Home | History | Annotate | Line # | Download | only in aic7xxx
aic79xx.seq revision 1.8.10.1
      1  1.8.10.1     yamt /*	$NetBSD: aic79xx.seq,v 1.8.10.1 2005/03/19 08:34:42 yamt Exp $	*/
      2       1.4  thorpej 
      3       1.1     fvdl /*
      4       1.1     fvdl  * Adaptec U320 device driver firmware for Linux and FreeBSD.
      5       1.1     fvdl  *
      6       1.1     fvdl  * Copyright (c) 1994-2001 Justin T. Gibbs.
      7       1.1     fvdl  * Copyright (c) 2000-2002 Adaptec Inc.
      8       1.1     fvdl  * All rights reserved.
      9       1.1     fvdl  *
     10       1.1     fvdl  * Redistribution and use in source and binary forms, with or without
     11       1.1     fvdl  * modification, are permitted provided that the following conditions
     12       1.1     fvdl  * are met:
     13       1.1     fvdl  * 1. Redistributions of source code must retain the above copyright
     14       1.1     fvdl  *    notice, this list of conditions, and the following disclaimer,
     15       1.1     fvdl  *    without modification.
     16       1.1     fvdl  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     17       1.1     fvdl  *    substantially similar to the "NO WARRANTY" disclaimer below
     18       1.1     fvdl  *    ("Disclaimer") and any redistribution must be conditioned upon
     19       1.1     fvdl  *    including a substantially similar Disclaimer requirement for further
     20       1.1     fvdl  *    binary redistribution.
     21       1.1     fvdl  * 3. Neither the names of the above-listed copyright holders nor the names
     22       1.1     fvdl  *    of any contributors may be used to endorse or promote products derived
     23       1.1     fvdl  *    from this software without specific prior written permission.
     24       1.1     fvdl  *
     25       1.1     fvdl  * Alternatively, this software may be distributed under the terms of the
     26       1.1     fvdl  * GNU General Public License ("GPL") version 2 as published by the Free
     27       1.1     fvdl  * Software Foundation.
     28       1.1     fvdl  *
     29       1.1     fvdl  * NO WARRANTY
     30       1.1     fvdl  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     31       1.1     fvdl  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     32       1.1     fvdl  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
     33       1.1     fvdl  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     34       1.1     fvdl  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35       1.1     fvdl  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36       1.1     fvdl  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37       1.1     fvdl  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     38       1.1     fvdl  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     39       1.1     fvdl  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     40       1.1     fvdl  * POSSIBILITY OF SUCH DAMAGES.
     41       1.1     fvdl  *
     42       1.8  thorpej  * $FreeBSD: src/sys/dev/aic7xxx/aic79xx.seq,v 1.13 2003/06/28 04:44:10 gibbs Exp $
     43       1.1     fvdl  */
     44       1.1     fvdl 
     45       1.8  thorpej VERSION = "Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#96 $"
     46       1.1     fvdl PATCH_ARG_LIST = "struct ahd_softc *ahd"
     47       1.1     fvdl PREFIX = "ahd_"
     48       1.1     fvdl 
     49       1.1     fvdl #include <dev/microcode/aic7xxx/aic79xx.reg>
     50       1.1     fvdl #include <dev/scsipi/scsi_message.h>
     51       1.1     fvdl 
     52       1.1     fvdl restart:
     53       1.1     fvdl if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
     54       1.1     fvdl 	test	SEQINTCODE, 0xFF jz idle_loop;
     55       1.1     fvdl 	SET_SEQINTCODE(NO_SEQINT)
     56       1.1     fvdl }
     57       1.1     fvdl 
     58       1.1     fvdl idle_loop:
     59       1.1     fvdl 
     60       1.1     fvdl 	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
     61       1.1     fvdl 		/*
     62       1.1     fvdl 		 * Convert ERROR status into a sequencer
     63       1.1     fvdl 		 * interrupt to handle the case of an
     64       1.1     fvdl 		 * interrupt collision on the hardware
     65       1.1     fvdl 		 * setting of HWERR.
     66       1.1     fvdl 		 */
     67       1.1     fvdl 		test	ERROR, 0xFF jz no_error_set;
     68       1.1     fvdl 		SET_SEQINTCODE(SAW_HWERR)
     69       1.1     fvdl no_error_set:
     70       1.1     fvdl 	}
     71       1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
     72       1.1     fvdl 	test	SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
     73       1.1     fvdl 	test	SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus;
     74       1.1     fvdl 	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
     75       1.1     fvdl 	/*
     76       1.1     fvdl 	 * ENSELO is cleared by a SELDO, so we must test for SELDO
     77       1.1     fvdl 	 * one last time.
     78       1.1     fvdl 	 */
     79       1.1     fvdl BEGIN_CRITICAL;
     80       1.1     fvdl 	test	SSTAT0, SELDO jnz select_out;
     81       1.1     fvdl END_CRITICAL;
     82       1.1     fvdl 	call	start_selection;
     83       1.1     fvdl idle_loop_checkbus:
     84       1.1     fvdl BEGIN_CRITICAL;
     85       1.1     fvdl 	test	SSTAT0, SELDO jnz select_out;
     86       1.1     fvdl END_CRITICAL;
     87       1.1     fvdl 	test	SSTAT0, SELDI jnz select_in;
     88       1.1     fvdl 	test	SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
     89       1.1     fvdl 	test	SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
     90       1.1     fvdl 	call	unexpected_nonpkt_phase_find_ctxt;
     91       1.1     fvdl idle_loop_check_nonpackreq:
     92       1.1     fvdl 	test	SSTAT2, NONPACKREQ jz . + 2;
     93       1.1     fvdl 	call	unexpected_nonpkt_phase_find_ctxt;
     94       1.4  thorpej 	if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
     95       1.4  thorpej 		and	A, FIFO0FREE|FIFO1FREE, DFFSTAT;
     96       1.4  thorpej 		cmp	A, FIFO0FREE|FIFO1FREE jne . + 3;
     97       1.4  thorpej 		and	SBLKCTL, ~DIAGLEDEN|DIAGLEDON;
     98       1.4  thorpej 		jmp	. + 2;
     99       1.4  thorpej 		or	SBLKCTL, DIAGLEDEN|DIAGLEDON;
    100       1.4  thorpej 	}
    101       1.1     fvdl 	call	idle_loop_gsfifo_in_scsi_mode;
    102       1.1     fvdl 	call	idle_loop_service_fifos;
    103       1.1     fvdl 	call	idle_loop_cchan;
    104       1.1     fvdl 	jmp	idle_loop;
    105       1.1     fvdl 
    106       1.1     fvdl BEGIN_CRITICAL;
    107       1.1     fvdl idle_loop_gsfifo:
    108       1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
    109       1.1     fvdl idle_loop_gsfifo_in_scsi_mode:
    110       1.1     fvdl 	test	LQISTAT2, LQIGSAVAIL jz return;
    111       1.1     fvdl 	/*
    112       1.1     fvdl 	 * We have received good status for this transaction.  There may
    113       1.4  thorpej 	 * still be data in our FIFOs draining to the host.  Complete
    114       1.4  thorpej 	 * the SCB only if all data has transferred to the host.
    115       1.1     fvdl 	 */
    116       1.1     fvdl good_status_IU_done:
    117       1.1     fvdl 	bmov	SCBPTR, GSFIFO, 2;
    118       1.1     fvdl 	clr	SCB_SCSI_STATUS;
    119       1.1     fvdl 	/*
    120       1.1     fvdl 	 * If a command completed before an attempted task management
    121       1.1     fvdl 	 * function completed, notify the host after disabling any
    122       1.1     fvdl 	 * pending select-outs.
    123       1.1     fvdl 	 */
    124       1.1     fvdl 	test	SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
    125       1.1     fvdl 	test	SSTAT0, SELDO|SELINGO jnz . + 2;
    126       1.1     fvdl 	and	SCSISEQ0, ~ENSELO;
    127       1.1     fvdl 	SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
    128       1.1     fvdl gsfifo_complete_normally:
    129       1.1     fvdl 	or	SCB_CONTROL, STATUS_RCVD;
    130       1.1     fvdl 
    131       1.1     fvdl 	/*
    132       1.1     fvdl 	 * Since this status did not consume a FIFO, we have to
    133       1.1     fvdl 	 * be a bit more dilligent in how we check for FIFOs pertaining
    134       1.1     fvdl 	 * to this transaction.  There are two states that a FIFO still
    135       1.1     fvdl 	 * transferring data may be in.
    136       1.1     fvdl 	 *
    137       1.1     fvdl 	 * 1) Configured and draining to the host, with a FIFO handler.
    138       1.1     fvdl 	 * 2) Pending cfg4data, fifo not empty.
    139       1.1     fvdl 	 *
    140       1.4  thorpej 	 * Case 1 can be detected by noticing a non-zero FIFO active
    141       1.4  thorpej 	 * count in the SCB.  In this case, we allow the routine servicing
    142       1.4  thorpej 	 * the FIFO to complete the SCB.
    143  1.8.10.1     yamt 	 *
    144       1.1     fvdl 	 * Case 2 implies either a pending or yet to occur save data
    145       1.1     fvdl 	 * pointers for this same context in the other FIFO.  So, if
    146       1.1     fvdl 	 * we detect case 1, we will properly defer the post of the SCB
    147       1.1     fvdl 	 * and achieve the desired result.  The pending cfg4data will
    148       1.1     fvdl 	 * notice that status has been received and complete the SCB.
    149       1.1     fvdl 	 */
    150       1.4  thorpej 	test	SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode;
    151       1.1     fvdl 	call	complete;
    152       1.1     fvdl END_CRITICAL;
    153       1.1     fvdl 	jmp	idle_loop_gsfifo_in_scsi_mode;
    154       1.1     fvdl 
    155       1.1     fvdl idle_loop_service_fifos:
    156       1.1     fvdl 	SET_MODE(M_DFF0, M_DFF0)
    157       1.1     fvdl 	test	LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
    158       1.1     fvdl 	call	longjmp;
    159       1.1     fvdl idle_loop_next_fifo:
    160       1.1     fvdl 	SET_MODE(M_DFF1, M_DFF1)
    161       1.1     fvdl 	test	LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
    162       1.4  thorpej return:
    163       1.1     fvdl 	ret;
    164       1.1     fvdl 
    165       1.1     fvdl idle_loop_cchan:
    166       1.1     fvdl 	SET_MODE(M_CCHAN, M_CCHAN)
    167       1.1     fvdl 	test	QOFF_CTLSTA, HS_MAILBOX_ACT jz	hs_mailbox_empty;
    168       1.1     fvdl 	mov	LOCAL_HS_MAILBOX, HS_MAILBOX;
    169       1.1     fvdl 	or	QOFF_CTLSTA, HS_MAILBOX_ACT;
    170       1.1     fvdl hs_mailbox_empty:
    171       1.1     fvdl BEGIN_CRITICAL;
    172       1.1     fvdl 	test	CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
    173       1.1     fvdl 	test	CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
    174       1.1     fvdl 	test	CCSCBCTL, CCSCBDONE jz return;
    175       1.1     fvdl END_CRITICAL;
    176       1.1     fvdl 	/* FALLTHROUGH */
    177       1.1     fvdl scbdma_tohost_done:
    178       1.1     fvdl 	test	CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
    179       1.1     fvdl 	/*
    180       1.4  thorpej 	 * An SCB has been succesfully uploaded to the host.
    181       1.4  thorpej 	 * If the SCB was uploaded for some reason other than
    182       1.4  thorpej 	 * bad SCSI status (currently only for underruns), we
    183       1.4  thorpej 	 * queue the SCB for normal completion.  Otherwise, we
    184       1.4  thorpej 	 * wait until any select-out activity has halted, and
    185       1.4  thorpej 	 * then notify the host so that the transaction can be
    186       1.4  thorpej 	 * dealt with.
    187       1.1     fvdl 	 */
    188       1.4  thorpej 	test	SCB_SCSI_STATUS, 0xff jnz scbdma_notify_host;
    189       1.4  thorpej 	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
    190       1.4  thorpej 	bmov	COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
    191       1.4  thorpej 	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
    192       1.4  thorpej 	bmov	COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
    193       1.4  thorpej scbdma_notify_host:
    194       1.4  thorpej 	SET_MODE(M_SCSI, M_SCSI)
    195       1.4  thorpej 	test	SCSISEQ0, ENSELO jnz return;
    196       1.4  thorpej 	test	SSTAT0, (SELDO|SELINGO) jnz return;
    197       1.4  thorpej 	SET_MODE(M_CCHAN, M_CCHAN)
    198       1.4  thorpej 	/*
    199       1.4  thorpej 	 * Remove SCB and notify host.
    200       1.4  thorpej 	 */
    201       1.4  thorpej 	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
    202       1.4  thorpej 	bmov	COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
    203       1.4  thorpej 	SET_SEQINTCODE(BAD_SCB_STATUS)
    204       1.4  thorpej 	ret;
    205       1.1     fvdl fill_qoutfifo_dmadone:
    206       1.1     fvdl 	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
    207       1.1     fvdl 	call	qoutfifo_updated;
    208       1.1     fvdl 	mvi	COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
    209       1.1     fvdl 	bmov	QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
    210       1.1     fvdl 	test	QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
    211       1.1     fvdl 	bmov	QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
    212       1.1     fvdl 	xor	QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
    213       1.1     fvdl 
    214       1.1     fvdl qoutfifo_updated:
    215       1.1     fvdl 	/*
    216       1.2      wiz 	 * If there are more commands waiting to be DMA'ed
    217       1.3      wiz 	 * to the host, always coalesce.  Otherwise honor the
    218       1.1     fvdl 	 * host's wishes.
    219       1.1     fvdl 	 */
    220       1.3      wiz 	cmp	COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
    221       1.3      wiz 	cmp	COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
    222       1.3      wiz 	test	LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt;
    223       1.1     fvdl 
    224       1.1     fvdl 	/*
    225       1.1     fvdl 	 * If we have relatively few commands outstanding, don't
    226       1.1     fvdl 	 * bother waiting for another command to complete.
    227       1.1     fvdl 	 */
    228       1.3      wiz 	test	CMDS_PENDING[1], 0xFF jnz coalesce_by_count;
    229       1.1     fvdl 	/* Add -1 so that jnc means <= not just < */
    230       1.3      wiz 	add	A, -1, INT_COALESCING_MINCMDS;
    231       1.1     fvdl 	add	NONE, A, CMDS_PENDING;
    232       1.1     fvdl 	jnc	issue_cmdcmplt;
    233  1.8.10.1     yamt 
    234       1.1     fvdl 	/*
    235       1.3      wiz 	 * If coalescing, only coalesce up to the limit
    236       1.1     fvdl 	 * provided by the host driver.
    237       1.1     fvdl 	 */
    238       1.3      wiz coalesce_by_count:
    239       1.3      wiz 	mov	A, INT_COALESCING_MAXCMDS;
    240       1.3      wiz 	add	NONE, A, INT_COALESCING_CMDCOUNT;
    241       1.1     fvdl 	jc	issue_cmdcmplt;
    242       1.1     fvdl 	/*
    243       1.1     fvdl 	 * If the timer is not currently active,
    244       1.1     fvdl 	 * fire it up.
    245       1.1     fvdl 	 */
    246       1.1     fvdl 	test	INTCTL, SWTMINTMASK jz return;
    247       1.3      wiz 	bmov	SWTIMER, INT_COALESCING_TIMER, 2;
    248       1.1     fvdl 	mvi	CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
    249       1.1     fvdl 	or	INTCTL, SWTMINTEN|SWTIMER_START;
    250       1.1     fvdl 	and	INTCTL, ~SWTMINTMASK ret;
    251       1.1     fvdl 
    252       1.1     fvdl issue_cmdcmplt:
    253       1.1     fvdl 	mvi	INTSTAT, CMDCMPLT;
    254       1.3      wiz 	clr	INT_COALESCING_CMDCOUNT;
    255       1.1     fvdl 	or	INTCTL, SWTMINTMASK ret;
    256       1.1     fvdl 
    257       1.1     fvdl BEGIN_CRITICAL;
    258       1.1     fvdl fetch_new_scb_inprog:
    259       1.1     fvdl 	test	CCSCBCTL, ARRDONE jz return;
    260       1.1     fvdl fetch_new_scb_done:
    261       1.1     fvdl 	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
    262       1.1     fvdl 	bmov	REG0, SCBPTR, 2;
    263       1.1     fvdl 	clr	A;
    264       1.1     fvdl 	add	CMDS_PENDING, 1;
    265       1.1     fvdl 	adc	CMDS_PENDING[1], A;
    266       1.5  thorpej 	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
    267       1.5  thorpej 		/*
    268       1.5  thorpej 		 * "Short Luns" are not placed into outgoing LQ
    269       1.5  thorpej 		 * packets in the correct byte order.  Use a full
    270       1.5  thorpej 		 * sized lun field instead and fill it with the
    271       1.5  thorpej 		 * one byte of lun information we support.
    272       1.5  thorpej 		 */
    273       1.5  thorpej 		mov	SCB_PKT_LUN[6], SCB_LUN;
    274       1.5  thorpej 	}
    275       1.4  thorpej 	/*
    276       1.4  thorpej 	 * The FIFO use count field is shared with the
    277       1.4  thorpej 	 * tag set by the host so that our SCB dma engine
    278       1.4  thorpej 	 * knows the correct location to store the SCB.
    279       1.4  thorpej 	 * Set it to zero before processing the SCB.
    280       1.4  thorpej 	 */
    281       1.8  thorpej 	clr	SCB_FIFO_USE_COUNT;
    282       1.1     fvdl 	/* Update the next SCB address to download. */
    283       1.1     fvdl 	bmov	NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
    284       1.1     fvdl 	mvi	SCB_NEXT[1], SCB_LIST_NULL;
    285       1.1     fvdl 	mvi	SCB_NEXT2[1], SCB_LIST_NULL;
    286       1.1     fvdl 	/* Increment our position in the QINFIFO. */
    287       1.1     fvdl 	mov	NONE, SNSCB_QOFF;
    288       1.1     fvdl 	/*
    289       1.1     fvdl 	 * SCBs that want to send messages are always
    290       1.1     fvdl 	 * queued independently.  This ensures that they
    291       1.1     fvdl 	 * are at the head of the SCB list to select out
    292       1.1     fvdl 	 * to a target and we will see the MK_MESSAGE flag.
    293       1.1     fvdl 	 */
    294       1.1     fvdl 	test	SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb;
    295       1.1     fvdl 	shr	SINDEX, 3, SCB_SCSIID;
    296       1.1     fvdl 	and	SINDEX, ~0x1;
    297       1.1     fvdl 	mvi	SINDEX[1], (WAITING_SCB_TAILS >> 8);
    298       1.1     fvdl 	bmov	DINDEX, SINDEX, 2;
    299       1.1     fvdl 	bmov	SCBPTR, SINDIR, 2;
    300       1.1     fvdl 	bmov	DINDIR, REG0, 2;
    301       1.1     fvdl 	cmp	SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
    302       1.1     fvdl 	bmov	SCB_NEXT, REG0, 2 ret;
    303       1.1     fvdl first_new_target_scb:
    304       1.1     fvdl 	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
    305       1.1     fvdl 	bmov	SCBPTR, WAITING_TID_TAIL, 2;
    306       1.1     fvdl 	bmov	SCB_NEXT2, REG0, 2;
    307       1.1     fvdl 	bmov	WAITING_TID_TAIL, REG0, 2 ret;
    308       1.1     fvdl first_new_scb:
    309       1.1     fvdl 	bmov	WAITING_TID_HEAD, REG0, 2;
    310       1.1     fvdl 	bmov	WAITING_TID_TAIL, REG0, 2 ret;
    311       1.1     fvdl END_CRITICAL;
    312       1.1     fvdl 
    313       1.1     fvdl scbdma_idle:
    314       1.1     fvdl 	/*
    315       1.1     fvdl 	 * Give precedence to downloading new SCBs to execute
    316       1.1     fvdl 	 * unless select-outs are currently frozen.
    317       1.1     fvdl 	 */
    318       1.1     fvdl 	test	SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2;
    319       1.1     fvdl BEGIN_CRITICAL;
    320       1.1     fvdl 	test	QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
    321       1.1     fvdl 	cmp	COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
    322       1.1     fvdl 	cmp	COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
    323       1.1     fvdl 	/* FALLTHROUGH */
    324       1.1     fvdl fill_qoutfifo:
    325       1.1     fvdl 	/*
    326       1.2      wiz 	 * Keep track of the SCBs we are DMA'ing just
    327       1.1     fvdl 	 * in case the DMA fails or is aborted.
    328       1.1     fvdl 	 */
    329       1.1     fvdl 	mov	A, QOUTFIFO_ENTRY_VALID_TAG;
    330       1.1     fvdl 	bmov	COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
    331       1.1     fvdl 	mvi	CCSCBCTL, CCSCBRESET;
    332       1.1     fvdl 	bmov	SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
    333       1.1     fvdl 	bmov	SCBPTR, COMPLETE_SCB_HEAD, 2;
    334       1.1     fvdl fill_qoutfifo_loop:
    335       1.1     fvdl 	mov	CCSCBRAM, SCBPTR;
    336       1.1     fvdl 	or	CCSCBRAM, A, SCBPTR[1];
    337       1.1     fvdl 	mov	NONE, SDSCB_QOFF;
    338       1.3      wiz 	inc	INT_COALESCING_CMDCOUNT;
    339       1.1     fvdl 	add	CMDS_PENDING, -1;
    340       1.1     fvdl 	adc	CMDS_PENDING[1], -1;
    341       1.1     fvdl 	cmp	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
    342       1.1     fvdl 	cmp	CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
    343       1.1     fvdl 	test	QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
    344       1.1     fvdl 	bmov	SCBPTR, SCB_NEXT_COMPLETE, 2;
    345       1.1     fvdl 	jmp	fill_qoutfifo_loop;
    346       1.1     fvdl fill_qoutfifo_done:
    347       1.1     fvdl 	mov	SCBHCNT, CCSCBADDR;
    348       1.1     fvdl 	mvi	CCSCBCTL, CCSCBEN|CCSCBRESET;
    349       1.1     fvdl 	bmov	COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
    350       1.1     fvdl 	mvi	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
    351       1.1     fvdl 
    352       1.1     fvdl fetch_new_scb:
    353       1.1     fvdl 	bmov	SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
    354       1.1     fvdl 	mvi	CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
    355       1.1     fvdl dma_complete_scb:
    356       1.1     fvdl 	bmov	SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
    357       1.1     fvdl 	bmov	SCBHADDR, SCB_BUSADDR, 4;
    358       1.4  thorpej 	mvi	CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb;
    359       1.1     fvdl END_CRITICAL;
    360       1.1     fvdl 
    361       1.1     fvdl /*
    362       1.1     fvdl  * Either post or fetch an SCB from host memory.  The caller
    363       1.1     fvdl  * is responsible for polling for transfer completion.
    364       1.1     fvdl  *
    365       1.1     fvdl  * Prerequisits: Mode == M_CCHAN
    366       1.1     fvdl  *		 SINDEX contains CCSCBCTL flags
    367       1.1     fvdl  *		 SCBHADDR set to Host SCB address
    368       1.1     fvdl  *		 SCBPTR set to SCB src location on "push" operations
    369       1.1     fvdl  */
    370       1.1     fvdl SET_SRC_MODE	M_CCHAN;
    371       1.1     fvdl SET_DST_MODE	M_CCHAN;
    372       1.1     fvdl dma_scb:
    373       1.1     fvdl 	mvi	SCBHCNT, SCB_TRANSFER_SIZE;
    374       1.1     fvdl 	mov	CCSCBCTL, SINDEX ret;
    375       1.1     fvdl 
    376       1.1     fvdl BEGIN_CRITICAL;
    377       1.1     fvdl setjmp:
    378       1.1     fvdl 	bmov	LONGJMP_ADDR, STACK, 2 ret;
    379       1.1     fvdl setjmp_inline:
    380       1.1     fvdl 	bmov	LONGJMP_ADDR, STACK, 2;
    381       1.1     fvdl longjmp:
    382       1.1     fvdl 	bmov	STACK, LONGJMP_ADDR, 2 ret;
    383       1.1     fvdl END_CRITICAL;
    384       1.1     fvdl 
    385       1.1     fvdl /*************************** Chip Bug Work Arounds ****************************/
    386       1.1     fvdl /*
    387       1.1     fvdl  * Must disable interrupts when setting the mode pointer
    388       1.1     fvdl  * register as an interrupt occurring mid update will
    389       1.1     fvdl  * fail to store the new mode value for restoration on
    390       1.1     fvdl  * an iret.
    391       1.1     fvdl  */
    392       1.1     fvdl if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
    393       1.1     fvdl set_mode_work_around:
    394       1.1     fvdl 	mvi	SEQINTCTL, INTVEC1DSL;
    395       1.1     fvdl 	mov	MODE_PTR, SINDEX;
    396       1.1     fvdl 	clr	SEQINTCTL ret;
    397       1.1     fvdl 
    398       1.1     fvdl toggle_dff_mode_work_around:
    399       1.1     fvdl 	mvi	SEQINTCTL, INTVEC1DSL;
    400       1.1     fvdl 	xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
    401       1.1     fvdl 	clr	SEQINTCTL ret;
    402       1.1     fvdl }
    403       1.1     fvdl 
    404       1.1     fvdl 
    405       1.1     fvdl if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
    406       1.1     fvdl set_seqint_work_around:
    407       1.1     fvdl 	mov	SEQINTCODE, SINDEX;
    408       1.1     fvdl 	mvi	SEQINTCODE, NO_SEQINT ret;
    409       1.1     fvdl }
    410       1.1     fvdl 
    411       1.1     fvdl /************************ Packetized LongJmp Routines *************************/
    412       1.1     fvdl SET_SRC_MODE	M_SCSI;
    413       1.1     fvdl SET_DST_MODE	M_SCSI;
    414       1.1     fvdl start_selection:
    415       1.1     fvdl BEGIN_CRITICAL;
    416       1.1     fvdl 	if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
    417       1.1     fvdl 		/*
    418       1.1     fvdl 		 * Razor #494
    419       1.1     fvdl 		 * Rev A hardware fails to update LAST/CURR/NEXTSCB
    420       1.1     fvdl 		 * correctly after a packetized selection in several
    421       1.1     fvdl 		 * situations:
    422       1.1     fvdl 		 *
    423       1.1     fvdl 		 * 1) If only one command existed in the queue, the
    424       1.1     fvdl 		 *    LAST/CURR/NEXTSCB are unchanged.
    425       1.1     fvdl 		 *
    426       1.1     fvdl 		 * 2) In a non QAS, protocol allowed phase change,
    427       1.1     fvdl 		 *    the queue is shifted 1 too far.  LASTSCB is
    428       1.1     fvdl 		 *    the last SCB that was correctly processed.
    429  1.8.10.1     yamt 		 *
    430       1.1     fvdl 		 * 3) In the QAS case, if the full list of commands
    431       1.1     fvdl 		 *    was successfully sent, NEXTSCB is NULL and neither
    432       1.1     fvdl 		 *    CURRSCB nor LASTSCB can be trusted.  We must
    433       1.1     fvdl 		 *    manually walk the list counting MAXCMDCNT elements
    434       1.1     fvdl 		 *    to find the last SCB that was sent correctly.
    435       1.1     fvdl 		 *
    436       1.1     fvdl 		 * To simplify the workaround for this bug in SELDO
    437       1.1     fvdl 		 * handling, we initialize LASTSCB prior to enabling
    438       1.1     fvdl 		 * selection so we can rely on it even for case #1 above.
    439       1.1     fvdl 		 */
    440       1.1     fvdl 		bmov	LASTSCB, WAITING_TID_HEAD, 2;
    441       1.1     fvdl 	}
    442       1.1     fvdl 	bmov	CURRSCB, WAITING_TID_HEAD, 2;
    443       1.1     fvdl 	bmov	SCBPTR, WAITING_TID_HEAD, 2;
    444       1.1     fvdl 	shr	SELOID, 4, SCB_SCSIID;
    445       1.1     fvdl 	/*
    446       1.1     fvdl 	 * If we want to send a message to the device, ensure
    447       1.1     fvdl 	 * we are selecting with atn irregardless of our packetized
    448       1.1     fvdl 	 * agreement.  Since SPI4 only allows target reset or PPR
    449       1.1     fvdl 	 * messages if this is a packetized connection, the change
    450       1.1     fvdl 	 * to our negotiation table entry for this selection will
    451       1.1     fvdl 	 * be cleared when the message is acted on.
    452       1.1     fvdl 	 */
    453       1.1     fvdl 	test	SCB_CONTROL, MK_MESSAGE jz . + 3;
    454       1.1     fvdl 	mov	NEGOADDR, SELOID;
    455       1.1     fvdl 	or	NEGCONOPTS, ENAUTOATNO;
    456       1.1     fvdl 	or	SCSISEQ0, ENSELO ret;
    457       1.1     fvdl END_CRITICAL;
    458       1.1     fvdl 
    459       1.1     fvdl /*
    460       1.1     fvdl  * Allocate a FIFO for a non-packetized transaction.
    461       1.1     fvdl  * In RevA hardware, both FIFOs must be free before we
    462       1.1     fvdl  * can allocate a FIFO for a non-packetized transaction.
    463       1.1     fvdl  */
    464       1.1     fvdl allocate_fifo_loop:
    465       1.1     fvdl 	/*
    466       1.1     fvdl 	 * Do whatever work is required to free a FIFO.
    467       1.1     fvdl 	 */
    468       1.1     fvdl 	call	idle_loop_service_fifos;
    469       1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
    470       1.1     fvdl allocate_fifo:
    471       1.1     fvdl 	if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
    472       1.1     fvdl 		and	A, FIFO0FREE|FIFO1FREE, DFFSTAT;
    473       1.1     fvdl 		cmp	A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
    474       1.1     fvdl 	} else {
    475       1.1     fvdl 		test	DFFSTAT, FIFO1FREE jnz allocate_fifo1;
    476       1.1     fvdl 		test	DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
    477       1.1     fvdl 		mvi	DFFSTAT, B_CURRFIFO_0;
    478       1.1     fvdl 		SET_MODE(M_DFF0, M_DFF0)
    479       1.1     fvdl 		bmov	SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
    480       1.1     fvdl 	}
    481       1.1     fvdl SET_SRC_MODE	M_SCSI;
    482       1.1     fvdl SET_DST_MODE	M_SCSI;
    483       1.1     fvdl allocate_fifo1:
    484       1.1     fvdl 	mvi	DFFSTAT, CURRFIFO_1;
    485       1.1     fvdl 	SET_MODE(M_DFF1, M_DFF1)
    486       1.1     fvdl 	bmov	SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
    487       1.1     fvdl 
    488       1.1     fvdl /*
    489       1.1     fvdl  * We have been reselected as an initiator
    490       1.1     fvdl  * or selected as a target.
    491       1.1     fvdl  */
    492       1.1     fvdl SET_SRC_MODE	M_SCSI;
    493       1.1     fvdl SET_DST_MODE	M_SCSI;
    494       1.1     fvdl select_in:
    495       1.1     fvdl 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
    496       1.1     fvdl 		/*
    497       1.1     fvdl 		 * This exposes a window whereby a
    498       1.1     fvdl 		 * busfree just after a selection will
    499       1.1     fvdl 		 * be missed, but there is no other safe
    500       1.1     fvdl 		 * way to enable busfree detection if
    501       1.1     fvdl 		 * the busfreerev function is broken.
    502       1.1     fvdl 		 */
    503       1.1     fvdl 		mvi	CLRSINT1,CLRBUSFREE;
    504       1.1     fvdl 		or	SIMODE1, ENBUSFREE;
    505       1.1     fvdl 	}
    506       1.1     fvdl 	or	SXFRCTL0, SPIOEN;
    507       1.1     fvdl 	and	SAVED_SCSIID, SELID_MASK, SELID;
    508       1.1     fvdl 	and	A, OID, IOWNID;
    509       1.1     fvdl 	or	SAVED_SCSIID, A;
    510       1.1     fvdl 	mvi	CLRSINT0, CLRSELDI;
    511       1.1     fvdl 	jmp	ITloop;
    512       1.1     fvdl 
    513       1.1     fvdl /*
    514       1.1     fvdl  * We have successfully selected out.
    515       1.1     fvdl  *
    516       1.1     fvdl  * Clear SELDO.
    517       1.1     fvdl  * Dequeue all SCBs sent from the waiting queue
    518       1.1     fvdl  * Requeue all SCBs *not* sent to the tail of the waiting queue
    519       1.1     fvdl  * Take Razor #494 into account for above.
    520       1.1     fvdl  *
    521       1.1     fvdl  * In Packetized Mode:
    522       1.1     fvdl  *	Return to the idle loop.  Our interrupt handler will take
    523       1.1     fvdl  *	care of any incoming L_Qs.
    524       1.1     fvdl  *
    525       1.1     fvdl  * In Non-Packetize Mode:
    526       1.1     fvdl  *	Continue to our normal state machine.
    527       1.1     fvdl  */
    528       1.1     fvdl SET_SRC_MODE	M_SCSI;
    529       1.1     fvdl SET_DST_MODE	M_SCSI;
    530       1.1     fvdl select_out:
    531       1.1     fvdl BEGIN_CRITICAL;
    532       1.1     fvdl 	/* Clear out all SCBs that have been successfully sent. */
    533       1.1     fvdl 	if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
    534       1.1     fvdl 		/*
    535       1.1     fvdl 		 * For packetized, the LQO manager clears ENSELO on
    536       1.1     fvdl 		 * the assertion of SELDO.  If we are non-packetized,
    537       1.1     fvdl 		 * LASTSCB and CURRSCB are accurate.
    538       1.1     fvdl 		 */
    539       1.1     fvdl 		test	SCSISEQ0, ENSELO jnz use_lastscb;
    540       1.1     fvdl 
    541       1.1     fvdl 		/*
    542       1.1     fvdl 		 * The update is correct for LQOSTAT1 errors.  All
    543       1.1     fvdl 		 * but LQOBUSFREE are handled by kernel interrupts.
    544       1.1     fvdl 		 * If we see LQOBUSFREE, return to the idle loop.
    545       1.1     fvdl 		 * Once we are out of the select_out critical section,
    546       1.1     fvdl 		 * the kernel will cleanup the LQOBUSFREE and we will
    547       1.1     fvdl 		 * eventually restart the selection if appropriate.
    548       1.1     fvdl 		 */
    549       1.1     fvdl 		test	LQOSTAT1, LQOBUSFREE jnz idle_loop;
    550       1.1     fvdl 
    551       1.1     fvdl 		/*
    552       1.1     fvdl 		 * On a phase change oustside of packet boundaries,
    553       1.1     fvdl 		 * LASTSCB points to the currently active SCB context
    554       1.1     fvdl 		 * on the bus.
    555       1.1     fvdl 		 */
    556       1.1     fvdl 		test	LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
    557       1.1     fvdl 
    558       1.1     fvdl 		/*
    559       1.1     fvdl 		 * If the hardware has traversed the whole list, NEXTSCB
    560       1.1     fvdl 		 * will be NULL, CURRSCB and LASTSCB cannot be trusted,
    561       1.1     fvdl 		 * but MAXCMDCNT is accurate.  If we stop part way through
    562       1.1     fvdl 		 * the list or only had one command to issue, NEXTSCB[1] is
    563       1.1     fvdl 		 * not NULL and LASTSCB is the last command to go out.
    564       1.1     fvdl 		 */
    565       1.1     fvdl 		cmp	NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
    566       1.1     fvdl 
    567       1.1     fvdl 		/*
    568       1.1     fvdl 		 * Brute force walk.
    569       1.1     fvdl 		 */
    570       1.1     fvdl 		bmov	SCBPTR, WAITING_TID_HEAD, 2;
    571       1.1     fvdl 		mvi	SEQINTCTL, INTVEC1DSL;
    572       1.1     fvdl 		mvi	MODE_PTR, MK_MODE(M_CFG, M_CFG);
    573       1.1     fvdl 		mov	A, MAXCMDCNT;
    574       1.1     fvdl 		mvi	MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
    575       1.1     fvdl 		clr	SEQINTCTL;
    576       1.1     fvdl find_lastscb_loop:
    577       1.1     fvdl 		dec	A;
    578       1.1     fvdl 		test	A, 0xFF jz found_last_sent_scb;
    579       1.1     fvdl 		bmov	SCBPTR, SCB_NEXT, 2;
    580       1.1     fvdl 		jmp	find_lastscb_loop;
    581       1.1     fvdl use_lastscb:
    582       1.1     fvdl 		bmov	SCBPTR, LASTSCB, 2;
    583       1.1     fvdl found_last_sent_scb:
    584       1.1     fvdl 		bmov	CURRSCB, SCBPTR, 2;
    585       1.1     fvdl curscb_ww_done:
    586       1.1     fvdl 	} else {
    587       1.1     fvdl 		bmov	SCBPTR, CURRSCB, 2;
    588       1.1     fvdl 	}
    589       1.1     fvdl 
    590       1.1     fvdl 	/*
    591       1.1     fvdl 	 * Requeue any SCBs not sent, to the tail of the waiting Q.
    592       1.1     fvdl 	 */
    593       1.1     fvdl 	cmp	SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done;
    594       1.1     fvdl 
    595       1.1     fvdl 	/*
    596       1.1     fvdl 	 * We know that neither the per-TID list nor the list of
    597       1.1     fvdl 	 * TIDs is empty.  Use this knowledge to our advantage.
    598       1.1     fvdl 	 */
    599       1.1     fvdl 	bmov	REG0, SCB_NEXT, 2;
    600       1.1     fvdl 	bmov	SCBPTR, WAITING_TID_TAIL, 2;
    601       1.1     fvdl 	bmov	SCB_NEXT2, REG0, 2;
    602       1.1     fvdl 	bmov	WAITING_TID_TAIL, REG0, 2;
    603       1.1     fvdl 	jmp	select_out_inc_tid_q;
    604       1.1     fvdl 
    605       1.1     fvdl select_out_list_done:
    606       1.1     fvdl 	/*
    607       1.1     fvdl 	 * The whole list made it.  Just clear our TID's tail pointer
    608       1.1     fvdl 	 * unless we were queued independently due to our need to
    609       1.1     fvdl 	 * send a message.
    610       1.1     fvdl 	 */
    611       1.1     fvdl 	test	SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q;
    612       1.1     fvdl 	shr	DINDEX, 3, SCB_SCSIID;
    613       1.1     fvdl 	or	DINDEX, 1;	/* Want only the second byte */
    614       1.1     fvdl 	mvi	DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
    615       1.1     fvdl 	mvi	DINDIR, SCB_LIST_NULL;
    616       1.1     fvdl select_out_inc_tid_q:
    617       1.1     fvdl 	bmov	SCBPTR, WAITING_TID_HEAD, 2;
    618       1.1     fvdl 	bmov	WAITING_TID_HEAD, SCB_NEXT2, 2;
    619       1.1     fvdl 	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
    620       1.1     fvdl 	mvi	WAITING_TID_TAIL[1], SCB_LIST_NULL;
    621       1.1     fvdl 	bmov	SCBPTR, CURRSCB, 2;
    622       1.1     fvdl 	mvi	CLRSINT0, CLRSELDO;
    623       1.1     fvdl 	test	LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase;
    624       1.1     fvdl 	test	LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase;
    625       1.1     fvdl 
    626       1.1     fvdl 	/*
    627       1.1     fvdl 	 * If this is a packetized connection, return to our
    628       1.1     fvdl 	 * idle_loop and let our interrupt handler deal with
    629       1.1     fvdl 	 * any connection setup/teardown issues.  The only
    630       1.1     fvdl 	 * exceptions are the case of MK_MESSAGE and task management
    631       1.1     fvdl 	 * SCBs.
    632       1.1     fvdl 	 */
    633       1.1     fvdl 	if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
    634       1.1     fvdl 		/*
    635       1.1     fvdl 		 * In the A, the LQO manager transitions to LQOSTOP0 even if
    636       1.1     fvdl 		 * we have selected out with ATN asserted and the target
    637       1.1     fvdl 		 * REQs in a non-packet phase.
    638       1.1     fvdl 		 */
    639       1.1     fvdl 		test 	SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
    640       1.1     fvdl 		test	SCSISIGO, ATNO jnz select_out_non_packetized;
    641       1.1     fvdl select_out_no_message:
    642       1.1     fvdl 	}
    643       1.1     fvdl 	test	LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
    644       1.1     fvdl 	test	SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
    645       1.1     fvdl 	SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
    646       1.1     fvdl 	jmp	idle_loop;
    647       1.1     fvdl 
    648       1.1     fvdl select_out_non_packetized:
    649       1.1     fvdl 	/* Non packetized request. */
    650       1.1     fvdl 	and     SCSISEQ0, ~ENSELO;
    651       1.1     fvdl 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
    652       1.1     fvdl 		/*
    653       1.1     fvdl 		 * This exposes a window whereby a
    654       1.1     fvdl 		 * busfree just after a selection will
    655       1.1     fvdl 		 * be missed, but there is no other safe
    656       1.1     fvdl 		 * way to enable busfree detection if
    657       1.1     fvdl 		 * the busfreerev function is broken.
    658       1.1     fvdl 		 */
    659       1.1     fvdl 		mvi	CLRSINT1,CLRBUSFREE;
    660       1.1     fvdl 		or	SIMODE1, ENBUSFREE;
    661       1.1     fvdl 	}
    662       1.1     fvdl 	mov	SAVED_SCSIID, SCB_SCSIID;
    663       1.1     fvdl 	mov	SAVED_LUN, SCB_LUN;
    664       1.1     fvdl 	mvi	SEQ_FLAGS, NO_CDB_SENT;
    665       1.1     fvdl END_CRITICAL;
    666       1.1     fvdl 	or	SXFRCTL0, SPIOEN;
    667       1.1     fvdl 
    668       1.1     fvdl 	/*
    669       1.1     fvdl 	 * As soon as we get a successful selection, the target
    670       1.1     fvdl 	 * should go into the message out phase since we have ATN
    671       1.1     fvdl 	 * asserted.
    672       1.1     fvdl 	 */
    673       1.1     fvdl 	mvi	MSG_OUT, MSG_IDENTIFYFLAG;
    674       1.1     fvdl 
    675       1.1     fvdl 	/*
    676       1.1     fvdl 	 * Main loop for information transfer phases.  Wait for the
    677       1.1     fvdl 	 * target to assert REQ before checking MSG, C/D and I/O for
    678       1.1     fvdl 	 * the bus phase.
    679       1.1     fvdl 	 */
    680       1.1     fvdl mesgin_phasemis:
    681       1.1     fvdl ITloop:
    682       1.1     fvdl 	call	phase_lock;
    683       1.1     fvdl 
    684       1.1     fvdl 	mov	A, LASTPHASE;
    685       1.1     fvdl 
    686       1.1     fvdl 	test	A, ~P_DATAIN_DT	jz p_data;
    687       1.1     fvdl 	cmp	A,P_COMMAND	je p_command;
    688       1.1     fvdl 	cmp	A,P_MESGOUT	je p_mesgout;
    689       1.1     fvdl 	cmp	A,P_STATUS	je p_status;
    690       1.1     fvdl 	cmp	A,P_MESGIN	je p_mesgin;
    691       1.1     fvdl 
    692       1.1     fvdl 	SET_SEQINTCODE(BAD_PHASE)
    693       1.1     fvdl 	jmp	ITloop;			/* Try reading the bus again. */
    694       1.1     fvdl 
    695       1.1     fvdl /*
    696       1.1     fvdl  * Command phase.  Set up the DMA registers and let 'er rip.
    697       1.1     fvdl  */
    698       1.1     fvdl p_command:
    699       1.1     fvdl 	test	SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
    700       1.1     fvdl 	SET_SEQINTCODE(PROTO_VIOLATION)
    701       1.1     fvdl p_command_okay:
    702       1.1     fvdl 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
    703       1.1     fvdl 		jnz p_command_allocate_fifo;
    704       1.1     fvdl 	/*
    705       1.1     fvdl 	 * Command retry.  Free our current FIFO and
    706       1.1     fvdl 	 * re-allocate a FIFO so transfer state is
    707       1.1     fvdl 	 * reset.
    708       1.1     fvdl 	 */
    709       1.1     fvdl SET_SRC_MODE	M_DFF1;
    710       1.1     fvdl SET_DST_MODE	M_DFF1;
    711       1.1     fvdl 	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
    712       1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
    713       1.1     fvdl p_command_allocate_fifo:
    714       1.1     fvdl 	bmov	ALLOCFIFO_SCBPTR, SCBPTR, 2;
    715       1.1     fvdl 	call	allocate_fifo;
    716       1.1     fvdl SET_SRC_MODE	M_DFF1;
    717       1.1     fvdl SET_DST_MODE	M_DFF1;
    718       1.1     fvdl 	add	NONE, -17, SCB_CDB_LEN;
    719       1.1     fvdl 	jnc	p_command_embedded;
    720       1.1     fvdl p_command_from_host:
    721       1.1     fvdl 	bmov	HADDR[0], SCB_HOST_CDB_PTR, 9;
    722       1.1     fvdl 	mvi	SG_CACHE_PRE, LAST_SEG;
    723       1.1     fvdl 	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
    724       1.1     fvdl 	jmp	p_command_xfer;
    725       1.1     fvdl p_command_embedded:
    726       1.1     fvdl 	bmov	SHCNT[0], SCB_CDB_LEN,  1;
    727  1.8.10.1     yamt 	bmov	DFDAT, SCB_CDB_STORE, 16;
    728       1.1     fvdl 	mvi	DFCNTRL, SCSIEN;
    729       1.1     fvdl p_command_xfer:
    730       1.1     fvdl 	and	SEQ_FLAGS, ~NO_CDB_SENT;
    731       1.1     fvdl 	test	DFCNTRL, SCSIEN jnz .;
    732       1.1     fvdl 	/*
    733       1.1     fvdl 	 * DMA Channel automatically disabled.
    734       1.1     fvdl 	 * Don't allow a data phase if the command
    735       1.1     fvdl 	 * was not fully transferred.
    736       1.1     fvdl 	 */
    737       1.1     fvdl 	test	SSTAT2, SDONE jnz ITloop;
    738       1.1     fvdl 	or	SEQ_FLAGS, NO_CDB_SENT;
    739       1.1     fvdl 	jmp	ITloop;
    740       1.1     fvdl 
    741       1.1     fvdl 
    742       1.1     fvdl /*
    743       1.1     fvdl  * Status phase.  Wait for the data byte to appear, then read it
    744       1.1     fvdl  * and store it into the SCB.
    745       1.1     fvdl  */
    746       1.1     fvdl SET_SRC_MODE	M_SCSI;
    747       1.1     fvdl SET_DST_MODE	M_SCSI;
    748       1.1     fvdl p_status:
    749       1.1     fvdl 	test	SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
    750       1.1     fvdl p_status_okay:
    751       1.1     fvdl 	mov	SCB_SCSI_STATUS, SCSIDAT;
    752       1.1     fvdl 	or	SCB_CONTROL, STATUS_RCVD;
    753       1.1     fvdl 	jmp	ITloop;
    754       1.1     fvdl 
    755       1.1     fvdl /*
    756       1.1     fvdl  * Message out phase.  If MSG_OUT is MSG_IDENTIFYFLAG, build a full
    757       1.1     fvdl  * indentify message sequence and send it to the target.  The host may
    758       1.1     fvdl  * override this behavior by setting the MK_MESSAGE bit in the SCB
    759       1.1     fvdl  * control byte.  This will cause us to interrupt the host and allow
    760       1.1     fvdl  * it to handle the message phase completely on its own.  If the bit
    761       1.1     fvdl  * associated with this target is set, we will also interrupt the host,
    762       1.1     fvdl  * thereby allowing it to send a message on the next selection regardless
    763       1.1     fvdl  * of the transaction being sent.
    764  1.8.10.1     yamt  *
    765       1.1     fvdl  * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
    766       1.1     fvdl  * This is done to allow the host to send messages outside of an identify
    767       1.1     fvdl  * sequence while protecting the seqencer from testing the MK_MESSAGE bit
    768       1.1     fvdl  * on an SCB that might not be for the current nexus. (For example, a
    769       1.1     fvdl  * BDR message in responce to a bad reselection would leave us pointed to
    770       1.1     fvdl  * an SCB that doesn't have anything to do with the current target).
    771       1.1     fvdl  *
    772       1.1     fvdl  * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
    773       1.1     fvdl  * bus device reset).
    774       1.1     fvdl  *
    775       1.1     fvdl  * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
    776       1.1     fvdl  * in case the target decides to put us in this phase for some strange
    777       1.1     fvdl  * reason.
    778       1.1     fvdl  */
    779       1.1     fvdl p_mesgout_retry:
    780       1.1     fvdl 	/* Turn on ATN for the retry */
    781       1.1     fvdl 	mvi	SCSISIGO, ATNO;
    782       1.1     fvdl p_mesgout:
    783       1.1     fvdl 	mov	SINDEX, MSG_OUT;
    784       1.1     fvdl 	cmp	SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
    785       1.1     fvdl 	test	SCB_CONTROL,MK_MESSAGE	jnz host_message_loop;
    786       1.1     fvdl p_mesgout_identify:
    787       1.1     fvdl 	or	SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
    788       1.1     fvdl 	test	SCB_CONTROL, DISCENB jnz . + 2;
    789       1.1     fvdl 	and	SINDEX, ~DISCENB;
    790       1.1     fvdl /*
    791       1.1     fvdl  * Send a tag message if TAG_ENB is set in the SCB control block.
    792       1.1     fvdl  * Use SCB_NONPACKET_TAG as the tag value.
    793       1.1     fvdl  */
    794       1.1     fvdl p_mesgout_tag:
    795       1.1     fvdl 	test	SCB_CONTROL,TAG_ENB jz  p_mesgout_onebyte;
    796       1.1     fvdl 	mov	SCSIDAT, SINDEX;	/* Send the identify message */
    797       1.1     fvdl 	call	phase_lock;
    798       1.1     fvdl 	cmp	LASTPHASE, P_MESGOUT	jne p_mesgout_done;
    799       1.1     fvdl 	and	SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
    800       1.1     fvdl 	call	phase_lock;
    801       1.1     fvdl 	cmp	LASTPHASE, P_MESGOUT	jne p_mesgout_done;
    802       1.1     fvdl 	mov	SCBPTR jmp p_mesgout_onebyte;
    803       1.1     fvdl /*
    804       1.1     fvdl  * Interrupt the driver, and allow it to handle this message
    805       1.1     fvdl  * phase and any required retries.
    806       1.1     fvdl  */
    807       1.1     fvdl p_mesgout_from_host:
    808       1.1     fvdl 	cmp	SINDEX, HOST_MSG	jne p_mesgout_onebyte;
    809       1.1     fvdl 	jmp	host_message_loop;
    810       1.1     fvdl 
    811       1.1     fvdl p_mesgout_onebyte:
    812       1.1     fvdl 	mvi	CLRSINT1, CLRATNO;
    813       1.1     fvdl 	mov	SCSIDAT, SINDEX;
    814       1.1     fvdl 
    815       1.1     fvdl /*
    816       1.1     fvdl  * If the next bus phase after ATN drops is message out, it means
    817       1.1     fvdl  * that the target is requesting that the last message(s) be resent.
    818       1.1     fvdl  */
    819       1.1     fvdl 	call	phase_lock;
    820       1.1     fvdl 	cmp	LASTPHASE, P_MESGOUT	je p_mesgout_retry;
    821       1.1     fvdl 
    822       1.1     fvdl p_mesgout_done:
    823       1.1     fvdl 	mvi	CLRSINT1,CLRATNO;	/* Be sure to turn ATNO off */
    824       1.1     fvdl 	mov	LAST_MSG, MSG_OUT;
    825       1.1     fvdl 	mvi	MSG_OUT, MSG_NOOP;	/* No message left */
    826       1.1     fvdl 	jmp	ITloop;
    827       1.1     fvdl 
    828       1.1     fvdl /*
    829       1.1     fvdl  * Message in phase.  Bytes are read using Automatic PIO mode.
    830       1.1     fvdl  */
    831       1.1     fvdl p_mesgin:
    832       1.1     fvdl 	/* read the 1st message byte */
    833       1.1     fvdl 	mvi	ACCUM		call inb_first;
    834       1.1     fvdl 
    835       1.1     fvdl 	test	A,MSG_IDENTIFYFLAG	jnz mesgin_identify;
    836       1.1     fvdl 	cmp	A,MSG_DISCONNECT	je mesgin_disconnect;
    837       1.1     fvdl 	cmp	A,MSG_SAVEDATAPOINTER	je mesgin_sdptrs;
    838       1.1     fvdl 	cmp	ALLZEROS,A		je mesgin_complete;
    839       1.1     fvdl 	cmp	A,MSG_RESTOREPOINTERS	je mesgin_rdptrs;
    840       1.1     fvdl 	cmp	A,MSG_IGN_WIDE_RESIDUE	je mesgin_ign_wide_residue;
    841       1.1     fvdl 	cmp	A,MSG_NOOP		je mesgin_done;
    842       1.1     fvdl 
    843       1.1     fvdl /*
    844       1.1     fvdl  * Pushed message loop to allow the kernel to
    845       1.1     fvdl  * run it's own message state engine.  To avoid an
    846       1.1     fvdl  * extra nop instruction after signaling the kernel,
    847       1.1     fvdl  * we perform the phase_lock before checking to see
    848       1.1     fvdl  * if we should exit the loop and skip the phase_lock
    849       1.1     fvdl  * in the ITloop.  Performing back to back phase_locks
    850       1.1     fvdl  * shouldn't hurt, but why do it twice...
    851       1.1     fvdl  */
    852       1.1     fvdl host_message_loop:
    853       1.1     fvdl 	call	phase_lock;	/* Benign the first time through. */
    854       1.1     fvdl 	SET_SEQINTCODE(HOST_MSG_LOOP)
    855       1.1     fvdl 	cmp	RETURN_1, EXIT_MSG_LOOP	je ITloop;
    856       1.1     fvdl 	cmp	RETURN_1, CONT_MSG_LOOP_WRITE	jne . + 3;
    857       1.1     fvdl 	mov	SCSIDAT, RETURN_2;
    858       1.1     fvdl 	jmp	host_message_loop;
    859       1.1     fvdl 	/* Must be CONT_MSG_LOOP_READ */
    860       1.1     fvdl 	mov	NONE, SCSIDAT;	/* ACK Byte */
    861       1.1     fvdl 	jmp	host_message_loop;
    862       1.1     fvdl 
    863       1.1     fvdl mesgin_ign_wide_residue:
    864       1.1     fvdl 	mov	SAVED_MODE, MODE_PTR;
    865       1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
    866       1.1     fvdl 	shr	NEGOADDR, 4, SAVED_SCSIID;
    867       1.1     fvdl 	mov	A, NEGCONOPTS;
    868       1.1     fvdl 	RESTORE_MODE(SAVED_MODE)
    869       1.1     fvdl 	test	A, WIDEXFER jz mesgin_reject;
    870       1.1     fvdl 	/* Pull the residue byte */
    871       1.1     fvdl 	mvi	REG0	call inb_next;
    872       1.1     fvdl 	cmp	REG0, 0x01 jne mesgin_reject;
    873       1.1     fvdl 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
    874       1.6  thorpej 	test	SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done;
    875       1.6  thorpej 	SET_SEQINTCODE(IGN_WIDE_RES)
    876       1.1     fvdl 	jmp	mesgin_done;
    877       1.1     fvdl 
    878       1.1     fvdl mesgin_proto_violation:
    879       1.1     fvdl 	SET_SEQINTCODE(PROTO_VIOLATION)
    880       1.1     fvdl 	jmp	mesgin_done;
    881       1.1     fvdl mesgin_reject:
    882       1.1     fvdl 	mvi	MSG_MESSAGE_REJECT	call mk_mesg;
    883       1.1     fvdl mesgin_done:
    884       1.1     fvdl 	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
    885       1.1     fvdl 	jmp	ITloop;
    886       1.1     fvdl 
    887       1.1     fvdl #define INDEX_DISC_LIST(scsiid, lun)					\
    888       1.1     fvdl 	and	A, 0xC0, scsiid;					\
    889       1.1     fvdl 	or	SCBPTR, A, lun;						\
    890       1.1     fvdl 	clr	SCBPTR[1];						\
    891       1.1     fvdl 	and	SINDEX, 0x30, scsiid;					\
    892       1.1     fvdl 	shr	SINDEX, 3;	/* Multiply by 2 */			\
    893       1.1     fvdl 	add	SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF);		\
    894       1.1     fvdl 	mvi	SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
    895       1.1     fvdl 
    896       1.1     fvdl mesgin_identify:
    897       1.1     fvdl 	/*
    898       1.1     fvdl 	 * Determine whether a target is using tagged or non-tagged
    899       1.1     fvdl 	 * transactions by first looking at the transaction stored in
    900       1.1     fvdl 	 * the per-device, disconnected array.  If there is no untagged
    901       1.1     fvdl 	 * transaction for this target, this must be a tagged transaction.
    902       1.1     fvdl 	 */
    903       1.1     fvdl 	and	SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
    904       1.1     fvdl 	INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
    905       1.1     fvdl 	bmov	DINDEX, SINDEX, 2;
    906       1.1     fvdl 	bmov	REG0, SINDIR, 2;
    907       1.1     fvdl 	cmp	REG0[1], SCB_LIST_NULL je snoop_tag;
    908       1.1     fvdl 	/* Untagged.  Clear the busy table entry and setup the SCB. */
    909       1.1     fvdl 	bmov	DINDIR, ALLONES, 2;
    910       1.1     fvdl 	bmov	SCBPTR, REG0, 2;
    911       1.1     fvdl 	jmp	setup_SCB;
    912       1.1     fvdl 
    913       1.1     fvdl /*
    914       1.1     fvdl  * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
    915       1.1     fvdl  * If we get one, we use the tag returned to find the proper
    916       1.1     fvdl  * SCB.  After receiving the tag, look for the SCB at SCB locations tag and
    917       1.1     fvdl  * tag + 256.
    918       1.1     fvdl  */
    919       1.1     fvdl snoop_tag:
    920       1.1     fvdl 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    921       1.1     fvdl 		or	SEQ_FLAGS, 0x80;
    922       1.1     fvdl 	}
    923       1.1     fvdl 	mov	NONE, SCSIDAT;		/* ACK Identify MSG */
    924       1.1     fvdl 	call	phase_lock;
    925       1.1     fvdl 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    926       1.1     fvdl 		or	SEQ_FLAGS, 0x1;
    927       1.1     fvdl 	}
    928       1.1     fvdl 	cmp	LASTPHASE, P_MESGIN	jne not_found_ITloop;
    929       1.1     fvdl 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    930       1.1     fvdl 		or	SEQ_FLAGS, 0x2;
    931       1.1     fvdl 	}
    932       1.1     fvdl 	cmp	SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
    933       1.1     fvdl get_tag:
    934       1.1     fvdl 	clr	SCBPTR[1];
    935       1.1     fvdl 	mvi	SCBPTR	call inb_next;	/* tag value */
    936       1.1     fvdl verify_scb:
    937       1.1     fvdl 	test	SCB_CONTROL,DISCONNECTED jz verify_other_scb;
    938       1.1     fvdl 	mov	A, SAVED_SCSIID;
    939       1.1     fvdl 	cmp	SCB_SCSIID, A jne verify_other_scb;
    940       1.1     fvdl 	mov	A, SAVED_LUN;
    941       1.1     fvdl 	cmp	SCB_LUN, A je setup_SCB_disconnected;
    942       1.1     fvdl verify_other_scb:
    943       1.1     fvdl 	xor	SCBPTR[1], 1;
    944       1.1     fvdl 	test	SCBPTR[1], 0xFF jnz verify_scb;
    945       1.1     fvdl 	jmp	not_found;
    946       1.1     fvdl 
    947       1.1     fvdl /*
    948       1.1     fvdl  * Ensure that the SCB the tag points to is for
    949       1.1     fvdl  * an SCB transaction to the reconnecting target.
    950       1.1     fvdl  */
    951       1.1     fvdl setup_SCB:
    952       1.1     fvdl 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    953       1.1     fvdl 		or	SEQ_FLAGS, 0x10;
    954       1.1     fvdl 	}
    955       1.1     fvdl 	test	SCB_CONTROL,DISCONNECTED jz not_found;
    956       1.1     fvdl setup_SCB_disconnected:
    957       1.1     fvdl 	and	SCB_CONTROL,~DISCONNECTED;
    958       1.1     fvdl 	clr	SEQ_FLAGS;	/* make note of IDENTIFY */
    959       1.1     fvdl 	test	SCB_SGPTR, SG_LIST_NULL jnz . + 3;
    960       1.1     fvdl 	bmov	ALLOCFIFO_SCBPTR, SCBPTR, 2;
    961       1.1     fvdl 	call	allocate_fifo;
    962       1.1     fvdl 	/* See if the host wants to send a message upon reconnection */
    963       1.1     fvdl 	test	SCB_CONTROL, MK_MESSAGE jz mesgin_done;
    964       1.1     fvdl 	mvi	HOST_MSG	call mk_mesg;
    965       1.1     fvdl 	jmp	mesgin_done;
    966       1.1     fvdl 
    967       1.1     fvdl not_found:
    968       1.1     fvdl 	SET_SEQINTCODE(NO_MATCH)
    969       1.1     fvdl 	jmp	mesgin_done;
    970       1.1     fvdl 
    971       1.1     fvdl not_found_ITloop:
    972       1.1     fvdl 	SET_SEQINTCODE(NO_MATCH)
    973       1.1     fvdl 	jmp	ITloop;
    974       1.1     fvdl 
    975       1.1     fvdl /*
    976       1.1     fvdl  * We received a "command complete" message.  Put the SCB on the complete
    977       1.1     fvdl  * queue and trigger a completion interrupt via the idle loop.  Before doing
    978       1.1     fvdl  * so, check to see if there
    979       1.1     fvdl  * is a residual or the status byte is something other than STATUS_GOOD (0).
    980       1.1     fvdl  * In either of these conditions, we upload the SCB back to the host so it can
    981  1.8.10.1     yamt  * process this information.  In the case of a non zero status byte, we
    982       1.1     fvdl  * additionally interrupt the kernel driver synchronously, allowing it to
    983       1.1     fvdl  * decide if sense should be retrieved.  If the kernel driver wishes to request
    984       1.1     fvdl  * sense, it will fill the kernel SCB with a request sense command, requeue
    985  1.8.10.1     yamt  * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting
    986       1.1     fvdl  * RETURN_1 to SEND_SENSE.
    987       1.1     fvdl  */
    988       1.1     fvdl mesgin_complete:
    989       1.1     fvdl 
    990       1.1     fvdl 	/*
    991       1.1     fvdl 	 * If ATN is raised, we still want to give the target a message.
    992       1.1     fvdl 	 * Perhaps there was a parity error on this last message byte.
    993       1.1     fvdl 	 * Either way, the target should take us to message out phase
    994       1.1     fvdl 	 * and then attempt to complete the command again.  We should use a
    995       1.1     fvdl 	 * critical section here to guard against a timeout triggering
    996       1.1     fvdl 	 * for this command and setting ATN while we are still processing
    997       1.1     fvdl 	 * the completion.
    998       1.1     fvdl 	test	SCSISIGI, ATNI jnz mesgin_done;
    999       1.1     fvdl 	 */
   1000       1.1     fvdl 
   1001       1.1     fvdl 	/*
   1002       1.1     fvdl 	 * If we are identified and have successfully sent the CDB,
   1003       1.1     fvdl 	 * any status will do.  Optimize this fast path.
   1004       1.1     fvdl 	 */
   1005       1.1     fvdl 	test	SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
   1006       1.1     fvdl 	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
   1007       1.1     fvdl 
   1008       1.1     fvdl 	/*
   1009       1.1     fvdl 	 * If the target never sent an identify message but instead went
   1010       1.1     fvdl 	 * to mesgin to give an invalid message, let the host abort us.
   1011       1.1     fvdl 	 */
   1012       1.1     fvdl 	test	SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
   1013       1.1     fvdl 
   1014       1.1     fvdl 	/*
   1015       1.1     fvdl 	 * If we recevied good status but never successfully sent the
   1016       1.1     fvdl 	 * cdb, abort the command.
   1017       1.1     fvdl 	 */
   1018       1.1     fvdl 	test	SCB_SCSI_STATUS,0xff	jnz complete_accepted;
   1019       1.1     fvdl 	test	SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
   1020       1.1     fvdl complete_accepted:
   1021       1.1     fvdl 
   1022       1.1     fvdl 	/*
   1023       1.1     fvdl 	 * See if we attempted to deliver a message but the target ingnored us.
   1024       1.1     fvdl 	 */
   1025       1.1     fvdl 	test	SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
   1026       1.1     fvdl 	SET_SEQINTCODE(MKMSG_FAILED)
   1027       1.1     fvdl complete_nomsg:
   1028       1.1     fvdl 	call	queue_scb_completion;
   1029       1.1     fvdl 	jmp	await_busfree;
   1030       1.1     fvdl 
   1031       1.1     fvdl freeze_queue:
   1032       1.1     fvdl 	/* Cancel any pending select-out. */
   1033       1.1     fvdl 	test	SSTAT0, SELDO|SELINGO jnz . + 2;
   1034       1.1     fvdl 	and	SCSISEQ0, ~ENSELO;
   1035       1.1     fvdl 	mov	ACCUM_SAVE, A;
   1036       1.1     fvdl 	clr	A;
   1037       1.1     fvdl 	add	QFREEZE_COUNT, 1;
   1038       1.1     fvdl 	adc	QFREEZE_COUNT[1], A;
   1039       1.1     fvdl 	or	SEQ_FLAGS2, SELECTOUT_QFROZEN;
   1040       1.1     fvdl 	mov	A, ACCUM_SAVE ret;
   1041       1.1     fvdl 
   1042       1.4  thorpej /*
   1043       1.4  thorpej  * Complete the current FIFO's SCB if data for this same
   1044       1.4  thorpej  * SCB is not transferring in the other FIFO.
   1045       1.4  thorpej  */
   1046       1.4  thorpej SET_SRC_MODE	M_DFF1;
   1047       1.4  thorpej SET_DST_MODE	M_DFF1;
   1048       1.4  thorpej pkt_complete_scb_if_fifos_idle:
   1049       1.4  thorpej 	bmov	ARG_1, SCBPTR, 2;
   1050       1.4  thorpej 	mvi	DFFSXFRCTL, CLRCHN;
   1051       1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
   1052       1.1     fvdl 	bmov	SCBPTR, ARG_1, 2;
   1053       1.4  thorpej 	test	SCB_FIFO_USE_COUNT, 0xFF jnz return;
   1054       1.1     fvdl queue_scb_completion:
   1055       1.1     fvdl 	test	SCB_SCSI_STATUS,0xff	jnz bad_status;
   1056       1.1     fvdl 	/*
   1057       1.1     fvdl 	 * Check for residuals
   1058       1.1     fvdl 	 */
   1059       1.1     fvdl 	test	SCB_SGPTR, SG_LIST_NULL jnz complete;	/* No xfer */
   1060       1.1     fvdl 	test	SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
   1061       1.1     fvdl 	test	SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
   1062       1.1     fvdl complete:
   1063       1.1     fvdl 	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
   1064       1.1     fvdl 	bmov	COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
   1065       1.1     fvdl bad_status:
   1066       1.1     fvdl 	cmp	SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
   1067       1.1     fvdl 	call	freeze_queue;
   1068       1.1     fvdl upload_scb:
   1069       1.4  thorpej 	/*
   1070       1.4  thorpej 	 * Restore SCB TAG since we reuse this field
   1071       1.4  thorpej 	 * in the sequencer.  We don't want to corrupt
   1072       1.4  thorpej 	 * it on the host.
   1073       1.4  thorpej 	 */
   1074       1.4  thorpej 	bmov	SCB_TAG, SCBPTR, 2;
   1075       1.1     fvdl 	bmov	SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2;
   1076       1.1     fvdl 	bmov	COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
   1077       1.1     fvdl 	or	SCB_SGPTR, SG_STATUS_VALID ret;
   1078       1.1     fvdl 
   1079       1.1     fvdl /*
   1080       1.1     fvdl  * Is it a disconnect message?  Set a flag in the SCB to remind us
   1081       1.1     fvdl  * and await the bus going free.  If this is an untagged transaction
   1082       1.1     fvdl  * store the SCB id for it in our untagged target table for lookup on
   1083       1.1     fvdl  * a reselction.
   1084       1.1     fvdl  */
   1085       1.1     fvdl mesgin_disconnect:
   1086       1.1     fvdl 	/*
   1087       1.1     fvdl 	 * If ATN is raised, we still want to give the target a message.
   1088       1.1     fvdl 	 * Perhaps there was a parity error on this last message byte
   1089       1.1     fvdl 	 * or we want to abort this command.  Either way, the target
   1090       1.1     fvdl 	 * should take us to message out phase and then attempt to
   1091       1.1     fvdl 	 * disconnect again.
   1092       1.1     fvdl 	 * XXX - Wait for more testing.
   1093       1.1     fvdl 	test	SCSISIGI, ATNI jnz mesgin_done;
   1094       1.1     fvdl 	 */
   1095       1.1     fvdl 	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
   1096       1.1     fvdl 		jnz mesgin_proto_violation;
   1097       1.1     fvdl 	or	SCB_CONTROL,DISCONNECTED;
   1098       1.1     fvdl 	test	SCB_CONTROL, TAG_ENB jnz await_busfree;
   1099       1.1     fvdl queue_disc_scb:
   1100       1.1     fvdl 	bmov	REG0, SCBPTR, 2;
   1101       1.1     fvdl 	INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
   1102       1.1     fvdl 	bmov	DINDEX, SINDEX, 2;
   1103       1.1     fvdl 	bmov	DINDIR, REG0, 2;
   1104       1.1     fvdl 	bmov	SCBPTR, REG0, 2;
   1105       1.1     fvdl 	/* FALLTHROUGH */
   1106       1.1     fvdl await_busfree:
   1107       1.1     fvdl 	and	SIMODE1, ~ENBUSFREE;
   1108       1.1     fvdl 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
   1109       1.1     fvdl 		/*
   1110       1.1     fvdl 		 * In the BUSFREEREV_BUG case, the
   1111       1.1     fvdl 		 * busfree status was cleared at the
   1112       1.1     fvdl 		 * beginning of the connection.
   1113       1.1     fvdl 		 */
   1114       1.1     fvdl 		mvi	CLRSINT1,CLRBUSFREE;
   1115       1.1     fvdl 	}
   1116       1.1     fvdl 	mov	NONE, SCSIDAT;		/* Ack the last byte */
   1117       1.1     fvdl 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
   1118       1.1     fvdl 		jnz await_busfree_not_m_dff;
   1119       1.1     fvdl SET_SRC_MODE	M_DFF1;
   1120       1.1     fvdl SET_DST_MODE	M_DFF1;
   1121       1.1     fvdl await_busfree_clrchn:
   1122       1.1     fvdl 	mvi	DFFSXFRCTL, CLRCHN;
   1123       1.1     fvdl await_busfree_not_m_dff:
   1124       1.1     fvdl 	call	clear_target_state;
   1125       1.1     fvdl 	test	SSTAT1,REQINIT|BUSFREE	jz .;
   1126       1.1     fvdl 	test	SSTAT1, BUSFREE jnz idle_loop;
   1127       1.1     fvdl 	SET_SEQINTCODE(MISSED_BUSFREE)
   1128       1.1     fvdl 
   1129       1.1     fvdl 
   1130       1.1     fvdl /*
   1131       1.1     fvdl  * Save data pointers message:
   1132       1.1     fvdl  * Copying RAM values back to SCB, for Save Data Pointers message, but
   1133       1.1     fvdl  * only if we've actually been into a data phase to change them.  This
   1134       1.1     fvdl  * protects against bogus data in scratch ram and the residual counts
   1135       1.1     fvdl  * since they are only initialized when we go into data_in or data_out.
   1136       1.1     fvdl  * Ack the message as soon as possible.
   1137       1.1     fvdl  */
   1138       1.1     fvdl SET_SRC_MODE	M_DFF1;
   1139       1.1     fvdl SET_DST_MODE	M_DFF1;
   1140       1.1     fvdl mesgin_sdptrs:
   1141       1.1     fvdl 	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
   1142       1.1     fvdl 	test	SEQ_FLAGS, DPHASE	jz ITloop;
   1143       1.1     fvdl 	call	save_pointers;
   1144       1.1     fvdl 	jmp	ITloop;
   1145       1.1     fvdl 
   1146       1.1     fvdl save_pointers:
   1147       1.1     fvdl 	/*
   1148       1.1     fvdl 	 * If we are asked to save our position at the end of the
   1149       1.1     fvdl 	 * transfer, just mark us at the end rather than perform a
   1150       1.1     fvdl 	 * full save.
   1151       1.1     fvdl 	 */
   1152       1.1     fvdl 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
   1153       1.1     fvdl 	or	SCB_SGPTR, SG_LIST_NULL ret;
   1154       1.1     fvdl 
   1155       1.1     fvdl save_pointers_full:
   1156       1.1     fvdl 	/*
   1157       1.1     fvdl 	 * The SCB_DATAPTR becomes the current SHADDR.
   1158       1.1     fvdl 	 * All other information comes directly from our residual
   1159       1.1     fvdl 	 * state.
   1160       1.1     fvdl 	 */
   1161       1.1     fvdl 	bmov	SCB_DATAPTR, SHADDR, 8;
   1162       1.1     fvdl 	bmov	SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
   1163       1.1     fvdl 
   1164       1.1     fvdl /*
   1165       1.1     fvdl  * Restore pointers message?  Data pointers are recopied from the
   1166       1.1     fvdl  * SCB anytime we enter a data phase for the first time, so all
   1167       1.1     fvdl  * we need to do is clear the DPHASE flag and let the data phase
   1168       1.1     fvdl  * code do the rest.  We also reset/reallocate the FIFO to make
   1169       1.1     fvdl  * sure we have a clean start for the next data or command phase.
   1170       1.1     fvdl  */
   1171       1.1     fvdl mesgin_rdptrs:
   1172       1.1     fvdl 	and	SEQ_FLAGS, ~DPHASE;
   1173       1.1     fvdl 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
   1174       1.1     fvdl 	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
   1175       1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
   1176       1.1     fvdl msgin_rdptrs_get_fifo:
   1177       1.1     fvdl 	call	allocate_fifo;
   1178       1.1     fvdl 	jmp	mesgin_done;
   1179       1.1     fvdl 
   1180       1.1     fvdl clear_target_state:
   1181       1.1     fvdl 	mvi	LASTPHASE, P_BUSFREE;
   1182       1.1     fvdl 	/* clear target specific flags */
   1183       1.1     fvdl 	mvi	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret;
   1184       1.1     fvdl 
   1185  1.8.10.1     yamt phase_lock:
   1186       1.1     fvdl 	if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
   1187       1.1     fvdl 		/*
   1188       1.1     fvdl 		 * Don't ignore persistent REQ assertions just because
   1189       1.1     fvdl 		 * they were asserted within the bus settle delay window.
   1190       1.1     fvdl 		 * This allows us to tolerate devices like the GEM318
   1191       1.1     fvdl 		 * that violate the SCSI spec.  We are careful not to
   1192       1.1     fvdl 		 * count REQ while we are waiting for it to fall during
   1193       1.1     fvdl 		 * an async phase due to our asserted ACK.  Each
   1194       1.1     fvdl 		 * sequencer instruction takes ~25ns, so the REQ must
   1195       1.1     fvdl 		 * last at least 100ns in order to be counted as a true
   1196       1.1     fvdl 		 * REQ.
   1197       1.1     fvdl 		 */
   1198       1.1     fvdl 		test	SCSIPHASE, 0xFF jnz phase_locked;
   1199       1.1     fvdl 		test	SCSISIGI, ACKI jnz phase_lock;
   1200       1.1     fvdl 		test	SCSISIGI, REQI jz phase_lock;
   1201       1.1     fvdl 		test	SCSIPHASE, 0xFF jnz phase_locked;
   1202       1.1     fvdl 		test	SCSISIGI, ACKI jnz phase_lock;
   1203       1.1     fvdl 		test	SCSISIGI, REQI jz phase_lock;
   1204       1.1     fvdl phase_locked:
   1205       1.1     fvdl 	} else {
   1206       1.1     fvdl 		test	SCSIPHASE, 0xFF jz .;
   1207       1.1     fvdl 	}
   1208       1.1     fvdl 	test	SSTAT1, SCSIPERR jnz phase_lock;
   1209       1.1     fvdl phase_lock_latch_phase:
   1210       1.1     fvdl 	and	LASTPHASE, PHASE_MASK, SCSISIGI ret;
   1211       1.1     fvdl 
   1212       1.1     fvdl /*
   1213       1.1     fvdl  * Functions to read data in Automatic PIO mode.
   1214       1.1     fvdl  *
   1215       1.1     fvdl  * An ACK is not sent on input from the target until SCSIDATL is read from.
   1216       1.1     fvdl  * So we wait until SCSIDATL is latched (the usual way), then read the data
   1217       1.1     fvdl  * byte directly off the bus using SCSIBUSL.  When we have pulled the ATN
   1218       1.1     fvdl  * line, or we just want to acknowledge the byte, then we do a dummy read
   1219       1.1     fvdl  * from SCISDATL.  The SCSI spec guarantees that the target will hold the
   1220       1.1     fvdl  * data byte on the bus until we send our ACK.
   1221       1.1     fvdl  *
   1222       1.1     fvdl  * The assumption here is that these are called in a particular sequence,
   1223       1.1     fvdl  * and that REQ is already set when inb_first is called.  inb_{first,next}
   1224       1.1     fvdl  * use the same calling convention as inb.
   1225       1.1     fvdl  */
   1226       1.1     fvdl inb_next:
   1227       1.1     fvdl 	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
   1228       1.1     fvdl inb_next_wait:
   1229       1.1     fvdl 	/*
   1230       1.1     fvdl 	 * If there is a parity error, wait for the kernel to
   1231       1.1     fvdl 	 * see the interrupt and prepare our message response
   1232       1.1     fvdl 	 * before continuing.
   1233       1.1     fvdl 	 */
   1234       1.1     fvdl 	test	SCSIPHASE, 0xFF jz .;
   1235       1.1     fvdl 	test	SSTAT1, SCSIPERR jnz inb_next_wait;
   1236       1.1     fvdl inb_next_check_phase:
   1237       1.1     fvdl 	and	LASTPHASE, PHASE_MASK, SCSISIGI;
   1238       1.1     fvdl 	cmp	LASTPHASE, P_MESGIN jne mesgin_phasemis;
   1239       1.1     fvdl inb_first:
   1240       1.1     fvdl 	clr	DINDEX[1];
   1241       1.1     fvdl 	mov	DINDEX,SINDEX;
   1242       1.1     fvdl 	mov	DINDIR,SCSIBUS	ret;		/*read byte directly from bus*/
   1243       1.1     fvdl inb_last:
   1244       1.1     fvdl 	mov	NONE,SCSIDAT ret;		/*dummy read from latch to ACK*/
   1245       1.1     fvdl 
   1246       1.1     fvdl mk_mesg:
   1247       1.1     fvdl 	mvi	SCSISIGO, ATNO;
   1248       1.1     fvdl 	mov	MSG_OUT,SINDEX ret;
   1249       1.1     fvdl 
   1250       1.1     fvdl SET_SRC_MODE	M_DFF1;
   1251       1.1     fvdl SET_DST_MODE	M_DFF1;
   1252       1.1     fvdl disable_ccsgen:
   1253       1.1     fvdl 	test	SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
   1254       1.1     fvdl 	clr	CCSGCTL;
   1255       1.1     fvdl disable_ccsgen_fetch_done:
   1256       1.1     fvdl 	clr	SG_STATE ret;
   1257       1.1     fvdl 
   1258       1.1     fvdl service_fifo:
   1259       1.1     fvdl 	/*
   1260       1.1     fvdl 	 * Do we have any prefetch left???
   1261       1.1     fvdl 	 */
   1262       1.1     fvdl 	test	SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
   1263       1.1     fvdl 
   1264       1.1     fvdl 	/*
   1265       1.1     fvdl 	 * Can this FIFO have access to the S/G cache yet?
   1266       1.1     fvdl 	 */
   1267       1.1     fvdl 	test	CCSGCTL, SG_CACHE_AVAIL jz return;
   1268       1.1     fvdl 
   1269       1.1     fvdl 	/* Did we just finish fetching segs? */
   1270       1.1     fvdl 	test	CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
   1271       1.1     fvdl 
   1272       1.1     fvdl 	/* Are we actively fetching segments? */
   1273       1.1     fvdl 	test	CCSGCTL, CCSGENACK jnz return;
   1274       1.1     fvdl 
   1275       1.1     fvdl 	/*
   1276       1.1     fvdl 	 * We fetch a "cacheline aligned" and sized amount of data
   1277       1.1     fvdl 	 * so we don't end up referencing a non-existant page.
   1278       1.1     fvdl 	 * Cacheline aligned is in quotes because the kernel will
   1279       1.1     fvdl 	 * set the prefetch amount to a reasonable level if the
   1280       1.1     fvdl 	 * cacheline size is unknown.
   1281       1.1     fvdl 	 */
   1282       1.1     fvdl 	bmov	SGHADDR, SCB_RESIDUAL_SGPTR, 4;
   1283       1.1     fvdl 	mvi	SGHCNT, SG_PREFETCH_CNT;
   1284       1.1     fvdl 	if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
   1285       1.1     fvdl 		/*
   1286       1.1     fvdl 		 * Need two instruction between "touches" of SGHADDR.
   1287       1.1     fvdl 		 */
   1288       1.1     fvdl 		nop;
   1289       1.1     fvdl 	}
   1290       1.1     fvdl 	and	SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
   1291       1.1     fvdl 	mvi	CCSGCTL, CCSGEN|CCSGRESET;
   1292       1.1     fvdl 	or	SG_STATE, FETCH_INPROG ret;
   1293       1.1     fvdl idle_sgfetch_complete:
   1294       1.1     fvdl 	/*
   1295       1.1     fvdl 	 * Guard against SG_CACHE_AVAIL activating during sg fetch
   1296       1.1     fvdl 	 * request in the other FIFO.
   1297       1.1     fvdl 	 */
   1298       1.1     fvdl 	test	SG_STATE, FETCH_INPROG jz return;
   1299       1.1     fvdl 	clr	CCSGCTL;
   1300       1.1     fvdl 	and	CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
   1301       1.1     fvdl 	mvi	SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
   1302       1.1     fvdl idle_sg_avail:
   1303       1.1     fvdl 	/* Does the hardware have space for another SG entry? */
   1304       1.1     fvdl 	test	DFSTATUS, PRELOAD_AVAIL jz return;
   1305       1.1     fvdl 	/*
   1306       1.1     fvdl 	 * On the A, preloading a segment before HDMAENACK
   1307       1.1     fvdl 	 * comes true can clobber the shaddow address of the
   1308       1.1     fvdl 	 * first segment in the S/G FIFO.  Wait until it is
   1309       1.1     fvdl 	 * safe to proceed.
   1310       1.1     fvdl 	 */
   1311       1.1     fvdl 	if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
   1312       1.1     fvdl 		test	DFCNTRL, HDMAENACK jz return;
   1313       1.1     fvdl 	}
   1314       1.1     fvdl 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
   1315       1.1     fvdl 		bmov	HADDR, CCSGRAM, 8;
   1316       1.1     fvdl 	} else {
   1317       1.1     fvdl 		bmov 	HADDR, CCSGRAM, 4;
   1318       1.1     fvdl 	}
   1319       1.1     fvdl 	bmov	HCNT, CCSGRAM, 3;
   1320       1.1     fvdl 	bmov	SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
   1321       1.1     fvdl 	if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
   1322       1.1     fvdl 		and	HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
   1323       1.1     fvdl 	}
   1324       1.1     fvdl 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
   1325       1.1     fvdl 		/* Skip 4 bytes of pad. */
   1326       1.1     fvdl 		add	CCSGADDR, 4;
   1327       1.1     fvdl 	}
   1328       1.1     fvdl sg_advance:
   1329       1.1     fvdl 	clr	A;			/* add sizeof(struct scatter) */
   1330       1.1     fvdl 	add	SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
   1331       1.1     fvdl 	adc	SCB_RESIDUAL_SGPTR[1],A;
   1332       1.1     fvdl 	adc	SCB_RESIDUAL_SGPTR[2],A;
   1333       1.1     fvdl 	adc	SCB_RESIDUAL_SGPTR[3],A;
   1334       1.1     fvdl 	mov	SINDEX, SCB_RESIDUAL_SGPTR[0];
   1335       1.1     fvdl 	test	SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
   1336       1.1     fvdl 	or	SINDEX, LAST_SEG;
   1337       1.1     fvdl 	clr	SG_STATE;
   1338       1.1     fvdl 	mov	SG_CACHE_PRE, SINDEX;
   1339       1.1     fvdl 	if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
   1340       1.1     fvdl 		/*
   1341       1.1     fvdl 		 * Use SCSIENWRDIS so that SCSIEN is never
   1342       1.1     fvdl 		 * modified by this operation.
   1343       1.1     fvdl 		 */
   1344       1.1     fvdl 		or	DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
   1345       1.1     fvdl 	} else {
   1346       1.1     fvdl 		or	DFCNTRL, PRELOADEN|HDMAEN;
   1347       1.1     fvdl 	}
   1348       1.1     fvdl 	/*
   1349       1.1     fvdl 	 * Do we have another segment in the cache?
   1350       1.1     fvdl 	 */
   1351       1.1     fvdl 	add	NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
   1352       1.1     fvdl 	jnc	return;
   1353       1.1     fvdl 	and	SG_STATE, ~SEGS_AVAIL ret;
   1354       1.1     fvdl 
   1355       1.1     fvdl /*
   1356       1.1     fvdl  * Initialize the DMA address and counter from the SCB.
   1357       1.1     fvdl  */
   1358       1.1     fvdl load_first_seg:
   1359       1.1     fvdl 	bmov	HADDR, SCB_DATAPTR, 11;
   1360       1.1     fvdl 	and	REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
   1361       1.1     fvdl 	test	SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
   1362       1.1     fvdl 	or	REG_ISR, LAST_SEG;
   1363       1.1     fvdl 	mov	SG_CACHE_PRE, REG_ISR;
   1364       1.1     fvdl 	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
   1365       1.1     fvdl 	/*
   1366       1.1     fvdl 	 * Since we've are entering a data phase, we will
   1367       1.1     fvdl 	 * rely on the SCB_RESID* fields.  Initialize the
   1368       1.1     fvdl 	 * residual and clear the full residual flag.
   1369       1.1     fvdl 	 */
   1370       1.1     fvdl 	and	SCB_SGPTR[0], ~SG_FULL_RESID;
   1371       1.1     fvdl 	bmov	SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
   1372       1.1     fvdl 	/* If we need more S/G elements, tell the idle loop */
   1373       1.1     fvdl 	test	SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
   1374       1.1     fvdl 	mvi	SG_STATE, LOADING_NEEDED ret;
   1375       1.1     fvdl 	clr	SG_STATE ret;
   1376       1.1     fvdl 
   1377       1.1     fvdl p_data_handle_xfer:
   1378       1.4  thorpej 	call	setjmp;
   1379       1.1     fvdl 	test	SG_STATE, LOADING_NEEDED jnz service_fifo;
   1380       1.1     fvdl p_data_clear_handler:
   1381       1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR ret;
   1382       1.1     fvdl 
   1383       1.1     fvdl p_data:
   1384       1.1     fvdl 	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT	jz p_data_allowed;
   1385       1.1     fvdl 	SET_SEQINTCODE(PROTO_VIOLATION)
   1386       1.1     fvdl p_data_allowed:
   1387  1.8.10.1     yamt 
   1388       1.1     fvdl 	test	SEQ_FLAGS, DPHASE	jz data_phase_initialize;
   1389       1.1     fvdl 
   1390       1.1     fvdl 	/*
   1391       1.1     fvdl 	 * If we re-enter the data phase after going through another
   1392       1.1     fvdl 	 * phase, our transfer location has almost certainly been
   1393       1.1     fvdl 	 * corrupted by the interveining, non-data, transfers.  Ask
   1394       1.1     fvdl 	 * the host driver to fix us up based on the transfer residual
   1395       1.1     fvdl 	 * unless we already know that we should be bitbucketing.
   1396       1.1     fvdl 	 */
   1397       1.1     fvdl 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
   1398       1.1     fvdl 	SET_SEQINTCODE(PDATA_REINIT)
   1399       1.1     fvdl 	jmp	data_phase_inbounds;
   1400       1.1     fvdl 
   1401       1.1     fvdl p_data_bitbucket:
   1402       1.1     fvdl 	/*
   1403       1.1     fvdl 	 * Turn on `Bit Bucket' mode, wait until the target takes
   1404       1.1     fvdl 	 * us to another phase, and then notify the host.
   1405       1.1     fvdl 	 */
   1406       1.1     fvdl 	mov	SAVED_MODE, MODE_PTR;
   1407       1.1     fvdl 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
   1408       1.1     fvdl 		jnz bitbucket_not_m_dff;
   1409       1.1     fvdl 	/*
   1410       1.1     fvdl 	 * Ensure that any FIFO contents are cleared out and the
   1411       1.1     fvdl 	 * FIFO free'd prior to starting the BITBUCKET.  BITBUCKET
   1412       1.1     fvdl 	 * doesn't discard data already in the FIFO.
   1413       1.1     fvdl 	 */
   1414       1.1     fvdl 	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
   1415       1.1     fvdl 	SET_MODE(M_SCSI, M_SCSI)
   1416       1.1     fvdl bitbucket_not_m_dff:
   1417       1.1     fvdl 	or	SXFRCTL1,BITBUCKET;
   1418       1.1     fvdl 	/* Wait for non-data phase. */
   1419       1.1     fvdl 	test	SCSIPHASE, ~DATA_PHASE_MASK jz .;
   1420       1.1     fvdl 	and	SXFRCTL1, ~BITBUCKET;
   1421       1.1     fvdl 	RESTORE_MODE(SAVED_MODE)
   1422       1.1     fvdl SET_SRC_MODE	M_DFF1;
   1423       1.1     fvdl SET_DST_MODE	M_DFF1;
   1424       1.1     fvdl 	SET_SEQINTCODE(DATA_OVERRUN)
   1425       1.1     fvdl 	jmp	ITloop;
   1426       1.1     fvdl 
   1427       1.1     fvdl data_phase_initialize:
   1428       1.1     fvdl 	test	SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
   1429       1.1     fvdl 	call	load_first_seg;
   1430       1.1     fvdl data_phase_inbounds:
   1431       1.1     fvdl 	/* We have seen a data phase at least once. */
   1432       1.1     fvdl 	or	SEQ_FLAGS, DPHASE;
   1433       1.1     fvdl 	mov	SAVED_MODE, MODE_PTR;
   1434       1.1     fvdl 	test	SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
   1435       1.1     fvdl 	call	p_data_handle_xfer;
   1436       1.1     fvdl data_group_dma_loop:
   1437       1.1     fvdl 	/*
   1438       1.1     fvdl 	 * The transfer is complete if either the last segment
   1439       1.1     fvdl 	 * completes or the target changes phase.  Both conditions
   1440       1.1     fvdl 	 * will clear SCSIEN.
   1441       1.1     fvdl 	 */
   1442       1.1     fvdl 	call	idle_loop_service_fifos;
   1443       1.1     fvdl 	call	idle_loop_cchan;
   1444       1.1     fvdl 	call	idle_loop_gsfifo;
   1445       1.1     fvdl 	RESTORE_MODE(SAVED_MODE)
   1446       1.1     fvdl 	test	DFCNTRL, SCSIEN jnz data_group_dma_loop;
   1447       1.1     fvdl 
   1448       1.1     fvdl data_group_dmafinish:
   1449       1.1     fvdl 	/*
   1450       1.1     fvdl 	 * The transfer has terminated either due to a phase
   1451       1.1     fvdl 	 * change, and/or the completion of the last segment.
   1452       1.1     fvdl 	 * We have two goals here.  Do as much other work
   1453       1.1     fvdl 	 * as possible while the data fifo drains on a read
   1454       1.1     fvdl 	 * and respond as quickly as possible to the standard
   1455       1.1     fvdl 	 * messages (save data pointers/disconnect and command
   1456       1.1     fvdl 	 * complete) that usually follow a data phase.
   1457       1.1     fvdl 	 */
   1458       1.1     fvdl 	call	calc_residual;
   1459       1.1     fvdl 
   1460       1.1     fvdl 	/*
   1461       1.1     fvdl 	 * Go ahead and shut down the DMA engine now.
   1462       1.1     fvdl 	 */
   1463       1.1     fvdl 	test	DFCNTRL, DIRECTION jnz data_phase_finish;
   1464       1.1     fvdl data_group_fifoflush:
   1465       1.1     fvdl 	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
   1466       1.1     fvdl 		or	DFCNTRL, FIFOFLUSH;
   1467       1.1     fvdl 	}
   1468       1.1     fvdl 	/*
   1469       1.1     fvdl 	 * We have enabled the auto-ack feature.  This means
   1470       1.1     fvdl 	 * that the controller may have already transferred
   1471       1.1     fvdl 	 * some overrun bytes into the data FIFO and acked them
   1472       1.1     fvdl 	 * on the bus.  The only way to detect this situation is
   1473       1.1     fvdl 	 * to wait for LAST_SEG_DONE to come true on a completed
   1474       1.1     fvdl 	 * transfer and then test to see if the data FIFO is
   1475       1.1     fvdl 	 * non-empty.  We know there is more data yet to transfer
   1476       1.1     fvdl 	 * if SG_LIST_NULL is not yet set, thus there cannot be
   1477       1.1     fvdl 	 * an overrun.
   1478       1.1     fvdl 	 */
   1479       1.1     fvdl 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
   1480       1.1     fvdl 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
   1481       1.1     fvdl 	test	DFSTATUS, FIFOEMP jnz data_phase_finish;
   1482       1.1     fvdl 	/* Overrun */
   1483       1.1     fvdl 	jmp	p_data;
   1484       1.1     fvdl data_phase_finish:
   1485       1.1     fvdl 	/*
   1486       1.1     fvdl 	 * If the target has left us in data phase, loop through
   1487       1.2      wiz 	 * the DMA code again.  We will only loop if there is a
   1488  1.8.10.1     yamt 	 * data overrun.
   1489       1.1     fvdl 	 */
   1490       1.1     fvdl 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
   1491       1.1     fvdl 		test	SSTAT0, TARGET jnz data_phase_done;
   1492       1.1     fvdl 	}
   1493       1.1     fvdl 	if ((ahd->flags & AHD_INITIATORROLE) != 0) {
   1494       1.1     fvdl 		test	SSTAT1, REQINIT jz .;
   1495       1.1     fvdl 		test	SCSIPHASE, DATA_PHASE_MASK jnz p_data;
   1496       1.1     fvdl 	}
   1497       1.1     fvdl 
   1498       1.1     fvdl data_phase_done:
   1499       1.1     fvdl 	/* Kill off any pending prefetch */
   1500       1.1     fvdl 	call	disable_ccsgen;
   1501       1.1     fvdl 	or 	LONGJMP_ADDR[1], INVALID_ADDR;
   1502       1.1     fvdl 
   1503       1.1     fvdl 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
   1504       1.1     fvdl 		test	SEQ_FLAGS, DPHASE_PENDING jz ITloop;
   1505       1.1     fvdl 		/*
   1506       1.1     fvdl 		and	SEQ_FLAGS, ~DPHASE_PENDING;
   1507       1.1     fvdl 		 * For data-in phases, wait for any pending acks from the
   1508       1.1     fvdl 		 * initiator before changing phase.  We only need to
   1509       1.1     fvdl 		 * send Ignore Wide Residue messages for data-in phases.
   1510       1.1     fvdl 		test	DFCNTRL, DIRECTION jz target_ITloop;
   1511       1.1     fvdl 		test	SSTAT1, REQINIT	jnz .;
   1512       1.6  thorpej 		test	SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop;
   1513       1.1     fvdl 		SET_MODE(M_SCSI, M_SCSI)
   1514       1.1     fvdl 		test	NEGCONOPTS, WIDEXFER jz target_ITloop;
   1515       1.1     fvdl 		 */
   1516       1.1     fvdl 		/*
   1517       1.1     fvdl 		 * Issue an Ignore Wide Residue Message.
   1518       1.1     fvdl 		mvi	P_MESGIN|BSYO call change_phase;
   1519       1.1     fvdl 		mvi	MSG_IGN_WIDE_RESIDUE call target_outb;
   1520       1.1     fvdl 		mvi	1 call target_outb;
   1521       1.1     fvdl 		jmp	target_ITloop;
   1522       1.1     fvdl 		 */
   1523       1.1     fvdl 	} else {
   1524       1.1     fvdl 		jmp	ITloop;
   1525       1.1     fvdl 	}
   1526       1.1     fvdl 
   1527       1.1     fvdl /*
   1528       1.1     fvdl  * We assume that, even though data may still be
   1529       1.1     fvdl  * transferring to the host, that the SCSI side of
   1530       1.1     fvdl  * the DMA engine is now in a static state.  This
   1531       1.1     fvdl  * allows us to update our notion of where we are
   1532       1.1     fvdl  * in this transfer.
   1533       1.1     fvdl  *
   1534       1.1     fvdl  * If, by chance, we stopped before being able
   1535       1.1     fvdl  * to fetch additional segments for this transfer,
   1536       1.1     fvdl  * yet the last S/G was completely exhausted,
   1537       1.1     fvdl  * call our idle loop until it is able to load
   1538       1.1     fvdl  * another segment.  This will allow us to immediately
   1539       1.1     fvdl  * pickup on the next segment on the next data phase.
   1540       1.1     fvdl  *
   1541       1.1     fvdl  * If we happened to stop on the last segment, then
   1542       1.1     fvdl  * our residual information is still correct from
   1543       1.1     fvdl  * the idle loop and there is no need to perform
   1544       1.1     fvdl  * any fixups.
   1545       1.1     fvdl  */
   1546       1.1     fvdl residual_before_last_seg:
   1547       1.1     fvdl 	test    MDFFSTAT, SHVALID	jnz sgptr_fixup;
   1548       1.1     fvdl 	/*
   1549       1.1     fvdl 	 * Can never happen from an interrupt as the packetized
   1550       1.1     fvdl 	 * hardware will only interrupt us once SHVALID or
   1551       1.1     fvdl 	 * LAST_SEG_DONE.
   1552       1.1     fvdl 	 */
   1553       1.1     fvdl 	call	idle_loop_service_fifos;
   1554       1.1     fvdl 	RESTORE_MODE(SAVED_MODE)
   1555       1.1     fvdl 	/* FALLTHROUGH */
   1556       1.1     fvdl calc_residual:
   1557       1.1     fvdl 	test	SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
   1558       1.1     fvdl 	/* Record if we've consumed all S/G entries */
   1559       1.1     fvdl 	test	MDFFSTAT, SHVALID	jz . + 2;
   1560       1.1     fvdl 	bmov	SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
   1561       1.1     fvdl 	or	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
   1562       1.1     fvdl 
   1563       1.1     fvdl sgptr_fixup:
   1564       1.1     fvdl 	/*
   1565       1.1     fvdl 	 * Fixup the residual next S/G pointer.  The S/G preload
   1566       1.1     fvdl 	 * feature of the chip allows us to load two elements
   1567       1.1     fvdl 	 * in addition to the currently active element.  We
   1568       1.1     fvdl 	 * store the bottom byte of the next S/G pointer in
   1569       1.1     fvdl 	 * the SG_CACHE_PTR register so we can restore the
   1570       1.1     fvdl 	 * correct value when the DMA completes.  If the next
   1571       1.1     fvdl 	 * sg ptr value has advanced to the point where higher
   1572       1.1     fvdl 	 * bytes in the address have been affected, fix them
   1573       1.1     fvdl 	 * too.
   1574       1.1     fvdl 	 */
   1575       1.1     fvdl 	test	SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
   1576       1.1     fvdl 	test	SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
   1577       1.1     fvdl 	add	SCB_RESIDUAL_SGPTR[1], -1;
   1578  1.8.10.1     yamt 	adc	SCB_RESIDUAL_SGPTR[2], -1;
   1579       1.1     fvdl 	adc	SCB_RESIDUAL_SGPTR[3], -1;
   1580       1.1     fvdl sgptr_fixup_done:
   1581       1.1     fvdl 	and	SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
   1582       1.1     fvdl 	clr	SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
   1583       1.1     fvdl 	bmov	SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
   1584       1.1     fvdl 
   1585       1.1     fvdl export timer_isr:
   1586       1.1     fvdl 	call	issue_cmdcmplt;
   1587       1.1     fvdl 	mvi	CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
   1588       1.1     fvdl 	if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
   1589       1.1     fvdl 		/*
   1590       1.1     fvdl 		 * In H2A4, the mode pointer is not saved
   1591       1.1     fvdl 		 * for intvec2, but is restored on iret.
   1592       1.1     fvdl 		 * This can lead to the restoration of a
   1593       1.1     fvdl 		 * bogus mode ptr.  Manually clear the
   1594       1.1     fvdl 		 * intmask bits and do a normal return
   1595       1.1     fvdl 		 * to compensate.
   1596       1.1     fvdl 		 */
   1597       1.1     fvdl 		and	SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
   1598       1.1     fvdl 	} else {
   1599       1.1     fvdl 		or	SEQINTCTL, IRET ret;
   1600       1.1     fvdl 	}
   1601       1.1     fvdl 
   1602       1.1     fvdl export seq_isr:
   1603       1.1     fvdl 	if ((ahd->features & AHD_RTI) == 0) {
   1604       1.1     fvdl 		/*
   1605       1.1     fvdl 		 * On RevA Silicon, if the target returns us to data-out
   1606       1.1     fvdl 		 * after we have already trained for data-out, it is
   1607       1.1     fvdl 		 * possible for us to transition the free running clock to
   1608       1.1     fvdl 		 * data-valid before the required 100ns P1 setup time (8 P1
   1609       1.1     fvdl 		 * assertions in fast-160 mode).  This will only happen if
   1610       1.1     fvdl 		 * this L-Q is a continuation of a data transfer for which
   1611       1.1     fvdl 		 * we have already prefetched data into our FIFO (LQ/Data
   1612       1.1     fvdl 		 * followed by LQ/Data for the same write transaction).
   1613       1.1     fvdl 		 * This can cause some target implementations to miss the
   1614       1.1     fvdl 		 * first few data transfers on the bus.  We detect this
   1615       1.1     fvdl 		 * situation by noticing that this is the first data transfer
   1616       1.1     fvdl 		 * after an LQ (LQIWORKONLQ true), that the data transfer is
   1617       1.1     fvdl 		 * a continuation of a transfer already setup in our FIFO
   1618       1.1     fvdl 		 * (SAVEPTRS interrupt), and that the transaction is a write
   1619       1.1     fvdl 		 * (DIRECTION set in DFCNTRL). The delay is performed by
   1620       1.1     fvdl 		 * disabling SCSIEN until we see the first REQ from the
   1621       1.1     fvdl 		 * target.
   1622  1.8.10.1     yamt 		 *
   1623       1.1     fvdl 		 * First instruction in an ISR cannot be a branch on
   1624       1.1     fvdl 		 * Rev A.  Snapshot LQISTAT2 so the status is not missed
   1625       1.1     fvdl 		 * and deffer the test by one instruction.
   1626       1.1     fvdl 		 */
   1627       1.1     fvdl 		mov	REG_ISR, LQISTAT2;
   1628       1.4  thorpej 		test	REG_ISR, LQIWORKONLQ jz main_isr;
   1629       1.4  thorpej 		test	SEQINTSRC, SAVEPTRS  jz main_isr;
   1630       1.1     fvdl 		test	LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
   1631       1.1     fvdl 		/*
   1632       1.4  thorpej 		 * Switch to the active FIFO after clearing the snapshot
   1633       1.4  thorpej 		 * savepointer in the current FIFO.  We do this so that
   1634       1.4  thorpej 		 * a pending CTXTDONE or SAVEPTR is visible in the active
   1635       1.4  thorpej 		 * FIFO.  This status is the only way we can detect if we
   1636       1.4  thorpej 		 * have lost the race (e.g. host paused us) and our attepts
   1637       1.4  thorpej 		 * to disable the channel occurred after all REQs were
   1638       1.4  thorpej 		 * already seen and acked (REQINIT never comes true).
   1639       1.1     fvdl 		 */
   1640       1.4  thorpej 		mvi	DFFSXFRCTL, CLRCHN;
   1641       1.1     fvdl 		xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
   1642       1.4  thorpej 		test	DFCNTRL, DIRECTION jz interrupt_return;
   1643       1.1     fvdl 		and	DFCNTRL, ~SCSIEN;
   1644       1.4  thorpej snapshot_wait_data_valid:
   1645       1.4  thorpej 		test	SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz snapshot_data_valid;
   1646       1.4  thorpej 		test	SSTAT1, REQINIT	jz snapshot_wait_data_valid;
   1647       1.4  thorpej snapshot_data_valid:
   1648       1.1     fvdl 		or	DFCNTRL, SCSIEN;
   1649       1.4  thorpej 		or	SEQINTCTL, IRET ret;
   1650       1.1     fvdl snapshot_saveptr:
   1651       1.1     fvdl 		mvi	DFFSXFRCTL, CLRCHN;
   1652       1.1     fvdl 		or	SEQINTCTL, IRET ret;
   1653       1.4  thorpej main_isr:
   1654       1.1     fvdl 	}
   1655       1.1     fvdl 	test	SEQINTSRC, CFG4DATA	jnz cfg4data_intr;
   1656       1.1     fvdl 	test	SEQINTSRC, CFG4ISTAT	jnz cfg4istat_intr;
   1657       1.1     fvdl 	test	SEQINTSRC, SAVEPTRS	jnz saveptr_intr;
   1658       1.1     fvdl 	test	SEQINTSRC, CFG4ICMD	jnz cfg4icmd_intr;
   1659       1.1     fvdl 	SET_SEQINTCODE(INVALID_SEQINT)
   1660       1.1     fvdl 
   1661       1.1     fvdl /*
   1662       1.1     fvdl  * There are two types of save pointers interrupts:
   1663       1.1     fvdl  * The first is a snapshot save pointers where the current FIFO is not
   1664       1.1     fvdl  * active and contains a snapshot of the current poniter information.
   1665       1.1     fvdl  * This happens between packets in a stream for a single L_Q.  Since we
   1666       1.1     fvdl  * are not performing a pointer save, we can safely clear the channel
   1667       1.1     fvdl  * so it can be used for other transactions.  On RTI capable controllers,
   1668       1.1     fvdl  * where snapshots can, and are, disabled, the code to handle this type
   1669       1.1     fvdl  * of snapshot is not active.
   1670       1.1     fvdl  *
   1671       1.1     fvdl  * The second case is a save pointers on an active FIFO which occurs
   1672       1.1     fvdl  * if the target changes to a new L_Q or busfrees/QASes and the transfer
   1673       1.1     fvdl  * has a residual.  This should occur coincident with a ctxtdone.  We
   1674       1.1     fvdl  * disable the interrupt and allow our active routine to handle the
   1675       1.1     fvdl  * save.
   1676       1.1     fvdl  */
   1677       1.1     fvdl saveptr_intr:
   1678       1.1     fvdl 	if ((ahd->features & AHD_RTI) == 0) {
   1679       1.1     fvdl 		test	LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
   1680       1.1     fvdl 	}
   1681       1.1     fvdl saveptr_active_fifo:
   1682       1.1     fvdl 	and	SEQIMODE, ~ENSAVEPTRS;
   1683       1.1     fvdl 	or	SEQINTCTL, IRET ret;
   1684       1.1     fvdl 
   1685       1.1     fvdl cfg4data_intr:
   1686       1.4  thorpej 	test	SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count;
   1687       1.1     fvdl 	call	load_first_seg;
   1688       1.1     fvdl 	call	pkt_handle_xfer;
   1689       1.4  thorpej 	inc	SCB_FIFO_USE_COUNT;
   1690       1.4  thorpej interrupt_return:
   1691       1.1     fvdl 	or	SEQINTCTL, IRET ret;
   1692       1.1     fvdl 
   1693       1.1     fvdl cfg4istat_intr:
   1694       1.1     fvdl 	call	freeze_queue;
   1695       1.1     fvdl 	add	NONE, -13, SCB_CDB_LEN;
   1696       1.1     fvdl 	jnc	cfg4istat_have_sense_addr;
   1697       1.1     fvdl 	test	SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
   1698       1.1     fvdl 	/*
   1699       1.1     fvdl 	 * Host sets up address/count and enables transfer.
   1700       1.1     fvdl 	 */
   1701       1.1     fvdl 	SET_SEQINTCODE(CFG4ISTAT_INTR)
   1702       1.1     fvdl 	jmp	cfg4istat_setup_handler;
   1703       1.1     fvdl cfg4istat_have_sense_addr:
   1704       1.1     fvdl 	bmov	HADDR, SCB_SENSE_BUSADDR, 4;
   1705       1.1     fvdl 	mvi	HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
   1706       1.1     fvdl 	mvi	SG_CACHE_PRE, LAST_SEG;
   1707       1.1     fvdl 	mvi	DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
   1708       1.1     fvdl cfg4istat_setup_handler:
   1709       1.1     fvdl 	/*
   1710       1.1     fvdl 	 * Status pkt is transferring to host.
   1711       1.1     fvdl 	 * Wait in idle loop for transfer to complete.
   1712       1.1     fvdl 	 * If a command completed before an attempted
   1713       1.1     fvdl 	 * task management function completed, notify the host.
   1714       1.1     fvdl 	 */
   1715       1.1     fvdl 	test	SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
   1716       1.1     fvdl 	SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
   1717       1.1     fvdl cfg4istat_no_taskmgmt_func:
   1718       1.1     fvdl 	call	pkt_handle_status;
   1719       1.1     fvdl 	or	SEQINTCTL, IRET ret;
   1720       1.1     fvdl 
   1721       1.1     fvdl cfg4icmd_intr:
   1722       1.1     fvdl 	/*
   1723       1.1     fvdl 	 * In the case of DMAing a CDB from the host, the normal
   1724       1.1     fvdl 	 * CDB buffer is formatted with an 8 byte address followed
   1725       1.1     fvdl 	 * by a 1 byte count.
   1726       1.1     fvdl 	 */
   1727       1.1     fvdl 	bmov	HADDR[0], SCB_HOST_CDB_PTR, 9;
   1728       1.1     fvdl 	mvi	SG_CACHE_PRE, LAST_SEG;
   1729       1.1     fvdl 	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
   1730       1.1     fvdl 	call	pkt_handle_cdb;
   1731       1.1     fvdl 	or	SEQINTCTL, IRET ret;
   1732       1.1     fvdl 
   1733       1.1     fvdl /*
   1734       1.1     fvdl  * See if the target has gone on in this context creating an
   1735       1.1     fvdl  * overrun condition.  For the write case, the hardware cannot
   1736       1.1     fvdl  * ack bytes until data are provided.  So, if the target begins
   1737       1.1     fvdl  * another  packet without changing contexts, implying we are
   1738       1.1     fvdl  * not sitting on a packet boundary, we are in an overrun
   1739       1.1     fvdl  * situation.  For the read case, the hardware will continue to
   1740       1.1     fvdl  * ack bytes into the FIFO, and may even ack the last overrun packet
   1741       1.1     fvdl  * into the FIFO.   If the FIFO should become non-empty, we are in
   1742       1.1     fvdl  * a read overrun case.
   1743       1.1     fvdl  */
   1744       1.1     fvdl #define check_overrun							\
   1745       1.1     fvdl 	/* Not on a packet boundary. */					\
   1746       1.1     fvdl 	test 	MDFFSTAT, DLZERO jz pkt_handle_overrun;			\
   1747       1.1     fvdl 	test	DFSTATUS, FIFOEMP jz pkt_handle_overrun
   1748       1.1     fvdl 
   1749       1.1     fvdl pkt_handle_xfer:
   1750       1.1     fvdl 	test	SG_STATE, LOADING_NEEDED jz pkt_last_seg;
   1751       1.1     fvdl 	call	setjmp;
   1752       1.1     fvdl 	test	SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
   1753       1.1     fvdl 	test	SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
   1754       1.1     fvdl 	test	SCSISIGO, ATNO jnz . + 2;
   1755       1.1     fvdl 	test	SSTAT2, NONPACKREQ jz pkt_service_fifo;
   1756       1.1     fvdl 	/*
   1757       1.1     fvdl 	 * Defer handling of this NONPACKREQ until we
   1758       1.1     fvdl 	 * can be sure it pertains to this FIFO.  SAVEPTRS
   1759       1.1     fvdl 	 * will not be asserted if the NONPACKREQ is for us,
   1760       1.1     fvdl 	 * so we must simulate it if shaddow is valid.  If
   1761       1.1     fvdl 	 * shaddow is not valid, keep running this FIFO until we
   1762       1.1     fvdl 	 * have satisfied the transfer by loading segments and
   1763       1.1     fvdl 	 * waiting for either shaddow valid or last_seg_done.
   1764       1.1     fvdl 	 */
   1765       1.1     fvdl 	test	MDFFSTAT, SHVALID jnz pkt_saveptrs;
   1766       1.1     fvdl pkt_service_fifo:
   1767       1.1     fvdl 	test	SG_STATE, LOADING_NEEDED jnz service_fifo;
   1768       1.1     fvdl pkt_last_seg:
   1769       1.1     fvdl 	call	setjmp;
   1770       1.1     fvdl 	test	SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
   1771       1.4  thorpej 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done;
   1772       1.1     fvdl 	test	SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
   1773       1.1     fvdl 	test	SCSISIGO, ATNO jnz . + 2;
   1774       1.1     fvdl 	test	SSTAT2, NONPACKREQ jz return;
   1775       1.1     fvdl 	test	MDFFSTAT, SHVALID jz return;
   1776       1.1     fvdl 	/* FALLTHROUGH */
   1777       1.1     fvdl 
   1778       1.1     fvdl /*
   1779       1.1     fvdl  * Either a SAVEPTRS interrupt condition is pending for this FIFO
   1780       1.4  thorpej  * or we have a pending NONPACKREQ for this FIFO.  We differentiate
   1781       1.1     fvdl  * between the two by capturing the state of the SAVEPTRS interrupt
   1782       1.1     fvdl  * prior to clearing this status and executing the common code for
   1783       1.1     fvdl  * these two cases.
   1784       1.1     fvdl  */
   1785       1.1     fvdl pkt_saveptrs:
   1786       1.1     fvdl BEGIN_CRITICAL;
   1787       1.1     fvdl 	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
   1788       1.1     fvdl 		or	DFCNTRL, FIFOFLUSH;
   1789       1.1     fvdl 	}
   1790       1.1     fvdl 	mov	REG0, SEQINTSRC;
   1791       1.1     fvdl 	call	calc_residual;
   1792       1.1     fvdl 	call	save_pointers;
   1793       1.1     fvdl 	mvi	CLRSEQINTSRC, CLRSAVEPTRS;
   1794       1.1     fvdl 	call	disable_ccsgen;
   1795       1.1     fvdl 	or	SEQIMODE, ENSAVEPTRS;
   1796       1.1     fvdl 	test	DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
   1797       1.1     fvdl 	test	DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
   1798       1.1     fvdl 	/*
   1799       1.1     fvdl 	 * Keep a handler around for this FIFO until it drains
   1800       1.1     fvdl 	 * to the host to guarantee that we don't complete the
   1801       1.1     fvdl 	 * command to the host before the data arrives.
   1802       1.1     fvdl 	 */
   1803       1.1     fvdl pkt_saveptrs_wait_fifoemp:
   1804       1.1     fvdl 	call	setjmp;
   1805       1.1     fvdl 	test	DFSTATUS, FIFOEMP jz return;
   1806       1.1     fvdl pkt_saveptrs_check_status:
   1807       1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1808       1.1     fvdl 	test	REG0, SAVEPTRS jz unexpected_nonpkt_phase;
   1809       1.4  thorpej 	dec	SCB_FIFO_USE_COUNT;
   1810       1.4  thorpej 	test	SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
   1811       1.1     fvdl 	mvi	DFFSXFRCTL, CLRCHN ret;
   1812       1.1     fvdl END_CRITICAL;
   1813       1.1     fvdl 
   1814       1.4  thorpej /*
   1815       1.4  thorpej  * LAST_SEG_DONE status has been seen in the current FIFO.
   1816       1.4  thorpej  * This indicates that all of the allowed data for this
   1817       1.4  thorpej  * command has transferred across the SCSI and host buses.
   1818       1.4  thorpej  * Check for overrun and see if we can complete this command.
   1819       1.4  thorpej  */
   1820       1.4  thorpej pkt_last_seg_done:
   1821       1.1     fvdl BEGIN_CRITICAL;
   1822       1.4  thorpej 	/*
   1823       1.4  thorpej 	 * Mark transfer as completed.
   1824       1.4  thorpej 	 */
   1825       1.1     fvdl 	or	SCB_SGPTR, SG_LIST_NULL;
   1826       1.4  thorpej 
   1827       1.1     fvdl 	/*
   1828       1.4  thorpej 	 * Wait for the current context to finish to verify that
   1829       1.4  thorpej 	 * no overrun condition has occurred.
   1830       1.1     fvdl 	 */
   1831       1.4  thorpej 	test	SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
   1832       1.1     fvdl 	call	setjmp;
   1833       1.4  thorpej pkt_wait_ctxt_done_loop:
   1834       1.4  thorpej 	test	SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
   1835       1.4  thorpej 	/*
   1836       1.4  thorpej 	 * A sufficiently large overrun or a NONPACKREQ may
   1837       1.4  thorpej 	 * prevent CTXTDONE from ever asserting, so we must
   1838       1.4  thorpej 	 * poll for these statuses too.
   1839       1.4  thorpej 	 */
   1840       1.1     fvdl 	check_overrun;
   1841       1.1     fvdl 	test	SSTAT2, NONPACKREQ jz return;
   1842       1.1     fvdl 	test	SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
   1843       1.4  thorpej 	/* FALLTHROUGH */
   1844       1.4  thorpej 
   1845       1.4  thorpej pkt_ctxt_done:
   1846       1.1     fvdl 	check_overrun;
   1847       1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1848       1.4  thorpej 	/*
   1849       1.4  thorpej 	 * If status has been received, it is safe to skip
   1850       1.4  thorpej 	 * the check to see if another FIFO is active because
   1851       1.4  thorpej 	 * LAST_SEG_DONE has been observed.  However, we check
   1852       1.4  thorpej 	 * the FIFO anyway since it costs us only one extra
   1853       1.4  thorpej 	 * instruction to leverage common code to perform the
   1854       1.4  thorpej 	 * SCB completion.
   1855       1.4  thorpej 	 */
   1856       1.4  thorpej 	dec	SCB_FIFO_USE_COUNT;
   1857       1.4  thorpej 	test	SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
   1858       1.1     fvdl 	mvi	DFFSXFRCTL, CLRCHN ret;
   1859       1.1     fvdl END_CRITICAL;
   1860       1.1     fvdl 
   1861       1.1     fvdl /*
   1862       1.4  thorpej  * Must wait until CDB xfer is over before issuing the
   1863       1.4  thorpej  * clear channel.
   1864       1.4  thorpej  */
   1865       1.4  thorpej pkt_handle_cdb:
   1866       1.4  thorpej 	call	setjmp;
   1867       1.4  thorpej 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
   1868       1.4  thorpej 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1869       1.4  thorpej 	mvi	DFFSXFRCTL, CLRCHN ret;
   1870       1.4  thorpej 
   1871       1.4  thorpej /*
   1872       1.1     fvdl  * Watch over the status transfer.  Our host sense buffer is
   1873       1.1     fvdl  * large enough to take the maximum allowed status packet.
   1874       1.1     fvdl  * None-the-less, we must still catch and report overruns to
   1875       1.4  thorpej  * the host.  Additionally, properly catch unexpected non-packet
   1876       1.4  thorpej  * phases that are typically caused by CRC errors in status packet
   1877       1.4  thorpej  * transmission.
   1878       1.1     fvdl  */
   1879       1.1     fvdl pkt_handle_status:
   1880       1.4  thorpej 	call	setjmp;
   1881       1.4  thorpej 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
   1882       1.4  thorpej 	test	SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq;
   1883       1.4  thorpej 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
   1884       1.4  thorpej pkt_status_IU_done:
   1885       1.1     fvdl 	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
   1886       1.1     fvdl 		or	DFCNTRL, FIFOFLUSH;
   1887       1.1     fvdl 	}
   1888       1.4  thorpej 	test	DFSTATUS, FIFOEMP jz return;
   1889       1.4  thorpej BEGIN_CRITICAL;
   1890       1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1891       1.1     fvdl 	mvi	SCB_SCSI_STATUS, STATUS_PKT_SENSE;
   1892       1.1     fvdl 	or	SCB_CONTROL, STATUS_RCVD;
   1893       1.4  thorpej 	jmp	pkt_complete_scb_if_fifos_idle;
   1894       1.1     fvdl END_CRITICAL;
   1895       1.4  thorpej pkt_status_check_overrun:
   1896       1.1     fvdl 	/*
   1897       1.4  thorpej 	 * Status PKT overruns are uncerimoniously recovered with a
   1898       1.4  thorpej 	 * bus reset.  If we've overrun, let the host know so that
   1899       1.4  thorpej 	 * recovery can be performed.
   1900       1.4  thorpej 	 *
   1901       1.4  thorpej 	 * LAST_SEG_DONE has been observed.  If either CTXTDONE or
   1902       1.4  thorpej 	 * a NONPACKREQ phase change have occurred and the FIFO is
   1903       1.4  thorpej 	 * empty, there is no overrun.
   1904       1.4  thorpej 	 */
   1905       1.4  thorpej 	test	DFSTATUS, FIFOEMP jz pkt_status_report_overrun;
   1906       1.4  thorpej 	test	SEQINTSRC, CTXTDONE jz . + 2;
   1907       1.4  thorpej 	test	DFSTATUS, FIFOEMP jnz pkt_status_IU_done;
   1908       1.4  thorpej 	test	SCSIPHASE, ~DATA_PHASE_MASK jz return;
   1909       1.4  thorpej 	test	DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq;
   1910       1.4  thorpej pkt_status_report_overrun:
   1911       1.1     fvdl 	SET_SEQINTCODE(STATUS_OVERRUN)
   1912       1.4  thorpej 	/* SEQUENCER RESTARTED */
   1913       1.4  thorpej pkt_status_check_nonpackreq:
   1914       1.4  thorpej 	/*
   1915       1.4  thorpej 	 * CTXTDONE may be held off if a NONPACKREQ is associated with
   1916       1.4  thorpej 	 * the current context.  If a NONPACKREQ is observed, decide
   1917       1.4  thorpej 	 * if it is for the current context.  If it is for the current
   1918       1.4  thorpej 	 * context, we must defer NONPACKREQ processing until all data
   1919       1.4  thorpej 	 * has transferred to the host.
   1920       1.4  thorpej 	 */
   1921       1.4  thorpej 	test	SCSIPHASE, ~DATA_PHASE_MASK jz return;
   1922       1.4  thorpej 	test	SCSISIGO, ATNO jnz . + 2;
   1923       1.4  thorpej 	test	SSTAT2, NONPACKREQ jz return;
   1924       1.4  thorpej 	test	SEQINTSRC, CTXTDONE jnz pkt_status_IU_done;
   1925       1.4  thorpej 	test	DFSTATUS, FIFOEMP jz return;
   1926       1.4  thorpej 	/*
   1927       1.4  thorpej 	 * The unexpected nonpkt phase handler assumes that any
   1928       1.4  thorpej 	 * data channel use will have a FIFO reference count.  It
   1929       1.4  thorpej 	 * turns out that the status handler doesn't need a refernce
   1930       1.4  thorpej 	 * count since the status received flag, and thus completion
   1931       1.4  thorpej 	 * processing, cannot be set until the handler is finished.
   1932       1.4  thorpej 	 * We increment the count here to make the nonpkt handler
   1933       1.4  thorpej 	 * happy.
   1934       1.4  thorpej 	 */
   1935       1.4  thorpej 	inc	SCB_FIFO_USE_COUNT;
   1936       1.4  thorpej 	/* FALLTHROUGH */
   1937       1.1     fvdl 
   1938       1.1     fvdl /*
   1939       1.1     fvdl  * Nonpackreq is a polled status.  It can come true in three situations:
   1940       1.1     fvdl  * we have received an L_Q, we have sent one or more L_Qs, or there is no
   1941       1.1     fvdl  * L_Q context associated with this REQ (REQ occurs immediately after a
   1942       1.1     fvdl  * (re)selection).  Routines that know that the context responsible for this
   1943       1.1     fvdl  * nonpackreq call directly into unexpected_nonpkt_phase.  In the case of the
   1944       1.1     fvdl  * top level idle loop, we exhaust all active contexts prior to determining that
   1945       1.1     fvdl  * we simply do not have the full I_T_L_Q for this phase.
   1946       1.1     fvdl  */
   1947       1.1     fvdl unexpected_nonpkt_phase_find_ctxt:
   1948       1.1     fvdl 	/*
   1949       1.1     fvdl 	 * This nonpackreq is most likely associated with one of the tags
   1950       1.1     fvdl 	 * in a FIFO or an outgoing LQ.  Only treat it as an I_T only
   1951       1.1     fvdl 	 * nonpackreq if we've cleared out the FIFOs and handled any
   1952       1.1     fvdl 	 * pending SELDO.
   1953       1.1     fvdl 	 */
   1954       1.1     fvdl SET_SRC_MODE	M_SCSI;
   1955       1.1     fvdl SET_DST_MODE	M_SCSI;
   1956       1.1     fvdl 	and	A, FIFO1FREE|FIFO0FREE, DFFSTAT;
   1957       1.1     fvdl 	cmp	A, FIFO1FREE|FIFO0FREE jne return;
   1958       1.1     fvdl 	test	SSTAT0, SELDO jnz return;
   1959       1.1     fvdl 	mvi	SCBPTR[1], SCB_LIST_NULL;
   1960       1.1     fvdl unexpected_nonpkt_phase:
   1961       1.7  thorpej 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
   1962       1.7  thorpej 		jnz unexpected_nonpkt_mode_cleared;
   1963       1.1     fvdl SET_SRC_MODE	M_DFF0;
   1964       1.1     fvdl SET_DST_MODE	M_DFF0;
   1965       1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1966       1.4  thorpej 	dec	SCB_FIFO_USE_COUNT;
   1967       1.1     fvdl 	mvi	DFFSXFRCTL, CLRCHN;
   1968       1.7  thorpej unexpected_nonpkt_mode_cleared:
   1969       1.1     fvdl 	mvi	CLRSINT2, CLRNONPACKREQ;
   1970       1.1     fvdl 	test	SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
   1971       1.1     fvdl 	SET_SEQINTCODE(ENTERING_NONPACK)
   1972       1.1     fvdl 	jmp	ITloop;
   1973       1.1     fvdl 
   1974       1.1     fvdl illegal_phase:
   1975       1.1     fvdl 	SET_SEQINTCODE(ILLEGAL_PHASE)
   1976       1.1     fvdl 	jmp	ITloop;
   1977       1.1     fvdl 
   1978       1.1     fvdl /*
   1979       1.1     fvdl  * We have entered an overrun situation.  If we have working
   1980       1.1     fvdl  * BITBUCKET, flip that on and let the hardware eat any overrun
   1981       1.1     fvdl  * data.  Otherwise use an overrun buffer in the host to simulate
   1982       1.1     fvdl  * BITBUCKET.
   1983       1.1     fvdl  */
   1984       1.4  thorpej pkt_handle_overrun_inc_use_count:
   1985       1.4  thorpej 	inc	SCB_FIFO_USE_COUNT;
   1986       1.1     fvdl pkt_handle_overrun:
   1987       1.1     fvdl 	SET_SEQINTCODE(CFG4OVERRUN)
   1988       1.1     fvdl 	call	freeze_queue;
   1989       1.1     fvdl 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
   1990       1.1     fvdl 		or	DFFSXFRCTL, DFFBITBUCKET;
   1991       1.1     fvdl SET_SRC_MODE	M_DFF1;
   1992       1.1     fvdl SET_DST_MODE	M_DFF1;
   1993       1.1     fvdl 	} else {
   1994       1.1     fvdl 		call	load_overrun_buf;
   1995       1.1     fvdl 		mvi	DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
   1996       1.1     fvdl 	}
   1997       1.1     fvdl 	call	setjmp;
   1998       1.1     fvdl 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
   1999       1.1     fvdl 		test	DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
   2000       1.1     fvdl 		call	load_overrun_buf;
   2001       1.1     fvdl 		or	DFCNTRL, PRELOADEN;
   2002       1.1     fvdl overrun_load_done:
   2003       1.1     fvdl 		test	SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
   2004       1.1     fvdl 	} else {
   2005       1.1     fvdl 		test	DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
   2006       1.1     fvdl 	}
   2007       1.1     fvdl 	test	SSTAT2, NONPACKREQ jz return;
   2008       1.1     fvdl pkt_overrun_end:
   2009       1.1     fvdl 	or	SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
   2010       1.1     fvdl 	test	SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
   2011       1.4  thorpej 	dec	SCB_FIFO_USE_COUNT;
   2012       1.1     fvdl 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   2013       1.4  thorpej 	test	SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
   2014       1.1     fvdl 	mvi	DFFSXFRCTL, CLRCHN ret;
   2015       1.1     fvdl 
   2016       1.1     fvdl if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
   2017       1.1     fvdl load_overrun_buf:
   2018       1.1     fvdl 	/*
   2019       1.1     fvdl 	 * Load a dummy segment if preload space is available.
   2020       1.1     fvdl 	 */
   2021       1.1     fvdl 	mov 	HADDR[0], SHARED_DATA_ADDR;
   2022       1.1     fvdl 	add	HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
   2023       1.1     fvdl 	mov	ACCUM_SAVE, A;
   2024       1.1     fvdl 	clr	A;
   2025       1.1     fvdl 	adc	HADDR[2], A, SHARED_DATA_ADDR[2];
   2026       1.1     fvdl 	adc	HADDR[3], A, SHARED_DATA_ADDR[3];
   2027       1.1     fvdl 	mov	A, ACCUM_SAVE;
   2028       1.1     fvdl 	bmov	HADDR[4], ALLZEROS, 4;
   2029       1.1     fvdl 	/* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
   2030       1.1     fvdl 	clr	HCNT[0];
   2031       1.1     fvdl 	mvi	HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
   2032       1.1     fvdl 	clr	HCNT[2] ret;
   2033       1.1     fvdl }
   2034