Home | History | Annotate | Line # | Download | only in aic7xxx
aic79xx.seq revision 1.1
      1 /*
      2  * Adaptec U320 device driver firmware for Linux and FreeBSD.
      3  *
      4  * Copyright (c) 1994-2001 Justin T. Gibbs.
      5  * Copyright (c) 2000-2002 Adaptec Inc.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions, and the following disclaimer,
     13  *    without modification.
     14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     15  *    substantially similar to the "NO WARRANTY" disclaimer below
     16  *    ("Disclaimer") and any redistribution must be conditioned upon
     17  *    including a substantially similar Disclaimer requirement for further
     18  *    binary redistribution.
     19  * 3. Neither the names of the above-listed copyright holders nor the names
     20  *    of any contributors may be used to endorse or promote products derived
     21  *    from this software without specific prior written permission.
     22  *
     23  * Alternatively, this software may be distributed under the terms of the
     24  * GNU General Public License ("GPL") version 2 as published by the Free
     25  * Software Foundation.
     26  *
     27  * NO WARRANTY
     28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
     31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     32  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     37  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  * POSSIBILITY OF SUCH DAMAGES.
     39  *
     40  * $FreeBSD: /repoman/r/ncvs/src/sys/dev/aic7xxx/aic79xx.seq,v 1.7 2003/02/27 23:23:16 gibbs Exp $
     41  */
     42 
     43 VERSION = "$NetBSD: aic79xx.seq,v 1.1 2003/04/19 19:26:10 fvdl Exp $"
     44 PATCH_ARG_LIST = "struct ahd_softc *ahd"
     45 PREFIX = "ahd_"
     46 
     47 #include <dev/microcode/aic7xxx/aic79xx.reg>
     48 #include <dev/scsipi/scsi_message.h>
     49 
     50 restart:
     51 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
     52 	test	SEQINTCODE, 0xFF jz idle_loop;
     53 	SET_SEQINTCODE(NO_SEQINT)
     54 }
     55 
     56 idle_loop:
     57 
     58 	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
     59 		/*
     60 		 * Convert ERROR status into a sequencer
     61 		 * interrupt to handle the case of an
     62 		 * interrupt collision on the hardware
     63 		 * setting of HWERR.
     64 		 */
     65 		test	ERROR, 0xFF jz no_error_set;
     66 		SET_SEQINTCODE(SAW_HWERR)
     67 no_error_set:
     68 	}
     69 	SET_MODE(M_SCSI, M_SCSI)
     70 	test	SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
     71 	test	SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus;
     72 	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
     73 	/*
     74 	 * ENSELO is cleared by a SELDO, so we must test for SELDO
     75 	 * one last time.
     76 	 */
     77 BEGIN_CRITICAL;
     78 	test	SSTAT0, SELDO jnz select_out;
     79 END_CRITICAL;
     80 	call	start_selection;
     81 idle_loop_checkbus:
     82 BEGIN_CRITICAL;
     83 	test	SSTAT0, SELDO jnz select_out;
     84 END_CRITICAL;
     85 	test	SSTAT0, SELDI jnz select_in;
     86 	test	SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
     87 	test	SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
     88 	call	unexpected_nonpkt_phase_find_ctxt;
     89 idle_loop_check_nonpackreq:
     90 	test	SSTAT2, NONPACKREQ jz . + 2;
     91 	call	unexpected_nonpkt_phase_find_ctxt;
     92 	call	idle_loop_gsfifo_in_scsi_mode;
     93 	call	idle_loop_service_fifos;
     94 	call	idle_loop_cchan;
     95 	jmp	idle_loop;
     96 
     97 BEGIN_CRITICAL;
     98 idle_loop_gsfifo:
     99 	SET_MODE(M_SCSI, M_SCSI)
    100 idle_loop_gsfifo_in_scsi_mode:
    101 	test	LQISTAT2, LQIGSAVAIL jz return;
    102 	/*
    103 	 * We have received good status for this transaction.  There may
    104 	 * still be data in our FIFOs draining to the host.  Setup
    105 	 * monitoring of the draining process or complete the SCB.
    106 	 */
    107 good_status_IU_done:
    108 	bmov	SCBPTR, GSFIFO, 2;
    109 	clr	SCB_SCSI_STATUS;
    110 	/*
    111 	 * If a command completed before an attempted task management
    112 	 * function completed, notify the host after disabling any
    113 	 * pending select-outs.
    114 	 */
    115 	test	SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
    116 	test	SSTAT0, SELDO|SELINGO jnz . + 2;
    117 	and	SCSISEQ0, ~ENSELO;
    118 	SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
    119 gsfifo_complete_normally:
    120 	or	SCB_CONTROL, STATUS_RCVD;
    121 
    122 	/*
    123 	 * Since this status did not consume a FIFO, we have to
    124 	 * be a bit more dilligent in how we check for FIFOs pertaining
    125 	 * to this transaction.  There are two states that a FIFO still
    126 	 * transferring data may be in.
    127 	 *
    128 	 * 1) Configured and draining to the host, with a FIFO handler.
    129 	 * 2) Pending cfg4data, fifo not empty.
    130 	 *
    131 	 * Case 1 can be detected by noticing that a longjmp is active for
    132 	 * the FIFO and LONGJMP_SCB matches our SCB.  In this case, we allow
    133 	 * the routine servicing the FIFO to complete the SCB.
    134 	 *
    135 	 * Case 2 implies either a pending or yet to occur save data
    136 	 * pointers for this same context in the other FIFO.  So, if
    137 	 * we detect case 1, we will properly defer the post of the SCB
    138 	 * and achieve the desired result.  The pending cfg4data will
    139 	 * notice that status has been received and complete the SCB.
    140 	 *
    141 	 * If the data-transfer has been completed, or no data transfer
    142 	 * was needed for this SCB, it is safe to complete the command.
    143 	 */
    144 	test	SCB_SGPTR, SG_LIST_NULL jz good_status_check_fifos;
    145 	/*
    146 	 * All segments have been loaded (or no data transfer), so
    147 	 * it is safe to complete the command.  Since this was a
    148 	 * cheap command to check for completion, loop to see if
    149 	 * more entries can be removed from the GSFIFO.
    150 	 */
    151 	call	complete;
    152 END_CRITICAL;
    153 	jmp	idle_loop_gsfifo_in_scsi_mode;
    154 BEGIN_CRITICAL;
    155 good_status_check_fifos:
    156 	clc;
    157 	bmov	ARG_1, SCBPTR, 2;
    158 	SET_MODE(M_DFF0, M_DFF0)
    159 	call	check_fifo;
    160 	jc	return;
    161 	SET_MODE(M_DFF1, M_DFF1)
    162 	call	check_fifo;
    163 	jc	return;
    164 	SET_MODE(M_SCSI, M_SCSI)
    165 	jmp	queue_scb_completion;
    166 END_CRITICAL;
    167 
    168 idle_loop_service_fifos:
    169 	SET_MODE(M_DFF0, M_DFF0)
    170 	test	LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
    171 	call	longjmp;
    172 idle_loop_next_fifo:
    173 	SET_MODE(M_DFF1, M_DFF1)
    174 	test	LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
    175 	ret;
    176 
    177 idle_loop_cchan:
    178 	SET_MODE(M_CCHAN, M_CCHAN)
    179 	test	QOFF_CTLSTA, HS_MAILBOX_ACT jz	hs_mailbox_empty;
    180 	mov	LOCAL_HS_MAILBOX, HS_MAILBOX;
    181 	or	QOFF_CTLSTA, HS_MAILBOX_ACT;
    182 hs_mailbox_empty:
    183 BEGIN_CRITICAL;
    184 	test	CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
    185 	test	CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
    186 	test	CCSCBCTL, CCSCBDONE jz return;
    187 END_CRITICAL;
    188 	/* FALLTHROUGH */
    189 scbdma_tohost_done:
    190 	test	CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
    191 	/*
    192 	 * A complete SCB upload requires no intervention.
    193 	 * The SCB is already on the COMPLETE_SCB list
    194 	 * and its completion notification will now be
    195 	 * handled just like any other SCB.
    196 	 */
    197 	and	CCSCBCTL, ~(CCARREN|CCSCBEN) ret;
    198 fill_qoutfifo_dmadone:
    199 	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
    200 	call	qoutfifo_updated;
    201 	mvi	COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
    202 	bmov	QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
    203 	test	QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
    204 	bmov	QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
    205 	xor	QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
    206 
    207 qoutfifo_updated:
    208 	/*
    209 	 * If there are more commands waiting to be dma'ed
    210 	 * to the host, always coaless.  Otherwise honor the
    211 	 * host's wishes.
    212 	 */
    213 	cmp	COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coaless_by_count;
    214 	cmp	COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coaless_by_count;
    215 	test	LOCAL_HS_MAILBOX, ENINT_COALESS jz issue_cmdcmplt;
    216 
    217 	/*
    218 	 * If we have relatively few commands outstanding, don't
    219 	 * bother waiting for another command to complete.
    220 	 */
    221 	test	CMDS_PENDING[1], 0xFF jnz coaless_by_count;
    222 	/* Add -1 so that jnc means <= not just < */
    223 	add	A, -1, INT_COALESSING_MINCMDS;
    224 	add	NONE, A, CMDS_PENDING;
    225 	jnc	issue_cmdcmplt;
    226 
    227 	/*
    228 	 * If coalessing, only coaless up to the limit
    229 	 * provided by the host driver.
    230 	 */
    231 coaless_by_count:
    232 	mov	A, INT_COALESSING_MAXCMDS;
    233 	add	NONE, A, INT_COALESSING_CMDCOUNT;
    234 	jc	issue_cmdcmplt;
    235 	/*
    236 	 * If the timer is not currently active,
    237 	 * fire it up.
    238 	 */
    239 	test	INTCTL, SWTMINTMASK jz return;
    240 	bmov	SWTIMER, INT_COALESSING_TIMER, 2;
    241 	mvi	CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
    242 	or	INTCTL, SWTMINTEN|SWTIMER_START;
    243 	and	INTCTL, ~SWTMINTMASK ret;
    244 
    245 issue_cmdcmplt:
    246 	mvi	INTSTAT, CMDCMPLT;
    247 	clr	INT_COALESSING_CMDCOUNT;
    248 	or	INTCTL, SWTMINTMASK ret;
    249 
    250 BEGIN_CRITICAL;
    251 fetch_new_scb_inprog:
    252 	test	CCSCBCTL, ARRDONE jz return;
    253 fetch_new_scb_done:
    254 	and	CCSCBCTL, ~(CCARREN|CCSCBEN);
    255 	bmov	REG0, SCBPTR, 2;
    256 	clr	A;
    257 	add	CMDS_PENDING, 1;
    258 	adc	CMDS_PENDING[1], A;
    259 	/* Update the next SCB address to download. */
    260 	bmov	NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
    261 	mvi	SCB_NEXT[1], SCB_LIST_NULL;
    262 	mvi	SCB_NEXT2[1], SCB_LIST_NULL;
    263 	/* Increment our position in the QINFIFO. */
    264 	mov	NONE, SNSCB_QOFF;
    265 	/*
    266 	 * SCBs that want to send messages are always
    267 	 * queued independently.  This ensures that they
    268 	 * are at the head of the SCB list to select out
    269 	 * to a target and we will see the MK_MESSAGE flag.
    270 	 */
    271 	test	SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb;
    272 	shr	SINDEX, 3, SCB_SCSIID;
    273 	and	SINDEX, ~0x1;
    274 	mvi	SINDEX[1], (WAITING_SCB_TAILS >> 8);
    275 	bmov	DINDEX, SINDEX, 2;
    276 	bmov	SCBPTR, SINDIR, 2;
    277 	bmov	DINDIR, REG0, 2;
    278 	cmp	SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
    279 	bmov	SCB_NEXT, REG0, 2 ret;
    280 first_new_target_scb:
    281 	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
    282 	bmov	SCBPTR, WAITING_TID_TAIL, 2;
    283 	bmov	SCB_NEXT2, REG0, 2;
    284 	bmov	WAITING_TID_TAIL, REG0, 2 ret;
    285 first_new_scb:
    286 	bmov	WAITING_TID_HEAD, REG0, 2;
    287 	bmov	WAITING_TID_TAIL, REG0, 2 ret;
    288 END_CRITICAL;
    289 
    290 scbdma_idle:
    291 	/*
    292 	 * Give precedence to downloading new SCBs to execute
    293 	 * unless select-outs are currently frozen.
    294 	 */
    295 	test	SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2;
    296 BEGIN_CRITICAL;
    297 	test	QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
    298 	cmp	COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
    299 	cmp	COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
    300 	/* FALLTHROUGH */
    301 fill_qoutfifo:
    302 	/*
    303 	 * Keep track of the SCBs we are dmaing just
    304 	 * in case the DMA fails or is aborted.
    305 	 */
    306 	mov	A, QOUTFIFO_ENTRY_VALID_TAG;
    307 	bmov	COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
    308 	mvi	CCSCBCTL, CCSCBRESET;
    309 	bmov	SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
    310 	bmov	SCBPTR, COMPLETE_SCB_HEAD, 2;
    311 fill_qoutfifo_loop:
    312 	mov	CCSCBRAM, SCBPTR;
    313 	or	CCSCBRAM, A, SCBPTR[1];
    314 	mov	NONE, SDSCB_QOFF;
    315 	inc	INT_COALESSING_CMDCOUNT;
    316 	add	CMDS_PENDING, -1;
    317 	adc	CMDS_PENDING[1], -1;
    318 	cmp	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
    319 	cmp	CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
    320 	test	QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
    321 	bmov	SCBPTR, SCB_NEXT_COMPLETE, 2;
    322 	jmp	fill_qoutfifo_loop;
    323 fill_qoutfifo_done:
    324 	mov	SCBHCNT, CCSCBADDR;
    325 	mvi	CCSCBCTL, CCSCBEN|CCSCBRESET;
    326 	bmov	COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
    327 	mvi	SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
    328 
    329 fetch_new_scb:
    330 	bmov	SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
    331 	mvi	CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
    332 dma_complete_scb:
    333 	bmov	SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
    334 	bmov	SCBHADDR, SCB_BUSADDR, 4;
    335 	mvi	CCARREN|CCSCBEN|CCSCBRESET call dma_scb;
    336 	/*
    337 	 * Now that we've started the DMA, push us onto
    338 	 * the normal completion queue to have our SCBID
    339 	 * posted to the kernel.
    340 	 */
    341 	bmov	COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
    342 	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
    343 	bmov	COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
    344 END_CRITICAL;
    345 
    346 /*
    347  * Either post or fetch an SCB from host memory.  The caller
    348  * is responsible for polling for transfer completion.
    349  *
    350  * Prerequisits: Mode == M_CCHAN
    351  *		 SINDEX contains CCSCBCTL flags
    352  *		 SCBHADDR set to Host SCB address
    353  *		 SCBPTR set to SCB src location on "push" operations
    354  */
    355 SET_SRC_MODE	M_CCHAN;
    356 SET_DST_MODE	M_CCHAN;
    357 dma_scb:
    358 	mvi	SCBHCNT, SCB_TRANSFER_SIZE;
    359 	mov	CCSCBCTL, SINDEX ret;
    360 
    361 BEGIN_CRITICAL;
    362 setjmp_setscb:
    363 	bmov	LONGJMP_SCB, SCBPTR, 2;
    364 setjmp:
    365 	bmov	LONGJMP_ADDR, STACK, 2 ret;
    366 setjmp_inline:
    367 	bmov	LONGJMP_ADDR, STACK, 2;
    368 longjmp:
    369 	bmov	STACK, LONGJMP_ADDR, 2 ret;
    370 END_CRITICAL;
    371 
    372 /*************************** Chip Bug Work Arounds ****************************/
    373 /*
    374  * Must disable interrupts when setting the mode pointer
    375  * register as an interrupt occurring mid update will
    376  * fail to store the new mode value for restoration on
    377  * an iret.
    378  */
    379 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
    380 set_mode_work_around:
    381 	mvi	SEQINTCTL, INTVEC1DSL;
    382 	mov	MODE_PTR, SINDEX;
    383 	clr	SEQINTCTL ret;
    384 
    385 toggle_dff_mode_work_around:
    386 	mvi	SEQINTCTL, INTVEC1DSL;
    387 	xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
    388 	clr	SEQINTCTL ret;
    389 }
    390 
    391 
    392 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
    393 set_seqint_work_around:
    394 	mov	SEQINTCODE, SINDEX;
    395 	mvi	SEQINTCODE, NO_SEQINT ret;
    396 }
    397 
    398 /************************ Packetized LongJmp Routines *************************/
    399 SET_SRC_MODE	M_SCSI;
    400 SET_DST_MODE	M_SCSI;
    401 start_selection:
    402 BEGIN_CRITICAL;
    403 	if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
    404 		/*
    405 		 * Razor #494
    406 		 * Rev A hardware fails to update LAST/CURR/NEXTSCB
    407 		 * correctly after a packetized selection in several
    408 		 * situations:
    409 		 *
    410 		 * 1) If only one command existed in the queue, the
    411 		 *    LAST/CURR/NEXTSCB are unchanged.
    412 		 *
    413 		 * 2) In a non QAS, protocol allowed phase change,
    414 		 *    the queue is shifted 1 too far.  LASTSCB is
    415 		 *    the last SCB that was correctly processed.
    416 		 *
    417 		 * 3) In the QAS case, if the full list of commands
    418 		 *    was successfully sent, NEXTSCB is NULL and neither
    419 		 *    CURRSCB nor LASTSCB can be trusted.  We must
    420 		 *    manually walk the list counting MAXCMDCNT elements
    421 		 *    to find the last SCB that was sent correctly.
    422 		 *
    423 		 * To simplify the workaround for this bug in SELDO
    424 		 * handling, we initialize LASTSCB prior to enabling
    425 		 * selection so we can rely on it even for case #1 above.
    426 		 */
    427 		bmov	LASTSCB, WAITING_TID_HEAD, 2;
    428 	}
    429 	bmov	CURRSCB, WAITING_TID_HEAD, 2;
    430 	bmov	SCBPTR, WAITING_TID_HEAD, 2;
    431 	shr	SELOID, 4, SCB_SCSIID;
    432 	/*
    433 	 * If we want to send a message to the device, ensure
    434 	 * we are selecting with atn irregardless of our packetized
    435 	 * agreement.  Since SPI4 only allows target reset or PPR
    436 	 * messages if this is a packetized connection, the change
    437 	 * to our negotiation table entry for this selection will
    438 	 * be cleared when the message is acted on.
    439 	 */
    440 	test	SCB_CONTROL, MK_MESSAGE jz . + 3;
    441 	mov	NEGOADDR, SELOID;
    442 	or	NEGCONOPTS, ENAUTOATNO;
    443 	or	SCSISEQ0, ENSELO ret;
    444 END_CRITICAL;
    445 
    446 /*
    447  * Allocate a FIFO for a non-packetized transaction.
    448  * In RevA hardware, both FIFOs must be free before we
    449  * can allocate a FIFO for a non-packetized transaction.
    450  */
    451 allocate_fifo_loop:
    452 	/*
    453 	 * Do whatever work is required to free a FIFO.
    454 	 */
    455 	call	idle_loop_service_fifos;
    456 	SET_MODE(M_SCSI, M_SCSI)
    457 allocate_fifo:
    458 	if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
    459 		and	A, FIFO0FREE|FIFO1FREE, DFFSTAT;
    460 		cmp	A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
    461 	} else {
    462 		test	DFFSTAT, FIFO1FREE jnz allocate_fifo1;
    463 		test	DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
    464 		mvi	DFFSTAT, B_CURRFIFO_0;
    465 		SET_MODE(M_DFF0, M_DFF0)
    466 		bmov	SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
    467 	}
    468 SET_SRC_MODE	M_SCSI;
    469 SET_DST_MODE	M_SCSI;
    470 allocate_fifo1:
    471 	mvi	DFFSTAT, CURRFIFO_1;
    472 	SET_MODE(M_DFF1, M_DFF1)
    473 	bmov	SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
    474 
    475 /*
    476  * We have been reselected as an initiator
    477  * or selected as a target.
    478  */
    479 SET_SRC_MODE	M_SCSI;
    480 SET_DST_MODE	M_SCSI;
    481 select_in:
    482 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
    483 		/*
    484 		 * This exposes a window whereby a
    485 		 * busfree just after a selection will
    486 		 * be missed, but there is no other safe
    487 		 * way to enable busfree detection if
    488 		 * the busfreerev function is broken.
    489 		 */
    490 		mvi	CLRSINT1,CLRBUSFREE;
    491 		or	SIMODE1, ENBUSFREE;
    492 	}
    493 	or	SXFRCTL0, SPIOEN;
    494 	and	SAVED_SCSIID, SELID_MASK, SELID;
    495 	and	A, OID, IOWNID;
    496 	or	SAVED_SCSIID, A;
    497 	mvi	CLRSINT0, CLRSELDI;
    498 	jmp	ITloop;
    499 
    500 /*
    501  * We have successfully selected out.
    502  *
    503  * Clear SELDO.
    504  * Dequeue all SCBs sent from the waiting queue
    505  * Requeue all SCBs *not* sent to the tail of the waiting queue
    506  * Take Razor #494 into account for above.
    507  *
    508  * In Packetized Mode:
    509  *	Return to the idle loop.  Our interrupt handler will take
    510  *	care of any incoming L_Qs.
    511  *
    512  * In Non-Packetize Mode:
    513  *	Continue to our normal state machine.
    514  */
    515 SET_SRC_MODE	M_SCSI;
    516 SET_DST_MODE	M_SCSI;
    517 select_out:
    518 BEGIN_CRITICAL;
    519 	/* Clear out all SCBs that have been successfully sent. */
    520 	if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
    521 		/*
    522 		 * For packetized, the LQO manager clears ENSELO on
    523 		 * the assertion of SELDO.  If we are non-packetized,
    524 		 * LASTSCB and CURRSCB are accurate.
    525 		 */
    526 		test	SCSISEQ0, ENSELO jnz use_lastscb;
    527 
    528 		/*
    529 		 * The update is correct for LQOSTAT1 errors.  All
    530 		 * but LQOBUSFREE are handled by kernel interrupts.
    531 		 * If we see LQOBUSFREE, return to the idle loop.
    532 		 * Once we are out of the select_out critical section,
    533 		 * the kernel will cleanup the LQOBUSFREE and we will
    534 		 * eventually restart the selection if appropriate.
    535 		 */
    536 		test	LQOSTAT1, LQOBUSFREE jnz idle_loop;
    537 
    538 		/*
    539 		 * On a phase change oustside of packet boundaries,
    540 		 * LASTSCB points to the currently active SCB context
    541 		 * on the bus.
    542 		 */
    543 		test	LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
    544 
    545 		/*
    546 		 * If the hardware has traversed the whole list, NEXTSCB
    547 		 * will be NULL, CURRSCB and LASTSCB cannot be trusted,
    548 		 * but MAXCMDCNT is accurate.  If we stop part way through
    549 		 * the list or only had one command to issue, NEXTSCB[1] is
    550 		 * not NULL and LASTSCB is the last command to go out.
    551 		 */
    552 		cmp	NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
    553 
    554 		/*
    555 		 * Brute force walk.
    556 		 */
    557 		bmov	SCBPTR, WAITING_TID_HEAD, 2;
    558 		mvi	SEQINTCTL, INTVEC1DSL;
    559 		mvi	MODE_PTR, MK_MODE(M_CFG, M_CFG);
    560 		mov	A, MAXCMDCNT;
    561 		mvi	MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
    562 		clr	SEQINTCTL;
    563 find_lastscb_loop:
    564 		dec	A;
    565 		test	A, 0xFF jz found_last_sent_scb;
    566 		bmov	SCBPTR, SCB_NEXT, 2;
    567 		jmp	find_lastscb_loop;
    568 use_lastscb:
    569 		bmov	SCBPTR, LASTSCB, 2;
    570 found_last_sent_scb:
    571 		bmov	CURRSCB, SCBPTR, 2;
    572 curscb_ww_done:
    573 	} else {
    574 		/*
    575 		 * Untested - Verify with Rev B.
    576 		 */
    577 		bmov	SCBPTR, CURRSCB, 2;
    578 	}
    579 
    580 	/*
    581 	 * Requeue any SCBs not sent, to the tail of the waiting Q.
    582 	 */
    583 	cmp	SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done;
    584 
    585 	/*
    586 	 * We know that neither the per-TID list nor the list of
    587 	 * TIDs is empty.  Use this knowledge to our advantage.
    588 	 */
    589 	bmov	REG0, SCB_NEXT, 2;
    590 	bmov	SCBPTR, WAITING_TID_TAIL, 2;
    591 	bmov	SCB_NEXT2, REG0, 2;
    592 	bmov	WAITING_TID_TAIL, REG0, 2;
    593 	jmp	select_out_inc_tid_q;
    594 
    595 select_out_list_done:
    596 	/*
    597 	 * The whole list made it.  Just clear our TID's tail pointer
    598 	 * unless we were queued independently due to our need to
    599 	 * send a message.
    600 	 */
    601 	test	SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q;
    602 	shr	DINDEX, 3, SCB_SCSIID;
    603 	or	DINDEX, 1;	/* Want only the second byte */
    604 	mvi	DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
    605 	mvi	DINDIR, SCB_LIST_NULL;
    606 select_out_inc_tid_q:
    607 	bmov	SCBPTR, WAITING_TID_HEAD, 2;
    608 	bmov	WAITING_TID_HEAD, SCB_NEXT2, 2;
    609 	cmp	WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
    610 	mvi	WAITING_TID_TAIL[1], SCB_LIST_NULL;
    611 	bmov	SCBPTR, CURRSCB, 2;
    612 	mvi	CLRSINT0, CLRSELDO;
    613 	test	LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase;
    614 	test	LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase;
    615 
    616 	/*
    617 	 * If this is a packetized connection, return to our
    618 	 * idle_loop and let our interrupt handler deal with
    619 	 * any connection setup/teardown issues.  The only
    620 	 * exceptions are the case of MK_MESSAGE and task management
    621 	 * SCBs.
    622 	 */
    623 	if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
    624 		/*
    625 		 * In the A, the LQO manager transitions to LQOSTOP0 even if
    626 		 * we have selected out with ATN asserted and the target
    627 		 * REQs in a non-packet phase.
    628 		 */
    629 		test 	SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
    630 		test	SCSISIGO, ATNO jnz select_out_non_packetized;
    631 select_out_no_message:
    632 	}
    633 	test	LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
    634 	test	SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
    635 	SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
    636 	jmp	idle_loop;
    637 
    638 select_out_non_packetized:
    639 	/* Non packetized request. */
    640 	and     SCSISEQ0, ~ENSELO;
    641 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
    642 		/*
    643 		 * This exposes a window whereby a
    644 		 * busfree just after a selection will
    645 		 * be missed, but there is no other safe
    646 		 * way to enable busfree detection if
    647 		 * the busfreerev function is broken.
    648 		 */
    649 		mvi	CLRSINT1,CLRBUSFREE;
    650 		or	SIMODE1, ENBUSFREE;
    651 	}
    652 	mov	SAVED_SCSIID, SCB_SCSIID;
    653 	mov	SAVED_LUN, SCB_LUN;
    654 	mvi	SEQ_FLAGS, NO_CDB_SENT;
    655 END_CRITICAL;
    656 	or	SXFRCTL0, SPIOEN;
    657 
    658 	/*
    659 	 * As soon as we get a successful selection, the target
    660 	 * should go into the message out phase since we have ATN
    661 	 * asserted.
    662 	 */
    663 	mvi	MSG_OUT, MSG_IDENTIFYFLAG;
    664 
    665 	/*
    666 	 * Main loop for information transfer phases.  Wait for the
    667 	 * target to assert REQ before checking MSG, C/D and I/O for
    668 	 * the bus phase.
    669 	 */
    670 mesgin_phasemis:
    671 ITloop:
    672 	call	phase_lock;
    673 
    674 	mov	A, LASTPHASE;
    675 
    676 	test	A, ~P_DATAIN_DT	jz p_data;
    677 	cmp	A,P_COMMAND	je p_command;
    678 	cmp	A,P_MESGOUT	je p_mesgout;
    679 	cmp	A,P_STATUS	je p_status;
    680 	cmp	A,P_MESGIN	je p_mesgin;
    681 
    682 	SET_SEQINTCODE(BAD_PHASE)
    683 	jmp	ITloop;			/* Try reading the bus again. */
    684 
    685 /*
    686  * Command phase.  Set up the DMA registers and let 'er rip.
    687  */
    688 p_command:
    689 	test	SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
    690 	SET_SEQINTCODE(PROTO_VIOLATION)
    691 p_command_okay:
    692 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
    693 		jnz p_command_allocate_fifo;
    694 	/*
    695 	 * Command retry.  Free our current FIFO and
    696 	 * re-allocate a FIFO so transfer state is
    697 	 * reset.
    698 	 */
    699 SET_SRC_MODE	M_DFF1;
    700 SET_DST_MODE	M_DFF1;
    701 	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
    702 	SET_MODE(M_SCSI, M_SCSI)
    703 p_command_allocate_fifo:
    704 	bmov	ALLOCFIFO_SCBPTR, SCBPTR, 2;
    705 	call	allocate_fifo;
    706 SET_SRC_MODE	M_DFF1;
    707 SET_DST_MODE	M_DFF1;
    708 	add	NONE, -17, SCB_CDB_LEN;
    709 	jnc	p_command_embedded;
    710 p_command_from_host:
    711 	bmov	HADDR[0], SCB_HOST_CDB_PTR, 9;
    712 	mvi	SG_CACHE_PRE, LAST_SEG;
    713 	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
    714 	jmp	p_command_xfer;
    715 p_command_embedded:
    716 	bmov	SHCNT[0], SCB_CDB_LEN,  1;
    717 	bmov	DFDAT, SCB_CDB_STORE, 16;
    718 	mvi	DFCNTRL, SCSIEN;
    719 p_command_xfer:
    720 	and	SEQ_FLAGS, ~NO_CDB_SENT;
    721 	test	DFCNTRL, SCSIEN jnz .;
    722 	/*
    723 	 * DMA Channel automatically disabled.
    724 	 * Don't allow a data phase if the command
    725 	 * was not fully transferred.
    726 	 */
    727 	test	SSTAT2, SDONE jnz ITloop;
    728 	or	SEQ_FLAGS, NO_CDB_SENT;
    729 	jmp	ITloop;
    730 
    731 
    732 /*
    733  * Status phase.  Wait for the data byte to appear, then read it
    734  * and store it into the SCB.
    735  */
    736 SET_SRC_MODE	M_SCSI;
    737 SET_DST_MODE	M_SCSI;
    738 p_status:
    739 	test	SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
    740 p_status_okay:
    741 	mov	SCB_SCSI_STATUS, SCSIDAT;
    742 	or	SCB_CONTROL, STATUS_RCVD;
    743 	jmp	ITloop;
    744 
    745 /*
    746  * Message out phase.  If MSG_OUT is MSG_IDENTIFYFLAG, build a full
    747  * indentify message sequence and send it to the target.  The host may
    748  * override this behavior by setting the MK_MESSAGE bit in the SCB
    749  * control byte.  This will cause us to interrupt the host and allow
    750  * it to handle the message phase completely on its own.  If the bit
    751  * associated with this target is set, we will also interrupt the host,
    752  * thereby allowing it to send a message on the next selection regardless
    753  * of the transaction being sent.
    754  *
    755  * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
    756  * This is done to allow the host to send messages outside of an identify
    757  * sequence while protecting the seqencer from testing the MK_MESSAGE bit
    758  * on an SCB that might not be for the current nexus. (For example, a
    759  * BDR message in responce to a bad reselection would leave us pointed to
    760  * an SCB that doesn't have anything to do with the current target).
    761  *
    762  * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
    763  * bus device reset).
    764  *
    765  * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
    766  * in case the target decides to put us in this phase for some strange
    767  * reason.
    768  */
    769 p_mesgout_retry:
    770 	/* Turn on ATN for the retry */
    771 	mvi	SCSISIGO, ATNO;
    772 p_mesgout:
    773 	mov	SINDEX, MSG_OUT;
    774 	cmp	SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
    775 	test	SCB_CONTROL,MK_MESSAGE	jnz host_message_loop;
    776 p_mesgout_identify:
    777 	or	SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
    778 	test	SCB_CONTROL, DISCENB jnz . + 2;
    779 	and	SINDEX, ~DISCENB;
    780 /*
    781  * Send a tag message if TAG_ENB is set in the SCB control block.
    782  * Use SCB_NONPACKET_TAG as the tag value.
    783  */
    784 p_mesgout_tag:
    785 	test	SCB_CONTROL,TAG_ENB jz  p_mesgout_onebyte;
    786 	mov	SCSIDAT, SINDEX;	/* Send the identify message */
    787 	call	phase_lock;
    788 	cmp	LASTPHASE, P_MESGOUT	jne p_mesgout_done;
    789 	and	SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
    790 	call	phase_lock;
    791 	cmp	LASTPHASE, P_MESGOUT	jne p_mesgout_done;
    792 	mov	SCBPTR jmp p_mesgout_onebyte;
    793 /*
    794  * Interrupt the driver, and allow it to handle this message
    795  * phase and any required retries.
    796  */
    797 p_mesgout_from_host:
    798 	cmp	SINDEX, HOST_MSG	jne p_mesgout_onebyte;
    799 	jmp	host_message_loop;
    800 
    801 p_mesgout_onebyte:
    802 	mvi	CLRSINT1, CLRATNO;
    803 	mov	SCSIDAT, SINDEX;
    804 
    805 /*
    806  * If the next bus phase after ATN drops is message out, it means
    807  * that the target is requesting that the last message(s) be resent.
    808  */
    809 	call	phase_lock;
    810 	cmp	LASTPHASE, P_MESGOUT	je p_mesgout_retry;
    811 
    812 p_mesgout_done:
    813 	mvi	CLRSINT1,CLRATNO;	/* Be sure to turn ATNO off */
    814 	mov	LAST_MSG, MSG_OUT;
    815 	mvi	MSG_OUT, MSG_NOOP;	/* No message left */
    816 	jmp	ITloop;
    817 
    818 /*
    819  * Message in phase.  Bytes are read using Automatic PIO mode.
    820  */
    821 p_mesgin:
    822 	/* read the 1st message byte */
    823 	mvi	ACCUM		call inb_first;
    824 
    825 	test	A,MSG_IDENTIFYFLAG	jnz mesgin_identify;
    826 	cmp	A,MSG_DISCONNECT	je mesgin_disconnect;
    827 	cmp	A,MSG_SAVEDATAPOINTER	je mesgin_sdptrs;
    828 	cmp	ALLZEROS,A		je mesgin_complete;
    829 	cmp	A,MSG_RESTOREPOINTERS	je mesgin_rdptrs;
    830 	cmp	A,MSG_IGN_WIDE_RESIDUE	je mesgin_ign_wide_residue;
    831 	cmp	A,MSG_NOOP		je mesgin_done;
    832 
    833 /*
    834  * Pushed message loop to allow the kernel to
    835  * run it's own message state engine.  To avoid an
    836  * extra nop instruction after signaling the kernel,
    837  * we perform the phase_lock before checking to see
    838  * if we should exit the loop and skip the phase_lock
    839  * in the ITloop.  Performing back to back phase_locks
    840  * shouldn't hurt, but why do it twice...
    841  */
    842 host_message_loop:
    843 	call	phase_lock;	/* Benign the first time through. */
    844 	SET_SEQINTCODE(HOST_MSG_LOOP)
    845 	cmp	RETURN_1, EXIT_MSG_LOOP	je ITloop;
    846 	cmp	RETURN_1, CONT_MSG_LOOP_WRITE	jne . + 3;
    847 	mov	SCSIDAT, RETURN_2;
    848 	jmp	host_message_loop;
    849 	/* Must be CONT_MSG_LOOP_READ */
    850 	mov	NONE, SCSIDAT;	/* ACK Byte */
    851 	jmp	host_message_loop;
    852 
    853 mesgin_ign_wide_residue:
    854 	mov	SAVED_MODE, MODE_PTR;
    855 	SET_MODE(M_SCSI, M_SCSI)
    856 	shr	NEGOADDR, 4, SAVED_SCSIID;
    857 	mov	A, NEGCONOPTS;
    858 	RESTORE_MODE(SAVED_MODE)
    859 	test	A, WIDEXFER jz mesgin_reject;
    860 	/* Pull the residue byte */
    861 	mvi	REG0	call inb_next;
    862 	cmp	REG0, 0x01 jne mesgin_reject;
    863 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
    864 	test	DATA_COUNT_ODD, 0x1	jz mesgin_done;
    865 	jmp	mesgin_done;
    866 
    867 mesgin_proto_violation:
    868 	SET_SEQINTCODE(PROTO_VIOLATION)
    869 	jmp	mesgin_done;
    870 mesgin_reject:
    871 	mvi	MSG_MESSAGE_REJECT	call mk_mesg;
    872 mesgin_done:
    873 	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
    874 	jmp	ITloop;
    875 
    876 #define INDEX_DISC_LIST(scsiid, lun)					\
    877 	and	A, 0xC0, scsiid;					\
    878 	or	SCBPTR, A, lun;						\
    879 	clr	SCBPTR[1];						\
    880 	and	SINDEX, 0x30, scsiid;					\
    881 	shr	SINDEX, 3;	/* Multiply by 2 */			\
    882 	add	SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF);		\
    883 	mvi	SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
    884 
    885 mesgin_identify:
    886 	/*
    887 	 * Determine whether a target is using tagged or non-tagged
    888 	 * transactions by first looking at the transaction stored in
    889 	 * the per-device, disconnected array.  If there is no untagged
    890 	 * transaction for this target, this must be a tagged transaction.
    891 	 */
    892 	and	SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
    893 	INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
    894 	bmov	DINDEX, SINDEX, 2;
    895 	bmov	REG0, SINDIR, 2;
    896 	cmp	REG0[1], SCB_LIST_NULL je snoop_tag;
    897 	/* Untagged.  Clear the busy table entry and setup the SCB. */
    898 	bmov	DINDIR, ALLONES, 2;
    899 	bmov	SCBPTR, REG0, 2;
    900 	jmp	setup_SCB;
    901 
    902 /*
    903  * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
    904  * If we get one, we use the tag returned to find the proper
    905  * SCB.  After receiving the tag, look for the SCB at SCB locations tag and
    906  * tag + 256.
    907  */
    908 snoop_tag:
    909 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    910 		or	SEQ_FLAGS, 0x80;
    911 	}
    912 	mov	NONE, SCSIDAT;		/* ACK Identify MSG */
    913 	call	phase_lock;
    914 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    915 		or	SEQ_FLAGS, 0x1;
    916 	}
    917 	cmp	LASTPHASE, P_MESGIN	jne not_found_ITloop;
    918 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    919 		or	SEQ_FLAGS, 0x2;
    920 	}
    921 	cmp	SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
    922 get_tag:
    923 	clr	SCBPTR[1];
    924 	mvi	SCBPTR	call inb_next;	/* tag value */
    925 verify_scb:
    926 	test	SCB_CONTROL,DISCONNECTED jz verify_other_scb;
    927 	mov	A, SAVED_SCSIID;
    928 	cmp	SCB_SCSIID, A jne verify_other_scb;
    929 	mov	A, SAVED_LUN;
    930 	cmp	SCB_LUN, A je setup_SCB_disconnected;
    931 verify_other_scb:
    932 	xor	SCBPTR[1], 1;
    933 	test	SCBPTR[1], 0xFF jnz verify_scb;
    934 	jmp	not_found;
    935 
    936 /*
    937  * Ensure that the SCB the tag points to is for
    938  * an SCB transaction to the reconnecting target.
    939  */
    940 setup_SCB:
    941 	if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
    942 		or	SEQ_FLAGS, 0x10;
    943 	}
    944 	test	SCB_CONTROL,DISCONNECTED jz not_found;
    945 setup_SCB_disconnected:
    946 	and	SCB_CONTROL,~DISCONNECTED;
    947 	clr	SEQ_FLAGS;	/* make note of IDENTIFY */
    948 	test	SCB_SGPTR, SG_LIST_NULL jnz . + 3;
    949 	bmov	ALLOCFIFO_SCBPTR, SCBPTR, 2;
    950 	call	allocate_fifo;
    951 	/* See if the host wants to send a message upon reconnection */
    952 	test	SCB_CONTROL, MK_MESSAGE jz mesgin_done;
    953 	mvi	HOST_MSG	call mk_mesg;
    954 	jmp	mesgin_done;
    955 
    956 not_found:
    957 	SET_SEQINTCODE(NO_MATCH)
    958 	jmp	mesgin_done;
    959 
    960 not_found_ITloop:
    961 	SET_SEQINTCODE(NO_MATCH)
    962 	jmp	ITloop;
    963 
    964 /*
    965  * We received a "command complete" message.  Put the SCB on the complete
    966  * queue and trigger a completion interrupt via the idle loop.  Before doing
    967  * so, check to see if there
    968  * is a residual or the status byte is something other than STATUS_GOOD (0).
    969  * In either of these conditions, we upload the SCB back to the host so it can
    970  * process this information.  In the case of a non zero status byte, we
    971  * additionally interrupt the kernel driver synchronously, allowing it to
    972  * decide if sense should be retrieved.  If the kernel driver wishes to request
    973  * sense, it will fill the kernel SCB with a request sense command, requeue
    974  * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting
    975  * RETURN_1 to SEND_SENSE.
    976  */
    977 mesgin_complete:
    978 
    979 	/*
    980 	 * If ATN is raised, we still want to give the target a message.
    981 	 * Perhaps there was a parity error on this last message byte.
    982 	 * Either way, the target should take us to message out phase
    983 	 * and then attempt to complete the command again.  We should use a
    984 	 * critical section here to guard against a timeout triggering
    985 	 * for this command and setting ATN while we are still processing
    986 	 * the completion.
    987 	test	SCSISIGI, ATNI jnz mesgin_done;
    988 	 */
    989 
    990 	/*
    991 	 * If we are identified and have successfully sent the CDB,
    992 	 * any status will do.  Optimize this fast path.
    993 	 */
    994 	test	SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
    995 	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
    996 
    997 	/*
    998 	 * If the target never sent an identify message but instead went
    999 	 * to mesgin to give an invalid message, let the host abort us.
   1000 	 */
   1001 	test	SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
   1002 
   1003 	/*
   1004 	 * If we recevied good status but never successfully sent the
   1005 	 * cdb, abort the command.
   1006 	 */
   1007 	test	SCB_SCSI_STATUS,0xff	jnz complete_accepted;
   1008 	test	SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
   1009 complete_accepted:
   1010 
   1011 	/*
   1012 	 * See if we attempted to deliver a message but the target ingnored us.
   1013 	 */
   1014 	test	SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
   1015 	SET_SEQINTCODE(MKMSG_FAILED)
   1016 complete_nomsg:
   1017 	call	queue_scb_completion;
   1018 	jmp	await_busfree;
   1019 
   1020 freeze_queue:
   1021 	/* Cancel any pending select-out. */
   1022 	test	SSTAT0, SELDO|SELINGO jnz . + 2;
   1023 	and	SCSISEQ0, ~ENSELO;
   1024 	mov	ACCUM_SAVE, A;
   1025 	clr	A;
   1026 	add	QFREEZE_COUNT, 1;
   1027 	adc	QFREEZE_COUNT[1], A;
   1028 	or	SEQ_FLAGS2, SELECTOUT_QFROZEN;
   1029 	mov	A, ACCUM_SAVE ret;
   1030 
   1031 queue_arg1_scb_completion:
   1032 	SET_MODE(M_SCSI, M_SCSI)
   1033 	bmov	SCBPTR, ARG_1, 2;
   1034 queue_scb_completion:
   1035 	test	SCB_SCSI_STATUS,0xff	jnz bad_status;
   1036 	/*
   1037 	 * Check for residuals
   1038 	 */
   1039 	test	SCB_SGPTR, SG_LIST_NULL jnz complete;	/* No xfer */
   1040 	test	SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
   1041 	test	SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
   1042 complete:
   1043 	bmov	SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
   1044 	bmov	COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
   1045 bad_status:
   1046 	cmp	SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
   1047 	call	freeze_queue;
   1048 upload_scb:
   1049 	bmov	SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2;
   1050 	bmov	COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
   1051 	or	SCB_SGPTR, SG_STATUS_VALID ret;
   1052 
   1053 /*
   1054  * Is it a disconnect message?  Set a flag in the SCB to remind us
   1055  * and await the bus going free.  If this is an untagged transaction
   1056  * store the SCB id for it in our untagged target table for lookup on
   1057  * a reselction.
   1058  */
   1059 mesgin_disconnect:
   1060 	/*
   1061 	 * If ATN is raised, we still want to give the target a message.
   1062 	 * Perhaps there was a parity error on this last message byte
   1063 	 * or we want to abort this command.  Either way, the target
   1064 	 * should take us to message out phase and then attempt to
   1065 	 * disconnect again.
   1066 	 * XXX - Wait for more testing.
   1067 	test	SCSISIGI, ATNI jnz mesgin_done;
   1068 	 */
   1069 	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
   1070 		jnz mesgin_proto_violation;
   1071 	or	SCB_CONTROL,DISCONNECTED;
   1072 	test	SCB_CONTROL, TAG_ENB jnz await_busfree;
   1073 queue_disc_scb:
   1074 	bmov	REG0, SCBPTR, 2;
   1075 	INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
   1076 	bmov	DINDEX, SINDEX, 2;
   1077 	bmov	DINDIR, REG0, 2;
   1078 	bmov	SCBPTR, REG0, 2;
   1079 	/* FALLTHROUGH */
   1080 await_busfree:
   1081 	and	SIMODE1, ~ENBUSFREE;
   1082 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
   1083 		/*
   1084 		 * In the BUSFREEREV_BUG case, the
   1085 		 * busfree status was cleared at the
   1086 		 * beginning of the connection.
   1087 		 */
   1088 		mvi	CLRSINT1,CLRBUSFREE;
   1089 	}
   1090 	mov	NONE, SCSIDAT;		/* Ack the last byte */
   1091 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
   1092 		jnz await_busfree_not_m_dff;
   1093 SET_SRC_MODE	M_DFF1;
   1094 SET_DST_MODE	M_DFF1;
   1095 await_busfree_clrchn:
   1096 	mvi	DFFSXFRCTL, CLRCHN;
   1097 await_busfree_not_m_dff:
   1098 	call	clear_target_state;
   1099 	test	SSTAT1,REQINIT|BUSFREE	jz .;
   1100 	test	SSTAT1, BUSFREE jnz idle_loop;
   1101 	SET_SEQINTCODE(MISSED_BUSFREE)
   1102 
   1103 
   1104 /*
   1105  * Save data pointers message:
   1106  * Copying RAM values back to SCB, for Save Data Pointers message, but
   1107  * only if we've actually been into a data phase to change them.  This
   1108  * protects against bogus data in scratch ram and the residual counts
   1109  * since they are only initialized when we go into data_in or data_out.
   1110  * Ack the message as soon as possible.
   1111  */
   1112 SET_SRC_MODE	M_DFF1;
   1113 SET_DST_MODE	M_DFF1;
   1114 mesgin_sdptrs:
   1115 	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
   1116 	test	SEQ_FLAGS, DPHASE	jz ITloop;
   1117 	call	save_pointers;
   1118 	jmp	ITloop;
   1119 
   1120 save_pointers:
   1121 	/*
   1122 	 * If we are asked to save our position at the end of the
   1123 	 * transfer, just mark us at the end rather than perform a
   1124 	 * full save.
   1125 	 */
   1126 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
   1127 	or	SCB_SGPTR, SG_LIST_NULL ret;
   1128 
   1129 save_pointers_full:
   1130 	/*
   1131 	 * The SCB_DATAPTR becomes the current SHADDR.
   1132 	 * All other information comes directly from our residual
   1133 	 * state.
   1134 	 */
   1135 	bmov	SCB_DATAPTR, SHADDR, 8;
   1136 	bmov	SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
   1137 
   1138 /*
   1139  * Restore pointers message?  Data pointers are recopied from the
   1140  * SCB anytime we enter a data phase for the first time, so all
   1141  * we need to do is clear the DPHASE flag and let the data phase
   1142  * code do the rest.  We also reset/reallocate the FIFO to make
   1143  * sure we have a clean start for the next data or command phase.
   1144  */
   1145 mesgin_rdptrs:
   1146 	and	SEQ_FLAGS, ~DPHASE;
   1147 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
   1148 	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
   1149 	SET_MODE(M_SCSI, M_SCSI)
   1150 msgin_rdptrs_get_fifo:
   1151 	call	allocate_fifo;
   1152 	jmp	mesgin_done;
   1153 
   1154 clear_target_state:
   1155 	mvi	LASTPHASE, P_BUSFREE;
   1156 	/* clear target specific flags */
   1157 	mvi	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret;
   1158 
   1159 phase_lock:
   1160 	if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
   1161 		/*
   1162 		 * Don't ignore persistent REQ assertions just because
   1163 		 * they were asserted within the bus settle delay window.
   1164 		 * This allows us to tolerate devices like the GEM318
   1165 		 * that violate the SCSI spec.  We are careful not to
   1166 		 * count REQ while we are waiting for it to fall during
   1167 		 * an async phase due to our asserted ACK.  Each
   1168 		 * sequencer instruction takes ~25ns, so the REQ must
   1169 		 * last at least 100ns in order to be counted as a true
   1170 		 * REQ.
   1171 		 */
   1172 		test	SCSIPHASE, 0xFF jnz phase_locked;
   1173 		test	SCSISIGI, ACKI jnz phase_lock;
   1174 		test	SCSISIGI, REQI jz phase_lock;
   1175 		test	SCSIPHASE, 0xFF jnz phase_locked;
   1176 		test	SCSISIGI, ACKI jnz phase_lock;
   1177 		test	SCSISIGI, REQI jz phase_lock;
   1178 phase_locked:
   1179 	} else {
   1180 		test	SCSIPHASE, 0xFF jz .;
   1181 	}
   1182 	test	SSTAT1, SCSIPERR jnz phase_lock;
   1183 phase_lock_latch_phase:
   1184 	and	LASTPHASE, PHASE_MASK, SCSISIGI ret;
   1185 
   1186 /*
   1187  * Functions to read data in Automatic PIO mode.
   1188  *
   1189  * An ACK is not sent on input from the target until SCSIDATL is read from.
   1190  * So we wait until SCSIDATL is latched (the usual way), then read the data
   1191  * byte directly off the bus using SCSIBUSL.  When we have pulled the ATN
   1192  * line, or we just want to acknowledge the byte, then we do a dummy read
   1193  * from SCISDATL.  The SCSI spec guarantees that the target will hold the
   1194  * data byte on the bus until we send our ACK.
   1195  *
   1196  * The assumption here is that these are called in a particular sequence,
   1197  * and that REQ is already set when inb_first is called.  inb_{first,next}
   1198  * use the same calling convention as inb.
   1199  */
   1200 inb_next:
   1201 	mov	NONE,SCSIDAT;		/*dummy read from latch to ACK*/
   1202 inb_next_wait:
   1203 	/*
   1204 	 * If there is a parity error, wait for the kernel to
   1205 	 * see the interrupt and prepare our message response
   1206 	 * before continuing.
   1207 	 */
   1208 	test	SCSIPHASE, 0xFF jz .;
   1209 	test	SSTAT1, SCSIPERR jnz inb_next_wait;
   1210 inb_next_check_phase:
   1211 	and	LASTPHASE, PHASE_MASK, SCSISIGI;
   1212 	cmp	LASTPHASE, P_MESGIN jne mesgin_phasemis;
   1213 inb_first:
   1214 	clr	DINDEX[1];
   1215 	mov	DINDEX,SINDEX;
   1216 	mov	DINDIR,SCSIBUS	ret;		/*read byte directly from bus*/
   1217 inb_last:
   1218 	mov	NONE,SCSIDAT ret;		/*dummy read from latch to ACK*/
   1219 
   1220 mk_mesg:
   1221 	mvi	SCSISIGO, ATNO;
   1222 	mov	MSG_OUT,SINDEX ret;
   1223 
   1224 SET_SRC_MODE	M_DFF1;
   1225 SET_DST_MODE	M_DFF1;
   1226 disable_ccsgen:
   1227 	test	SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
   1228 	clr	CCSGCTL;
   1229 disable_ccsgen_fetch_done:
   1230 	clr	SG_STATE ret;
   1231 
   1232 service_fifo:
   1233 	/*
   1234 	 * Do we have any prefetch left???
   1235 	 */
   1236 	test	SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
   1237 
   1238 	/*
   1239 	 * Can this FIFO have access to the S/G cache yet?
   1240 	 */
   1241 	test	CCSGCTL, SG_CACHE_AVAIL jz return;
   1242 
   1243 	/* Did we just finish fetching segs? */
   1244 	test	CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
   1245 
   1246 	/* Are we actively fetching segments? */
   1247 	test	CCSGCTL, CCSGENACK jnz return;
   1248 
   1249 	/*
   1250 	 * We fetch a "cacheline aligned" and sized amount of data
   1251 	 * so we don't end up referencing a non-existant page.
   1252 	 * Cacheline aligned is in quotes because the kernel will
   1253 	 * set the prefetch amount to a reasonable level if the
   1254 	 * cacheline size is unknown.
   1255 	 */
   1256 	bmov	SGHADDR, SCB_RESIDUAL_SGPTR, 4;
   1257 	mvi	SGHCNT, SG_PREFETCH_CNT;
   1258 	if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
   1259 		/*
   1260 		 * Need two instruction between "touches" of SGHADDR.
   1261 		 */
   1262 		nop;
   1263 	}
   1264 	and	SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
   1265 	mvi	CCSGCTL, CCSGEN|CCSGRESET;
   1266 	or	SG_STATE, FETCH_INPROG ret;
   1267 idle_sgfetch_complete:
   1268 	/*
   1269 	 * Guard against SG_CACHE_AVAIL activating during sg fetch
   1270 	 * request in the other FIFO.
   1271 	 */
   1272 	test	SG_STATE, FETCH_INPROG jz return;
   1273 	clr	CCSGCTL;
   1274 	and	CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
   1275 	mvi	SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
   1276 idle_sg_avail:
   1277 	/* Does the hardware have space for another SG entry? */
   1278 	test	DFSTATUS, PRELOAD_AVAIL jz return;
   1279 	/*
   1280 	 * On the A, preloading a segment before HDMAENACK
   1281 	 * comes true can clobber the shaddow address of the
   1282 	 * first segment in the S/G FIFO.  Wait until it is
   1283 	 * safe to proceed.
   1284 	 */
   1285 	if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
   1286 		test	DFCNTRL, HDMAENACK jz return;
   1287 	}
   1288 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
   1289 		bmov	HADDR, CCSGRAM, 8;
   1290 	} else {
   1291 		bmov 	HADDR, CCSGRAM, 4;
   1292 	}
   1293 	bmov	HCNT, CCSGRAM, 3;
   1294 	test	HCNT[0], 0x1 jz . + 2;
   1295 	xor	DATA_COUNT_ODD, 0x1;
   1296 	bmov	SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
   1297 	if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
   1298 		and	HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
   1299 	}
   1300 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
   1301 		/* Skip 4 bytes of pad. */
   1302 		add	CCSGADDR, 4;
   1303 	}
   1304 sg_advance:
   1305 	clr	A;			/* add sizeof(struct scatter) */
   1306 	add	SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
   1307 	adc	SCB_RESIDUAL_SGPTR[1],A;
   1308 	adc	SCB_RESIDUAL_SGPTR[2],A;
   1309 	adc	SCB_RESIDUAL_SGPTR[3],A;
   1310 	mov	SINDEX, SCB_RESIDUAL_SGPTR[0];
   1311 	test	DATA_COUNT_ODD, 0x1 jz . + 2;
   1312 	or	SINDEX, ODD_SEG;
   1313 	test	SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
   1314 	or	SINDEX, LAST_SEG;
   1315 	clr	SG_STATE;
   1316 	mov	SG_CACHE_PRE, SINDEX;
   1317 	if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
   1318 		/*
   1319 		 * Use SCSIENWRDIS so that SCSIEN is never
   1320 		 * modified by this operation.
   1321 		 */
   1322 		or	DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
   1323 	} else {
   1324 		or	DFCNTRL, PRELOADEN|HDMAEN;
   1325 	}
   1326 	/*
   1327 	 * Do we have another segment in the cache?
   1328 	 */
   1329 	add	NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
   1330 	jnc	return;
   1331 	and	SG_STATE, ~SEGS_AVAIL ret;
   1332 
   1333 /*
   1334  * Initialize the DMA address and counter from the SCB.
   1335  */
   1336 load_first_seg:
   1337 	bmov	HADDR, SCB_DATAPTR, 11;
   1338 	and	DATA_COUNT_ODD, 0x1, SCB_DATACNT[0];
   1339 	and	REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
   1340 	test	SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
   1341 	or	REG_ISR, LAST_SEG;
   1342 	test	DATA_COUNT_ODD, 0x1 jz . + 2;
   1343 	or	REG_ISR, ODD_SEG;
   1344 	mov	SG_CACHE_PRE, REG_ISR;
   1345 	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
   1346 	/*
   1347 	 * Since we've are entering a data phase, we will
   1348 	 * rely on the SCB_RESID* fields.  Initialize the
   1349 	 * residual and clear the full residual flag.
   1350 	 */
   1351 	and	SCB_SGPTR[0], ~SG_FULL_RESID;
   1352 	bmov	SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
   1353 	/* If we need more S/G elements, tell the idle loop */
   1354 	test	SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
   1355 	mvi	SG_STATE, LOADING_NEEDED ret;
   1356 	clr	SG_STATE ret;
   1357 
   1358 p_data_handle_xfer:
   1359 	call	setjmp_setscb;
   1360 	test	SG_STATE, LOADING_NEEDED jnz service_fifo;
   1361 p_data_clear_handler:
   1362 	or	LONGJMP_ADDR[1], INVALID_ADDR ret;
   1363 
   1364 p_data:
   1365 	test	SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT	jz p_data_allowed;
   1366 	SET_SEQINTCODE(PROTO_VIOLATION)
   1367 p_data_allowed:
   1368 
   1369 	test	SEQ_FLAGS, DPHASE	jz data_phase_initialize;
   1370 
   1371 	/*
   1372 	 * If we re-enter the data phase after going through another
   1373 	 * phase, our transfer location has almost certainly been
   1374 	 * corrupted by the interveining, non-data, transfers.  Ask
   1375 	 * the host driver to fix us up based on the transfer residual
   1376 	 * unless we already know that we should be bitbucketing.
   1377 	 */
   1378 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
   1379 	SET_SEQINTCODE(PDATA_REINIT)
   1380 	jmp	data_phase_inbounds;
   1381 
   1382 p_data_bitbucket:
   1383 	/*
   1384 	 * Turn on `Bit Bucket' mode, wait until the target takes
   1385 	 * us to another phase, and then notify the host.
   1386 	 */
   1387 	mov	SAVED_MODE, MODE_PTR;
   1388 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
   1389 		jnz bitbucket_not_m_dff;
   1390 	/*
   1391 	 * Ensure that any FIFO contents are cleared out and the
   1392 	 * FIFO free'd prior to starting the BITBUCKET.  BITBUCKET
   1393 	 * doesn't discard data already in the FIFO.
   1394 	 */
   1395 	mvi	DFFSXFRCTL, RSTCHN|CLRSHCNT;
   1396 	SET_MODE(M_SCSI, M_SCSI)
   1397 bitbucket_not_m_dff:
   1398 	or	SXFRCTL1,BITBUCKET;
   1399 	/* Wait for non-data phase. */
   1400 	test	SCSIPHASE, ~DATA_PHASE_MASK jz .;
   1401 	and	SXFRCTL1, ~BITBUCKET;
   1402 	RESTORE_MODE(SAVED_MODE)
   1403 SET_SRC_MODE	M_DFF1;
   1404 SET_DST_MODE	M_DFF1;
   1405 	SET_SEQINTCODE(DATA_OVERRUN)
   1406 	jmp	ITloop;
   1407 
   1408 data_phase_initialize:
   1409 	test	SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
   1410 	call	load_first_seg;
   1411 data_phase_inbounds:
   1412 	/* We have seen a data phase at least once. */
   1413 	or	SEQ_FLAGS, DPHASE;
   1414 	mov	SAVED_MODE, MODE_PTR;
   1415 	test	SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
   1416 	call	p_data_handle_xfer;
   1417 data_group_dma_loop:
   1418 	/*
   1419 	 * The transfer is complete if either the last segment
   1420 	 * completes or the target changes phase.  Both conditions
   1421 	 * will clear SCSIEN.
   1422 	 */
   1423 	call	idle_loop_service_fifos;
   1424 	call	idle_loop_cchan;
   1425 	call	idle_loop_gsfifo;
   1426 	RESTORE_MODE(SAVED_MODE)
   1427 	test	DFCNTRL, SCSIEN jnz data_group_dma_loop;
   1428 
   1429 data_group_dmafinish:
   1430 	/*
   1431 	 * The transfer has terminated either due to a phase
   1432 	 * change, and/or the completion of the last segment.
   1433 	 * We have two goals here.  Do as much other work
   1434 	 * as possible while the data fifo drains on a read
   1435 	 * and respond as quickly as possible to the standard
   1436 	 * messages (save data pointers/disconnect and command
   1437 	 * complete) that usually follow a data phase.
   1438 	 */
   1439 	call	calc_residual;
   1440 
   1441 	/*
   1442 	 * Go ahead and shut down the DMA engine now.
   1443 	 */
   1444 	test	DFCNTRL, DIRECTION jnz data_phase_finish;
   1445 data_group_fifoflush:
   1446 	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
   1447 		or	DFCNTRL, FIFOFLUSH;
   1448 	}
   1449 	/*
   1450 	 * We have enabled the auto-ack feature.  This means
   1451 	 * that the controller may have already transferred
   1452 	 * some overrun bytes into the data FIFO and acked them
   1453 	 * on the bus.  The only way to detect this situation is
   1454 	 * to wait for LAST_SEG_DONE to come true on a completed
   1455 	 * transfer and then test to see if the data FIFO is
   1456 	 * non-empty.  We know there is more data yet to transfer
   1457 	 * if SG_LIST_NULL is not yet set, thus there cannot be
   1458 	 * an overrun.
   1459 	 */
   1460 	test	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
   1461 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
   1462 	test	DFSTATUS, FIFOEMP jnz data_phase_finish;
   1463 	/* Overrun */
   1464 	jmp	p_data;
   1465 data_phase_finish:
   1466 	/*
   1467 	 * If the target has left us in data phase, loop through
   1468 	 * the dma code again.  We will only loop if there is a
   1469 	 * data overrun.
   1470 	 */
   1471 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
   1472 		test	SSTAT0, TARGET jnz data_phase_done;
   1473 	}
   1474 	if ((ahd->flags & AHD_INITIATORROLE) != 0) {
   1475 		test	SSTAT1, REQINIT jz .;
   1476 		test	SCSIPHASE, DATA_PHASE_MASK jnz p_data;
   1477 	}
   1478 
   1479 data_phase_done:
   1480 	/* Kill off any pending prefetch */
   1481 	call	disable_ccsgen;
   1482 	or 	LONGJMP_ADDR[1], INVALID_ADDR;
   1483 
   1484 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
   1485 		test	SEQ_FLAGS, DPHASE_PENDING jz ITloop;
   1486 		/*
   1487 		and	SEQ_FLAGS, ~DPHASE_PENDING;
   1488 		 * For data-in phases, wait for any pending acks from the
   1489 		 * initiator before changing phase.  We only need to
   1490 		 * send Ignore Wide Residue messages for data-in phases.
   1491 		test	DFCNTRL, DIRECTION jz target_ITloop;
   1492 		test	SSTAT1, REQINIT	jnz .;
   1493 		test	DATA_COUNT_ODD, 0x1 jz target_ITloop;
   1494 		SET_MODE(M_SCSI, M_SCSI)
   1495 		test	NEGCONOPTS, WIDEXFER jz target_ITloop;
   1496 		 */
   1497 		/*
   1498 		 * Issue an Ignore Wide Residue Message.
   1499 		mvi	P_MESGIN|BSYO call change_phase;
   1500 		mvi	MSG_IGN_WIDE_RESIDUE call target_outb;
   1501 		mvi	1 call target_outb;
   1502 		jmp	target_ITloop;
   1503 		 */
   1504 	} else {
   1505 		jmp	ITloop;
   1506 	}
   1507 
   1508 /*
   1509  * We assume that, even though data may still be
   1510  * transferring to the host, that the SCSI side of
   1511  * the DMA engine is now in a static state.  This
   1512  * allows us to update our notion of where we are
   1513  * in this transfer.
   1514  *
   1515  * If, by chance, we stopped before being able
   1516  * to fetch additional segments for this transfer,
   1517  * yet the last S/G was completely exhausted,
   1518  * call our idle loop until it is able to load
   1519  * another segment.  This will allow us to immediately
   1520  * pickup on the next segment on the next data phase.
   1521  *
   1522  * If we happened to stop on the last segment, then
   1523  * our residual information is still correct from
   1524  * the idle loop and there is no need to perform
   1525  * any fixups.
   1526  */
   1527 residual_before_last_seg:
   1528 	test    MDFFSTAT, SHVALID	jnz sgptr_fixup;
   1529 	/*
   1530 	 * Can never happen from an interrupt as the packetized
   1531 	 * hardware will only interrupt us once SHVALID or
   1532 	 * LAST_SEG_DONE.
   1533 	 */
   1534 	call	idle_loop_service_fifos;
   1535 	RESTORE_MODE(SAVED_MODE)
   1536 	/* FALLTHROUGH */
   1537 calc_residual:
   1538 	test	SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
   1539 	/* Record if we've consumed all S/G entries */
   1540 	test	MDFFSTAT, SHVALID	jz . + 2;
   1541 	bmov	SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
   1542 	or	SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
   1543 
   1544 sgptr_fixup:
   1545 	/*
   1546 	 * Fixup the residual next S/G pointer.  The S/G preload
   1547 	 * feature of the chip allows us to load two elements
   1548 	 * in addition to the currently active element.  We
   1549 	 * store the bottom byte of the next S/G pointer in
   1550 	 * the SG_CACHE_PTR register so we can restore the
   1551 	 * correct value when the DMA completes.  If the next
   1552 	 * sg ptr value has advanced to the point where higher
   1553 	 * bytes in the address have been affected, fix them
   1554 	 * too.
   1555 	 */
   1556 	test	SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
   1557 	test	SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
   1558 	add	SCB_RESIDUAL_SGPTR[1], -1;
   1559 	adc	SCB_RESIDUAL_SGPTR[2], -1;
   1560 	adc	SCB_RESIDUAL_SGPTR[3], -1;
   1561 sgptr_fixup_done:
   1562 	and	SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
   1563 	clr	DATA_COUNT_ODD;
   1564 	test	SG_CACHE_SHADOW, ODD_SEG jz . + 2;
   1565 	or	DATA_COUNT_ODD, 0x1;
   1566 	clr	SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
   1567 	bmov	SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
   1568 
   1569 export timer_isr:
   1570 	call	issue_cmdcmplt;
   1571 	mvi	CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
   1572 	if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
   1573 		/*
   1574 		 * In H2A4, the mode pointer is not saved
   1575 		 * for intvec2, but is restored on iret.
   1576 		 * This can lead to the restoration of a
   1577 		 * bogus mode ptr.  Manually clear the
   1578 		 * intmask bits and do a normal return
   1579 		 * to compensate.
   1580 		 */
   1581 		and	SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
   1582 	} else {
   1583 		or	SEQINTCTL, IRET ret;
   1584 	}
   1585 
   1586 export seq_isr:
   1587 	if ((ahd->features & AHD_RTI) == 0) {
   1588 		/*
   1589 		 * On RevA Silicon, if the target returns us to data-out
   1590 		 * after we have already trained for data-out, it is
   1591 		 * possible for us to transition the free running clock to
   1592 		 * data-valid before the required 100ns P1 setup time (8 P1
   1593 		 * assertions in fast-160 mode).  This will only happen if
   1594 		 * this L-Q is a continuation of a data transfer for which
   1595 		 * we have already prefetched data into our FIFO (LQ/Data
   1596 		 * followed by LQ/Data for the same write transaction).
   1597 		 * This can cause some target implementations to miss the
   1598 		 * first few data transfers on the bus.  We detect this
   1599 		 * situation by noticing that this is the first data transfer
   1600 		 * after an LQ (LQIWORKONLQ true), that the data transfer is
   1601 		 * a continuation of a transfer already setup in our FIFO
   1602 		 * (SAVEPTRS interrupt), and that the transaction is a write
   1603 		 * (DIRECTION set in DFCNTRL). The delay is performed by
   1604 		 * disabling SCSIEN until we see the first REQ from the
   1605 		 * target.
   1606 		 *
   1607 		 * First instruction in an ISR cannot be a branch on
   1608 		 * Rev A.  Snapshot LQISTAT2 so the status is not missed
   1609 		 * and deffer the test by one instruction.
   1610 		 */
   1611 		mov	REG_ISR, LQISTAT2;
   1612 		test	REG_ISR, LQIWORKONLQ jz data_valid;
   1613 		test	SEQINTSRC, SAVEPTRS  jz data_valid;
   1614 		test	LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
   1615 		/*
   1616 		 * Switch to the active FIFO.
   1617 		 */
   1618 		xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
   1619 		test	DFCNTRL, DIRECTION jz snapshot_other_fifo;
   1620 		and	DFCNTRL, ~SCSIEN;
   1621 		test	SSTAT1, REQINIT	jz .;
   1622 		or	DFCNTRL, SCSIEN;
   1623 		/* FALLTHROUGH */
   1624 snapshot_other_fifo:
   1625 		xor	MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
   1626 		/* FALLTHROUGH */
   1627 snapshot_saveptr:
   1628 		mvi	DFFSXFRCTL, CLRCHN;
   1629 		or	SEQINTCTL, IRET ret;
   1630 data_valid:
   1631 	}
   1632 	test	SEQINTSRC, CFG4DATA	jnz cfg4data_intr;
   1633 	test	SEQINTSRC, CFG4ISTAT	jnz cfg4istat_intr;
   1634 	test	SEQINTSRC, SAVEPTRS	jnz saveptr_intr;
   1635 	test	SEQINTSRC, CFG4ICMD	jnz cfg4icmd_intr;
   1636 	SET_SEQINTCODE(INVALID_SEQINT)
   1637 
   1638 /*
   1639  * There are two types of save pointers interrupts:
   1640  * The first is a snapshot save pointers where the current FIFO is not
   1641  * active and contains a snapshot of the current poniter information.
   1642  * This happens between packets in a stream for a single L_Q.  Since we
   1643  * are not performing a pointer save, we can safely clear the channel
   1644  * so it can be used for other transactions.  On RTI capable controllers,
   1645  * where snapshots can, and are, disabled, the code to handle this type
   1646  * of snapshot is not active.
   1647  *
   1648  * The second case is a save pointers on an active FIFO which occurs
   1649  * if the target changes to a new L_Q or busfrees/QASes and the transfer
   1650  * has a residual.  This should occur coincident with a ctxtdone.  We
   1651  * disable the interrupt and allow our active routine to handle the
   1652  * save.
   1653  */
   1654 saveptr_intr:
   1655 	if ((ahd->features & AHD_RTI) == 0) {
   1656 		test	LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
   1657 	}
   1658 saveptr_active_fifo:
   1659 	and	SEQIMODE, ~ENSAVEPTRS;
   1660 	or	SEQINTCTL, IRET ret;
   1661 
   1662 cfg4data_intr:
   1663 	test	SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun;
   1664 	call	load_first_seg;
   1665 	call	pkt_handle_xfer;
   1666 	or	SEQINTCTL, IRET ret;
   1667 
   1668 cfg4istat_intr:
   1669 	call	freeze_queue;
   1670 	add	NONE, -13, SCB_CDB_LEN;
   1671 	jnc	cfg4istat_have_sense_addr;
   1672 	test	SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
   1673 	/*
   1674 	 * Host sets up address/count and enables transfer.
   1675 	 */
   1676 	SET_SEQINTCODE(CFG4ISTAT_INTR)
   1677 	jmp	cfg4istat_setup_handler;
   1678 cfg4istat_have_sense_addr:
   1679 	bmov	HADDR, SCB_SENSE_BUSADDR, 4;
   1680 	mvi	HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
   1681 	mvi	SG_CACHE_PRE, LAST_SEG;
   1682 	mvi	DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
   1683 cfg4istat_setup_handler:
   1684 	/*
   1685 	 * Status pkt is transferring to host.
   1686 	 * Wait in idle loop for transfer to complete.
   1687 	 * If a command completed before an attempted
   1688 	 * task management function completed, notify the host.
   1689 	 */
   1690 	test	SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
   1691 	SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
   1692 cfg4istat_no_taskmgmt_func:
   1693 	call	pkt_handle_status;
   1694 	or	SEQINTCTL, IRET ret;
   1695 
   1696 cfg4icmd_intr:
   1697 	/*
   1698 	 * In the case of DMAing a CDB from the host, the normal
   1699 	 * CDB buffer is formatted with an 8 byte address followed
   1700 	 * by a 1 byte count.
   1701 	 */
   1702 	bmov	HADDR[0], SCB_HOST_CDB_PTR, 9;
   1703 	mvi	SG_CACHE_PRE, LAST_SEG;
   1704 	mvi	DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
   1705 	call	pkt_handle_cdb;
   1706 	or	SEQINTCTL, IRET ret;
   1707 
   1708 /*
   1709  * See if the target has gone on in this context creating an
   1710  * overrun condition.  For the write case, the hardware cannot
   1711  * ack bytes until data are provided.  So, if the target begins
   1712  * another  packet without changing contexts, implying we are
   1713  * not sitting on a packet boundary, we are in an overrun
   1714  * situation.  For the read case, the hardware will continue to
   1715  * ack bytes into the FIFO, and may even ack the last overrun packet
   1716  * into the FIFO.   If the FIFO should become non-empty, we are in
   1717  * a read overrun case.
   1718  */
   1719 #define check_overrun							\
   1720 	/* Not on a packet boundary. */					\
   1721 	test 	MDFFSTAT, DLZERO jz pkt_handle_overrun;			\
   1722 	test	DFSTATUS, FIFOEMP jz pkt_handle_overrun
   1723 
   1724 pkt_handle_xfer:
   1725 	bmov	LONGJMP_SCB, SCBPTR, 2;
   1726 	test	SG_STATE, LOADING_NEEDED jz pkt_last_seg;
   1727 	call	setjmp;
   1728 	test	SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
   1729 	test	SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
   1730 	test	SCSISIGO, ATNO jnz . + 2;
   1731 	test	SSTAT2, NONPACKREQ jz pkt_service_fifo;
   1732 	/*
   1733 	 * Defer handling of this NONPACKREQ until we
   1734 	 * can be sure it pertains to this FIFO.  SAVEPTRS
   1735 	 * will not be asserted if the NONPACKREQ is for us,
   1736 	 * so we must simulate it if shaddow is valid.  If
   1737 	 * shaddow is not valid, keep running this FIFO until we
   1738 	 * have satisfied the transfer by loading segments and
   1739 	 * waiting for either shaddow valid or last_seg_done.
   1740 	 */
   1741 	test	MDFFSTAT, SHVALID jnz pkt_saveptrs;
   1742 pkt_service_fifo:
   1743 	test	SG_STATE, LOADING_NEEDED jnz service_fifo;
   1744 pkt_last_seg:
   1745 	call	setjmp;
   1746 	test	SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
   1747 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jnz last_pkt_xfer_done;
   1748 	test	SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
   1749 	test	SCSISIGO, ATNO jnz . + 2;
   1750 	test	SSTAT2, NONPACKREQ jz return;
   1751 	test	MDFFSTAT, SHVALID jz return;
   1752 	/* FALLTHROUGH */
   1753 
   1754 /*
   1755  * Either a SAVEPTRS interrupt condition is pending for this FIFO
   1756  * or we have a pending nonpackreq for this FIFO.  We differentiate
   1757  * between the two by capturing the state of the SAVEPTRS interrupt
   1758  * prior to clearing this status and executing the common code for
   1759  * these two cases.
   1760  */
   1761 pkt_saveptrs:
   1762 BEGIN_CRITICAL;
   1763 	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
   1764 		or	DFCNTRL, FIFOFLUSH;
   1765 	}
   1766 	mov	REG0, SEQINTSRC;
   1767 	call	calc_residual;
   1768 	call	save_pointers;
   1769 	mvi	CLRSEQINTSRC, CLRSAVEPTRS;
   1770 	call	disable_ccsgen;
   1771 	or	SEQIMODE, ENSAVEPTRS;
   1772 	test	DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
   1773 	test	DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
   1774 	/*
   1775 	 * Keep a handler around for this FIFO until it drains
   1776 	 * to the host to guarantee that we don't complete the
   1777 	 * command to the host before the data arrives.
   1778 	 */
   1779 pkt_saveptrs_wait_fifoemp:
   1780 	call	setjmp;
   1781 	test	DFSTATUS, FIFOEMP jz return;
   1782 pkt_saveptrs_check_status:
   1783 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1784 	test	REG0, SAVEPTRS jz unexpected_nonpkt_phase;
   1785 	test	SCB_CONTROL, STATUS_RCVD jz pkt_saveptrs_clrchn;
   1786 	jmp	last_pkt_complete;
   1787 pkt_saveptrs_clrchn:
   1788 	mvi	DFFSXFRCTL, CLRCHN ret;
   1789 END_CRITICAL;
   1790 
   1791 last_pkt_xfer_done:
   1792 BEGIN_CRITICAL;
   1793 	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
   1794 		or	DFCNTRL, FIFOFLUSH;
   1795 	}
   1796 	test	SCB_CONTROL, STATUS_RCVD jz wait_pkt_end;
   1797 	check_overrun;
   1798 	or	SCB_SGPTR, SG_LIST_NULL;
   1799 	/*
   1800 	 * It is safe to skip the other FIFO check since
   1801 	 * we defer CLRCHN on SAVEPTRS until all data in
   1802 	 * the FIFO are seen by the host and a CFG4DATA
   1803 	 * in this FIFO for the same context is held off
   1804 	 * by hardware.
   1805 	 */
   1806 last_pkt_queue_scb:
   1807 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1808 	bmov	ARG_1, SCBPTR, 2;
   1809 	mvi	DFFSXFRCTL, CLRCHN;
   1810 	jmp	queue_arg1_scb_completion;
   1811 
   1812 last_pkt_complete:
   1813 	bmov	ARG_1, SCBPTR, 2;
   1814 	mvi	DFFSXFRCTL, CLRCHN;
   1815 check_other_fifo:
   1816 	clc;
   1817 	TOGGLE_DFF_MODE
   1818 	call	check_fifo;
   1819 	jnc	queue_arg1_scb_completion;
   1820 return:
   1821 	ret;
   1822 
   1823 wait_pkt_end:
   1824 	call	setjmp;
   1825 END_CRITICAL;
   1826 wait_pkt_end_loop:
   1827 	test	SEQINTSRC, CTXTDONE jnz pkt_end;
   1828 	check_overrun;
   1829 	test	SSTAT2, NONPACKREQ jz return;
   1830 	test	SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
   1831 pkt_end:
   1832 BEGIN_CRITICAL;
   1833 	check_overrun;
   1834 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1835 	or	SCB_SGPTR, SG_LIST_NULL;
   1836 	test	SCB_CONTROL, STATUS_RCVD jnz last_pkt_complete;
   1837 	mvi	DFFSXFRCTL, CLRCHN ret;
   1838 END_CRITICAL;
   1839 
   1840 /*
   1841  * Watch over the status transfer.  Our host sense buffer is
   1842  * large enough to take the maximum allowed status packet.
   1843  * None-the-less, we must still catch and report overruns to
   1844  * the host.
   1845  */
   1846 pkt_handle_status:
   1847 	call	setjmp_setscb;
   1848 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jz check_status_overrun;
   1849 	test	SEQINTSRC, CTXTDONE jz return;
   1850 status_IU_done:
   1851 BEGIN_CRITICAL;
   1852 	if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
   1853 		or	DFCNTRL, FIFOFLUSH;
   1854 	}
   1855 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1856 	mvi	SCB_SCSI_STATUS, STATUS_PKT_SENSE;
   1857 	or	SCB_CONTROL, STATUS_RCVD;
   1858 	jmp	last_pkt_complete;
   1859 END_CRITICAL;
   1860 check_status_overrun:
   1861 	/*
   1862 	 * We've filled the entire sense buffer.
   1863 	 * Wait for either context done or a negative
   1864 	 * shaddow count.  If the context completes without
   1865 	 * causing the shaddow count to go negative, then
   1866 	 * this was a successful transfer up to the status
   1867 	 * limit.  Otherwise we report the error.
   1868 	 */
   1869 	test	SHCNT[2], 0xFF jnz report_status_overrun;
   1870 	test	SEQINTSRC, CTXTDONE jz return;
   1871 	test	SHCNT[2], 0xFF jz status_IU_done;
   1872 report_status_overrun:
   1873 	SET_SEQINTCODE(STATUS_OVERRUN)
   1874 	jmp	status_IU_done;
   1875 
   1876 SET_SRC_MODE	M_DFF0;
   1877 SET_DST_MODE	M_DFF0;
   1878 BEGIN_CRITICAL;
   1879 check_fifo:
   1880 	test	LONGJMP_ADDR[1], INVALID_ADDR jnz return;
   1881 	mov	A, ARG_2;
   1882 	cmp	LONGJMP_SCB[1], A	jne return;
   1883 	mov	A, ARG_1;
   1884 	cmp	LONGJMP_SCB[0], A	jne return;
   1885 	stc	ret;
   1886 END_CRITICAL;
   1887 
   1888 /*
   1889  * Must wait until CDB xfer is over before issuing the
   1890  * clear channel.
   1891  */
   1892 pkt_handle_cdb:
   1893 	call	setjmp_setscb;
   1894 	test	SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
   1895 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1896 	mvi	DFFSXFRCTL, CLRCHN ret;
   1897 
   1898 /*
   1899  * Nonpackreq is a polled status.  It can come true in three situations:
   1900  * we have received an L_Q, we have sent one or more L_Qs, or there is no
   1901  * L_Q context associated with this REQ (REQ occurs immediately after a
   1902  * (re)selection).  Routines that know that the context responsible for this
   1903  * nonpackreq call directly into unexpected_nonpkt_phase.  In the case of the
   1904  * top level idle loop, we exhaust all active contexts prior to determining that
   1905  * we simply do not have the full I_T_L_Q for this phase.
   1906  */
   1907 unexpected_nonpkt_phase_find_ctxt:
   1908 	/*
   1909 	 * This nonpackreq is most likely associated with one of the tags
   1910 	 * in a FIFO or an outgoing LQ.  Only treat it as an I_T only
   1911 	 * nonpackreq if we've cleared out the FIFOs and handled any
   1912 	 * pending SELDO.
   1913 	 */
   1914 SET_SRC_MODE	M_SCSI;
   1915 SET_DST_MODE	M_SCSI;
   1916 	and	A, FIFO1FREE|FIFO0FREE, DFFSTAT;
   1917 	cmp	A, FIFO1FREE|FIFO0FREE jne return;
   1918 	test	SSTAT0, SELDO jnz return;
   1919 	mvi	SCBPTR[1], SCB_LIST_NULL;
   1920 unexpected_nonpkt_phase:
   1921 	test	MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz . + 3;
   1922 SET_SRC_MODE	M_DFF0;
   1923 SET_DST_MODE	M_DFF0;
   1924 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1925 	mvi	DFFSXFRCTL, CLRCHN;
   1926 	mvi	CLRSINT2, CLRNONPACKREQ;
   1927 	test	SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
   1928 	SET_SEQINTCODE(ENTERING_NONPACK)
   1929 	jmp	ITloop;
   1930 
   1931 illegal_phase:
   1932 	SET_SEQINTCODE(ILLEGAL_PHASE)
   1933 	jmp	ITloop;
   1934 
   1935 /*
   1936  * We have entered an overrun situation.  If we have working
   1937  * BITBUCKET, flip that on and let the hardware eat any overrun
   1938  * data.  Otherwise use an overrun buffer in the host to simulate
   1939  * BITBUCKET.
   1940  */
   1941 pkt_handle_overrun:
   1942 	SET_SEQINTCODE(CFG4OVERRUN)
   1943 	call	freeze_queue;
   1944 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
   1945 		or	DFFSXFRCTL, DFFBITBUCKET;
   1946 SET_SRC_MODE	M_DFF1;
   1947 SET_DST_MODE	M_DFF1;
   1948 	} else {
   1949 		call	load_overrun_buf;
   1950 		mvi	DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
   1951 	}
   1952 	call	setjmp;
   1953 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
   1954 		test	DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
   1955 		call	load_overrun_buf;
   1956 		or	DFCNTRL, PRELOADEN;
   1957 overrun_load_done:
   1958 		test	SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
   1959 	} else {
   1960 		test	DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
   1961 	}
   1962 	test	SSTAT2, NONPACKREQ jz return;
   1963 pkt_overrun_end:
   1964 	or	SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
   1965 	test	SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
   1966 	test	SCB_CONTROL, STATUS_RCVD jnz last_pkt_queue_scb;
   1967 	or	LONGJMP_ADDR[1], INVALID_ADDR;
   1968 	mvi	DFFSXFRCTL, CLRCHN ret;
   1969 
   1970 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
   1971 load_overrun_buf:
   1972 	/*
   1973 	 * Load a dummy segment if preload space is available.
   1974 	 */
   1975 	mov 	HADDR[0], SHARED_DATA_ADDR;
   1976 	add	HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
   1977 	mov	ACCUM_SAVE, A;
   1978 	clr	A;
   1979 	adc	HADDR[2], A, SHARED_DATA_ADDR[2];
   1980 	adc	HADDR[3], A, SHARED_DATA_ADDR[3];
   1981 	mov	A, ACCUM_SAVE;
   1982 	bmov	HADDR[4], ALLZEROS, 4;
   1983 	/* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
   1984 	clr	HCNT[0];
   1985 	mvi	HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
   1986 	clr	HCNT[2] ret;
   1987 }
   1988