aic79xx.seq revision 1.1 1 /*
2 * Adaptec U320 device driver firmware for Linux and FreeBSD.
3 *
4 * Copyright (c) 1994-2001 Justin T. Gibbs.
5 * Copyright (c) 2000-2002 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 * substantially similar to the "NO WARRANTY" disclaimer below
16 * ("Disclaimer") and any redistribution must be conditioned upon
17 * including a substantially similar Disclaimer requirement for further
18 * binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 * of any contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $FreeBSD: /repoman/r/ncvs/src/sys/dev/aic7xxx/aic79xx.seq,v 1.7 2003/02/27 23:23:16 gibbs Exp $
41 */
42
43 VERSION = "$NetBSD: aic79xx.seq,v 1.1 2003/04/19 19:26:10 fvdl Exp $"
44 PATCH_ARG_LIST = "struct ahd_softc *ahd"
45 PREFIX = "ahd_"
46
47 #include <dev/microcode/aic7xxx/aic79xx.reg>
48 #include <dev/scsipi/scsi_message.h>
49
50 restart:
51 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
52 test SEQINTCODE, 0xFF jz idle_loop;
53 SET_SEQINTCODE(NO_SEQINT)
54 }
55
56 idle_loop:
57
58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
59 /*
60 * Convert ERROR status into a sequencer
61 * interrupt to handle the case of an
62 * interrupt collision on the hardware
63 * setting of HWERR.
64 */
65 test ERROR, 0xFF jz no_error_set;
66 SET_SEQINTCODE(SAW_HWERR)
67 no_error_set:
68 }
69 SET_MODE(M_SCSI, M_SCSI)
70 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
71 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus;
72 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
73 /*
74 * ENSELO is cleared by a SELDO, so we must test for SELDO
75 * one last time.
76 */
77 BEGIN_CRITICAL;
78 test SSTAT0, SELDO jnz select_out;
79 END_CRITICAL;
80 call start_selection;
81 idle_loop_checkbus:
82 BEGIN_CRITICAL;
83 test SSTAT0, SELDO jnz select_out;
84 END_CRITICAL;
85 test SSTAT0, SELDI jnz select_in;
86 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
87 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
88 call unexpected_nonpkt_phase_find_ctxt;
89 idle_loop_check_nonpackreq:
90 test SSTAT2, NONPACKREQ jz . + 2;
91 call unexpected_nonpkt_phase_find_ctxt;
92 call idle_loop_gsfifo_in_scsi_mode;
93 call idle_loop_service_fifos;
94 call idle_loop_cchan;
95 jmp idle_loop;
96
97 BEGIN_CRITICAL;
98 idle_loop_gsfifo:
99 SET_MODE(M_SCSI, M_SCSI)
100 idle_loop_gsfifo_in_scsi_mode:
101 test LQISTAT2, LQIGSAVAIL jz return;
102 /*
103 * We have received good status for this transaction. There may
104 * still be data in our FIFOs draining to the host. Setup
105 * monitoring of the draining process or complete the SCB.
106 */
107 good_status_IU_done:
108 bmov SCBPTR, GSFIFO, 2;
109 clr SCB_SCSI_STATUS;
110 /*
111 * If a command completed before an attempted task management
112 * function completed, notify the host after disabling any
113 * pending select-outs.
114 */
115 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
116 test SSTAT0, SELDO|SELINGO jnz . + 2;
117 and SCSISEQ0, ~ENSELO;
118 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
119 gsfifo_complete_normally:
120 or SCB_CONTROL, STATUS_RCVD;
121
122 /*
123 * Since this status did not consume a FIFO, we have to
124 * be a bit more dilligent in how we check for FIFOs pertaining
125 * to this transaction. There are two states that a FIFO still
126 * transferring data may be in.
127 *
128 * 1) Configured and draining to the host, with a FIFO handler.
129 * 2) Pending cfg4data, fifo not empty.
130 *
131 * Case 1 can be detected by noticing that a longjmp is active for
132 * the FIFO and LONGJMP_SCB matches our SCB. In this case, we allow
133 * the routine servicing the FIFO to complete the SCB.
134 *
135 * Case 2 implies either a pending or yet to occur save data
136 * pointers for this same context in the other FIFO. So, if
137 * we detect case 1, we will properly defer the post of the SCB
138 * and achieve the desired result. The pending cfg4data will
139 * notice that status has been received and complete the SCB.
140 *
141 * If the data-transfer has been completed, or no data transfer
142 * was needed for this SCB, it is safe to complete the command.
143 */
144 test SCB_SGPTR, SG_LIST_NULL jz good_status_check_fifos;
145 /*
146 * All segments have been loaded (or no data transfer), so
147 * it is safe to complete the command. Since this was a
148 * cheap command to check for completion, loop to see if
149 * more entries can be removed from the GSFIFO.
150 */
151 call complete;
152 END_CRITICAL;
153 jmp idle_loop_gsfifo_in_scsi_mode;
154 BEGIN_CRITICAL;
155 good_status_check_fifos:
156 clc;
157 bmov ARG_1, SCBPTR, 2;
158 SET_MODE(M_DFF0, M_DFF0)
159 call check_fifo;
160 jc return;
161 SET_MODE(M_DFF1, M_DFF1)
162 call check_fifo;
163 jc return;
164 SET_MODE(M_SCSI, M_SCSI)
165 jmp queue_scb_completion;
166 END_CRITICAL;
167
168 idle_loop_service_fifos:
169 SET_MODE(M_DFF0, M_DFF0)
170 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
171 call longjmp;
172 idle_loop_next_fifo:
173 SET_MODE(M_DFF1, M_DFF1)
174 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
175 ret;
176
177 idle_loop_cchan:
178 SET_MODE(M_CCHAN, M_CCHAN)
179 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty;
180 mov LOCAL_HS_MAILBOX, HS_MAILBOX;
181 or QOFF_CTLSTA, HS_MAILBOX_ACT;
182 hs_mailbox_empty:
183 BEGIN_CRITICAL;
184 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
185 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
186 test CCSCBCTL, CCSCBDONE jz return;
187 END_CRITICAL;
188 /* FALLTHROUGH */
189 scbdma_tohost_done:
190 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
191 /*
192 * A complete SCB upload requires no intervention.
193 * The SCB is already on the COMPLETE_SCB list
194 * and its completion notification will now be
195 * handled just like any other SCB.
196 */
197 and CCSCBCTL, ~(CCARREN|CCSCBEN) ret;
198 fill_qoutfifo_dmadone:
199 and CCSCBCTL, ~(CCARREN|CCSCBEN);
200 call qoutfifo_updated;
201 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
202 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
203 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
204 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
205 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
206
207 qoutfifo_updated:
208 /*
209 * If there are more commands waiting to be dma'ed
210 * to the host, always coaless. Otherwise honor the
211 * host's wishes.
212 */
213 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coaless_by_count;
214 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coaless_by_count;
215 test LOCAL_HS_MAILBOX, ENINT_COALESS jz issue_cmdcmplt;
216
217 /*
218 * If we have relatively few commands outstanding, don't
219 * bother waiting for another command to complete.
220 */
221 test CMDS_PENDING[1], 0xFF jnz coaless_by_count;
222 /* Add -1 so that jnc means <= not just < */
223 add A, -1, INT_COALESSING_MINCMDS;
224 add NONE, A, CMDS_PENDING;
225 jnc issue_cmdcmplt;
226
227 /*
228 * If coalessing, only coaless up to the limit
229 * provided by the host driver.
230 */
231 coaless_by_count:
232 mov A, INT_COALESSING_MAXCMDS;
233 add NONE, A, INT_COALESSING_CMDCOUNT;
234 jc issue_cmdcmplt;
235 /*
236 * If the timer is not currently active,
237 * fire it up.
238 */
239 test INTCTL, SWTMINTMASK jz return;
240 bmov SWTIMER, INT_COALESSING_TIMER, 2;
241 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
242 or INTCTL, SWTMINTEN|SWTIMER_START;
243 and INTCTL, ~SWTMINTMASK ret;
244
245 issue_cmdcmplt:
246 mvi INTSTAT, CMDCMPLT;
247 clr INT_COALESSING_CMDCOUNT;
248 or INTCTL, SWTMINTMASK ret;
249
250 BEGIN_CRITICAL;
251 fetch_new_scb_inprog:
252 test CCSCBCTL, ARRDONE jz return;
253 fetch_new_scb_done:
254 and CCSCBCTL, ~(CCARREN|CCSCBEN);
255 bmov REG0, SCBPTR, 2;
256 clr A;
257 add CMDS_PENDING, 1;
258 adc CMDS_PENDING[1], A;
259 /* Update the next SCB address to download. */
260 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
261 mvi SCB_NEXT[1], SCB_LIST_NULL;
262 mvi SCB_NEXT2[1], SCB_LIST_NULL;
263 /* Increment our position in the QINFIFO. */
264 mov NONE, SNSCB_QOFF;
265 /*
266 * SCBs that want to send messages are always
267 * queued independently. This ensures that they
268 * are at the head of the SCB list to select out
269 * to a target and we will see the MK_MESSAGE flag.
270 */
271 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb;
272 shr SINDEX, 3, SCB_SCSIID;
273 and SINDEX, ~0x1;
274 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8);
275 bmov DINDEX, SINDEX, 2;
276 bmov SCBPTR, SINDIR, 2;
277 bmov DINDIR, REG0, 2;
278 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
279 bmov SCB_NEXT, REG0, 2 ret;
280 first_new_target_scb:
281 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
282 bmov SCBPTR, WAITING_TID_TAIL, 2;
283 bmov SCB_NEXT2, REG0, 2;
284 bmov WAITING_TID_TAIL, REG0, 2 ret;
285 first_new_scb:
286 bmov WAITING_TID_HEAD, REG0, 2;
287 bmov WAITING_TID_TAIL, REG0, 2 ret;
288 END_CRITICAL;
289
290 scbdma_idle:
291 /*
292 * Give precedence to downloading new SCBs to execute
293 * unless select-outs are currently frozen.
294 */
295 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2;
296 BEGIN_CRITICAL;
297 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
298 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
299 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
300 /* FALLTHROUGH */
301 fill_qoutfifo:
302 /*
303 * Keep track of the SCBs we are dmaing just
304 * in case the DMA fails or is aborted.
305 */
306 mov A, QOUTFIFO_ENTRY_VALID_TAG;
307 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
308 mvi CCSCBCTL, CCSCBRESET;
309 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
310 bmov SCBPTR, COMPLETE_SCB_HEAD, 2;
311 fill_qoutfifo_loop:
312 mov CCSCBRAM, SCBPTR;
313 or CCSCBRAM, A, SCBPTR[1];
314 mov NONE, SDSCB_QOFF;
315 inc INT_COALESSING_CMDCOUNT;
316 add CMDS_PENDING, -1;
317 adc CMDS_PENDING[1], -1;
318 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
319 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
320 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
321 bmov SCBPTR, SCB_NEXT_COMPLETE, 2;
322 jmp fill_qoutfifo_loop;
323 fill_qoutfifo_done:
324 mov SCBHCNT, CCSCBADDR;
325 mvi CCSCBCTL, CCSCBEN|CCSCBRESET;
326 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
327 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
328
329 fetch_new_scb:
330 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
331 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
332 dma_complete_scb:
333 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
334 bmov SCBHADDR, SCB_BUSADDR, 4;
335 mvi CCARREN|CCSCBEN|CCSCBRESET call dma_scb;
336 /*
337 * Now that we've started the DMA, push us onto
338 * the normal completion queue to have our SCBID
339 * posted to the kernel.
340 */
341 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
342 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
343 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
344 END_CRITICAL;
345
346 /*
347 * Either post or fetch an SCB from host memory. The caller
348 * is responsible for polling for transfer completion.
349 *
350 * Prerequisits: Mode == M_CCHAN
351 * SINDEX contains CCSCBCTL flags
352 * SCBHADDR set to Host SCB address
353 * SCBPTR set to SCB src location on "push" operations
354 */
355 SET_SRC_MODE M_CCHAN;
356 SET_DST_MODE M_CCHAN;
357 dma_scb:
358 mvi SCBHCNT, SCB_TRANSFER_SIZE;
359 mov CCSCBCTL, SINDEX ret;
360
361 BEGIN_CRITICAL;
362 setjmp_setscb:
363 bmov LONGJMP_SCB, SCBPTR, 2;
364 setjmp:
365 bmov LONGJMP_ADDR, STACK, 2 ret;
366 setjmp_inline:
367 bmov LONGJMP_ADDR, STACK, 2;
368 longjmp:
369 bmov STACK, LONGJMP_ADDR, 2 ret;
370 END_CRITICAL;
371
372 /*************************** Chip Bug Work Arounds ****************************/
373 /*
374 * Must disable interrupts when setting the mode pointer
375 * register as an interrupt occurring mid update will
376 * fail to store the new mode value for restoration on
377 * an iret.
378 */
379 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
380 set_mode_work_around:
381 mvi SEQINTCTL, INTVEC1DSL;
382 mov MODE_PTR, SINDEX;
383 clr SEQINTCTL ret;
384
385 toggle_dff_mode_work_around:
386 mvi SEQINTCTL, INTVEC1DSL;
387 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
388 clr SEQINTCTL ret;
389 }
390
391
392 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
393 set_seqint_work_around:
394 mov SEQINTCODE, SINDEX;
395 mvi SEQINTCODE, NO_SEQINT ret;
396 }
397
398 /************************ Packetized LongJmp Routines *************************/
399 SET_SRC_MODE M_SCSI;
400 SET_DST_MODE M_SCSI;
401 start_selection:
402 BEGIN_CRITICAL;
403 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
404 /*
405 * Razor #494
406 * Rev A hardware fails to update LAST/CURR/NEXTSCB
407 * correctly after a packetized selection in several
408 * situations:
409 *
410 * 1) If only one command existed in the queue, the
411 * LAST/CURR/NEXTSCB are unchanged.
412 *
413 * 2) In a non QAS, protocol allowed phase change,
414 * the queue is shifted 1 too far. LASTSCB is
415 * the last SCB that was correctly processed.
416 *
417 * 3) In the QAS case, if the full list of commands
418 * was successfully sent, NEXTSCB is NULL and neither
419 * CURRSCB nor LASTSCB can be trusted. We must
420 * manually walk the list counting MAXCMDCNT elements
421 * to find the last SCB that was sent correctly.
422 *
423 * To simplify the workaround for this bug in SELDO
424 * handling, we initialize LASTSCB prior to enabling
425 * selection so we can rely on it even for case #1 above.
426 */
427 bmov LASTSCB, WAITING_TID_HEAD, 2;
428 }
429 bmov CURRSCB, WAITING_TID_HEAD, 2;
430 bmov SCBPTR, WAITING_TID_HEAD, 2;
431 shr SELOID, 4, SCB_SCSIID;
432 /*
433 * If we want to send a message to the device, ensure
434 * we are selecting with atn irregardless of our packetized
435 * agreement. Since SPI4 only allows target reset or PPR
436 * messages if this is a packetized connection, the change
437 * to our negotiation table entry for this selection will
438 * be cleared when the message is acted on.
439 */
440 test SCB_CONTROL, MK_MESSAGE jz . + 3;
441 mov NEGOADDR, SELOID;
442 or NEGCONOPTS, ENAUTOATNO;
443 or SCSISEQ0, ENSELO ret;
444 END_CRITICAL;
445
446 /*
447 * Allocate a FIFO for a non-packetized transaction.
448 * In RevA hardware, both FIFOs must be free before we
449 * can allocate a FIFO for a non-packetized transaction.
450 */
451 allocate_fifo_loop:
452 /*
453 * Do whatever work is required to free a FIFO.
454 */
455 call idle_loop_service_fifos;
456 SET_MODE(M_SCSI, M_SCSI)
457 allocate_fifo:
458 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
459 and A, FIFO0FREE|FIFO1FREE, DFFSTAT;
460 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
461 } else {
462 test DFFSTAT, FIFO1FREE jnz allocate_fifo1;
463 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
464 mvi DFFSTAT, B_CURRFIFO_0;
465 SET_MODE(M_DFF0, M_DFF0)
466 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
467 }
468 SET_SRC_MODE M_SCSI;
469 SET_DST_MODE M_SCSI;
470 allocate_fifo1:
471 mvi DFFSTAT, CURRFIFO_1;
472 SET_MODE(M_DFF1, M_DFF1)
473 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
474
475 /*
476 * We have been reselected as an initiator
477 * or selected as a target.
478 */
479 SET_SRC_MODE M_SCSI;
480 SET_DST_MODE M_SCSI;
481 select_in:
482 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
483 /*
484 * This exposes a window whereby a
485 * busfree just after a selection will
486 * be missed, but there is no other safe
487 * way to enable busfree detection if
488 * the busfreerev function is broken.
489 */
490 mvi CLRSINT1,CLRBUSFREE;
491 or SIMODE1, ENBUSFREE;
492 }
493 or SXFRCTL0, SPIOEN;
494 and SAVED_SCSIID, SELID_MASK, SELID;
495 and A, OID, IOWNID;
496 or SAVED_SCSIID, A;
497 mvi CLRSINT0, CLRSELDI;
498 jmp ITloop;
499
500 /*
501 * We have successfully selected out.
502 *
503 * Clear SELDO.
504 * Dequeue all SCBs sent from the waiting queue
505 * Requeue all SCBs *not* sent to the tail of the waiting queue
506 * Take Razor #494 into account for above.
507 *
508 * In Packetized Mode:
509 * Return to the idle loop. Our interrupt handler will take
510 * care of any incoming L_Qs.
511 *
512 * In Non-Packetize Mode:
513 * Continue to our normal state machine.
514 */
515 SET_SRC_MODE M_SCSI;
516 SET_DST_MODE M_SCSI;
517 select_out:
518 BEGIN_CRITICAL;
519 /* Clear out all SCBs that have been successfully sent. */
520 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
521 /*
522 * For packetized, the LQO manager clears ENSELO on
523 * the assertion of SELDO. If we are non-packetized,
524 * LASTSCB and CURRSCB are accurate.
525 */
526 test SCSISEQ0, ENSELO jnz use_lastscb;
527
528 /*
529 * The update is correct for LQOSTAT1 errors. All
530 * but LQOBUSFREE are handled by kernel interrupts.
531 * If we see LQOBUSFREE, return to the idle loop.
532 * Once we are out of the select_out critical section,
533 * the kernel will cleanup the LQOBUSFREE and we will
534 * eventually restart the selection if appropriate.
535 */
536 test LQOSTAT1, LQOBUSFREE jnz idle_loop;
537
538 /*
539 * On a phase change oustside of packet boundaries,
540 * LASTSCB points to the currently active SCB context
541 * on the bus.
542 */
543 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
544
545 /*
546 * If the hardware has traversed the whole list, NEXTSCB
547 * will be NULL, CURRSCB and LASTSCB cannot be trusted,
548 * but MAXCMDCNT is accurate. If we stop part way through
549 * the list or only had one command to issue, NEXTSCB[1] is
550 * not NULL and LASTSCB is the last command to go out.
551 */
552 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
553
554 /*
555 * Brute force walk.
556 */
557 bmov SCBPTR, WAITING_TID_HEAD, 2;
558 mvi SEQINTCTL, INTVEC1DSL;
559 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG);
560 mov A, MAXCMDCNT;
561 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
562 clr SEQINTCTL;
563 find_lastscb_loop:
564 dec A;
565 test A, 0xFF jz found_last_sent_scb;
566 bmov SCBPTR, SCB_NEXT, 2;
567 jmp find_lastscb_loop;
568 use_lastscb:
569 bmov SCBPTR, LASTSCB, 2;
570 found_last_sent_scb:
571 bmov CURRSCB, SCBPTR, 2;
572 curscb_ww_done:
573 } else {
574 /*
575 * Untested - Verify with Rev B.
576 */
577 bmov SCBPTR, CURRSCB, 2;
578 }
579
580 /*
581 * Requeue any SCBs not sent, to the tail of the waiting Q.
582 */
583 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done;
584
585 /*
586 * We know that neither the per-TID list nor the list of
587 * TIDs is empty. Use this knowledge to our advantage.
588 */
589 bmov REG0, SCB_NEXT, 2;
590 bmov SCBPTR, WAITING_TID_TAIL, 2;
591 bmov SCB_NEXT2, REG0, 2;
592 bmov WAITING_TID_TAIL, REG0, 2;
593 jmp select_out_inc_tid_q;
594
595 select_out_list_done:
596 /*
597 * The whole list made it. Just clear our TID's tail pointer
598 * unless we were queued independently due to our need to
599 * send a message.
600 */
601 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q;
602 shr DINDEX, 3, SCB_SCSIID;
603 or DINDEX, 1; /* Want only the second byte */
604 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
605 mvi DINDIR, SCB_LIST_NULL;
606 select_out_inc_tid_q:
607 bmov SCBPTR, WAITING_TID_HEAD, 2;
608 bmov WAITING_TID_HEAD, SCB_NEXT2, 2;
609 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
610 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL;
611 bmov SCBPTR, CURRSCB, 2;
612 mvi CLRSINT0, CLRSELDO;
613 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase;
614 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase;
615
616 /*
617 * If this is a packetized connection, return to our
618 * idle_loop and let our interrupt handler deal with
619 * any connection setup/teardown issues. The only
620 * exceptions are the case of MK_MESSAGE and task management
621 * SCBs.
622 */
623 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
624 /*
625 * In the A, the LQO manager transitions to LQOSTOP0 even if
626 * we have selected out with ATN asserted and the target
627 * REQs in a non-packet phase.
628 */
629 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
630 test SCSISIGO, ATNO jnz select_out_non_packetized;
631 select_out_no_message:
632 }
633 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
634 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
635 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
636 jmp idle_loop;
637
638 select_out_non_packetized:
639 /* Non packetized request. */
640 and SCSISEQ0, ~ENSELO;
641 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
642 /*
643 * This exposes a window whereby a
644 * busfree just after a selection will
645 * be missed, but there is no other safe
646 * way to enable busfree detection if
647 * the busfreerev function is broken.
648 */
649 mvi CLRSINT1,CLRBUSFREE;
650 or SIMODE1, ENBUSFREE;
651 }
652 mov SAVED_SCSIID, SCB_SCSIID;
653 mov SAVED_LUN, SCB_LUN;
654 mvi SEQ_FLAGS, NO_CDB_SENT;
655 END_CRITICAL;
656 or SXFRCTL0, SPIOEN;
657
658 /*
659 * As soon as we get a successful selection, the target
660 * should go into the message out phase since we have ATN
661 * asserted.
662 */
663 mvi MSG_OUT, MSG_IDENTIFYFLAG;
664
665 /*
666 * Main loop for information transfer phases. Wait for the
667 * target to assert REQ before checking MSG, C/D and I/O for
668 * the bus phase.
669 */
670 mesgin_phasemis:
671 ITloop:
672 call phase_lock;
673
674 mov A, LASTPHASE;
675
676 test A, ~P_DATAIN_DT jz p_data;
677 cmp A,P_COMMAND je p_command;
678 cmp A,P_MESGOUT je p_mesgout;
679 cmp A,P_STATUS je p_status;
680 cmp A,P_MESGIN je p_mesgin;
681
682 SET_SEQINTCODE(BAD_PHASE)
683 jmp ITloop; /* Try reading the bus again. */
684
685 /*
686 * Command phase. Set up the DMA registers and let 'er rip.
687 */
688 p_command:
689 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
690 SET_SEQINTCODE(PROTO_VIOLATION)
691 p_command_okay:
692 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
693 jnz p_command_allocate_fifo;
694 /*
695 * Command retry. Free our current FIFO and
696 * re-allocate a FIFO so transfer state is
697 * reset.
698 */
699 SET_SRC_MODE M_DFF1;
700 SET_DST_MODE M_DFF1;
701 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
702 SET_MODE(M_SCSI, M_SCSI)
703 p_command_allocate_fifo:
704 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2;
705 call allocate_fifo;
706 SET_SRC_MODE M_DFF1;
707 SET_DST_MODE M_DFF1;
708 add NONE, -17, SCB_CDB_LEN;
709 jnc p_command_embedded;
710 p_command_from_host:
711 bmov HADDR[0], SCB_HOST_CDB_PTR, 9;
712 mvi SG_CACHE_PRE, LAST_SEG;
713 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
714 jmp p_command_xfer;
715 p_command_embedded:
716 bmov SHCNT[0], SCB_CDB_LEN, 1;
717 bmov DFDAT, SCB_CDB_STORE, 16;
718 mvi DFCNTRL, SCSIEN;
719 p_command_xfer:
720 and SEQ_FLAGS, ~NO_CDB_SENT;
721 test DFCNTRL, SCSIEN jnz .;
722 /*
723 * DMA Channel automatically disabled.
724 * Don't allow a data phase if the command
725 * was not fully transferred.
726 */
727 test SSTAT2, SDONE jnz ITloop;
728 or SEQ_FLAGS, NO_CDB_SENT;
729 jmp ITloop;
730
731
732 /*
733 * Status phase. Wait for the data byte to appear, then read it
734 * and store it into the SCB.
735 */
736 SET_SRC_MODE M_SCSI;
737 SET_DST_MODE M_SCSI;
738 p_status:
739 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
740 p_status_okay:
741 mov SCB_SCSI_STATUS, SCSIDAT;
742 or SCB_CONTROL, STATUS_RCVD;
743 jmp ITloop;
744
745 /*
746 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full
747 * indentify message sequence and send it to the target. The host may
748 * override this behavior by setting the MK_MESSAGE bit in the SCB
749 * control byte. This will cause us to interrupt the host and allow
750 * it to handle the message phase completely on its own. If the bit
751 * associated with this target is set, we will also interrupt the host,
752 * thereby allowing it to send a message on the next selection regardless
753 * of the transaction being sent.
754 *
755 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
756 * This is done to allow the host to send messages outside of an identify
757 * sequence while protecting the seqencer from testing the MK_MESSAGE bit
758 * on an SCB that might not be for the current nexus. (For example, a
759 * BDR message in responce to a bad reselection would leave us pointed to
760 * an SCB that doesn't have anything to do with the current target).
761 *
762 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
763 * bus device reset).
764 *
765 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
766 * in case the target decides to put us in this phase for some strange
767 * reason.
768 */
769 p_mesgout_retry:
770 /* Turn on ATN for the retry */
771 mvi SCSISIGO, ATNO;
772 p_mesgout:
773 mov SINDEX, MSG_OUT;
774 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
775 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop;
776 p_mesgout_identify:
777 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
778 test SCB_CONTROL, DISCENB jnz . + 2;
779 and SINDEX, ~DISCENB;
780 /*
781 * Send a tag message if TAG_ENB is set in the SCB control block.
782 * Use SCB_NONPACKET_TAG as the tag value.
783 */
784 p_mesgout_tag:
785 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte;
786 mov SCSIDAT, SINDEX; /* Send the identify message */
787 call phase_lock;
788 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
789 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
790 call phase_lock;
791 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
792 mov SCBPTR jmp p_mesgout_onebyte;
793 /*
794 * Interrupt the driver, and allow it to handle this message
795 * phase and any required retries.
796 */
797 p_mesgout_from_host:
798 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte;
799 jmp host_message_loop;
800
801 p_mesgout_onebyte:
802 mvi CLRSINT1, CLRATNO;
803 mov SCSIDAT, SINDEX;
804
805 /*
806 * If the next bus phase after ATN drops is message out, it means
807 * that the target is requesting that the last message(s) be resent.
808 */
809 call phase_lock;
810 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry;
811
812 p_mesgout_done:
813 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */
814 mov LAST_MSG, MSG_OUT;
815 mvi MSG_OUT, MSG_NOOP; /* No message left */
816 jmp ITloop;
817
818 /*
819 * Message in phase. Bytes are read using Automatic PIO mode.
820 */
821 p_mesgin:
822 /* read the 1st message byte */
823 mvi ACCUM call inb_first;
824
825 test A,MSG_IDENTIFYFLAG jnz mesgin_identify;
826 cmp A,MSG_DISCONNECT je mesgin_disconnect;
827 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs;
828 cmp ALLZEROS,A je mesgin_complete;
829 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs;
830 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue;
831 cmp A,MSG_NOOP je mesgin_done;
832
833 /*
834 * Pushed message loop to allow the kernel to
835 * run it's own message state engine. To avoid an
836 * extra nop instruction after signaling the kernel,
837 * we perform the phase_lock before checking to see
838 * if we should exit the loop and skip the phase_lock
839 * in the ITloop. Performing back to back phase_locks
840 * shouldn't hurt, but why do it twice...
841 */
842 host_message_loop:
843 call phase_lock; /* Benign the first time through. */
844 SET_SEQINTCODE(HOST_MSG_LOOP)
845 cmp RETURN_1, EXIT_MSG_LOOP je ITloop;
846 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3;
847 mov SCSIDAT, RETURN_2;
848 jmp host_message_loop;
849 /* Must be CONT_MSG_LOOP_READ */
850 mov NONE, SCSIDAT; /* ACK Byte */
851 jmp host_message_loop;
852
853 mesgin_ign_wide_residue:
854 mov SAVED_MODE, MODE_PTR;
855 SET_MODE(M_SCSI, M_SCSI)
856 shr NEGOADDR, 4, SAVED_SCSIID;
857 mov A, NEGCONOPTS;
858 RESTORE_MODE(SAVED_MODE)
859 test A, WIDEXFER jz mesgin_reject;
860 /* Pull the residue byte */
861 mvi REG0 call inb_next;
862 cmp REG0, 0x01 jne mesgin_reject;
863 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
864 test DATA_COUNT_ODD, 0x1 jz mesgin_done;
865 jmp mesgin_done;
866
867 mesgin_proto_violation:
868 SET_SEQINTCODE(PROTO_VIOLATION)
869 jmp mesgin_done;
870 mesgin_reject:
871 mvi MSG_MESSAGE_REJECT call mk_mesg;
872 mesgin_done:
873 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
874 jmp ITloop;
875
876 #define INDEX_DISC_LIST(scsiid, lun) \
877 and A, 0xC0, scsiid; \
878 or SCBPTR, A, lun; \
879 clr SCBPTR[1]; \
880 and SINDEX, 0x30, scsiid; \
881 shr SINDEX, 3; /* Multiply by 2 */ \
882 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \
883 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
884
885 mesgin_identify:
886 /*
887 * Determine whether a target is using tagged or non-tagged
888 * transactions by first looking at the transaction stored in
889 * the per-device, disconnected array. If there is no untagged
890 * transaction for this target, this must be a tagged transaction.
891 */
892 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
893 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
894 bmov DINDEX, SINDEX, 2;
895 bmov REG0, SINDIR, 2;
896 cmp REG0[1], SCB_LIST_NULL je snoop_tag;
897 /* Untagged. Clear the busy table entry and setup the SCB. */
898 bmov DINDIR, ALLONES, 2;
899 bmov SCBPTR, REG0, 2;
900 jmp setup_SCB;
901
902 /*
903 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
904 * If we get one, we use the tag returned to find the proper
905 * SCB. After receiving the tag, look for the SCB at SCB locations tag and
906 * tag + 256.
907 */
908 snoop_tag:
909 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
910 or SEQ_FLAGS, 0x80;
911 }
912 mov NONE, SCSIDAT; /* ACK Identify MSG */
913 call phase_lock;
914 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
915 or SEQ_FLAGS, 0x1;
916 }
917 cmp LASTPHASE, P_MESGIN jne not_found_ITloop;
918 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
919 or SEQ_FLAGS, 0x2;
920 }
921 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
922 get_tag:
923 clr SCBPTR[1];
924 mvi SCBPTR call inb_next; /* tag value */
925 verify_scb:
926 test SCB_CONTROL,DISCONNECTED jz verify_other_scb;
927 mov A, SAVED_SCSIID;
928 cmp SCB_SCSIID, A jne verify_other_scb;
929 mov A, SAVED_LUN;
930 cmp SCB_LUN, A je setup_SCB_disconnected;
931 verify_other_scb:
932 xor SCBPTR[1], 1;
933 test SCBPTR[1], 0xFF jnz verify_scb;
934 jmp not_found;
935
936 /*
937 * Ensure that the SCB the tag points to is for
938 * an SCB transaction to the reconnecting target.
939 */
940 setup_SCB:
941 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
942 or SEQ_FLAGS, 0x10;
943 }
944 test SCB_CONTROL,DISCONNECTED jz not_found;
945 setup_SCB_disconnected:
946 and SCB_CONTROL,~DISCONNECTED;
947 clr SEQ_FLAGS; /* make note of IDENTIFY */
948 test SCB_SGPTR, SG_LIST_NULL jnz . + 3;
949 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2;
950 call allocate_fifo;
951 /* See if the host wants to send a message upon reconnection */
952 test SCB_CONTROL, MK_MESSAGE jz mesgin_done;
953 mvi HOST_MSG call mk_mesg;
954 jmp mesgin_done;
955
956 not_found:
957 SET_SEQINTCODE(NO_MATCH)
958 jmp mesgin_done;
959
960 not_found_ITloop:
961 SET_SEQINTCODE(NO_MATCH)
962 jmp ITloop;
963
964 /*
965 * We received a "command complete" message. Put the SCB on the complete
966 * queue and trigger a completion interrupt via the idle loop. Before doing
967 * so, check to see if there
968 * is a residual or the status byte is something other than STATUS_GOOD (0).
969 * In either of these conditions, we upload the SCB back to the host so it can
970 * process this information. In the case of a non zero status byte, we
971 * additionally interrupt the kernel driver synchronously, allowing it to
972 * decide if sense should be retrieved. If the kernel driver wishes to request
973 * sense, it will fill the kernel SCB with a request sense command, requeue
974 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting
975 * RETURN_1 to SEND_SENSE.
976 */
977 mesgin_complete:
978
979 /*
980 * If ATN is raised, we still want to give the target a message.
981 * Perhaps there was a parity error on this last message byte.
982 * Either way, the target should take us to message out phase
983 * and then attempt to complete the command again. We should use a
984 * critical section here to guard against a timeout triggering
985 * for this command and setting ATN while we are still processing
986 * the completion.
987 test SCSISIGI, ATNI jnz mesgin_done;
988 */
989
990 /*
991 * If we are identified and have successfully sent the CDB,
992 * any status will do. Optimize this fast path.
993 */
994 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
995 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
996
997 /*
998 * If the target never sent an identify message but instead went
999 * to mesgin to give an invalid message, let the host abort us.
1000 */
1001 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
1002
1003 /*
1004 * If we recevied good status but never successfully sent the
1005 * cdb, abort the command.
1006 */
1007 test SCB_SCSI_STATUS,0xff jnz complete_accepted;
1008 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
1009 complete_accepted:
1010
1011 /*
1012 * See if we attempted to deliver a message but the target ingnored us.
1013 */
1014 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
1015 SET_SEQINTCODE(MKMSG_FAILED)
1016 complete_nomsg:
1017 call queue_scb_completion;
1018 jmp await_busfree;
1019
1020 freeze_queue:
1021 /* Cancel any pending select-out. */
1022 test SSTAT0, SELDO|SELINGO jnz . + 2;
1023 and SCSISEQ0, ~ENSELO;
1024 mov ACCUM_SAVE, A;
1025 clr A;
1026 add QFREEZE_COUNT, 1;
1027 adc QFREEZE_COUNT[1], A;
1028 or SEQ_FLAGS2, SELECTOUT_QFROZEN;
1029 mov A, ACCUM_SAVE ret;
1030
1031 queue_arg1_scb_completion:
1032 SET_MODE(M_SCSI, M_SCSI)
1033 bmov SCBPTR, ARG_1, 2;
1034 queue_scb_completion:
1035 test SCB_SCSI_STATUS,0xff jnz bad_status;
1036 /*
1037 * Check for residuals
1038 */
1039 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */
1040 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
1041 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
1042 complete:
1043 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
1044 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
1045 bad_status:
1046 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
1047 call freeze_queue;
1048 upload_scb:
1049 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2;
1050 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
1051 or SCB_SGPTR, SG_STATUS_VALID ret;
1052
1053 /*
1054 * Is it a disconnect message? Set a flag in the SCB to remind us
1055 * and await the bus going free. If this is an untagged transaction
1056 * store the SCB id for it in our untagged target table for lookup on
1057 * a reselction.
1058 */
1059 mesgin_disconnect:
1060 /*
1061 * If ATN is raised, we still want to give the target a message.
1062 * Perhaps there was a parity error on this last message byte
1063 * or we want to abort this command. Either way, the target
1064 * should take us to message out phase and then attempt to
1065 * disconnect again.
1066 * XXX - Wait for more testing.
1067 test SCSISIGI, ATNI jnz mesgin_done;
1068 */
1069 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
1070 jnz mesgin_proto_violation;
1071 or SCB_CONTROL,DISCONNECTED;
1072 test SCB_CONTROL, TAG_ENB jnz await_busfree;
1073 queue_disc_scb:
1074 bmov REG0, SCBPTR, 2;
1075 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
1076 bmov DINDEX, SINDEX, 2;
1077 bmov DINDIR, REG0, 2;
1078 bmov SCBPTR, REG0, 2;
1079 /* FALLTHROUGH */
1080 await_busfree:
1081 and SIMODE1, ~ENBUSFREE;
1082 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
1083 /*
1084 * In the BUSFREEREV_BUG case, the
1085 * busfree status was cleared at the
1086 * beginning of the connection.
1087 */
1088 mvi CLRSINT1,CLRBUSFREE;
1089 }
1090 mov NONE, SCSIDAT; /* Ack the last byte */
1091 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1092 jnz await_busfree_not_m_dff;
1093 SET_SRC_MODE M_DFF1;
1094 SET_DST_MODE M_DFF1;
1095 await_busfree_clrchn:
1096 mvi DFFSXFRCTL, CLRCHN;
1097 await_busfree_not_m_dff:
1098 call clear_target_state;
1099 test SSTAT1,REQINIT|BUSFREE jz .;
1100 test SSTAT1, BUSFREE jnz idle_loop;
1101 SET_SEQINTCODE(MISSED_BUSFREE)
1102
1103
1104 /*
1105 * Save data pointers message:
1106 * Copying RAM values back to SCB, for Save Data Pointers message, but
1107 * only if we've actually been into a data phase to change them. This
1108 * protects against bogus data in scratch ram and the residual counts
1109 * since they are only initialized when we go into data_in or data_out.
1110 * Ack the message as soon as possible.
1111 */
1112 SET_SRC_MODE M_DFF1;
1113 SET_DST_MODE M_DFF1;
1114 mesgin_sdptrs:
1115 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
1116 test SEQ_FLAGS, DPHASE jz ITloop;
1117 call save_pointers;
1118 jmp ITloop;
1119
1120 save_pointers:
1121 /*
1122 * If we are asked to save our position at the end of the
1123 * transfer, just mark us at the end rather than perform a
1124 * full save.
1125 */
1126 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
1127 or SCB_SGPTR, SG_LIST_NULL ret;
1128
1129 save_pointers_full:
1130 /*
1131 * The SCB_DATAPTR becomes the current SHADDR.
1132 * All other information comes directly from our residual
1133 * state.
1134 */
1135 bmov SCB_DATAPTR, SHADDR, 8;
1136 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
1137
1138 /*
1139 * Restore pointers message? Data pointers are recopied from the
1140 * SCB anytime we enter a data phase for the first time, so all
1141 * we need to do is clear the DPHASE flag and let the data phase
1142 * code do the rest. We also reset/reallocate the FIFO to make
1143 * sure we have a clean start for the next data or command phase.
1144 */
1145 mesgin_rdptrs:
1146 and SEQ_FLAGS, ~DPHASE;
1147 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
1148 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
1149 SET_MODE(M_SCSI, M_SCSI)
1150 msgin_rdptrs_get_fifo:
1151 call allocate_fifo;
1152 jmp mesgin_done;
1153
1154 clear_target_state:
1155 mvi LASTPHASE, P_BUSFREE;
1156 /* clear target specific flags */
1157 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret;
1158
1159 phase_lock:
1160 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
1161 /*
1162 * Don't ignore persistent REQ assertions just because
1163 * they were asserted within the bus settle delay window.
1164 * This allows us to tolerate devices like the GEM318
1165 * that violate the SCSI spec. We are careful not to
1166 * count REQ while we are waiting for it to fall during
1167 * an async phase due to our asserted ACK. Each
1168 * sequencer instruction takes ~25ns, so the REQ must
1169 * last at least 100ns in order to be counted as a true
1170 * REQ.
1171 */
1172 test SCSIPHASE, 0xFF jnz phase_locked;
1173 test SCSISIGI, ACKI jnz phase_lock;
1174 test SCSISIGI, REQI jz phase_lock;
1175 test SCSIPHASE, 0xFF jnz phase_locked;
1176 test SCSISIGI, ACKI jnz phase_lock;
1177 test SCSISIGI, REQI jz phase_lock;
1178 phase_locked:
1179 } else {
1180 test SCSIPHASE, 0xFF jz .;
1181 }
1182 test SSTAT1, SCSIPERR jnz phase_lock;
1183 phase_lock_latch_phase:
1184 and LASTPHASE, PHASE_MASK, SCSISIGI ret;
1185
1186 /*
1187 * Functions to read data in Automatic PIO mode.
1188 *
1189 * An ACK is not sent on input from the target until SCSIDATL is read from.
1190 * So we wait until SCSIDATL is latched (the usual way), then read the data
1191 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN
1192 * line, or we just want to acknowledge the byte, then we do a dummy read
1193 * from SCISDATL. The SCSI spec guarantees that the target will hold the
1194 * data byte on the bus until we send our ACK.
1195 *
1196 * The assumption here is that these are called in a particular sequence,
1197 * and that REQ is already set when inb_first is called. inb_{first,next}
1198 * use the same calling convention as inb.
1199 */
1200 inb_next:
1201 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
1202 inb_next_wait:
1203 /*
1204 * If there is a parity error, wait for the kernel to
1205 * see the interrupt and prepare our message response
1206 * before continuing.
1207 */
1208 test SCSIPHASE, 0xFF jz .;
1209 test SSTAT1, SCSIPERR jnz inb_next_wait;
1210 inb_next_check_phase:
1211 and LASTPHASE, PHASE_MASK, SCSISIGI;
1212 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis;
1213 inb_first:
1214 clr DINDEX[1];
1215 mov DINDEX,SINDEX;
1216 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/
1217 inb_last:
1218 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/
1219
1220 mk_mesg:
1221 mvi SCSISIGO, ATNO;
1222 mov MSG_OUT,SINDEX ret;
1223
1224 SET_SRC_MODE M_DFF1;
1225 SET_DST_MODE M_DFF1;
1226 disable_ccsgen:
1227 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
1228 clr CCSGCTL;
1229 disable_ccsgen_fetch_done:
1230 clr SG_STATE ret;
1231
1232 service_fifo:
1233 /*
1234 * Do we have any prefetch left???
1235 */
1236 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
1237
1238 /*
1239 * Can this FIFO have access to the S/G cache yet?
1240 */
1241 test CCSGCTL, SG_CACHE_AVAIL jz return;
1242
1243 /* Did we just finish fetching segs? */
1244 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
1245
1246 /* Are we actively fetching segments? */
1247 test CCSGCTL, CCSGENACK jnz return;
1248
1249 /*
1250 * We fetch a "cacheline aligned" and sized amount of data
1251 * so we don't end up referencing a non-existant page.
1252 * Cacheline aligned is in quotes because the kernel will
1253 * set the prefetch amount to a reasonable level if the
1254 * cacheline size is unknown.
1255 */
1256 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4;
1257 mvi SGHCNT, SG_PREFETCH_CNT;
1258 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
1259 /*
1260 * Need two instruction between "touches" of SGHADDR.
1261 */
1262 nop;
1263 }
1264 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
1265 mvi CCSGCTL, CCSGEN|CCSGRESET;
1266 or SG_STATE, FETCH_INPROG ret;
1267 idle_sgfetch_complete:
1268 /*
1269 * Guard against SG_CACHE_AVAIL activating during sg fetch
1270 * request in the other FIFO.
1271 */
1272 test SG_STATE, FETCH_INPROG jz return;
1273 clr CCSGCTL;
1274 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
1275 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
1276 idle_sg_avail:
1277 /* Does the hardware have space for another SG entry? */
1278 test DFSTATUS, PRELOAD_AVAIL jz return;
1279 /*
1280 * On the A, preloading a segment before HDMAENACK
1281 * comes true can clobber the shaddow address of the
1282 * first segment in the S/G FIFO. Wait until it is
1283 * safe to proceed.
1284 */
1285 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
1286 test DFCNTRL, HDMAENACK jz return;
1287 }
1288 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1289 bmov HADDR, CCSGRAM, 8;
1290 } else {
1291 bmov HADDR, CCSGRAM, 4;
1292 }
1293 bmov HCNT, CCSGRAM, 3;
1294 test HCNT[0], 0x1 jz . + 2;
1295 xor DATA_COUNT_ODD, 0x1;
1296 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
1297 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
1298 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
1299 }
1300 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1301 /* Skip 4 bytes of pad. */
1302 add CCSGADDR, 4;
1303 }
1304 sg_advance:
1305 clr A; /* add sizeof(struct scatter) */
1306 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
1307 adc SCB_RESIDUAL_SGPTR[1],A;
1308 adc SCB_RESIDUAL_SGPTR[2],A;
1309 adc SCB_RESIDUAL_SGPTR[3],A;
1310 mov SINDEX, SCB_RESIDUAL_SGPTR[0];
1311 test DATA_COUNT_ODD, 0x1 jz . + 2;
1312 or SINDEX, ODD_SEG;
1313 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
1314 or SINDEX, LAST_SEG;
1315 clr SG_STATE;
1316 mov SG_CACHE_PRE, SINDEX;
1317 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1318 /*
1319 * Use SCSIENWRDIS so that SCSIEN is never
1320 * modified by this operation.
1321 */
1322 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
1323 } else {
1324 or DFCNTRL, PRELOADEN|HDMAEN;
1325 }
1326 /*
1327 * Do we have another segment in the cache?
1328 */
1329 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
1330 jnc return;
1331 and SG_STATE, ~SEGS_AVAIL ret;
1332
1333 /*
1334 * Initialize the DMA address and counter from the SCB.
1335 */
1336 load_first_seg:
1337 bmov HADDR, SCB_DATAPTR, 11;
1338 and DATA_COUNT_ODD, 0x1, SCB_DATACNT[0];
1339 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
1340 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
1341 or REG_ISR, LAST_SEG;
1342 test DATA_COUNT_ODD, 0x1 jz . + 2;
1343 or REG_ISR, ODD_SEG;
1344 mov SG_CACHE_PRE, REG_ISR;
1345 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1346 /*
1347 * Since we've are entering a data phase, we will
1348 * rely on the SCB_RESID* fields. Initialize the
1349 * residual and clear the full residual flag.
1350 */
1351 and SCB_SGPTR[0], ~SG_FULL_RESID;
1352 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
1353 /* If we need more S/G elements, tell the idle loop */
1354 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
1355 mvi SG_STATE, LOADING_NEEDED ret;
1356 clr SG_STATE ret;
1357
1358 p_data_handle_xfer:
1359 call setjmp_setscb;
1360 test SG_STATE, LOADING_NEEDED jnz service_fifo;
1361 p_data_clear_handler:
1362 or LONGJMP_ADDR[1], INVALID_ADDR ret;
1363
1364 p_data:
1365 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed;
1366 SET_SEQINTCODE(PROTO_VIOLATION)
1367 p_data_allowed:
1368
1369 test SEQ_FLAGS, DPHASE jz data_phase_initialize;
1370
1371 /*
1372 * If we re-enter the data phase after going through another
1373 * phase, our transfer location has almost certainly been
1374 * corrupted by the interveining, non-data, transfers. Ask
1375 * the host driver to fix us up based on the transfer residual
1376 * unless we already know that we should be bitbucketing.
1377 */
1378 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1379 SET_SEQINTCODE(PDATA_REINIT)
1380 jmp data_phase_inbounds;
1381
1382 p_data_bitbucket:
1383 /*
1384 * Turn on `Bit Bucket' mode, wait until the target takes
1385 * us to another phase, and then notify the host.
1386 */
1387 mov SAVED_MODE, MODE_PTR;
1388 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1389 jnz bitbucket_not_m_dff;
1390 /*
1391 * Ensure that any FIFO contents are cleared out and the
1392 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET
1393 * doesn't discard data already in the FIFO.
1394 */
1395 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
1396 SET_MODE(M_SCSI, M_SCSI)
1397 bitbucket_not_m_dff:
1398 or SXFRCTL1,BITBUCKET;
1399 /* Wait for non-data phase. */
1400 test SCSIPHASE, ~DATA_PHASE_MASK jz .;
1401 and SXFRCTL1, ~BITBUCKET;
1402 RESTORE_MODE(SAVED_MODE)
1403 SET_SRC_MODE M_DFF1;
1404 SET_DST_MODE M_DFF1;
1405 SET_SEQINTCODE(DATA_OVERRUN)
1406 jmp ITloop;
1407
1408 data_phase_initialize:
1409 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1410 call load_first_seg;
1411 data_phase_inbounds:
1412 /* We have seen a data phase at least once. */
1413 or SEQ_FLAGS, DPHASE;
1414 mov SAVED_MODE, MODE_PTR;
1415 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
1416 call p_data_handle_xfer;
1417 data_group_dma_loop:
1418 /*
1419 * The transfer is complete if either the last segment
1420 * completes or the target changes phase. Both conditions
1421 * will clear SCSIEN.
1422 */
1423 call idle_loop_service_fifos;
1424 call idle_loop_cchan;
1425 call idle_loop_gsfifo;
1426 RESTORE_MODE(SAVED_MODE)
1427 test DFCNTRL, SCSIEN jnz data_group_dma_loop;
1428
1429 data_group_dmafinish:
1430 /*
1431 * The transfer has terminated either due to a phase
1432 * change, and/or the completion of the last segment.
1433 * We have two goals here. Do as much other work
1434 * as possible while the data fifo drains on a read
1435 * and respond as quickly as possible to the standard
1436 * messages (save data pointers/disconnect and command
1437 * complete) that usually follow a data phase.
1438 */
1439 call calc_residual;
1440
1441 /*
1442 * Go ahead and shut down the DMA engine now.
1443 */
1444 test DFCNTRL, DIRECTION jnz data_phase_finish;
1445 data_group_fifoflush:
1446 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1447 or DFCNTRL, FIFOFLUSH;
1448 }
1449 /*
1450 * We have enabled the auto-ack feature. This means
1451 * that the controller may have already transferred
1452 * some overrun bytes into the data FIFO and acked them
1453 * on the bus. The only way to detect this situation is
1454 * to wait for LAST_SEG_DONE to come true on a completed
1455 * transfer and then test to see if the data FIFO is
1456 * non-empty. We know there is more data yet to transfer
1457 * if SG_LIST_NULL is not yet set, thus there cannot be
1458 * an overrun.
1459 */
1460 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
1461 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
1462 test DFSTATUS, FIFOEMP jnz data_phase_finish;
1463 /* Overrun */
1464 jmp p_data;
1465 data_phase_finish:
1466 /*
1467 * If the target has left us in data phase, loop through
1468 * the dma code again. We will only loop if there is a
1469 * data overrun.
1470 */
1471 if ((ahd->flags & AHD_TARGETROLE) != 0) {
1472 test SSTAT0, TARGET jnz data_phase_done;
1473 }
1474 if ((ahd->flags & AHD_INITIATORROLE) != 0) {
1475 test SSTAT1, REQINIT jz .;
1476 test SCSIPHASE, DATA_PHASE_MASK jnz p_data;
1477 }
1478
1479 data_phase_done:
1480 /* Kill off any pending prefetch */
1481 call disable_ccsgen;
1482 or LONGJMP_ADDR[1], INVALID_ADDR;
1483
1484 if ((ahd->flags & AHD_TARGETROLE) != 0) {
1485 test SEQ_FLAGS, DPHASE_PENDING jz ITloop;
1486 /*
1487 and SEQ_FLAGS, ~DPHASE_PENDING;
1488 * For data-in phases, wait for any pending acks from the
1489 * initiator before changing phase. We only need to
1490 * send Ignore Wide Residue messages for data-in phases.
1491 test DFCNTRL, DIRECTION jz target_ITloop;
1492 test SSTAT1, REQINIT jnz .;
1493 test DATA_COUNT_ODD, 0x1 jz target_ITloop;
1494 SET_MODE(M_SCSI, M_SCSI)
1495 test NEGCONOPTS, WIDEXFER jz target_ITloop;
1496 */
1497 /*
1498 * Issue an Ignore Wide Residue Message.
1499 mvi P_MESGIN|BSYO call change_phase;
1500 mvi MSG_IGN_WIDE_RESIDUE call target_outb;
1501 mvi 1 call target_outb;
1502 jmp target_ITloop;
1503 */
1504 } else {
1505 jmp ITloop;
1506 }
1507
1508 /*
1509 * We assume that, even though data may still be
1510 * transferring to the host, that the SCSI side of
1511 * the DMA engine is now in a static state. This
1512 * allows us to update our notion of where we are
1513 * in this transfer.
1514 *
1515 * If, by chance, we stopped before being able
1516 * to fetch additional segments for this transfer,
1517 * yet the last S/G was completely exhausted,
1518 * call our idle loop until it is able to load
1519 * another segment. This will allow us to immediately
1520 * pickup on the next segment on the next data phase.
1521 *
1522 * If we happened to stop on the last segment, then
1523 * our residual information is still correct from
1524 * the idle loop and there is no need to perform
1525 * any fixups.
1526 */
1527 residual_before_last_seg:
1528 test MDFFSTAT, SHVALID jnz sgptr_fixup;
1529 /*
1530 * Can never happen from an interrupt as the packetized
1531 * hardware will only interrupt us once SHVALID or
1532 * LAST_SEG_DONE.
1533 */
1534 call idle_loop_service_fifos;
1535 RESTORE_MODE(SAVED_MODE)
1536 /* FALLTHROUGH */
1537 calc_residual:
1538 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
1539 /* Record if we've consumed all S/G entries */
1540 test MDFFSTAT, SHVALID jz . + 2;
1541 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1542 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
1543
1544 sgptr_fixup:
1545 /*
1546 * Fixup the residual next S/G pointer. The S/G preload
1547 * feature of the chip allows us to load two elements
1548 * in addition to the currently active element. We
1549 * store the bottom byte of the next S/G pointer in
1550 * the SG_CACHE_PTR register so we can restore the
1551 * correct value when the DMA completes. If the next
1552 * sg ptr value has advanced to the point where higher
1553 * bytes in the address have been affected, fix them
1554 * too.
1555 */
1556 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
1557 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
1558 add SCB_RESIDUAL_SGPTR[1], -1;
1559 adc SCB_RESIDUAL_SGPTR[2], -1;
1560 adc SCB_RESIDUAL_SGPTR[3], -1;
1561 sgptr_fixup_done:
1562 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
1563 clr DATA_COUNT_ODD;
1564 test SG_CACHE_SHADOW, ODD_SEG jz . + 2;
1565 or DATA_COUNT_ODD, 0x1;
1566 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
1567 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1568
1569 export timer_isr:
1570 call issue_cmdcmplt;
1571 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
1572 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
1573 /*
1574 * In H2A4, the mode pointer is not saved
1575 * for intvec2, but is restored on iret.
1576 * This can lead to the restoration of a
1577 * bogus mode ptr. Manually clear the
1578 * intmask bits and do a normal return
1579 * to compensate.
1580 */
1581 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
1582 } else {
1583 or SEQINTCTL, IRET ret;
1584 }
1585
1586 export seq_isr:
1587 if ((ahd->features & AHD_RTI) == 0) {
1588 /*
1589 * On RevA Silicon, if the target returns us to data-out
1590 * after we have already trained for data-out, it is
1591 * possible for us to transition the free running clock to
1592 * data-valid before the required 100ns P1 setup time (8 P1
1593 * assertions in fast-160 mode). This will only happen if
1594 * this L-Q is a continuation of a data transfer for which
1595 * we have already prefetched data into our FIFO (LQ/Data
1596 * followed by LQ/Data for the same write transaction).
1597 * This can cause some target implementations to miss the
1598 * first few data transfers on the bus. We detect this
1599 * situation by noticing that this is the first data transfer
1600 * after an LQ (LQIWORKONLQ true), that the data transfer is
1601 * a continuation of a transfer already setup in our FIFO
1602 * (SAVEPTRS interrupt), and that the transaction is a write
1603 * (DIRECTION set in DFCNTRL). The delay is performed by
1604 * disabling SCSIEN until we see the first REQ from the
1605 * target.
1606 *
1607 * First instruction in an ISR cannot be a branch on
1608 * Rev A. Snapshot LQISTAT2 so the status is not missed
1609 * and deffer the test by one instruction.
1610 */
1611 mov REG_ISR, LQISTAT2;
1612 test REG_ISR, LQIWORKONLQ jz data_valid;
1613 test SEQINTSRC, SAVEPTRS jz data_valid;
1614 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
1615 /*
1616 * Switch to the active FIFO.
1617 */
1618 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1619 test DFCNTRL, DIRECTION jz snapshot_other_fifo;
1620 and DFCNTRL, ~SCSIEN;
1621 test SSTAT1, REQINIT jz .;
1622 or DFCNTRL, SCSIEN;
1623 /* FALLTHROUGH */
1624 snapshot_other_fifo:
1625 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1626 /* FALLTHROUGH */
1627 snapshot_saveptr:
1628 mvi DFFSXFRCTL, CLRCHN;
1629 or SEQINTCTL, IRET ret;
1630 data_valid:
1631 }
1632 test SEQINTSRC, CFG4DATA jnz cfg4data_intr;
1633 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr;
1634 test SEQINTSRC, SAVEPTRS jnz saveptr_intr;
1635 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr;
1636 SET_SEQINTCODE(INVALID_SEQINT)
1637
1638 /*
1639 * There are two types of save pointers interrupts:
1640 * The first is a snapshot save pointers where the current FIFO is not
1641 * active and contains a snapshot of the current poniter information.
1642 * This happens between packets in a stream for a single L_Q. Since we
1643 * are not performing a pointer save, we can safely clear the channel
1644 * so it can be used for other transactions. On RTI capable controllers,
1645 * where snapshots can, and are, disabled, the code to handle this type
1646 * of snapshot is not active.
1647 *
1648 * The second case is a save pointers on an active FIFO which occurs
1649 * if the target changes to a new L_Q or busfrees/QASes and the transfer
1650 * has a residual. This should occur coincident with a ctxtdone. We
1651 * disable the interrupt and allow our active routine to handle the
1652 * save.
1653 */
1654 saveptr_intr:
1655 if ((ahd->features & AHD_RTI) == 0) {
1656 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
1657 }
1658 saveptr_active_fifo:
1659 and SEQIMODE, ~ENSAVEPTRS;
1660 or SEQINTCTL, IRET ret;
1661
1662 cfg4data_intr:
1663 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun;
1664 call load_first_seg;
1665 call pkt_handle_xfer;
1666 or SEQINTCTL, IRET ret;
1667
1668 cfg4istat_intr:
1669 call freeze_queue;
1670 add NONE, -13, SCB_CDB_LEN;
1671 jnc cfg4istat_have_sense_addr;
1672 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
1673 /*
1674 * Host sets up address/count and enables transfer.
1675 */
1676 SET_SEQINTCODE(CFG4ISTAT_INTR)
1677 jmp cfg4istat_setup_handler;
1678 cfg4istat_have_sense_addr:
1679 bmov HADDR, SCB_SENSE_BUSADDR, 4;
1680 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
1681 mvi SG_CACHE_PRE, LAST_SEG;
1682 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
1683 cfg4istat_setup_handler:
1684 /*
1685 * Status pkt is transferring to host.
1686 * Wait in idle loop for transfer to complete.
1687 * If a command completed before an attempted
1688 * task management function completed, notify the host.
1689 */
1690 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
1691 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
1692 cfg4istat_no_taskmgmt_func:
1693 call pkt_handle_status;
1694 or SEQINTCTL, IRET ret;
1695
1696 cfg4icmd_intr:
1697 /*
1698 * In the case of DMAing a CDB from the host, the normal
1699 * CDB buffer is formatted with an 8 byte address followed
1700 * by a 1 byte count.
1701 */
1702 bmov HADDR[0], SCB_HOST_CDB_PTR, 9;
1703 mvi SG_CACHE_PRE, LAST_SEG;
1704 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1705 call pkt_handle_cdb;
1706 or SEQINTCTL, IRET ret;
1707
1708 /*
1709 * See if the target has gone on in this context creating an
1710 * overrun condition. For the write case, the hardware cannot
1711 * ack bytes until data are provided. So, if the target begins
1712 * another packet without changing contexts, implying we are
1713 * not sitting on a packet boundary, we are in an overrun
1714 * situation. For the read case, the hardware will continue to
1715 * ack bytes into the FIFO, and may even ack the last overrun packet
1716 * into the FIFO. If the FIFO should become non-empty, we are in
1717 * a read overrun case.
1718 */
1719 #define check_overrun \
1720 /* Not on a packet boundary. */ \
1721 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \
1722 test DFSTATUS, FIFOEMP jz pkt_handle_overrun
1723
1724 pkt_handle_xfer:
1725 bmov LONGJMP_SCB, SCBPTR, 2;
1726 test SG_STATE, LOADING_NEEDED jz pkt_last_seg;
1727 call setjmp;
1728 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
1729 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
1730 test SCSISIGO, ATNO jnz . + 2;
1731 test SSTAT2, NONPACKREQ jz pkt_service_fifo;
1732 /*
1733 * Defer handling of this NONPACKREQ until we
1734 * can be sure it pertains to this FIFO. SAVEPTRS
1735 * will not be asserted if the NONPACKREQ is for us,
1736 * so we must simulate it if shaddow is valid. If
1737 * shaddow is not valid, keep running this FIFO until we
1738 * have satisfied the transfer by loading segments and
1739 * waiting for either shaddow valid or last_seg_done.
1740 */
1741 test MDFFSTAT, SHVALID jnz pkt_saveptrs;
1742 pkt_service_fifo:
1743 test SG_STATE, LOADING_NEEDED jnz service_fifo;
1744 pkt_last_seg:
1745 call setjmp;
1746 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
1747 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz last_pkt_xfer_done;
1748 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
1749 test SCSISIGO, ATNO jnz . + 2;
1750 test SSTAT2, NONPACKREQ jz return;
1751 test MDFFSTAT, SHVALID jz return;
1752 /* FALLTHROUGH */
1753
1754 /*
1755 * Either a SAVEPTRS interrupt condition is pending for this FIFO
1756 * or we have a pending nonpackreq for this FIFO. We differentiate
1757 * between the two by capturing the state of the SAVEPTRS interrupt
1758 * prior to clearing this status and executing the common code for
1759 * these two cases.
1760 */
1761 pkt_saveptrs:
1762 BEGIN_CRITICAL;
1763 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1764 or DFCNTRL, FIFOFLUSH;
1765 }
1766 mov REG0, SEQINTSRC;
1767 call calc_residual;
1768 call save_pointers;
1769 mvi CLRSEQINTSRC, CLRSAVEPTRS;
1770 call disable_ccsgen;
1771 or SEQIMODE, ENSAVEPTRS;
1772 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
1773 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
1774 /*
1775 * Keep a handler around for this FIFO until it drains
1776 * to the host to guarantee that we don't complete the
1777 * command to the host before the data arrives.
1778 */
1779 pkt_saveptrs_wait_fifoemp:
1780 call setjmp;
1781 test DFSTATUS, FIFOEMP jz return;
1782 pkt_saveptrs_check_status:
1783 or LONGJMP_ADDR[1], INVALID_ADDR;
1784 test REG0, SAVEPTRS jz unexpected_nonpkt_phase;
1785 test SCB_CONTROL, STATUS_RCVD jz pkt_saveptrs_clrchn;
1786 jmp last_pkt_complete;
1787 pkt_saveptrs_clrchn:
1788 mvi DFFSXFRCTL, CLRCHN ret;
1789 END_CRITICAL;
1790
1791 last_pkt_xfer_done:
1792 BEGIN_CRITICAL;
1793 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1794 or DFCNTRL, FIFOFLUSH;
1795 }
1796 test SCB_CONTROL, STATUS_RCVD jz wait_pkt_end;
1797 check_overrun;
1798 or SCB_SGPTR, SG_LIST_NULL;
1799 /*
1800 * It is safe to skip the other FIFO check since
1801 * we defer CLRCHN on SAVEPTRS until all data in
1802 * the FIFO are seen by the host and a CFG4DATA
1803 * in this FIFO for the same context is held off
1804 * by hardware.
1805 */
1806 last_pkt_queue_scb:
1807 or LONGJMP_ADDR[1], INVALID_ADDR;
1808 bmov ARG_1, SCBPTR, 2;
1809 mvi DFFSXFRCTL, CLRCHN;
1810 jmp queue_arg1_scb_completion;
1811
1812 last_pkt_complete:
1813 bmov ARG_1, SCBPTR, 2;
1814 mvi DFFSXFRCTL, CLRCHN;
1815 check_other_fifo:
1816 clc;
1817 TOGGLE_DFF_MODE
1818 call check_fifo;
1819 jnc queue_arg1_scb_completion;
1820 return:
1821 ret;
1822
1823 wait_pkt_end:
1824 call setjmp;
1825 END_CRITICAL;
1826 wait_pkt_end_loop:
1827 test SEQINTSRC, CTXTDONE jnz pkt_end;
1828 check_overrun;
1829 test SSTAT2, NONPACKREQ jz return;
1830 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
1831 pkt_end:
1832 BEGIN_CRITICAL;
1833 check_overrun;
1834 or LONGJMP_ADDR[1], INVALID_ADDR;
1835 or SCB_SGPTR, SG_LIST_NULL;
1836 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_complete;
1837 mvi DFFSXFRCTL, CLRCHN ret;
1838 END_CRITICAL;
1839
1840 /*
1841 * Watch over the status transfer. Our host sense buffer is
1842 * large enough to take the maximum allowed status packet.
1843 * None-the-less, we must still catch and report overruns to
1844 * the host.
1845 */
1846 pkt_handle_status:
1847 call setjmp_setscb;
1848 test SG_CACHE_SHADOW, LAST_SEG_DONE jz check_status_overrun;
1849 test SEQINTSRC, CTXTDONE jz return;
1850 status_IU_done:
1851 BEGIN_CRITICAL;
1852 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1853 or DFCNTRL, FIFOFLUSH;
1854 }
1855 or LONGJMP_ADDR[1], INVALID_ADDR;
1856 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE;
1857 or SCB_CONTROL, STATUS_RCVD;
1858 jmp last_pkt_complete;
1859 END_CRITICAL;
1860 check_status_overrun:
1861 /*
1862 * We've filled the entire sense buffer.
1863 * Wait for either context done or a negative
1864 * shaddow count. If the context completes without
1865 * causing the shaddow count to go negative, then
1866 * this was a successful transfer up to the status
1867 * limit. Otherwise we report the error.
1868 */
1869 test SHCNT[2], 0xFF jnz report_status_overrun;
1870 test SEQINTSRC, CTXTDONE jz return;
1871 test SHCNT[2], 0xFF jz status_IU_done;
1872 report_status_overrun:
1873 SET_SEQINTCODE(STATUS_OVERRUN)
1874 jmp status_IU_done;
1875
1876 SET_SRC_MODE M_DFF0;
1877 SET_DST_MODE M_DFF0;
1878 BEGIN_CRITICAL;
1879 check_fifo:
1880 test LONGJMP_ADDR[1], INVALID_ADDR jnz return;
1881 mov A, ARG_2;
1882 cmp LONGJMP_SCB[1], A jne return;
1883 mov A, ARG_1;
1884 cmp LONGJMP_SCB[0], A jne return;
1885 stc ret;
1886 END_CRITICAL;
1887
1888 /*
1889 * Must wait until CDB xfer is over before issuing the
1890 * clear channel.
1891 */
1892 pkt_handle_cdb:
1893 call setjmp_setscb;
1894 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
1895 or LONGJMP_ADDR[1], INVALID_ADDR;
1896 mvi DFFSXFRCTL, CLRCHN ret;
1897
1898 /*
1899 * Nonpackreq is a polled status. It can come true in three situations:
1900 * we have received an L_Q, we have sent one or more L_Qs, or there is no
1901 * L_Q context associated with this REQ (REQ occurs immediately after a
1902 * (re)selection). Routines that know that the context responsible for this
1903 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the
1904 * top level idle loop, we exhaust all active contexts prior to determining that
1905 * we simply do not have the full I_T_L_Q for this phase.
1906 */
1907 unexpected_nonpkt_phase_find_ctxt:
1908 /*
1909 * This nonpackreq is most likely associated with one of the tags
1910 * in a FIFO or an outgoing LQ. Only treat it as an I_T only
1911 * nonpackreq if we've cleared out the FIFOs and handled any
1912 * pending SELDO.
1913 */
1914 SET_SRC_MODE M_SCSI;
1915 SET_DST_MODE M_SCSI;
1916 and A, FIFO1FREE|FIFO0FREE, DFFSTAT;
1917 cmp A, FIFO1FREE|FIFO0FREE jne return;
1918 test SSTAT0, SELDO jnz return;
1919 mvi SCBPTR[1], SCB_LIST_NULL;
1920 unexpected_nonpkt_phase:
1921 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3;
1922 SET_SRC_MODE M_DFF0;
1923 SET_DST_MODE M_DFF0;
1924 or LONGJMP_ADDR[1], INVALID_ADDR;
1925 mvi DFFSXFRCTL, CLRCHN;
1926 mvi CLRSINT2, CLRNONPACKREQ;
1927 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
1928 SET_SEQINTCODE(ENTERING_NONPACK)
1929 jmp ITloop;
1930
1931 illegal_phase:
1932 SET_SEQINTCODE(ILLEGAL_PHASE)
1933 jmp ITloop;
1934
1935 /*
1936 * We have entered an overrun situation. If we have working
1937 * BITBUCKET, flip that on and let the hardware eat any overrun
1938 * data. Otherwise use an overrun buffer in the host to simulate
1939 * BITBUCKET.
1940 */
1941 pkt_handle_overrun:
1942 SET_SEQINTCODE(CFG4OVERRUN)
1943 call freeze_queue;
1944 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
1945 or DFFSXFRCTL, DFFBITBUCKET;
1946 SET_SRC_MODE M_DFF1;
1947 SET_DST_MODE M_DFF1;
1948 } else {
1949 call load_overrun_buf;
1950 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
1951 }
1952 call setjmp;
1953 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
1954 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
1955 call load_overrun_buf;
1956 or DFCNTRL, PRELOADEN;
1957 overrun_load_done:
1958 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
1959 } else {
1960 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
1961 }
1962 test SSTAT2, NONPACKREQ jz return;
1963 pkt_overrun_end:
1964 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
1965 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
1966 test SCB_CONTROL, STATUS_RCVD jnz last_pkt_queue_scb;
1967 or LONGJMP_ADDR[1], INVALID_ADDR;
1968 mvi DFFSXFRCTL, CLRCHN ret;
1969
1970 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
1971 load_overrun_buf:
1972 /*
1973 * Load a dummy segment if preload space is available.
1974 */
1975 mov HADDR[0], SHARED_DATA_ADDR;
1976 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
1977 mov ACCUM_SAVE, A;
1978 clr A;
1979 adc HADDR[2], A, SHARED_DATA_ADDR[2];
1980 adc HADDR[3], A, SHARED_DATA_ADDR[3];
1981 mov A, ACCUM_SAVE;
1982 bmov HADDR[4], ALLZEROS, 4;
1983 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
1984 clr HCNT[0];
1985 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
1986 clr HCNT[2] ret;
1987 }
1988