.1     fvdl  * data byte on the bus until we send our ACK.
   1221   1.1     fvdl  *
   1222   1.1     fvdl  * The assumption here is that these are called in a particular sequence,
   1223   1.1     fvdl  * and that REQ is already set when inb_first is called.  inb_{first,next}
   1224   1.1     fvdl  * use the same calling convention as inb.
   1225   1.1     fvdl  */
   1226   1.1     fvdl inb_next:
   1227   1.1     fvdl 	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
   1228   1.1     fvdl inb_next_wait:
   1229   1.1     fvdl 	/*
   1230   1.1     fvdl 	 * If there is a parity error, wait for the kernel to
   1231   1.1     fvdl 	 * see the interrupt and prepare our message response
   1232   1.1     fvdl 	 * before continuing.
   1233   1.1     fvdl 	 */
   1234   1.1     fvdl 	test	SCSIPHASE, 0xFF jz .;
   1235   1.1     fvdl 	test	SSTAT1, SCSIPERR jnz inb_next_wait;
   1236   1.1     fvdl inb_next_check_phase:
   1237   1.1     fvdl 	and	LASTPHASE, PHASE_MASK, SCSISIGI;
   1238   1.1     fvdl 	cmp	LASTPHASE, P_MESGIN jne mesgin_phasemis;
   1239   1.1     fvdl inb_first:
   1240   1.1     fvdl 	clr	DINDEX[1];
   1241   1.1     fvdl 	mov	DINDEX,SINDEX;
   1242   1.1     fvdl 	mov	DINDIR,SCSIBUS	ret;		/*read byte directly from bus*/
   1243   1.1     fvdl inb_last:
   1244   1.1     fvdl 	mov	NONE,SCSIDAT ret;		/*dummy read from latch to ACK*/
   1245   1.1     fvdl 
   1246   1.1     fvdl mk_mesg:
   1247   1.1     fvdl 	mvi	SCSISIGO, ATNO;
   1248   1.1     fvdl 	mov	MSG_OUT,SINDEX ret;
   1249   1.1     fvdl 
   1250   1.1     fvdl SET_SRC_MODE	M_DFF1;
   1251   1.1     fvdl SET_DST_MODE	M_DFF1;
   1252   1.1     fvdl disable_ccsgen:
   1253   1.1     fvdl 	test	SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
   1254   1.1     fvdl 	clr	CCSGCTL;
   1255   1.1     fvdl disable_ccsgen_fetch_done:
   1256   1.1     fvdl 	clr	SG_STATE ret;
   1257   1.1     fvdl 
   1258   1.1     fvdl service_fifo:
   1259   1.1     fvdl 	/*
   1260   1.1     fvdl 	 * Do we have any prefetch left???
   1261   1.1     fvdl 	 */
   1262   1.1     fvdl 	test	SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
   1263   1.1     fvdl 
   1264   1.1     fvdl 	/*
   1265   1.1     fvdl 	 * Can this FIFO have access to the S/G cache yet?
   1266   1.1     fvdl 	 */
   1267   1.1     fvdl 	test	CCSGCTL, SG_CACHE_AVAIL jz return;
   1268   1.1     fvdl 
   1269   1.1     fvdl 	/* Did we just finish fetching segs? */
   1270   1.1     fvdl 	test	CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
   1271   1.1     fvdl 
   1272   1.1     fvdl 	/* Are we actively fetching segments? */
   1273   1.1     fvdl 	test	CCSGCTL, CCSGENACK jnz return;
   1274   1.1     fvdl 
   1275   1.1     fvdl 	/*
   1276   1.1     fvdl 	 * We fetch a "cacheline aligned" and sized amount of data
   1277  1.13   andvar 	 * so we don't end up referencing a non-existent page.
   1278   1.1     fvdl 	 * Cacheline aligned is in quotes because the kernel will
   1279   1.1     fvdl 	 * set the prefetch amount to a reasonable level if the
   1280   1.1     fvdl 	 * cacheline size is unknown.
   1281   1.1     fvdl 	 */
   1282   1.1     fvdl 	bmov	SGHADDR, SCB_RESIDUAL_SGPTR, 4;
   1283   1.1     fvdl 	mvi	SGHCNT, SG_PREFETCH_CNT;
   1284   1.1     fvdl 	if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
   1285   1.1     fvdl 		/*
   1286   1.1     fvdl 		 * Need two instruction between "touches" of SGHADDR.
   1287   1.1     fvdl 		 */
   1288   1.1     fvdl 		nop;
   1289   1.1     fvdl 	}
   1290   1.1     fvdl 	and	SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
   1291   1.1     fvdl 	mvi	CCSGCTL, CCSGEN|CCSGRESET;
   1292   1.1     fvdl 	or	SG_STATE, FETCH_INPROG ret;
   1293   1.1     fvdl idle_sgfetch_complete:
   1294   1.1     fvdl 	/*
   1295   1.1     fvdl 	 * Guard against SG_CACHE_AVAIL activating during sg fetch
   1296   1.1     fvdl 	 * request in the other FIFO.
   1297   1.1     fvdl 	 */
   1298   1.1     fvdl 	test	SG_STATE, FETCH_INPROG jz return;
   1299   1.1     fvdl 	clr	CCSGCTL;
   1300   1.1     fvdl 	and	CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
   1301   1.1     fvdl 	mvi	SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
   1302   1.1     fvdl idle_sg_avail:
   1303   1.1     fvdl 	/* Does the hardware have space for another SG entry? */
   1304   1.1     fvdl 	test	DFSTATUS, PRELOAD_AVAIL jz return;
   1305   1.1     fvdl 	/*
   1306   1.1     fvdl 	 * On the A, preloading a segment before HDMAENACK
   1307  1.16   andvar 	 * comes true can clobber the shadow address of the
   1308   1.1     fvdl 	 * first segment in the S/G FIFO.  Wait until it is
   1309   1.1     fvdl 	 * safe to proceed.
   1310   1.1     fvdl 	 */
   1311   1.1     fvdl 	if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
   1312   1.1     fvdl 		test	DFCNTRL, HDMAENACK jz return;
   1313   1.1     fvdl 	}
   1314   1.1     fvdl 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
   1315   1.1     fvdl 		bmov	HADDR, CCSGRAM, 8;
   1316   1.1     fvdl 	} else {
   1317   1.1     fvdl 		bmov 	HADDR, CCSGRAM, 4;
   1318   1.1     fvdl 	}
   1319   1.1     fvdl 	bmov	HCNT, CCSGRAM, 3;
   1320   1.1     fvdl 	bmov	SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
   1321   1.1     fvdl 	if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
   1322   1.1     fvdl 		and	HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
   1323   1.1     fvdl 	}
   1324   1.1     fvdl 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
   1325   1.1     fvdl 		/* Skip 4 bytes of pad. */
   1326   1.1     fvdl 		add	CCSGADDR, 4;
   1327   1.1     fvdl 	}
   1328   1.1     fvdl sg_advance:
   1329   1.1     fvdl 	clr	A;			/* add sizeof(struct scatter) */
   1330   1.1     fvdl 	add	SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
   1331   1.1     fvdl 	adc	SCB_RESIDUAL_SGPTR[1],A;
   1332   1.1     fvdl 	adc	SCB_RESIDUAL_SGPTR[2],A;
   1333   1.1     fvdl 	adc	SCB_RESIDUAL_SGPTR[3],A;
   1334   1.1     fvdl 	mov	SINDEX, SCB_RESIDUAL_SGPTR[0];
   1335   1.1     fvdl 	test	SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
   1336   1.1     fvdl 	or	SINDEX, LAST_SEG;
   1337   1.1     fvdl 	clr	SG_STATE;
   1338   1.1     fvdl 	mov	SG_CACHE_PRE, SINDEX;
   1339   1.1     fvdl 	if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
   1340   1.1     fvdl 		/*
   1341   1.1     fvdl 		 * Use SCSIENWRDIS so that SCSIEN is never
   1342   1.1     fvdl 		 * modified by this operation.
   1343   1.1     fvdl 		 */
   1344   1.1     fvdl 		or	DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
   1345   1.1     fvdl 	} else {
   1346   1.1     fvdl 		or	DFCNTRL, PRELOADEN|HDMAEN;
   1347   1.1     fvdl 	}
   1348   1.1     fvdl 	/*
   1349   1.1     fvdl 	 * Do we have another segment in the cache?
   1350   1.1     fvdl 	 */
   1351   1.1     fvdl 	add	NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
   1352   1.1     fvdl 	jnc	return;
   1353   1.1     fvdl 	and	SG_STATE, ~SEGS_AVAIL ret;
   1354   1.1     fvdl 
   1355   1.1     fvdl /*
   1356   1.1     fvdl  * Initialize the DMA address and counter from the SCB.
   1357   1.1     fvdl  */
   1358   1.1     fvdl load_first_seg:
   1359   1.1     fvdl 	bmov	HADDR, SCB_DATAPTR, 11;
   1360   1.1     fvdl 	and	REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
   1361   1.1     fvdl 	test	SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
   1362   1.1     fvdl 	or	REG_ISR, LAST_SEG;
   1363   1.1     fvdl 	mov	SG_CACHE_PRE, REG_ISR;
   1364   1.1     fvdl 	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
   1365   1.1     fvdl 	/*
   1366   1.1     fvdl 	 * Since we've are entering a data phase, we will
   1367   1.1     fvdl 	 * rely on the SCB_RESID* fields.  Initialize the
   1368   1.1     fvdl 	 * residual and clear the full residual flag.
   1369   1.1     fvdl 	 */
   1370   1.1     fvdl 	and	SCB_SGPTR[0], ~SG_FULL_RESID;
   1371   1.1     fvdl 	bmov	SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
   1372   1.1     fvdl 	/* If we need more S/G elements, tell the idle loop */
   1373   1.1     fvdl 	test	SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
   1374   1.1     fvdl 	mvi	SG_STATE, LOADING_NEEDED ret;
   1375   1.1     fvdl 	clr	SG_STATE ret;
   1376   1.1     fvdl 
   1377   1.1     fvdl p_data_handle_xfer:
   1378   1.4  thorpej 	call	setjmp;
   1379   1.1     fvdl 	test	SG_STATE, LOADING_NEEDED jnz service_fifo;
   1380   1.1     fvdl p_data_clear_handler:
   1381   1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR ret;
   1382   1.1     fvdl 
   1383   1.1     fvdl p_data:
   1384   1.1     fvdl 	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT	jz p_data_allowed;
   1385   1.1     fvdl 	SET_SEQINTCODE(PROTO_VIOLATION)
   1386   1.1     fvdl p_data_allowed:
   1387   1.9    perry 
   1388   1.1     fvdl 	test	SEQ_FLAGS, DPHASE	jz data_phase_initialize;
   1389   1.1     fvdl 
   1390   1.1     fvdl 	/*
   1391   1.1     fvdl 	 * If we re-enter the data phase after going through another
   1392   1.1     fvdl 	 * phase, our transfer location has almost certainly been
   1393   1.1     fvdl 	 * corrupted by the interveining, non-data, transfers.  Ask
   1394   1.1     fvdl 	 * the host driver to fix us up based on the transfer residual
   1395   1.1     fvdl 	 * unless we already know that we should be bitbucketing.
   1396   1.1     fvdl 	 */
   1397   1.1     fvdl 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
   1398   1.1     fvdl 	SET_SEQINTCODE(PDATA_REINIT)
   1399   1.1     fvdl 	jmp	data_phase_inbounds;
   1400   1.1     fvdl 
   1401   1.1     fvdl p_data_bitbucket:
   1402   1.1     fvdl 	/*
   1403   1.1     fvdl 	 * Turn on `Bit Bucket' mode, wait until the target takes
   1404   1.1     fvdl 	 * us to another phase, and then notify the host.
   1405   1.1     fvdl 	 */
   1406   1.1     fvdl 	mov	SAVED_MODE, MODE_PTR;
   1407   1.1     fvdl 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
   1408   1.1     fvdl 		jnz bitbucket_not_m_dff;
   1409   1.1     fvdl 	/*
   1410   1.1     fvdl 	 * Ensure that any FIFO contents are cleared out and the
   1411   1.1     fvdl 	 * FIFO free'd prior to starting the BITBUCKET.  BITBUCKET
   1412   1.1     fvdl 	 * doesn't discard data already in the FIFO.
   1413   1.1     fvdl 	 */
   1414   1.1     fvdl 	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
   1415   1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
   1416   1.1     fvdl bitbucket_not_m_dff:
   1417   1.1     fvdl 	or	SXFRCTL1,BITBUCKET;
   1418   1.1     fvdl 	/* Wait for non-data phase. */
   1419   1.1     fvdl 	test	SCSIPHASE, ~DATA_PHASE_MASK jz .;
   1420   1.1     fvdl 	and	SXFRCTL1, ~BITBUCKET;
   1421   1.1     fvdl 	RESTORE_MODE(SAVED_MODE)
   1422   1.1     fvdl SET_SRC_MODE	M_DFF1;
   1423   1.1     fvdl SET_DST_MODE	M_DFF1;
   1424   1.1     fvdl 	SET_SEQINTCODE(DATA_OVERRUN)
   1425   1.1     fvdl 	jmp	ITloop;
   1426   1.1     fvdl 
   1427   1.1     fvdl data_phase_initialize:
   1428   1.1     fvdl 	test	SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
   1429   1.1     fvdl 	call	load_first_seg;
   1430   1.1     fvdl data_phase_inbounds:
   1431   1.1     fvdl 	/* We have seen a data phase at least once. */
   1432   1.1     fvdl 	or	SEQ_FLAGS, DPHASE;
   1433   1.1     fvdl 	mov	SAVED_MODE, MODE_PTR;
   1434   1.1     fvdl 	test	SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
   1435   1.1     fvdl 	call	p_data_handle_xfer;
   1436   1.1     fvdl data_group_dma_loop:
   1437   1.1     fvdl 	/*
   1438   1.1     fvdl 	 * The transfer is complete if either the last segment
   1439   1.1     fvdl 	 * completes or the target changes phase.  Both conditions
   1440   1.1     fvdl 	 * will clear SCSIEN.
   1441   1.1     fvdl 	 */
   1442   1.1     fvdl 	call	idle_loop_service_fifos;
   1443   1.1     fvdl 	call	idle_loop_cchan;
   1444   1.1     fvdl 	call	idle_loop_gsfifo;
   1445   1.1     fvdl 	RESTORE_MODE(SAVED_MODE)
   1446   1.1     fvdl 	test	DFCNTRL, SCSIEN jnz data_group_dma_loop;
   1447   1.1     fvdl 
   1448   1.1     fvdl data_group_dmafinish:
   1449   1.1     fvdl 	/*
   1450   1.1     fvdl 	 * The transfer has terminated either due to a phase
   1451   1.1     fvdl 	 * change, and/or the completion of the last segment.
   1452   1.1     fvdl 	 * We have two goals here.  Do as much other work
   1453   1.1     fvdl 	 * as possible while the data fifo drains on a read
   1454   1.1     fvdl 	 * and respond as quickly as possible to the standard
   1455   1.1     fvdl 	 * messages (save data pointers/disconnect and command
   1456   1.1     fvdl 	 * complete) that usually follow a data phase.
   1457   1.1     fvdl 	 */
   1458   1.1     fvdl 	call	calc_residual;
   1459   1.1     fvdl 
   1460   1.1     fvdl 	/*
   1461   1.1     fvdl 	 * Go ahead and shut down the DMA engine now.
   1462   1.1     fvdl 	 */
   1463   1.1     fvdl 	test	DFCNTRL, DIRECTION jnz data_phase_finish;
   1464   1.1     fvdl data_group_fifoflush:
   1465   1.1     fvdl 	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
   1466   1.1     fvdl 		or	DFCNTRL, FIFOFLUSH;
   1467   1.1     fvdl 	}
   1468   1.1     fvdl 	/*
   1469   1.1     fvdl 	 * We have enabled the auto-ack feature.  This means
   1470   1.1     fvdl 	 * that the controller may have already transferred
   1471   1.1     fvdl 	 * some overrun bytes into the data FIFO and acked them
   1472   1.1     fvdl 	 * on the bus.  The only way to detect this situation is
   1473   1.1     fvdl 	 * to wait for LAST_SEG_DONE to come true on a completed
   1474   1.1     fvdl 	 * transfer and then test to see if the data FIFO is
   1475   1.1     fvdl 	 * non-empty.  We know there is more data yet to transfer
   1476   1.1     fvdl 	 * if SG_LIST_NULL is not yet set, thus there cannot be
   1477   1.1     fvdl 	 * an overrun.
   1478   1.1     fvdl 	 */
   1479   1.1     fvdl 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
   1480   1.1     fvdl 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
   1481   1.1     fvdl 	test	DFSTATUS, FIFOEMP jnz data_phase_finish;
   1482   1.1     fvdl 	/* Overrun */
   1483   1.1     fvdl 	jmp	p_data;
   1484   1.1     fvdl data_phase_finish:
   1485   1.1     fvdl 	/*
   1486   1.1     fvdl 	 * If the target has left us in data phase, loop through
   1487   1.2      wiz 	 * the DMA code again.  We will only loop if there is a
   1488   1.9    perry 	 * data overrun.
   1489   1.1     fvdl 	 */
   1490   1.1     fvdl 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
   1491   1.1     fvdl 		test	SSTAT0, TARGET jnz data_phase_done;
   1492   1.1     fvdl 	}
   1493   1.1     fvdl 	if ((ahd->flags & AHD_INITIATORROLE) != 0) {
   1494   1.1     fvdl 		test	SSTAT1, REQINIT jz .;
   1495   1.1     fvdl 		test	SCSIPHASE, DATA_PHASE_MASK jnz p_data;
   1496   1.1     fvdl 	}
   1497   1.1     fvdl 
   1498   1.1     fvdl data_phase_done:
   1499   1.1     fvdl 	/* Kill off any pending prefetch */
   1500   1.1     fvdl 	call	disable_ccsgen;
   1501   1.1     fvdl 	or 	LONGJMP_ADDR[1], INVALID_ADDR;
   1502   1.1     fvdl 
   1503   1.1     fvdl 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
   1504   1.1     fvdl 		test	SEQ_FLAGS, DPHASE_PENDING jz ITloop;
   1505   1.1     fvdl 		/*
   1506   1.1     fvdl 		and	SEQ_FLAGS, ~DPHASE_PENDING;
   1507   1.1     fvdl 		 * For data-in phases, wait for any pending acks from the
   1508   1.1     fvdl 		 * initiator before changing phase.  We only need to
   1509   1.1     fvdl 		 * send Ignore Wide Residue messages for data-in phases.
   1510   1.1     fvdl 		test	DFCNTRL, DIRECTION jz target_ITloop;
   1511   1.1     fvdl 		test	SSTAT1, REQINIT	jnz .;
   1512   1.6  thorpej 		test	SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop;
   1513   1.1     fvdl 		SET_MODE(M_SCSI, M_SCSI)
   1514   1.1     fvdl 		test	NEGCONOPTS, WIDEXFER jz target_ITloop;
   1515   1.1     fvdl 		 */
   1516   1.1     fvdl 		/*
   1517   1.1     fvdl 		 * Issue an Ignore Wide Residue Message.
   1518   1.1     fvdl 		mvi	P_MESGIN|BSYO call change_phase;
   1519   1.1     fvdl 		mvi	MSG_IGN_WIDE_RESIDUE call target_outb;
   1520   1.1     fvdl 		mvi	1 call target_outb;
   1521   1.1     fvdl 		jmp	target_ITloop;
   1522   1.1     fvdl 		 */
   1523   1.1     fvdl 	} else {
   1524   1.1     fvdl 		jmp	ITloop;
   1525   1.1     fvdl 	}
   1526   1.1     fvdl 
   1527   1.1     fvdl /*
   1528   1.1     fvdl  * We assume that, even though data may still be
   1529   1.1     fvdl  * transferring to the host, that the SCSI side of
   1530   1.1     fvdl  * the DMA engine is now in a static state.  This
   1531   1.1     fvdl  * allows us to update our notion of where we are
   1532   1.1     fvdl  * in this transfer.
   1533   1.1     fvdl  *
   1534   1.1     fvdl  * If, by chance, we stopped before being able
   1535   1.1     fvdl  * to fetch additional segments for this transfer,
   1536   1.1     fvdl  * yet the last S/G was completely exhausted,
   1537   1.1     fvdl  * call our idle loop until it is able to load
   1538   1.1     fvdl  * another segment.  This will allow us to immediately
   1539   1.1     fvdl  * pickup on the next segment on the next data phase.
   1540   1.1     fvdl  *
   1541   1.1     fvdl  * If we happened to stop on the last segment, then
   1542   1.1     fvdl  * our residual information is still correct from
   1543   1.1     fvdl  * the idle loop and there is no need to perform
   1544   1.1     fvdl  * any fixups.
   1545   1.1     fvdl  */
   1546   1.1     fvdl residual_before_last_seg:
   1547   1.1     fvdl 	test    MDFFSTAT, SHVALID	jnz sgptr_fixup;
   1548   1.1     fvdl 	/*
   1549   1.1     fvdl 	 * Can never happen from an interrupt as the packetized
   1550   1.1     fvdl 	 * hardware will only interrupt us once SHVALID or
   1551   1.1     fvdl 	 * LAST_SEG_DONE.
   1552   1.1     fvdl 	 */
   1553   1.1     fvdl 	call	idle_loop_service_fifos;
   1554   1.1     fvdl 	RESTORE_MODE(SAVED_MODE)
   1555   1.1     fvdl 	/* FALLTHROUGH */
   1556   1.1     fvdl calc_residual:
   1557   1.1     fvdl 	test	SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
   1558   1.1     fvdl 	/* Record if we've consumed all S/G entries */
   1559   1.1     fvdl 	test	MDFFSTAT, SHVALID	jz . + 2;
   1560   1.1     fvdl 	bmov	SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
   1561   1.1     fvdl 	or	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
   1562   1.1     fvdl 
   1563   1.1     fvdl sgptr_fixup:
   1564   1.1     fvdl 	/*
   1565   1.1     fvdl 	 * Fixup the residual next S/G pointer.  The S/G preload
   1566   1.1     fvdl 	 * feature of the chip allows us to load two elements
   1567   1.1     fvdl 	 * in addition to the currently active element.  We
   1568   1.1     fvdl 	 * store the bottom byte of the next S/G pointer in
   1569   1.1     fvdl 	 * the SG_CACHE_PTR register so we can restore the
   1570   1.1     fvdl 	 * correct value when the DMA completes.  If the next
   1571   1.1     fvdl 	 * sg ptr value has advanced to the point where higher
   1572   1.1     fvdl 	 * bytes in the address have been affected, fix them
   1573   1.1     fvdl 	 * too.
   1574   1.1     fvdl 	 */
   1575   1.1     fvdl 	test	SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
   1576   1.1     fvdl 	test	SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
   1577   1.1     fvdl 	add	SCB_RESIDUAL_SGPTR[1], -1;
   1578   1.9    perry 	adc	SCB_RESIDUAL_SGPTR[2], -1;
   1579   1.1     fvdl 	adc	SCB_RESIDUAL_SGPTR[3], -1;
   1580   1.1     fvdl sgptr_fixup_done:
   1581   1.1     fvdl 	and	SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
   1582   1.1     fvdl 	clr	SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
   1583   1.1     fvdl 	bmov	SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
   1584   1.1     fvdl 
   1585   1.1     fvdl export timer_isr:
   1586   1.1     fvdl 	call	issue_cmdcmplt;
   1587   1.1     fvdl 	mvi	CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
   1588   1.1     fvdl 	if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
   1589   1.1     fvdl 		/*
   1590   1.1     fvdl 		 * In H2A4, the mode pointer is not saved
   1591   1.1     fvdl 		 * for intvec2, but is restored on iret.
   1592   1.1     fvdl 		 * This can lead to the restoration of a
   1593   1.1     fvdl 		 * bogus mode ptr.  Manually clear the
   1594   1.1     fvdl 		 * intmask bits and do a normal return
   1595   1.1     fvdl 		 * to compensate.
   1596   1.1     fvdl 		 */
   1597   1.1     fvdl 		and	SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
   1598   1.1     fvdl 	} else {
   1599   1.1     fvdl 		or	SEQINTCTL, IRET ret;
   1600   1.1     fvdl 	}
   1601   1.1     fvdl 
   1602   1.1     fvdl export seq_isr:
   1603   1.1     fvdl 	if ((ahd->features & AHD_RTI) == 0) {
   1604   1.1     fvdl 		/*
   1605   1.1     fvdl 		 * On RevA Silicon, if the target returns us to data-out
   1606   1.1     fvdl 		 * after we have already trained for data-out, it is
   1607   1.1     fvdl 		 * possible for us to transition the free running clock to
   1608   1.1     fvdl 		 * data-valid before the required 100ns P1 setup time (8 P1
   1609   1.1     fvdl 		 * assertions in fast-160 mode).  This will only happen if
   1610   1.1     fvdl 		 * this L-Q is a continuation of a data transfer for which
   1611   1.1     fvdl 		 * we have already prefetched data into our FIFO (LQ/Data
   1612   1.1     fvdl 		 * followed by LQ/Data for the same write transaction).
   1613   1.1     fvdl 		 * This can cause some target implementations to miss the
   1614   1.1     fvdl 		 * first few data transfers on the bus.  We detect this
   1615   1.1     fvdl 		 * situation by noticing that this is the first data transfer
   1616   1.1     fvdl 		 * after an LQ (LQIWORKONLQ true), that the data transfer is
   1617   1.1     fvdl 		 * a continuation of a transfer already setup in our FIFO
   1618   1.1     fvdl 		 * (SAVEPTRS interrupt), and that the transaction is a write
   1619   1.1     fvdl 		 * (DIRECTION set in DFCNTRL). The delay is performed by
   1620   1.1     fvdl 		 * disabling SCSIEN until we see the first REQ from the
   1621   1.1     fvdl 		 * target.
   1622   1.9    perry 		 *
   1623   1.1     fvdl 		 * First instruction in an ISR cannot be a branch on
   1624   1.1     fvdl 		 * Rev A.  Snapshot LQISTAT2 so the status is not missed
   1625   1.1     fvdl 		 * and deffer the test by one instruction.
   1626   1.1     fvdl 		 */
   1627   1.1     fvdl 		mov	REG_ISR, LQISTAT2;
   1628   1.4  thorpej 		test	REG_ISR, LQIWORKONLQ jz main_isr;
   1629   1.4  thorpej 		test	SEQINTSRC, SAVEPTRS  jz main_isr;
   1630   1.1     fvdl 		test	LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
   1631   1.1     fvdl 		/*
   1632   1.4  thorpej 		 * Switch to the active FIFO after clearing the snapshot
   1633   1.4  thorpej 		 * savepointer in the current FIFO.  We do this so that
   1634   1.4  thorpej 		 * a pending CTXTDONE or SAVEPTR is visible in the active
   1635   1.4  thorpej 		 * FIFO.  This status is the only way we can detect if we
   1636   1.4  thorpej 		 * have lost the race (e.g. host paused us) and our attepts
   1637   1.4  thorpej 		 * to disable the channel occurred after all REQs were
   1638   1.4  thorpej 		 * already seen and acked (REQINIT never comes true).
   1639   1.1     fvdl 		 */
   1640   1.4  thorpej 		mvi	DFFSXFRCTL, CLRCHN;
   1641   1.1     fvdl 		xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
   1642   1.4  thorpej 		test	DFCNTRL, DIRECTION jz interrupt_return;
   1643   1.1     fvdl 		and	DFCNTRL, ~SCSIEN;
   1644   1.4  thorpej snapshot_wait_data_valid:
   1645   1.4  thorpej 		test	SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz snapshot_data_valid;
   1646   1.4  thorpej 		test	SSTAT1, REQINIT	jz snapshot_wait_data_valid;
   1647   1.4  thorpej snapshot_data_valid:
   1648   1.1     fvdl 		or	DFCNTRL, SCSIEN;
   1649   1.4  thorpej 		or	SEQINTCTL, IRET ret;
   1650   1.1     fvdl snapshot_saveptr:
   1651   1.1     fvdl 		mvi	DFFSXFRCTL, CLRCHN;
   1652   1.1     fvdl 		or	SEQINTCTL, IRET ret;
   1653   1.4  thorpej main_isr:
   1654   1.1     fvdl 	}
   1655   1.1     fvdl 	test	SEQINTSRC, CFG4DATA	jnz cfg4data_intr;
   1656   1.1     fvdl 	test	SEQINTSRC, CFG4ISTAT	jnz cfg4istat_intr;
   1657   1.1     fvdl 	test	SEQINTSRC, SAVEPTRS	jnz saveptr_intr;
   1658   1.1     fvdl 	test	SEQINTSRC, CFG4ICMD	jnz cfg4icmd_intr;
   1659   1.1     fvdl 	SET_SEQINTCODE(INVALID_SEQINT)
   1660   1.1     fvdl 
   1661   1.1     fvdl /*
   1662   1.1     fvdl  * There are two types of save pointers interrupts:
   1663   1.1     fvdl  * The first is a snapshot save pointers where the current FIFO is not
   1664  1.16   andvar  * active and contains a snapshot of the current pointer information.
   1665   1.1     fvdl  * This happens between packets in a stream for a single L_Q.  Since we
   1666   1.1     fvdl  * are not performing a pointer save, we can safely clear the channel
   1667   1.1     fvdl  * so it can be used for other transactions.  On RTI capable controllers,
   1668   1.1     fvdl  * where snapshots can, and are, disabled, the code to handle this type
   1669   1.1     fvdl  * of snapshot is not active.
   1670   1.1     fvdl  *
   1671   1.1     fvdl  * The second case is a save pointers on an active FIFO which occurs
   1672   1.1     fvdl  * if the target changes to a new L_Q or busfrees/QASes and the transfer
   1673   1.1     fvdl  * has a residual.  This should occur coincident with a ctxtdone.  We
   1674   1.1     fvdl  * disable the interrupt and allow our active routine to handle the
   1675   1.1     fvdl  * save.
   1676   1.1     fvdl  */
   1677   1.1     fvdl saveptr_intr:
   1678   1.1     fvdl 	if ((ahd->features & AHD_RTI) == 0) {
   1679   1.1     fvdl 		test	LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
   1680   1.1     fvdl 	}
   1681   1.1     fvdl saveptr_active_fifo:
   1682   1.1     fvdl 	and	SEQIMODE, ~ENSAVEPTRS;
   1683   1.1     fvdl 	or	SEQINTCTL, IRET ret;
   1684   1.1     fvdl 
   1685   1.1     fvdl cfg4data_intr:
   1686   1.4  thorpej 	test	SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count;
   1687   1.1     fvdl 	call	load_first_seg;
   1688   1.1     fvdl 	call	pkt_handle_xfer;
   1689   1.4  thorpej 	inc	SCB_FIFO_USE_COUNT;
   1690   1.4  thorpej interrupt_return:
   1691   1.1     fvdl 	or	SEQINTCTL, IRET ret;
   1692   1.1     fvdl 
   1693   1.1     fvdl cfg4istat_intr:
   1694   1.1     fvdl 	call	freeze_queue;
   1695   1.1     fvdl 	add	NONE, -13, SCB_CDB_LEN;
   1696   1.1     fvdl 	jnc	cfg4istat_have_sense_addr;
   1697   1.1     fvdl 	test	SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
   1698   1.1     fvdl 	/*
   1699   1.1     fvdl 	 * Host sets up address/count and enables transfer.
   1700   1.1     fvdl 	 */
   1701   1.1     fvdl 	SET_SEQINTCODE(CFG4ISTAT_INTR)
   1702   1.1     fvdl 	jmp	cfg4istat_setup_handler;
   1703   1.1     fvdl cfg4istat_have_sense_addr:
   1704   1.1     fvdl 	bmov	HADDR, SCB_SENSE_BUSADDR, 4;
   1705   1.1     fvdl 	mvi	HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
   1706   1.1     fvdl 	mvi	SG_CACHE_PRE, LAST_SEG;
   1707   1.1     fvdl 	mvi	DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
   1708   1.1     fvdl cfg4istat_setup_handler:
   1709   1.1     fvdl 	/*
   1710   1.1     fvdl 	 * Status pkt is transferring to host.
   1711   1.1     fvdl 	 * Wait in idle loop for transfer to complete.
   1712   1.1     fvdl 	 * If a command completed before an attempted
   1713   1.1     fvdl 	 * task management function completed, notify the host.
   1714   1.1     fvdl 	 */
   1715   1.1     fvdl 	test	SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
   1716   1.1     fvdl 	SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
   1717   1.1     fvdl cfg4istat_no_taskmgmt_func:
   1718   1.1     fvdl 	call	pkt_handle_status;
   1719   1.1     fvdl 	or	SEQINTCTL, IRET ret;
   1720   1.1     fvdl 
   1721   1.1     fvdl cfg4icmd_intr:
   1722   1.1     fvdl 	/*
   1723   1.1     fvdl 	 * In the case of DMAing a CDB from the host, the normal
   1724   1.1     fvdl 	 * CDB buffer is formatted with an 8 byte address followed
   1725   1.1     fvdl 	 * by a 1 byte count.
   1726   1.1     fvdl 	 */
   1727   1.1     fvdl 	bmov	HADDR[0], SCB_HOST_CDB_PTR, 9;
   1728   1.1     fvdl 	mvi	SG_CACHE_PRE, LAST_SEG;
   1729   1.1     fvdl 	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
   1730   1.1     fvdl 	call	pkt_handle_cdb;
   1731   1.1     fvdl 	or	SEQINTCTL, IRET ret;
   1732   1.1     fvdl 
   1733   1.1     fvdl /*
   1734   1.1     fvdl  * See if the target has gone on in this context creating an
   1735   1.1     fvdl  * overrun condition.  For the write case, the hardware cannot
   1736   1.1     fvdl  * ack bytes until data are provided.  So, if the target begins
   1737   1.1     fvdl  * another  packet without changing contexts, implying we are
   1738   1.1     fvdl  * not sitting on a packet boundary, we are in an overrun
   1739   1.1     fvdl  * situation.  For the read case, the hardware will continue to
   1740   1.1     fvdl  * ack bytes into the FIFO, and may even ack the last overrun packet
   1741   1.1     fvdl  * into the FIFO.   If the FIFO should become non-empty, we are in
   1742   1.1     fvdl  * a read overrun case.
   1743   1.1     fvdl  */
   1744   1.1     fvdl #define check_overrun							\
   1745   1.1     fvdl 	/* Not on a packet boundary. */					\
   1746   1.1     fvdl 	test 	MDFFSTAT, DLZERO jz pkt_handle_overrun;			\
   1747   1.1     fvdl 	test	DFSTATUS, FIFOEMP jz pkt_handle_overrun
   1748   1.1     fvdl 
   1749   1.1     fvdl pkt_handle_xfer:
   1750   1.1     fvdl 	test	SG_STATE, LOADING_NEEDED jz pkt_last_seg;
   1751   1.1     fvdl 	call	setjmp;
   1752   1.1     fvdl 	test	SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
   1753   1.1     fvdl 	test	SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
   1754   1.1     fvdl 	test	SCSISIGO, ATNO jnz . + 2;
   1755   1.1     fvdl 	test	SSTAT2, NONPACKREQ jz pkt_service_fifo;
   1756   1.1     fvdl 	/*
   1757   1.1     fvdl 	 * Defer handling of this NONPACKREQ until we
   1758   1.1     fvdl 	 * can be sure it pertains to this FIFO.  SAVEPTRS
   1759   1.1     fvdl 	 * will not be asserted if the NONPACKREQ is for us,
   1760  1.16   andvar 	 * so we must simulate it if shadow is valid.  If
   1761  1.16   andvar 	 * shadow is not valid, keep running this FIFO until we
   1762   1.1     fvdl 	 * have satisfied the transfer by loading segments and
   1763  1.16   andvar 	 * waiting for either shadow valid or last_seg_done.
   1764   1.1     fvdl 	 */
   1765   1.1     fvdl 	test	MDFFSTAT, SHVALID jnz pkt_saveptrs;
   1766   1.1     fvdl pkt_service_fifo:
   1767   1.1     fvdl 	test	SG_STATE, LOADING_NEEDED jnz service_fifo;
   1768   1.1     fvdl pkt_last_seg:
   1769   1.1     fvdl 	call	setjmp;
   1770   1.1     fvdl 	test	SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
   1771   1.4  thorpej 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done;
   1772   1.1     fvdl 	test	SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
   1773   1.1     fvdl 	test	SCSISIGO, ATNO jnz . + 2;
   1774   1.1     fvdl 	test	SSTAT2, NONPACKREQ jz return;
   1775   1.1     fvdl 	test	MDFFSTAT, SHVALID jz return;
   1776   1.1     fvdl 	/* FALLTHROUGH */
   1777   1.1     fvdl 
   1778   1.1     fvdl /*
   1779   1.1     fvdl  * Either a SAVEPTRS interrupt condition is pending for this FIFO
   1780   1.4  thorpej  * or we have a pending NONPACKREQ for this FIFO.  We differentiate
   1781   1.1     fvdl  * between the two by capturing the state of the SAVEPTRS interrupt
   1782   1.1     fvdl  * prior to clearing this status and executing the common code for
   1783   1.1     fvdl  * these two cases.
   1784   1.1     fvdl  */
   1785   1.1     fvdl pkt_saveptrs:
   1786   1.1     fvdl BEGIN_CRITICAL;
   1787   1.1     fvdl 	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
   1788   1.1     fvdl 		or	DFCNTRL, FIFOFLUSH;
   1789   1.1     fvdl 	}
   1790   1.1     fvdl 	mov	REG0, SEQINTSRC;
   1791   1.1     fvdl 	call	calc_residual;
   1792   1.1     fvdl 	call	save_pointers;
   1793   1.1     fvdl 	mvi	CLRSEQINTSRC, CLRSAVEPTRS;
   1794   1.1     fvdl 	call	disable_ccsgen;
   1795   1.1     fvdl 	or	SEQIMODE, ENSAVEPTRS;
   1796   1.1     fvdl 	test	DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
   1797   1.1     fvdl 	test	DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
   1798   1.1     fvdl 	/*
   1799   1.1     fvdl 	 * Keep a handler around for this FIFO until it drains
   1800   1.1     fvdl 	 * to the host to guarantee that we don't complete the
   1801   1.1     fvdl 	 * command to the host before the data arrives.
   1802   1.1     fvdl 	 */
   1803   1.1     fvdl pkt_saveptrs_wait_fifoemp:
   1804   1.1     fvdl 	call	setjmp;
   1805   1.1     fvdl 	test	DFSTATUS, FIFOEMP jz return;
   1806   1.1     fvdl pkt_saveptrs_check_status:
   1807   1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1808   1.1     fvdl 	test	REG0, SAVEPTRS jz unexpected_nonpkt_phase;
   1809   1.4  thorpej 	dec	SCB_FIFO_USE_COUNT;
   1810   1.4  thorpej 	test	SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
   1811   1.1     fvdl 	mvi	DFFSXFRCTL, CLRCHN ret;
   1812   1.1     fvdl END_CRITICAL;
   1813   1.1     fvdl 
   1814   1.4  thorpej /*
   1815   1.4  thorpej  * LAST_SEG_DONE status has been seen in the current FIFO.
   1816   1.4  thorpej  * This indicates that all of the allowed data for this
   1817   1.4  thorpej  * command has transferred across the SCSI and host buses.
   1818   1.4  thorpej  * Check for overrun and see if we can complete this command.
   1819   1.4  thorpej  */
   1820   1.4  thorpej pkt_last_seg_done:
   1821   1.1     fvdl BEGIN_CRITICAL;
   1822   1.4  thorpej 	/*
   1823   1.4  thorpej 	 * Mark transfer as completed.
   1824   1.4  thorpej 	 */
   1825   1.1     fvdl 	or	SCB_SGPTR, SG_LIST_NULL;
   1826   1.4  thorpej 
   1827   1.1     fvdl 	/*
   1828   1.4  thorpej 	 * Wait for the current context to finish to verify that
   1829   1.4  thorpej 	 * no overrun condition has occurred.
   1830   1.1     fvdl 	 */
   1831   1.4  thorpej 	test	SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
   1832   1.1     fvdl 	call	setjmp;
   1833   1.4  thorpej pkt_wait_ctxt_done_loop:
   1834   1.4  thorpej 	test	SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
   1835   1.4  thorpej 	/*
   1836   1.4  thorpej 	 * A sufficiently large overrun or a NONPACKREQ may
   1837   1.4  thorpej 	 * prevent CTXTDONE from ever asserting, so we must
   1838   1.4  thorpej 	 * poll for these statuses too.
   1839   1.4  thorpej 	 */
   1840   1.1     fvdl 	check_overrun;
   1841   1.1     fvdl 	test	SSTAT2, NONPACKREQ jz return;
   1842   1.1     fvdl 	test	SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
   1843   1.4  thorpej 	/* FALLTHROUGH */
   1844   1.4  thorpej 
   1845   1.4  thorpej pkt_ctxt_done:
   1846   1.1     fvdl 	check_overrun;
   1847   1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1848   1.4  thorpej 	/*
   1849   1.4  thorpej 	 * If status has been received, it is safe to skip
   1850   1.4  thorpej 	 * the check to see if another FIFO is active because
   1851   1.4  thorpej 	 * LAST_SEG_DONE has been observed.  However, we check
   1852   1.4  thorpej 	 * the FIFO anyway since it costs us only one extra
   1853   1.4  thorpej 	 * instruction to leverage common code to perform the
   1854   1.4  thorpej 	 * SCB completion.
   1855   1.4  thorpej 	 */
   1856   1.4  thorpej 	dec	SCB_FIFO_USE_COUNT;
   1857   1.4  thorpej 	test	SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
   1858   1.1     fvdl 	mvi	DFFSXFRCTL, CLRCHN ret;
   1859   1.1     fvdl END_CRITICAL;
   1860   1.1     fvdl 
   1861   1.1     fvdl /*
   1862   1.4  thorpej  * Must wait until CDB xfer is over before issuing the
   1863   1.4  thorpej  * clear channel.
   1864   1.4  thorpej  */
   1865   1.4  thorpej pkt_handle_cdb:
   1866   1.4  thorpej 	call	setjmp;
   1867   1.4  thorpej 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
   1868   1.4  thorpej 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1869   1.4  thorpej 	mvi	DFFSXFRCTL, CLRCHN ret;
   1870   1.4  thorpej 
   1871   1.4  thorpej /*
   1872   1.1     fvdl  * Watch over the status transfer.  Our host sense buffer is
   1873   1.1     fvdl  * large enough to take the maximum allowed status packet.
   1874   1.1     fvdl  * None-the-less, we must still catch and report overruns to
   1875   1.4  thorpej  * the host.  Additionally, properly catch unexpected non-packet
   1876   1.4  thorpej  * phases that are typically caused by CRC errors in status packet
   1877   1.4  thorpej  * transmission.
   1878   1.1     fvdl  */
   1879   1.1     fvdl pkt_handle_status:
   1880   1.4  thorpej 	call	setjmp;
   1881   1.4  thorpej 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
   1882   1.4  thorpej 	test	SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq;
   1883   1.4  thorpej 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
   1884   1.4  thorpej pkt_status_IU_done:
   1885   1.1     fvdl 	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
   1886   1.1     fvdl 		or	DFCNTRL, FIFOFLUSH;
   1887   1.1     fvdl 	}
   1888   1.4  thorpej 	test	DFSTATUS, FIFOEMP jz return;
   1889   1.4  thorpej BEGIN_CRITICAL;
   1890   1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1891   1.1     fvdl 	mvi	SCB_SCSI_STATUS, STATUS_PKT_SENSE;
   1892   1.1     fvdl 	or	SCB_CONTROL, STATUS_RCVD;
   1893   1.4  thorpej 	jmp	pkt_complete_scb_if_fifos_idle;
   1894   1.1     fvdl END_CRITICAL;
   1895   1.4  thorpej pkt_status_check_overrun:
   1896   1.1     fvdl 	/*
   1897  1.16   andvar 	 * Status PKT overruns are unceremoniously recovered with a
   1898   1.4  thorpej 	 * bus reset.  If we've overrun, let the host know so that
   1899   1.4  thorpej 	 * recovery can be performed.
   1900   1.4  thorpej 	 *
   1901   1.4  thorpej 	 * LAST_SEG_DONE has been observed.  If either CTXTDONE or
   1902   1.4  thorpej 	 * a NONPACKREQ phase change have occurred and the FIFO is
   1903   1.4  thorpej 	 * empty, there is no overrun.
   1904   1.4  thorpej 	 */
   1905   1.4  thorpej 	test	DFSTATUS, FIFOEMP jz pkt_status_report_overrun;
   1906   1.4  thorpej 	test	SEQINTSRC, CTXTDONE jz . + 2;
   1907   1.4  thorpej 	test	DFSTATUS, FIFOEMP jnz pkt_status_IU_done;
   1908   1.4  thorpej 	test	SCSIPHASE, ~DATA_PHASE_MASK jz return;
   1909   1.4  thorpej 	test	DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq;
   1910   1.4  thorpej pkt_status_report_overrun:
   1911   1.1     fvdl 	SET_SEQINTCODE(STATUS_OVERRUN)
   1912   1.4  thorpej 	/* SEQUENCER RESTARTED */
   1913   1.4  thorpej pkt_status_check_nonpackreq:
   1914   1.4  thorpej 	/*
   1915   1.4  thorpej 	 * CTXTDONE may be held off if a NONPACKREQ is associated with
   1916   1.4  thorpej 	 * the current context.  If a NONPACKREQ is observed, decide
   1917   1.4  thorpej 	 * if it is for the current context.  If it is for the current
   1918   1.4  thorpej 	 * context, we must defer NONPACKREQ processing until all data
   1919   1.4  thorpej 	 * has transferred to the host.
   1920   1.4  thorpej 	 */
   1921   1.4  thorpej 	test	SCSIPHASE, ~DATA_PHASE_MASK jz return;
   1922   1.4  thorpej 	test	SCSISIGO, ATNO jnz . + 2;
   1923   1.4  thorpej 	test	SSTAT2, NONPACKREQ jz return;
   1924   1.4  thorpej 	test	SEQINTSRC, CTXTDONE jnz pkt_status_IU_done;
   1925   1.4  thorpej 	test	DFSTATUS, FIFOEMP jz return;
   1926   1.4  thorpej 	/*
   1927   1.4  thorpej 	 * The unexpected nonpkt phase handler assumes that any
   1928   1.4  thorpej 	 * data channel use will have a FIFO reference count.  It
   1929  1.15   andvar 	 * turns out that the status handler doesn't need a reference
   1930   1.4  thorpej 	 * count since the status received flag, and thus completion
   1931   1.4  thorpej 	 * processing, cannot be set until the handler is finished.
   1932   1.4  thorpej 	 * We increment the count here to make the nonpkt handler
   1933   1.4  thorpej 	 * happy.
   1934   1.4  thorpej 	 */
   1935   1.4  thorpej 	inc	SCB_FIFO_USE_COUNT;
   1936   1.4  thorpej 	/* FALLTHROUGH */
   1937   1.1     fvdl 
   1938   1.1     fvdl /*
   1939   1.1     fvdl  * Nonpackreq is a polled status.  It can come true in three situations:
   1940   1.1     fvdl  * we have received an L_Q, we have sent one or more L_Qs, or there is no
   1941   1.1     fvdl  * L_Q context associated with this REQ (REQ occurs immediately after a
   1942   1.1     fvdl  * (re)selection).  Routines that know that the context responsible for this
   1943   1.1     fvdl  * nonpackreq call directly into unexpected_nonpkt_phase.  In the case of the
   1944   1.1     fvdl  * top level idle loop, we exhaust all active contexts prior to determining that
   1945   1.1     fvdl  * we simply do not have the full I_T_L_Q for this phase.
   1946   1.1     fvdl  */
   1947   1.1     fvdl unexpected_nonpkt_phase_find_ctxt:
   1948   1.1     fvdl 	/*
   1949   1.1     fvdl 	 * This nonpackreq is most likely associated with one of the tags
   1950   1.1     fvdl 	 * in a FIFO or an outgoing LQ.  Only treat it as an I_T only
   1951   1.1     fvdl 	 * nonpackreq if we've cleared out the FIFOs and handled any
   1952   1.1     fvdl 	 * pending SELDO.
   1953   1.1     fvdl 	 */
   1954   1.1     fvdl SET_SRC_MODE	M_SCSI;
   1955   1.1     fvdl SET_DST_MODE	M_SCSI;
   1956   1.1     fvdl 	and	A, FIFO1FREE|FIFO0FREE, DFFSTAT;
   1957   1.1     fvdl 	cmp	A, FIFO1FREE|FIFO0FREE jne return;
   1958   1.1     fvdl 	test	SSTAT0, SELDO jnz return;
   1959   1.1     fvdl 	mvi	SCBPTR[1], SCB_LIST_NULL;
   1960   1.1     fvdl unexpected_nonpkt_phase:
   1961   1.7  thorpej 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
   1962   1.7  thorpej 		jnz unexpected_nonpkt_mode_cleared;
   1963   1.1     fvdl SET_SRC_MODE	M_DFF0;
   1964   1.1     fvdl SET_DST_MODE	M_DFF0;
   1965   1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1966   1.4  thorpej 	dec	SCB_FIFO_USE_COUNT;
   1967   1.1     fvdl 	mvi	DFFSXFRCTL, CLRCHN;
   1968   1.7  thorpej unexpected_nonpkt_mode_cleared:
   1969   1.1     fvdl 	mvi	CLRSINT2, CLRNONPACKREQ;
   1970   1.1     fvdl 	test	SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
   1971   1.1     fvdl 	SET_SEQINTCODE(ENTERING_NONPACK)
   1972   1.1     fvdl 	jmp	ITloop;
   1973   1.1     fvdl 
   1974   1.1     fvdl illegal_phase:
   1975   1.1     fvdl 	SET_SEQINTCODE(ILLEGAL_PHASE)
   1976   1.1     fvdl 	jmp	ITloop;
   1977   1.1     fvdl 
   1978   1.1     fvdl /*
   1979   1.1     fvdl  * We have entered an overrun situation.  If we have working
   1980   1.1     fvdl  * BITBUCKET, flip that on and let the hardware eat any overrun
   1981   1.1     fvdl  * data.  Otherwise use an overrun buffer in the host to simulate
   1982   1.1     fvdl  * BITBUCKET.
   1983   1.1     fvdl  */
   1984   1.4  thorpej pkt_handle_overrun_inc_use_count:
   1985   1.4  thorpej 	inc	SCB_FIFO_USE_COUNT;
   1986   1.1     fvdl pkt_handle_overrun:
   1987   1.1     fvdl 	SET_SEQINTCODE(CFG4OVERRUN)
   1988   1.1     fvdl 	call	freeze_queue;
   1989   1.1     fvdl 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
   1990   1.1     fvdl 		or	DFFSXFRCTL, DFFBITBUCKET;
   1991   1.1     fvdl SET_SRC_MODE	M_DFF1;
   1992   1.1     fvdl SET_DST_MODE	M_DFF1;
   1993   1.1     fvdl 	} else {
   1994   1.1     fvdl 		call	load_overrun_buf;
   1995   1.1     fvdl 		mvi	DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
   1996   1.1     fvdl 	}
   1997   1.1     fvdl 	call	setjmp;
   1998   1.1     fvdl 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
   1999   1.1     fvdl 		test	DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
   2000   1.1     fvdl 		call	load_overrun_buf;
   2001   1.1     fvdl 		or	DFCNTRL, PRELOADEN;
   2002   1.1     fvdl overrun_load_done:
   2003   1.1     fvdl 		test	SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
   2004   1.1     fvdl 	} else {
   2005   1.1     fvdl 		test	DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
   2006   1.1     fvdl 	}
   2007   1.1     fvdl 	test	SSTAT2, NONPACKREQ jz return;
   2008   1.1     fvdl pkt_overrun_end:
   2009   1.1     fvdl 	or	SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
   2010   1.1     fvdl 	test	SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
   2011   1.4  thorpej 	dec	SCB_FIFO_USE_COUNT;
   2012   1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   2013   1.4  thorpej 	test	SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
   2014   1.1     fvdl 	mvi	DFFSXFRCTL, CLRCHN ret;
   2015   1.1     fvdl 
   2016   1.1     fvdl if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
   2017   1.1     fvdl load_overrun_buf:
   2018   1.1     fvdl 	/*
   2019   1.1     fvdl 	 * Load a dummy segment if preload space is available.
   2020   1.1     fvdl 	 */
   2021   1.1     fvdl 	mov 	HADDR[0], SHARED_DATA_ADDR;
   2022   1.1     fvdl 	add	HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
   2023   1.1     fvdl 	mov	ACCUM_SAVE, A;
   2024   1.1     fvdl 	clr	A;
   2025   1.1     fvdl 	adc	HADDR[2], A, SHARED_DATA_ADDR[2];
   2026   1.1     fvdl 	adc	HADDR[3], A, SHARED_DATA_ADDR[3];
   2027   1.1     fvdl 	mov	A, ACCUM_SAVE;
   2028   1.1     fvdl 	bmov	HADDR[4], ALLZEROS, 4;
   2029   1.1     fvdl 	/* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
   2030   1.1     fvdl 	clr	HCNT[0];
   2031   1.1     fvdl 	mvi	HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
   2032   1.1     fvdl 	clr	HCNT[2] ret;
   2033   1.1     fvdl }
   2034