aic79xx.seq revision 1.8.10.1 1 /* $NetBSD: aic79xx.seq,v 1.8.10.1 2005/03/19 08:34:42 yamt Exp $ */
2
3 /*
4 * Adaptec U320 device driver firmware for Linux and FreeBSD.
5 *
6 * Copyright (c) 1994-2001 Justin T. Gibbs.
7 * Copyright (c) 2000-2002 Adaptec Inc.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * substantially similar to the "NO WARRANTY" disclaimer below
18 * ("Disclaimer") and any redistribution must be conditioned upon
19 * including a substantially similar Disclaimer requirement for further
20 * binary redistribution.
21 * 3. Neither the names of the above-listed copyright holders nor the names
22 * of any contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * Alternatively, this software may be distributed under the terms of the
26 * GNU General Public License ("GPL") version 2 as published by the Free
27 * Software Foundation.
28 *
29 * NO WARRANTY
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
39 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGES.
41 *
42 * $FreeBSD: src/sys/dev/aic7xxx/aic79xx.seq,v 1.13 2003/06/28 04:44:10 gibbs Exp $
43 */
44
45 VERSION = "Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#96 $"
46 PATCH_ARG_LIST = "struct ahd_softc *ahd"
47 PREFIX = "ahd_"
48
49 #include <dev/microcode/aic7xxx/aic79xx.reg>
50 #include <dev/scsipi/scsi_message.h>
51
52 restart:
53 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
54 test SEQINTCODE, 0xFF jz idle_loop;
55 SET_SEQINTCODE(NO_SEQINT)
56 }
57
58 idle_loop:
59
60 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
61 /*
62 * Convert ERROR status into a sequencer
63 * interrupt to handle the case of an
64 * interrupt collision on the hardware
65 * setting of HWERR.
66 */
67 test ERROR, 0xFF jz no_error_set;
68 SET_SEQINTCODE(SAW_HWERR)
69 no_error_set:
70 }
71 SET_MODE(M_SCSI, M_SCSI)
72 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
73 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz idle_loop_checkbus;
74 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
75 /*
76 * ENSELO is cleared by a SELDO, so we must test for SELDO
77 * one last time.
78 */
79 BEGIN_CRITICAL;
80 test SSTAT0, SELDO jnz select_out;
81 END_CRITICAL;
82 call start_selection;
83 idle_loop_checkbus:
84 BEGIN_CRITICAL;
85 test SSTAT0, SELDO jnz select_out;
86 END_CRITICAL;
87 test SSTAT0, SELDI jnz select_in;
88 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
89 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
90 call unexpected_nonpkt_phase_find_ctxt;
91 idle_loop_check_nonpackreq:
92 test SSTAT2, NONPACKREQ jz . + 2;
93 call unexpected_nonpkt_phase_find_ctxt;
94 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
95 and A, FIFO0FREE|FIFO1FREE, DFFSTAT;
96 cmp A, FIFO0FREE|FIFO1FREE jne . + 3;
97 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON;
98 jmp . + 2;
99 or SBLKCTL, DIAGLEDEN|DIAGLEDON;
100 }
101 call idle_loop_gsfifo_in_scsi_mode;
102 call idle_loop_service_fifos;
103 call idle_loop_cchan;
104 jmp idle_loop;
105
106 BEGIN_CRITICAL;
107 idle_loop_gsfifo:
108 SET_MODE(M_SCSI, M_SCSI)
109 idle_loop_gsfifo_in_scsi_mode:
110 test LQISTAT2, LQIGSAVAIL jz return;
111 /*
112 * We have received good status for this transaction. There may
113 * still be data in our FIFOs draining to the host. Complete
114 * the SCB only if all data has transferred to the host.
115 */
116 good_status_IU_done:
117 bmov SCBPTR, GSFIFO, 2;
118 clr SCB_SCSI_STATUS;
119 /*
120 * If a command completed before an attempted task management
121 * function completed, notify the host after disabling any
122 * pending select-outs.
123 */
124 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
125 test SSTAT0, SELDO|SELINGO jnz . + 2;
126 and SCSISEQ0, ~ENSELO;
127 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
128 gsfifo_complete_normally:
129 or SCB_CONTROL, STATUS_RCVD;
130
131 /*
132 * Since this status did not consume a FIFO, we have to
133 * be a bit more dilligent in how we check for FIFOs pertaining
134 * to this transaction. There are two states that a FIFO still
135 * transferring data may be in.
136 *
137 * 1) Configured and draining to the host, with a FIFO handler.
138 * 2) Pending cfg4data, fifo not empty.
139 *
140 * Case 1 can be detected by noticing a non-zero FIFO active
141 * count in the SCB. In this case, we allow the routine servicing
142 * the FIFO to complete the SCB.
143 *
144 * Case 2 implies either a pending or yet to occur save data
145 * pointers for this same context in the other FIFO. So, if
146 * we detect case 1, we will properly defer the post of the SCB
147 * and achieve the desired result. The pending cfg4data will
148 * notice that status has been received and complete the SCB.
149 */
150 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode;
151 call complete;
152 END_CRITICAL;
153 jmp idle_loop_gsfifo_in_scsi_mode;
154
155 idle_loop_service_fifos:
156 SET_MODE(M_DFF0, M_DFF0)
157 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
158 call longjmp;
159 idle_loop_next_fifo:
160 SET_MODE(M_DFF1, M_DFF1)
161 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
162 return:
163 ret;
164
165 idle_loop_cchan:
166 SET_MODE(M_CCHAN, M_CCHAN)
167 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty;
168 mov LOCAL_HS_MAILBOX, HS_MAILBOX;
169 or QOFF_CTLSTA, HS_MAILBOX_ACT;
170 hs_mailbox_empty:
171 BEGIN_CRITICAL;
172 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
173 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
174 test CCSCBCTL, CCSCBDONE jz return;
175 END_CRITICAL;
176 /* FALLTHROUGH */
177 scbdma_tohost_done:
178 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
179 /*
180 * An SCB has been succesfully uploaded to the host.
181 * If the SCB was uploaded for some reason other than
182 * bad SCSI status (currently only for underruns), we
183 * queue the SCB for normal completion. Otherwise, we
184 * wait until any select-out activity has halted, and
185 * then notify the host so that the transaction can be
186 * dealt with.
187 */
188 test SCB_SCSI_STATUS, 0xff jnz scbdma_notify_host;
189 and CCSCBCTL, ~(CCARREN|CCSCBEN);
190 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
191 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
192 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
193 scbdma_notify_host:
194 SET_MODE(M_SCSI, M_SCSI)
195 test SCSISEQ0, ENSELO jnz return;
196 test SSTAT0, (SELDO|SELINGO) jnz return;
197 SET_MODE(M_CCHAN, M_CCHAN)
198 /*
199 * Remove SCB and notify host.
200 */
201 and CCSCBCTL, ~(CCARREN|CCSCBEN);
202 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
203 SET_SEQINTCODE(BAD_SCB_STATUS)
204 ret;
205 fill_qoutfifo_dmadone:
206 and CCSCBCTL, ~(CCARREN|CCSCBEN);
207 call qoutfifo_updated;
208 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
209 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
210 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
211 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
212 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
213
214 qoutfifo_updated:
215 /*
216 * If there are more commands waiting to be DMA'ed
217 * to the host, always coalesce. Otherwise honor the
218 * host's wishes.
219 */
220 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
221 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
222 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt;
223
224 /*
225 * If we have relatively few commands outstanding, don't
226 * bother waiting for another command to complete.
227 */
228 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count;
229 /* Add -1 so that jnc means <= not just < */
230 add A, -1, INT_COALESCING_MINCMDS;
231 add NONE, A, CMDS_PENDING;
232 jnc issue_cmdcmplt;
233
234 /*
235 * If coalescing, only coalesce up to the limit
236 * provided by the host driver.
237 */
238 coalesce_by_count:
239 mov A, INT_COALESCING_MAXCMDS;
240 add NONE, A, INT_COALESCING_CMDCOUNT;
241 jc issue_cmdcmplt;
242 /*
243 * If the timer is not currently active,
244 * fire it up.
245 */
246 test INTCTL, SWTMINTMASK jz return;
247 bmov SWTIMER, INT_COALESCING_TIMER, 2;
248 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
249 or INTCTL, SWTMINTEN|SWTIMER_START;
250 and INTCTL, ~SWTMINTMASK ret;
251
252 issue_cmdcmplt:
253 mvi INTSTAT, CMDCMPLT;
254 clr INT_COALESCING_CMDCOUNT;
255 or INTCTL, SWTMINTMASK ret;
256
257 BEGIN_CRITICAL;
258 fetch_new_scb_inprog:
259 test CCSCBCTL, ARRDONE jz return;
260 fetch_new_scb_done:
261 and CCSCBCTL, ~(CCARREN|CCSCBEN);
262 bmov REG0, SCBPTR, 2;
263 clr A;
264 add CMDS_PENDING, 1;
265 adc CMDS_PENDING[1], A;
266 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
267 /*
268 * "Short Luns" are not placed into outgoing LQ
269 * packets in the correct byte order. Use a full
270 * sized lun field instead and fill it with the
271 * one byte of lun information we support.
272 */
273 mov SCB_PKT_LUN[6], SCB_LUN;
274 }
275 /*
276 * The FIFO use count field is shared with the
277 * tag set by the host so that our SCB dma engine
278 * knows the correct location to store the SCB.
279 * Set it to zero before processing the SCB.
280 */
281 clr SCB_FIFO_USE_COUNT;
282 /* Update the next SCB address to download. */
283 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
284 mvi SCB_NEXT[1], SCB_LIST_NULL;
285 mvi SCB_NEXT2[1], SCB_LIST_NULL;
286 /* Increment our position in the QINFIFO. */
287 mov NONE, SNSCB_QOFF;
288 /*
289 * SCBs that want to send messages are always
290 * queued independently. This ensures that they
291 * are at the head of the SCB list to select out
292 * to a target and we will see the MK_MESSAGE flag.
293 */
294 test SCB_CONTROL, MK_MESSAGE jnz first_new_target_scb;
295 shr SINDEX, 3, SCB_SCSIID;
296 and SINDEX, ~0x1;
297 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8);
298 bmov DINDEX, SINDEX, 2;
299 bmov SCBPTR, SINDIR, 2;
300 bmov DINDIR, REG0, 2;
301 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
302 bmov SCB_NEXT, REG0, 2 ret;
303 first_new_target_scb:
304 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
305 bmov SCBPTR, WAITING_TID_TAIL, 2;
306 bmov SCB_NEXT2, REG0, 2;
307 bmov WAITING_TID_TAIL, REG0, 2 ret;
308 first_new_scb:
309 bmov WAITING_TID_HEAD, REG0, 2;
310 bmov WAITING_TID_TAIL, REG0, 2 ret;
311 END_CRITICAL;
312
313 scbdma_idle:
314 /*
315 * Give precedence to downloading new SCBs to execute
316 * unless select-outs are currently frozen.
317 */
318 test SEQ_FLAGS2, SELECTOUT_QFROZEN jnz . + 2;
319 BEGIN_CRITICAL;
320 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
321 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
322 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
323 /* FALLTHROUGH */
324 fill_qoutfifo:
325 /*
326 * Keep track of the SCBs we are DMA'ing just
327 * in case the DMA fails or is aborted.
328 */
329 mov A, QOUTFIFO_ENTRY_VALID_TAG;
330 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
331 mvi CCSCBCTL, CCSCBRESET;
332 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
333 bmov SCBPTR, COMPLETE_SCB_HEAD, 2;
334 fill_qoutfifo_loop:
335 mov CCSCBRAM, SCBPTR;
336 or CCSCBRAM, A, SCBPTR[1];
337 mov NONE, SDSCB_QOFF;
338 inc INT_COALESCING_CMDCOUNT;
339 add CMDS_PENDING, -1;
340 adc CMDS_PENDING[1], -1;
341 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
342 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
343 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
344 bmov SCBPTR, SCB_NEXT_COMPLETE, 2;
345 jmp fill_qoutfifo_loop;
346 fill_qoutfifo_done:
347 mov SCBHCNT, CCSCBADDR;
348 mvi CCSCBCTL, CCSCBEN|CCSCBRESET;
349 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
350 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
351
352 fetch_new_scb:
353 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
354 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
355 dma_complete_scb:
356 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
357 bmov SCBHADDR, SCB_BUSADDR, 4;
358 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb;
359 END_CRITICAL;
360
361 /*
362 * Either post or fetch an SCB from host memory. The caller
363 * is responsible for polling for transfer completion.
364 *
365 * Prerequisits: Mode == M_CCHAN
366 * SINDEX contains CCSCBCTL flags
367 * SCBHADDR set to Host SCB address
368 * SCBPTR set to SCB src location on "push" operations
369 */
370 SET_SRC_MODE M_CCHAN;
371 SET_DST_MODE M_CCHAN;
372 dma_scb:
373 mvi SCBHCNT, SCB_TRANSFER_SIZE;
374 mov CCSCBCTL, SINDEX ret;
375
376 BEGIN_CRITICAL;
377 setjmp:
378 bmov LONGJMP_ADDR, STACK, 2 ret;
379 setjmp_inline:
380 bmov LONGJMP_ADDR, STACK, 2;
381 longjmp:
382 bmov STACK, LONGJMP_ADDR, 2 ret;
383 END_CRITICAL;
384
385 /*************************** Chip Bug Work Arounds ****************************/
386 /*
387 * Must disable interrupts when setting the mode pointer
388 * register as an interrupt occurring mid update will
389 * fail to store the new mode value for restoration on
390 * an iret.
391 */
392 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
393 set_mode_work_around:
394 mvi SEQINTCTL, INTVEC1DSL;
395 mov MODE_PTR, SINDEX;
396 clr SEQINTCTL ret;
397
398 toggle_dff_mode_work_around:
399 mvi SEQINTCTL, INTVEC1DSL;
400 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
401 clr SEQINTCTL ret;
402 }
403
404
405 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
406 set_seqint_work_around:
407 mov SEQINTCODE, SINDEX;
408 mvi SEQINTCODE, NO_SEQINT ret;
409 }
410
411 /************************ Packetized LongJmp Routines *************************/
412 SET_SRC_MODE M_SCSI;
413 SET_DST_MODE M_SCSI;
414 start_selection:
415 BEGIN_CRITICAL;
416 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
417 /*
418 * Razor #494
419 * Rev A hardware fails to update LAST/CURR/NEXTSCB
420 * correctly after a packetized selection in several
421 * situations:
422 *
423 * 1) If only one command existed in the queue, the
424 * LAST/CURR/NEXTSCB are unchanged.
425 *
426 * 2) In a non QAS, protocol allowed phase change,
427 * the queue is shifted 1 too far. LASTSCB is
428 * the last SCB that was correctly processed.
429 *
430 * 3) In the QAS case, if the full list of commands
431 * was successfully sent, NEXTSCB is NULL and neither
432 * CURRSCB nor LASTSCB can be trusted. We must
433 * manually walk the list counting MAXCMDCNT elements
434 * to find the last SCB that was sent correctly.
435 *
436 * To simplify the workaround for this bug in SELDO
437 * handling, we initialize LASTSCB prior to enabling
438 * selection so we can rely on it even for case #1 above.
439 */
440 bmov LASTSCB, WAITING_TID_HEAD, 2;
441 }
442 bmov CURRSCB, WAITING_TID_HEAD, 2;
443 bmov SCBPTR, WAITING_TID_HEAD, 2;
444 shr SELOID, 4, SCB_SCSIID;
445 /*
446 * If we want to send a message to the device, ensure
447 * we are selecting with atn irregardless of our packetized
448 * agreement. Since SPI4 only allows target reset or PPR
449 * messages if this is a packetized connection, the change
450 * to our negotiation table entry for this selection will
451 * be cleared when the message is acted on.
452 */
453 test SCB_CONTROL, MK_MESSAGE jz . + 3;
454 mov NEGOADDR, SELOID;
455 or NEGCONOPTS, ENAUTOATNO;
456 or SCSISEQ0, ENSELO ret;
457 END_CRITICAL;
458
459 /*
460 * Allocate a FIFO for a non-packetized transaction.
461 * In RevA hardware, both FIFOs must be free before we
462 * can allocate a FIFO for a non-packetized transaction.
463 */
464 allocate_fifo_loop:
465 /*
466 * Do whatever work is required to free a FIFO.
467 */
468 call idle_loop_service_fifos;
469 SET_MODE(M_SCSI, M_SCSI)
470 allocate_fifo:
471 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
472 and A, FIFO0FREE|FIFO1FREE, DFFSTAT;
473 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
474 } else {
475 test DFFSTAT, FIFO1FREE jnz allocate_fifo1;
476 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
477 mvi DFFSTAT, B_CURRFIFO_0;
478 SET_MODE(M_DFF0, M_DFF0)
479 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
480 }
481 SET_SRC_MODE M_SCSI;
482 SET_DST_MODE M_SCSI;
483 allocate_fifo1:
484 mvi DFFSTAT, CURRFIFO_1;
485 SET_MODE(M_DFF1, M_DFF1)
486 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
487
488 /*
489 * We have been reselected as an initiator
490 * or selected as a target.
491 */
492 SET_SRC_MODE M_SCSI;
493 SET_DST_MODE M_SCSI;
494 select_in:
495 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
496 /*
497 * This exposes a window whereby a
498 * busfree just after a selection will
499 * be missed, but there is no other safe
500 * way to enable busfree detection if
501 * the busfreerev function is broken.
502 */
503 mvi CLRSINT1,CLRBUSFREE;
504 or SIMODE1, ENBUSFREE;
505 }
506 or SXFRCTL0, SPIOEN;
507 and SAVED_SCSIID, SELID_MASK, SELID;
508 and A, OID, IOWNID;
509 or SAVED_SCSIID, A;
510 mvi CLRSINT0, CLRSELDI;
511 jmp ITloop;
512
513 /*
514 * We have successfully selected out.
515 *
516 * Clear SELDO.
517 * Dequeue all SCBs sent from the waiting queue
518 * Requeue all SCBs *not* sent to the tail of the waiting queue
519 * Take Razor #494 into account for above.
520 *
521 * In Packetized Mode:
522 * Return to the idle loop. Our interrupt handler will take
523 * care of any incoming L_Qs.
524 *
525 * In Non-Packetize Mode:
526 * Continue to our normal state machine.
527 */
528 SET_SRC_MODE M_SCSI;
529 SET_DST_MODE M_SCSI;
530 select_out:
531 BEGIN_CRITICAL;
532 /* Clear out all SCBs that have been successfully sent. */
533 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
534 /*
535 * For packetized, the LQO manager clears ENSELO on
536 * the assertion of SELDO. If we are non-packetized,
537 * LASTSCB and CURRSCB are accurate.
538 */
539 test SCSISEQ0, ENSELO jnz use_lastscb;
540
541 /*
542 * The update is correct for LQOSTAT1 errors. All
543 * but LQOBUSFREE are handled by kernel interrupts.
544 * If we see LQOBUSFREE, return to the idle loop.
545 * Once we are out of the select_out critical section,
546 * the kernel will cleanup the LQOBUSFREE and we will
547 * eventually restart the selection if appropriate.
548 */
549 test LQOSTAT1, LQOBUSFREE jnz idle_loop;
550
551 /*
552 * On a phase change oustside of packet boundaries,
553 * LASTSCB points to the currently active SCB context
554 * on the bus.
555 */
556 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
557
558 /*
559 * If the hardware has traversed the whole list, NEXTSCB
560 * will be NULL, CURRSCB and LASTSCB cannot be trusted,
561 * but MAXCMDCNT is accurate. If we stop part way through
562 * the list or only had one command to issue, NEXTSCB[1] is
563 * not NULL and LASTSCB is the last command to go out.
564 */
565 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
566
567 /*
568 * Brute force walk.
569 */
570 bmov SCBPTR, WAITING_TID_HEAD, 2;
571 mvi SEQINTCTL, INTVEC1DSL;
572 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG);
573 mov A, MAXCMDCNT;
574 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
575 clr SEQINTCTL;
576 find_lastscb_loop:
577 dec A;
578 test A, 0xFF jz found_last_sent_scb;
579 bmov SCBPTR, SCB_NEXT, 2;
580 jmp find_lastscb_loop;
581 use_lastscb:
582 bmov SCBPTR, LASTSCB, 2;
583 found_last_sent_scb:
584 bmov CURRSCB, SCBPTR, 2;
585 curscb_ww_done:
586 } else {
587 bmov SCBPTR, CURRSCB, 2;
588 }
589
590 /*
591 * Requeue any SCBs not sent, to the tail of the waiting Q.
592 */
593 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_list_done;
594
595 /*
596 * We know that neither the per-TID list nor the list of
597 * TIDs is empty. Use this knowledge to our advantage.
598 */
599 bmov REG0, SCB_NEXT, 2;
600 bmov SCBPTR, WAITING_TID_TAIL, 2;
601 bmov SCB_NEXT2, REG0, 2;
602 bmov WAITING_TID_TAIL, REG0, 2;
603 jmp select_out_inc_tid_q;
604
605 select_out_list_done:
606 /*
607 * The whole list made it. Just clear our TID's tail pointer
608 * unless we were queued independently due to our need to
609 * send a message.
610 */
611 test SCB_CONTROL, MK_MESSAGE jnz select_out_inc_tid_q;
612 shr DINDEX, 3, SCB_SCSIID;
613 or DINDEX, 1; /* Want only the second byte */
614 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
615 mvi DINDIR, SCB_LIST_NULL;
616 select_out_inc_tid_q:
617 bmov SCBPTR, WAITING_TID_HEAD, 2;
618 bmov WAITING_TID_HEAD, SCB_NEXT2, 2;
619 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
620 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL;
621 bmov SCBPTR, CURRSCB, 2;
622 mvi CLRSINT0, CLRSELDO;
623 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_phase;
624 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_phase;
625
626 /*
627 * If this is a packetized connection, return to our
628 * idle_loop and let our interrupt handler deal with
629 * any connection setup/teardown issues. The only
630 * exceptions are the case of MK_MESSAGE and task management
631 * SCBs.
632 */
633 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
634 /*
635 * In the A, the LQO manager transitions to LQOSTOP0 even if
636 * we have selected out with ATN asserted and the target
637 * REQs in a non-packet phase.
638 */
639 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
640 test SCSISIGO, ATNO jnz select_out_non_packetized;
641 select_out_no_message:
642 }
643 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
644 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
645 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
646 jmp idle_loop;
647
648 select_out_non_packetized:
649 /* Non packetized request. */
650 and SCSISEQ0, ~ENSELO;
651 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
652 /*
653 * This exposes a window whereby a
654 * busfree just after a selection will
655 * be missed, but there is no other safe
656 * way to enable busfree detection if
657 * the busfreerev function is broken.
658 */
659 mvi CLRSINT1,CLRBUSFREE;
660 or SIMODE1, ENBUSFREE;
661 }
662 mov SAVED_SCSIID, SCB_SCSIID;
663 mov SAVED_LUN, SCB_LUN;
664 mvi SEQ_FLAGS, NO_CDB_SENT;
665 END_CRITICAL;
666 or SXFRCTL0, SPIOEN;
667
668 /*
669 * As soon as we get a successful selection, the target
670 * should go into the message out phase since we have ATN
671 * asserted.
672 */
673 mvi MSG_OUT, MSG_IDENTIFYFLAG;
674
675 /*
676 * Main loop for information transfer phases. Wait for the
677 * target to assert REQ before checking MSG, C/D and I/O for
678 * the bus phase.
679 */
680 mesgin_phasemis:
681 ITloop:
682 call phase_lock;
683
684 mov A, LASTPHASE;
685
686 test A, ~P_DATAIN_DT jz p_data;
687 cmp A,P_COMMAND je p_command;
688 cmp A,P_MESGOUT je p_mesgout;
689 cmp A,P_STATUS je p_status;
690 cmp A,P_MESGIN je p_mesgin;
691
692 SET_SEQINTCODE(BAD_PHASE)
693 jmp ITloop; /* Try reading the bus again. */
694
695 /*
696 * Command phase. Set up the DMA registers and let 'er rip.
697 */
698 p_command:
699 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
700 SET_SEQINTCODE(PROTO_VIOLATION)
701 p_command_okay:
702 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
703 jnz p_command_allocate_fifo;
704 /*
705 * Command retry. Free our current FIFO and
706 * re-allocate a FIFO so transfer state is
707 * reset.
708 */
709 SET_SRC_MODE M_DFF1;
710 SET_DST_MODE M_DFF1;
711 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
712 SET_MODE(M_SCSI, M_SCSI)
713 p_command_allocate_fifo:
714 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2;
715 call allocate_fifo;
716 SET_SRC_MODE M_DFF1;
717 SET_DST_MODE M_DFF1;
718 add NONE, -17, SCB_CDB_LEN;
719 jnc p_command_embedded;
720 p_command_from_host:
721 bmov HADDR[0], SCB_HOST_CDB_PTR, 9;
722 mvi SG_CACHE_PRE, LAST_SEG;
723 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
724 jmp p_command_xfer;
725 p_command_embedded:
726 bmov SHCNT[0], SCB_CDB_LEN, 1;
727 bmov DFDAT, SCB_CDB_STORE, 16;
728 mvi DFCNTRL, SCSIEN;
729 p_command_xfer:
730 and SEQ_FLAGS, ~NO_CDB_SENT;
731 test DFCNTRL, SCSIEN jnz .;
732 /*
733 * DMA Channel automatically disabled.
734 * Don't allow a data phase if the command
735 * was not fully transferred.
736 */
737 test SSTAT2, SDONE jnz ITloop;
738 or SEQ_FLAGS, NO_CDB_SENT;
739 jmp ITloop;
740
741
742 /*
743 * Status phase. Wait for the data byte to appear, then read it
744 * and store it into the SCB.
745 */
746 SET_SRC_MODE M_SCSI;
747 SET_DST_MODE M_SCSI;
748 p_status:
749 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
750 p_status_okay:
751 mov SCB_SCSI_STATUS, SCSIDAT;
752 or SCB_CONTROL, STATUS_RCVD;
753 jmp ITloop;
754
755 /*
756 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full
757 * indentify message sequence and send it to the target. The host may
758 * override this behavior by setting the MK_MESSAGE bit in the SCB
759 * control byte. This will cause us to interrupt the host and allow
760 * it to handle the message phase completely on its own. If the bit
761 * associated with this target is set, we will also interrupt the host,
762 * thereby allowing it to send a message on the next selection regardless
763 * of the transaction being sent.
764 *
765 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
766 * This is done to allow the host to send messages outside of an identify
767 * sequence while protecting the seqencer from testing the MK_MESSAGE bit
768 * on an SCB that might not be for the current nexus. (For example, a
769 * BDR message in responce to a bad reselection would leave us pointed to
770 * an SCB that doesn't have anything to do with the current target).
771 *
772 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
773 * bus device reset).
774 *
775 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
776 * in case the target decides to put us in this phase for some strange
777 * reason.
778 */
779 p_mesgout_retry:
780 /* Turn on ATN for the retry */
781 mvi SCSISIGO, ATNO;
782 p_mesgout:
783 mov SINDEX, MSG_OUT;
784 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
785 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop;
786 p_mesgout_identify:
787 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
788 test SCB_CONTROL, DISCENB jnz . + 2;
789 and SINDEX, ~DISCENB;
790 /*
791 * Send a tag message if TAG_ENB is set in the SCB control block.
792 * Use SCB_NONPACKET_TAG as the tag value.
793 */
794 p_mesgout_tag:
795 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte;
796 mov SCSIDAT, SINDEX; /* Send the identify message */
797 call phase_lock;
798 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
799 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
800 call phase_lock;
801 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
802 mov SCBPTR jmp p_mesgout_onebyte;
803 /*
804 * Interrupt the driver, and allow it to handle this message
805 * phase and any required retries.
806 */
807 p_mesgout_from_host:
808 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte;
809 jmp host_message_loop;
810
811 p_mesgout_onebyte:
812 mvi CLRSINT1, CLRATNO;
813 mov SCSIDAT, SINDEX;
814
815 /*
816 * If the next bus phase after ATN drops is message out, it means
817 * that the target is requesting that the last message(s) be resent.
818 */
819 call phase_lock;
820 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry;
821
822 p_mesgout_done:
823 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */
824 mov LAST_MSG, MSG_OUT;
825 mvi MSG_OUT, MSG_NOOP; /* No message left */
826 jmp ITloop;
827
828 /*
829 * Message in phase. Bytes are read using Automatic PIO mode.
830 */
831 p_mesgin:
832 /* read the 1st message byte */
833 mvi ACCUM call inb_first;
834
835 test A,MSG_IDENTIFYFLAG jnz mesgin_identify;
836 cmp A,MSG_DISCONNECT je mesgin_disconnect;
837 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs;
838 cmp ALLZEROS,A je mesgin_complete;
839 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs;
840 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue;
841 cmp A,MSG_NOOP je mesgin_done;
842
843 /*
844 * Pushed message loop to allow the kernel to
845 * run it's own message state engine. To avoid an
846 * extra nop instruction after signaling the kernel,
847 * we perform the phase_lock before checking to see
848 * if we should exit the loop and skip the phase_lock
849 * in the ITloop. Performing back to back phase_locks
850 * shouldn't hurt, but why do it twice...
851 */
852 host_message_loop:
853 call phase_lock; /* Benign the first time through. */
854 SET_SEQINTCODE(HOST_MSG_LOOP)
855 cmp RETURN_1, EXIT_MSG_LOOP je ITloop;
856 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3;
857 mov SCSIDAT, RETURN_2;
858 jmp host_message_loop;
859 /* Must be CONT_MSG_LOOP_READ */
860 mov NONE, SCSIDAT; /* ACK Byte */
861 jmp host_message_loop;
862
863 mesgin_ign_wide_residue:
864 mov SAVED_MODE, MODE_PTR;
865 SET_MODE(M_SCSI, M_SCSI)
866 shr NEGOADDR, 4, SAVED_SCSIID;
867 mov A, NEGCONOPTS;
868 RESTORE_MODE(SAVED_MODE)
869 test A, WIDEXFER jz mesgin_reject;
870 /* Pull the residue byte */
871 mvi REG0 call inb_next;
872 cmp REG0, 0x01 jne mesgin_reject;
873 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
874 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done;
875 SET_SEQINTCODE(IGN_WIDE_RES)
876 jmp mesgin_done;
877
878 mesgin_proto_violation:
879 SET_SEQINTCODE(PROTO_VIOLATION)
880 jmp mesgin_done;
881 mesgin_reject:
882 mvi MSG_MESSAGE_REJECT call mk_mesg;
883 mesgin_done:
884 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
885 jmp ITloop;
886
887 #define INDEX_DISC_LIST(scsiid, lun) \
888 and A, 0xC0, scsiid; \
889 or SCBPTR, A, lun; \
890 clr SCBPTR[1]; \
891 and SINDEX, 0x30, scsiid; \
892 shr SINDEX, 3; /* Multiply by 2 */ \
893 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \
894 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
895
896 mesgin_identify:
897 /*
898 * Determine whether a target is using tagged or non-tagged
899 * transactions by first looking at the transaction stored in
900 * the per-device, disconnected array. If there is no untagged
901 * transaction for this target, this must be a tagged transaction.
902 */
903 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
904 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
905 bmov DINDEX, SINDEX, 2;
906 bmov REG0, SINDIR, 2;
907 cmp REG0[1], SCB_LIST_NULL je snoop_tag;
908 /* Untagged. Clear the busy table entry and setup the SCB. */
909 bmov DINDIR, ALLONES, 2;
910 bmov SCBPTR, REG0, 2;
911 jmp setup_SCB;
912
913 /*
914 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
915 * If we get one, we use the tag returned to find the proper
916 * SCB. After receiving the tag, look for the SCB at SCB locations tag and
917 * tag + 256.
918 */
919 snoop_tag:
920 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
921 or SEQ_FLAGS, 0x80;
922 }
923 mov NONE, SCSIDAT; /* ACK Identify MSG */
924 call phase_lock;
925 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
926 or SEQ_FLAGS, 0x1;
927 }
928 cmp LASTPHASE, P_MESGIN jne not_found_ITloop;
929 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
930 or SEQ_FLAGS, 0x2;
931 }
932 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
933 get_tag:
934 clr SCBPTR[1];
935 mvi SCBPTR call inb_next; /* tag value */
936 verify_scb:
937 test SCB_CONTROL,DISCONNECTED jz verify_other_scb;
938 mov A, SAVED_SCSIID;
939 cmp SCB_SCSIID, A jne verify_other_scb;
940 mov A, SAVED_LUN;
941 cmp SCB_LUN, A je setup_SCB_disconnected;
942 verify_other_scb:
943 xor SCBPTR[1], 1;
944 test SCBPTR[1], 0xFF jnz verify_scb;
945 jmp not_found;
946
947 /*
948 * Ensure that the SCB the tag points to is for
949 * an SCB transaction to the reconnecting target.
950 */
951 setup_SCB:
952 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
953 or SEQ_FLAGS, 0x10;
954 }
955 test SCB_CONTROL,DISCONNECTED jz not_found;
956 setup_SCB_disconnected:
957 and SCB_CONTROL,~DISCONNECTED;
958 clr SEQ_FLAGS; /* make note of IDENTIFY */
959 test SCB_SGPTR, SG_LIST_NULL jnz . + 3;
960 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2;
961 call allocate_fifo;
962 /* See if the host wants to send a message upon reconnection */
963 test SCB_CONTROL, MK_MESSAGE jz mesgin_done;
964 mvi HOST_MSG call mk_mesg;
965 jmp mesgin_done;
966
967 not_found:
968 SET_SEQINTCODE(NO_MATCH)
969 jmp mesgin_done;
970
971 not_found_ITloop:
972 SET_SEQINTCODE(NO_MATCH)
973 jmp ITloop;
974
975 /*
976 * We received a "command complete" message. Put the SCB on the complete
977 * queue and trigger a completion interrupt via the idle loop. Before doing
978 * so, check to see if there
979 * is a residual or the status byte is something other than STATUS_GOOD (0).
980 * In either of these conditions, we upload the SCB back to the host so it can
981 * process this information. In the case of a non zero status byte, we
982 * additionally interrupt the kernel driver synchronously, allowing it to
983 * decide if sense should be retrieved. If the kernel driver wishes to request
984 * sense, it will fill the kernel SCB with a request sense command, requeue
985 * it to the QINFIFO and tell us not to post to the QOUTFIFO by setting
986 * RETURN_1 to SEND_SENSE.
987 */
988 mesgin_complete:
989
990 /*
991 * If ATN is raised, we still want to give the target a message.
992 * Perhaps there was a parity error on this last message byte.
993 * Either way, the target should take us to message out phase
994 * and then attempt to complete the command again. We should use a
995 * critical section here to guard against a timeout triggering
996 * for this command and setting ATN while we are still processing
997 * the completion.
998 test SCSISIGI, ATNI jnz mesgin_done;
999 */
1000
1001 /*
1002 * If we are identified and have successfully sent the CDB,
1003 * any status will do. Optimize this fast path.
1004 */
1005 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
1006 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
1007
1008 /*
1009 * If the target never sent an identify message but instead went
1010 * to mesgin to give an invalid message, let the host abort us.
1011 */
1012 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
1013
1014 /*
1015 * If we recevied good status but never successfully sent the
1016 * cdb, abort the command.
1017 */
1018 test SCB_SCSI_STATUS,0xff jnz complete_accepted;
1019 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
1020 complete_accepted:
1021
1022 /*
1023 * See if we attempted to deliver a message but the target ingnored us.
1024 */
1025 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
1026 SET_SEQINTCODE(MKMSG_FAILED)
1027 complete_nomsg:
1028 call queue_scb_completion;
1029 jmp await_busfree;
1030
1031 freeze_queue:
1032 /* Cancel any pending select-out. */
1033 test SSTAT0, SELDO|SELINGO jnz . + 2;
1034 and SCSISEQ0, ~ENSELO;
1035 mov ACCUM_SAVE, A;
1036 clr A;
1037 add QFREEZE_COUNT, 1;
1038 adc QFREEZE_COUNT[1], A;
1039 or SEQ_FLAGS2, SELECTOUT_QFROZEN;
1040 mov A, ACCUM_SAVE ret;
1041
1042 /*
1043 * Complete the current FIFO's SCB if data for this same
1044 * SCB is not transferring in the other FIFO.
1045 */
1046 SET_SRC_MODE M_DFF1;
1047 SET_DST_MODE M_DFF1;
1048 pkt_complete_scb_if_fifos_idle:
1049 bmov ARG_1, SCBPTR, 2;
1050 mvi DFFSXFRCTL, CLRCHN;
1051 SET_MODE(M_SCSI, M_SCSI)
1052 bmov SCBPTR, ARG_1, 2;
1053 test SCB_FIFO_USE_COUNT, 0xFF jnz return;
1054 queue_scb_completion:
1055 test SCB_SCSI_STATUS,0xff jnz bad_status;
1056 /*
1057 * Check for residuals
1058 */
1059 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */
1060 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
1061 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
1062 complete:
1063 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
1064 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
1065 bad_status:
1066 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
1067 call freeze_queue;
1068 upload_scb:
1069 /*
1070 * Restore SCB TAG since we reuse this field
1071 * in the sequencer. We don't want to corrupt
1072 * it on the host.
1073 */
1074 bmov SCB_TAG, SCBPTR, 2;
1075 bmov SCB_NEXT_COMPLETE, COMPLETE_DMA_SCB_HEAD, 2;
1076 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
1077 or SCB_SGPTR, SG_STATUS_VALID ret;
1078
1079 /*
1080 * Is it a disconnect message? Set a flag in the SCB to remind us
1081 * and await the bus going free. If this is an untagged transaction
1082 * store the SCB id for it in our untagged target table for lookup on
1083 * a reselction.
1084 */
1085 mesgin_disconnect:
1086 /*
1087 * If ATN is raised, we still want to give the target a message.
1088 * Perhaps there was a parity error on this last message byte
1089 * or we want to abort this command. Either way, the target
1090 * should take us to message out phase and then attempt to
1091 * disconnect again.
1092 * XXX - Wait for more testing.
1093 test SCSISIGI, ATNI jnz mesgin_done;
1094 */
1095 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
1096 jnz mesgin_proto_violation;
1097 or SCB_CONTROL,DISCONNECTED;
1098 test SCB_CONTROL, TAG_ENB jnz await_busfree;
1099 queue_disc_scb:
1100 bmov REG0, SCBPTR, 2;
1101 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
1102 bmov DINDEX, SINDEX, 2;
1103 bmov DINDIR, REG0, 2;
1104 bmov SCBPTR, REG0, 2;
1105 /* FALLTHROUGH */
1106 await_busfree:
1107 and SIMODE1, ~ENBUSFREE;
1108 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
1109 /*
1110 * In the BUSFREEREV_BUG case, the
1111 * busfree status was cleared at the
1112 * beginning of the connection.
1113 */
1114 mvi CLRSINT1,CLRBUSFREE;
1115 }
1116 mov NONE, SCSIDAT; /* Ack the last byte */
1117 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1118 jnz await_busfree_not_m_dff;
1119 SET_SRC_MODE M_DFF1;
1120 SET_DST_MODE M_DFF1;
1121 await_busfree_clrchn:
1122 mvi DFFSXFRCTL, CLRCHN;
1123 await_busfree_not_m_dff:
1124 call clear_target_state;
1125 test SSTAT1,REQINIT|BUSFREE jz .;
1126 test SSTAT1, BUSFREE jnz idle_loop;
1127 SET_SEQINTCODE(MISSED_BUSFREE)
1128
1129
1130 /*
1131 * Save data pointers message:
1132 * Copying RAM values back to SCB, for Save Data Pointers message, but
1133 * only if we've actually been into a data phase to change them. This
1134 * protects against bogus data in scratch ram and the residual counts
1135 * since they are only initialized when we go into data_in or data_out.
1136 * Ack the message as soon as possible.
1137 */
1138 SET_SRC_MODE M_DFF1;
1139 SET_DST_MODE M_DFF1;
1140 mesgin_sdptrs:
1141 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
1142 test SEQ_FLAGS, DPHASE jz ITloop;
1143 call save_pointers;
1144 jmp ITloop;
1145
1146 save_pointers:
1147 /*
1148 * If we are asked to save our position at the end of the
1149 * transfer, just mark us at the end rather than perform a
1150 * full save.
1151 */
1152 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
1153 or SCB_SGPTR, SG_LIST_NULL ret;
1154
1155 save_pointers_full:
1156 /*
1157 * The SCB_DATAPTR becomes the current SHADDR.
1158 * All other information comes directly from our residual
1159 * state.
1160 */
1161 bmov SCB_DATAPTR, SHADDR, 8;
1162 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
1163
1164 /*
1165 * Restore pointers message? Data pointers are recopied from the
1166 * SCB anytime we enter a data phase for the first time, so all
1167 * we need to do is clear the DPHASE flag and let the data phase
1168 * code do the rest. We also reset/reallocate the FIFO to make
1169 * sure we have a clean start for the next data or command phase.
1170 */
1171 mesgin_rdptrs:
1172 and SEQ_FLAGS, ~DPHASE;
1173 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
1174 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
1175 SET_MODE(M_SCSI, M_SCSI)
1176 msgin_rdptrs_get_fifo:
1177 call allocate_fifo;
1178 jmp mesgin_done;
1179
1180 clear_target_state:
1181 mvi LASTPHASE, P_BUSFREE;
1182 /* clear target specific flags */
1183 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT ret;
1184
1185 phase_lock:
1186 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
1187 /*
1188 * Don't ignore persistent REQ assertions just because
1189 * they were asserted within the bus settle delay window.
1190 * This allows us to tolerate devices like the GEM318
1191 * that violate the SCSI spec. We are careful not to
1192 * count REQ while we are waiting for it to fall during
1193 * an async phase due to our asserted ACK. Each
1194 * sequencer instruction takes ~25ns, so the REQ must
1195 * last at least 100ns in order to be counted as a true
1196 * REQ.
1197 */
1198 test SCSIPHASE, 0xFF jnz phase_locked;
1199 test SCSISIGI, ACKI jnz phase_lock;
1200 test SCSISIGI, REQI jz phase_lock;
1201 test SCSIPHASE, 0xFF jnz phase_locked;
1202 test SCSISIGI, ACKI jnz phase_lock;
1203 test SCSISIGI, REQI jz phase_lock;
1204 phase_locked:
1205 } else {
1206 test SCSIPHASE, 0xFF jz .;
1207 }
1208 test SSTAT1, SCSIPERR jnz phase_lock;
1209 phase_lock_latch_phase:
1210 and LASTPHASE, PHASE_MASK, SCSISIGI ret;
1211
1212 /*
1213 * Functions to read data in Automatic PIO mode.
1214 *
1215 * An ACK is not sent on input from the target until SCSIDATL is read from.
1216 * So we wait until SCSIDATL is latched (the usual way), then read the data
1217 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN
1218 * line, or we just want to acknowledge the byte, then we do a dummy read
1219 * from SCISDATL. The SCSI spec guarantees that the target will hold the
1220 * data byte on the bus until we send our ACK.
1221 *
1222 * The assumption here is that these are called in a particular sequence,
1223 * and that REQ is already set when inb_first is called. inb_{first,next}
1224 * use the same calling convention as inb.
1225 */
1226 inb_next:
1227 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/
1228 inb_next_wait:
1229 /*
1230 * If there is a parity error, wait for the kernel to
1231 * see the interrupt and prepare our message response
1232 * before continuing.
1233 */
1234 test SCSIPHASE, 0xFF jz .;
1235 test SSTAT1, SCSIPERR jnz inb_next_wait;
1236 inb_next_check_phase:
1237 and LASTPHASE, PHASE_MASK, SCSISIGI;
1238 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis;
1239 inb_first:
1240 clr DINDEX[1];
1241 mov DINDEX,SINDEX;
1242 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/
1243 inb_last:
1244 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/
1245
1246 mk_mesg:
1247 mvi SCSISIGO, ATNO;
1248 mov MSG_OUT,SINDEX ret;
1249
1250 SET_SRC_MODE M_DFF1;
1251 SET_DST_MODE M_DFF1;
1252 disable_ccsgen:
1253 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
1254 clr CCSGCTL;
1255 disable_ccsgen_fetch_done:
1256 clr SG_STATE ret;
1257
1258 service_fifo:
1259 /*
1260 * Do we have any prefetch left???
1261 */
1262 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
1263
1264 /*
1265 * Can this FIFO have access to the S/G cache yet?
1266 */
1267 test CCSGCTL, SG_CACHE_AVAIL jz return;
1268
1269 /* Did we just finish fetching segs? */
1270 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
1271
1272 /* Are we actively fetching segments? */
1273 test CCSGCTL, CCSGENACK jnz return;
1274
1275 /*
1276 * We fetch a "cacheline aligned" and sized amount of data
1277 * so we don't end up referencing a non-existant page.
1278 * Cacheline aligned is in quotes because the kernel will
1279 * set the prefetch amount to a reasonable level if the
1280 * cacheline size is unknown.
1281 */
1282 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4;
1283 mvi SGHCNT, SG_PREFETCH_CNT;
1284 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
1285 /*
1286 * Need two instruction between "touches" of SGHADDR.
1287 */
1288 nop;
1289 }
1290 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
1291 mvi CCSGCTL, CCSGEN|CCSGRESET;
1292 or SG_STATE, FETCH_INPROG ret;
1293 idle_sgfetch_complete:
1294 /*
1295 * Guard against SG_CACHE_AVAIL activating during sg fetch
1296 * request in the other FIFO.
1297 */
1298 test SG_STATE, FETCH_INPROG jz return;
1299 clr CCSGCTL;
1300 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
1301 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
1302 idle_sg_avail:
1303 /* Does the hardware have space for another SG entry? */
1304 test DFSTATUS, PRELOAD_AVAIL jz return;
1305 /*
1306 * On the A, preloading a segment before HDMAENACK
1307 * comes true can clobber the shaddow address of the
1308 * first segment in the S/G FIFO. Wait until it is
1309 * safe to proceed.
1310 */
1311 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
1312 test DFCNTRL, HDMAENACK jz return;
1313 }
1314 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1315 bmov HADDR, CCSGRAM, 8;
1316 } else {
1317 bmov HADDR, CCSGRAM, 4;
1318 }
1319 bmov HCNT, CCSGRAM, 3;
1320 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
1321 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
1322 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
1323 }
1324 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1325 /* Skip 4 bytes of pad. */
1326 add CCSGADDR, 4;
1327 }
1328 sg_advance:
1329 clr A; /* add sizeof(struct scatter) */
1330 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
1331 adc SCB_RESIDUAL_SGPTR[1],A;
1332 adc SCB_RESIDUAL_SGPTR[2],A;
1333 adc SCB_RESIDUAL_SGPTR[3],A;
1334 mov SINDEX, SCB_RESIDUAL_SGPTR[0];
1335 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
1336 or SINDEX, LAST_SEG;
1337 clr SG_STATE;
1338 mov SG_CACHE_PRE, SINDEX;
1339 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1340 /*
1341 * Use SCSIENWRDIS so that SCSIEN is never
1342 * modified by this operation.
1343 */
1344 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
1345 } else {
1346 or DFCNTRL, PRELOADEN|HDMAEN;
1347 }
1348 /*
1349 * Do we have another segment in the cache?
1350 */
1351 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
1352 jnc return;
1353 and SG_STATE, ~SEGS_AVAIL ret;
1354
1355 /*
1356 * Initialize the DMA address and counter from the SCB.
1357 */
1358 load_first_seg:
1359 bmov HADDR, SCB_DATAPTR, 11;
1360 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
1361 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
1362 or REG_ISR, LAST_SEG;
1363 mov SG_CACHE_PRE, REG_ISR;
1364 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1365 /*
1366 * Since we've are entering a data phase, we will
1367 * rely on the SCB_RESID* fields. Initialize the
1368 * residual and clear the full residual flag.
1369 */
1370 and SCB_SGPTR[0], ~SG_FULL_RESID;
1371 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
1372 /* If we need more S/G elements, tell the idle loop */
1373 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
1374 mvi SG_STATE, LOADING_NEEDED ret;
1375 clr SG_STATE ret;
1376
1377 p_data_handle_xfer:
1378 call setjmp;
1379 test SG_STATE, LOADING_NEEDED jnz service_fifo;
1380 p_data_clear_handler:
1381 or LONGJMP_ADDR[1], INVALID_ADDR ret;
1382
1383 p_data:
1384 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed;
1385 SET_SEQINTCODE(PROTO_VIOLATION)
1386 p_data_allowed:
1387
1388 test SEQ_FLAGS, DPHASE jz data_phase_initialize;
1389
1390 /*
1391 * If we re-enter the data phase after going through another
1392 * phase, our transfer location has almost certainly been
1393 * corrupted by the interveining, non-data, transfers. Ask
1394 * the host driver to fix us up based on the transfer residual
1395 * unless we already know that we should be bitbucketing.
1396 */
1397 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1398 SET_SEQINTCODE(PDATA_REINIT)
1399 jmp data_phase_inbounds;
1400
1401 p_data_bitbucket:
1402 /*
1403 * Turn on `Bit Bucket' mode, wait until the target takes
1404 * us to another phase, and then notify the host.
1405 */
1406 mov SAVED_MODE, MODE_PTR;
1407 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1408 jnz bitbucket_not_m_dff;
1409 /*
1410 * Ensure that any FIFO contents are cleared out and the
1411 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET
1412 * doesn't discard data already in the FIFO.
1413 */
1414 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT;
1415 SET_MODE(M_SCSI, M_SCSI)
1416 bitbucket_not_m_dff:
1417 or SXFRCTL1,BITBUCKET;
1418 /* Wait for non-data phase. */
1419 test SCSIPHASE, ~DATA_PHASE_MASK jz .;
1420 and SXFRCTL1, ~BITBUCKET;
1421 RESTORE_MODE(SAVED_MODE)
1422 SET_SRC_MODE M_DFF1;
1423 SET_DST_MODE M_DFF1;
1424 SET_SEQINTCODE(DATA_OVERRUN)
1425 jmp ITloop;
1426
1427 data_phase_initialize:
1428 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1429 call load_first_seg;
1430 data_phase_inbounds:
1431 /* We have seen a data phase at least once. */
1432 or SEQ_FLAGS, DPHASE;
1433 mov SAVED_MODE, MODE_PTR;
1434 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
1435 call p_data_handle_xfer;
1436 data_group_dma_loop:
1437 /*
1438 * The transfer is complete if either the last segment
1439 * completes or the target changes phase. Both conditions
1440 * will clear SCSIEN.
1441 */
1442 call idle_loop_service_fifos;
1443 call idle_loop_cchan;
1444 call idle_loop_gsfifo;
1445 RESTORE_MODE(SAVED_MODE)
1446 test DFCNTRL, SCSIEN jnz data_group_dma_loop;
1447
1448 data_group_dmafinish:
1449 /*
1450 * The transfer has terminated either due to a phase
1451 * change, and/or the completion of the last segment.
1452 * We have two goals here. Do as much other work
1453 * as possible while the data fifo drains on a read
1454 * and respond as quickly as possible to the standard
1455 * messages (save data pointers/disconnect and command
1456 * complete) that usually follow a data phase.
1457 */
1458 call calc_residual;
1459
1460 /*
1461 * Go ahead and shut down the DMA engine now.
1462 */
1463 test DFCNTRL, DIRECTION jnz data_phase_finish;
1464 data_group_fifoflush:
1465 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1466 or DFCNTRL, FIFOFLUSH;
1467 }
1468 /*
1469 * We have enabled the auto-ack feature. This means
1470 * that the controller may have already transferred
1471 * some overrun bytes into the data FIFO and acked them
1472 * on the bus. The only way to detect this situation is
1473 * to wait for LAST_SEG_DONE to come true on a completed
1474 * transfer and then test to see if the data FIFO is
1475 * non-empty. We know there is more data yet to transfer
1476 * if SG_LIST_NULL is not yet set, thus there cannot be
1477 * an overrun.
1478 */
1479 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
1480 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
1481 test DFSTATUS, FIFOEMP jnz data_phase_finish;
1482 /* Overrun */
1483 jmp p_data;
1484 data_phase_finish:
1485 /*
1486 * If the target has left us in data phase, loop through
1487 * the DMA code again. We will only loop if there is a
1488 * data overrun.
1489 */
1490 if ((ahd->flags & AHD_TARGETROLE) != 0) {
1491 test SSTAT0, TARGET jnz data_phase_done;
1492 }
1493 if ((ahd->flags & AHD_INITIATORROLE) != 0) {
1494 test SSTAT1, REQINIT jz .;
1495 test SCSIPHASE, DATA_PHASE_MASK jnz p_data;
1496 }
1497
1498 data_phase_done:
1499 /* Kill off any pending prefetch */
1500 call disable_ccsgen;
1501 or LONGJMP_ADDR[1], INVALID_ADDR;
1502
1503 if ((ahd->flags & AHD_TARGETROLE) != 0) {
1504 test SEQ_FLAGS, DPHASE_PENDING jz ITloop;
1505 /*
1506 and SEQ_FLAGS, ~DPHASE_PENDING;
1507 * For data-in phases, wait for any pending acks from the
1508 * initiator before changing phase. We only need to
1509 * send Ignore Wide Residue messages for data-in phases.
1510 test DFCNTRL, DIRECTION jz target_ITloop;
1511 test SSTAT1, REQINIT jnz .;
1512 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop;
1513 SET_MODE(M_SCSI, M_SCSI)
1514 test NEGCONOPTS, WIDEXFER jz target_ITloop;
1515 */
1516 /*
1517 * Issue an Ignore Wide Residue Message.
1518 mvi P_MESGIN|BSYO call change_phase;
1519 mvi MSG_IGN_WIDE_RESIDUE call target_outb;
1520 mvi 1 call target_outb;
1521 jmp target_ITloop;
1522 */
1523 } else {
1524 jmp ITloop;
1525 }
1526
1527 /*
1528 * We assume that, even though data may still be
1529 * transferring to the host, that the SCSI side of
1530 * the DMA engine is now in a static state. This
1531 * allows us to update our notion of where we are
1532 * in this transfer.
1533 *
1534 * If, by chance, we stopped before being able
1535 * to fetch additional segments for this transfer,
1536 * yet the last S/G was completely exhausted,
1537 * call our idle loop until it is able to load
1538 * another segment. This will allow us to immediately
1539 * pickup on the next segment on the next data phase.
1540 *
1541 * If we happened to stop on the last segment, then
1542 * our residual information is still correct from
1543 * the idle loop and there is no need to perform
1544 * any fixups.
1545 */
1546 residual_before_last_seg:
1547 test MDFFSTAT, SHVALID jnz sgptr_fixup;
1548 /*
1549 * Can never happen from an interrupt as the packetized
1550 * hardware will only interrupt us once SHVALID or
1551 * LAST_SEG_DONE.
1552 */
1553 call idle_loop_service_fifos;
1554 RESTORE_MODE(SAVED_MODE)
1555 /* FALLTHROUGH */
1556 calc_residual:
1557 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
1558 /* Record if we've consumed all S/G entries */
1559 test MDFFSTAT, SHVALID jz . + 2;
1560 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1561 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
1562
1563 sgptr_fixup:
1564 /*
1565 * Fixup the residual next S/G pointer. The S/G preload
1566 * feature of the chip allows us to load two elements
1567 * in addition to the currently active element. We
1568 * store the bottom byte of the next S/G pointer in
1569 * the SG_CACHE_PTR register so we can restore the
1570 * correct value when the DMA completes. If the next
1571 * sg ptr value has advanced to the point where higher
1572 * bytes in the address have been affected, fix them
1573 * too.
1574 */
1575 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
1576 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
1577 add SCB_RESIDUAL_SGPTR[1], -1;
1578 adc SCB_RESIDUAL_SGPTR[2], -1;
1579 adc SCB_RESIDUAL_SGPTR[3], -1;
1580 sgptr_fixup_done:
1581 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
1582 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
1583 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1584
1585 export timer_isr:
1586 call issue_cmdcmplt;
1587 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
1588 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
1589 /*
1590 * In H2A4, the mode pointer is not saved
1591 * for intvec2, but is restored on iret.
1592 * This can lead to the restoration of a
1593 * bogus mode ptr. Manually clear the
1594 * intmask bits and do a normal return
1595 * to compensate.
1596 */
1597 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
1598 } else {
1599 or SEQINTCTL, IRET ret;
1600 }
1601
1602 export seq_isr:
1603 if ((ahd->features & AHD_RTI) == 0) {
1604 /*
1605 * On RevA Silicon, if the target returns us to data-out
1606 * after we have already trained for data-out, it is
1607 * possible for us to transition the free running clock to
1608 * data-valid before the required 100ns P1 setup time (8 P1
1609 * assertions in fast-160 mode). This will only happen if
1610 * this L-Q is a continuation of a data transfer for which
1611 * we have already prefetched data into our FIFO (LQ/Data
1612 * followed by LQ/Data for the same write transaction).
1613 * This can cause some target implementations to miss the
1614 * first few data transfers on the bus. We detect this
1615 * situation by noticing that this is the first data transfer
1616 * after an LQ (LQIWORKONLQ true), that the data transfer is
1617 * a continuation of a transfer already setup in our FIFO
1618 * (SAVEPTRS interrupt), and that the transaction is a write
1619 * (DIRECTION set in DFCNTRL). The delay is performed by
1620 * disabling SCSIEN until we see the first REQ from the
1621 * target.
1622 *
1623 * First instruction in an ISR cannot be a branch on
1624 * Rev A. Snapshot LQISTAT2 so the status is not missed
1625 * and deffer the test by one instruction.
1626 */
1627 mov REG_ISR, LQISTAT2;
1628 test REG_ISR, LQIWORKONLQ jz main_isr;
1629 test SEQINTSRC, SAVEPTRS jz main_isr;
1630 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
1631 /*
1632 * Switch to the active FIFO after clearing the snapshot
1633 * savepointer in the current FIFO. We do this so that
1634 * a pending CTXTDONE or SAVEPTR is visible in the active
1635 * FIFO. This status is the only way we can detect if we
1636 * have lost the race (e.g. host paused us) and our attepts
1637 * to disable the channel occurred after all REQs were
1638 * already seen and acked (REQINIT never comes true).
1639 */
1640 mvi DFFSXFRCTL, CLRCHN;
1641 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1642 test DFCNTRL, DIRECTION jz interrupt_return;
1643 and DFCNTRL, ~SCSIEN;
1644 snapshot_wait_data_valid:
1645 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz snapshot_data_valid;
1646 test SSTAT1, REQINIT jz snapshot_wait_data_valid;
1647 snapshot_data_valid:
1648 or DFCNTRL, SCSIEN;
1649 or SEQINTCTL, IRET ret;
1650 snapshot_saveptr:
1651 mvi DFFSXFRCTL, CLRCHN;
1652 or SEQINTCTL, IRET ret;
1653 main_isr:
1654 }
1655 test SEQINTSRC, CFG4DATA jnz cfg4data_intr;
1656 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr;
1657 test SEQINTSRC, SAVEPTRS jnz saveptr_intr;
1658 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr;
1659 SET_SEQINTCODE(INVALID_SEQINT)
1660
1661 /*
1662 * There are two types of save pointers interrupts:
1663 * The first is a snapshot save pointers where the current FIFO is not
1664 * active and contains a snapshot of the current poniter information.
1665 * This happens between packets in a stream for a single L_Q. Since we
1666 * are not performing a pointer save, we can safely clear the channel
1667 * so it can be used for other transactions. On RTI capable controllers,
1668 * where snapshots can, and are, disabled, the code to handle this type
1669 * of snapshot is not active.
1670 *
1671 * The second case is a save pointers on an active FIFO which occurs
1672 * if the target changes to a new L_Q or busfrees/QASes and the transfer
1673 * has a residual. This should occur coincident with a ctxtdone. We
1674 * disable the interrupt and allow our active routine to handle the
1675 * save.
1676 */
1677 saveptr_intr:
1678 if ((ahd->features & AHD_RTI) == 0) {
1679 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
1680 }
1681 saveptr_active_fifo:
1682 and SEQIMODE, ~ENSAVEPTRS;
1683 or SEQINTCTL, IRET ret;
1684
1685 cfg4data_intr:
1686 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count;
1687 call load_first_seg;
1688 call pkt_handle_xfer;
1689 inc SCB_FIFO_USE_COUNT;
1690 interrupt_return:
1691 or SEQINTCTL, IRET ret;
1692
1693 cfg4istat_intr:
1694 call freeze_queue;
1695 add NONE, -13, SCB_CDB_LEN;
1696 jnc cfg4istat_have_sense_addr;
1697 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
1698 /*
1699 * Host sets up address/count and enables transfer.
1700 */
1701 SET_SEQINTCODE(CFG4ISTAT_INTR)
1702 jmp cfg4istat_setup_handler;
1703 cfg4istat_have_sense_addr:
1704 bmov HADDR, SCB_SENSE_BUSADDR, 4;
1705 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
1706 mvi SG_CACHE_PRE, LAST_SEG;
1707 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
1708 cfg4istat_setup_handler:
1709 /*
1710 * Status pkt is transferring to host.
1711 * Wait in idle loop for transfer to complete.
1712 * If a command completed before an attempted
1713 * task management function completed, notify the host.
1714 */
1715 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
1716 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
1717 cfg4istat_no_taskmgmt_func:
1718 call pkt_handle_status;
1719 or SEQINTCTL, IRET ret;
1720
1721 cfg4icmd_intr:
1722 /*
1723 * In the case of DMAing a CDB from the host, the normal
1724 * CDB buffer is formatted with an 8 byte address followed
1725 * by a 1 byte count.
1726 */
1727 bmov HADDR[0], SCB_HOST_CDB_PTR, 9;
1728 mvi SG_CACHE_PRE, LAST_SEG;
1729 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1730 call pkt_handle_cdb;
1731 or SEQINTCTL, IRET ret;
1732
1733 /*
1734 * See if the target has gone on in this context creating an
1735 * overrun condition. For the write case, the hardware cannot
1736 * ack bytes until data are provided. So, if the target begins
1737 * another packet without changing contexts, implying we are
1738 * not sitting on a packet boundary, we are in an overrun
1739 * situation. For the read case, the hardware will continue to
1740 * ack bytes into the FIFO, and may even ack the last overrun packet
1741 * into the FIFO. If the FIFO should become non-empty, we are in
1742 * a read overrun case.
1743 */
1744 #define check_overrun \
1745 /* Not on a packet boundary. */ \
1746 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \
1747 test DFSTATUS, FIFOEMP jz pkt_handle_overrun
1748
1749 pkt_handle_xfer:
1750 test SG_STATE, LOADING_NEEDED jz pkt_last_seg;
1751 call setjmp;
1752 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
1753 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
1754 test SCSISIGO, ATNO jnz . + 2;
1755 test SSTAT2, NONPACKREQ jz pkt_service_fifo;
1756 /*
1757 * Defer handling of this NONPACKREQ until we
1758 * can be sure it pertains to this FIFO. SAVEPTRS
1759 * will not be asserted if the NONPACKREQ is for us,
1760 * so we must simulate it if shaddow is valid. If
1761 * shaddow is not valid, keep running this FIFO until we
1762 * have satisfied the transfer by loading segments and
1763 * waiting for either shaddow valid or last_seg_done.
1764 */
1765 test MDFFSTAT, SHVALID jnz pkt_saveptrs;
1766 pkt_service_fifo:
1767 test SG_STATE, LOADING_NEEDED jnz service_fifo;
1768 pkt_last_seg:
1769 call setjmp;
1770 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
1771 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done;
1772 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
1773 test SCSISIGO, ATNO jnz . + 2;
1774 test SSTAT2, NONPACKREQ jz return;
1775 test MDFFSTAT, SHVALID jz return;
1776 /* FALLTHROUGH */
1777
1778 /*
1779 * Either a SAVEPTRS interrupt condition is pending for this FIFO
1780 * or we have a pending NONPACKREQ for this FIFO. We differentiate
1781 * between the two by capturing the state of the SAVEPTRS interrupt
1782 * prior to clearing this status and executing the common code for
1783 * these two cases.
1784 */
1785 pkt_saveptrs:
1786 BEGIN_CRITICAL;
1787 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1788 or DFCNTRL, FIFOFLUSH;
1789 }
1790 mov REG0, SEQINTSRC;
1791 call calc_residual;
1792 call save_pointers;
1793 mvi CLRSEQINTSRC, CLRSAVEPTRS;
1794 call disable_ccsgen;
1795 or SEQIMODE, ENSAVEPTRS;
1796 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
1797 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
1798 /*
1799 * Keep a handler around for this FIFO until it drains
1800 * to the host to guarantee that we don't complete the
1801 * command to the host before the data arrives.
1802 */
1803 pkt_saveptrs_wait_fifoemp:
1804 call setjmp;
1805 test DFSTATUS, FIFOEMP jz return;
1806 pkt_saveptrs_check_status:
1807 or LONGJMP_ADDR[1], INVALID_ADDR;
1808 test REG0, SAVEPTRS jz unexpected_nonpkt_phase;
1809 dec SCB_FIFO_USE_COUNT;
1810 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
1811 mvi DFFSXFRCTL, CLRCHN ret;
1812 END_CRITICAL;
1813
1814 /*
1815 * LAST_SEG_DONE status has been seen in the current FIFO.
1816 * This indicates that all of the allowed data for this
1817 * command has transferred across the SCSI and host buses.
1818 * Check for overrun and see if we can complete this command.
1819 */
1820 pkt_last_seg_done:
1821 BEGIN_CRITICAL;
1822 /*
1823 * Mark transfer as completed.
1824 */
1825 or SCB_SGPTR, SG_LIST_NULL;
1826
1827 /*
1828 * Wait for the current context to finish to verify that
1829 * no overrun condition has occurred.
1830 */
1831 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
1832 call setjmp;
1833 pkt_wait_ctxt_done_loop:
1834 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
1835 /*
1836 * A sufficiently large overrun or a NONPACKREQ may
1837 * prevent CTXTDONE from ever asserting, so we must
1838 * poll for these statuses too.
1839 */
1840 check_overrun;
1841 test SSTAT2, NONPACKREQ jz return;
1842 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
1843 /* FALLTHROUGH */
1844
1845 pkt_ctxt_done:
1846 check_overrun;
1847 or LONGJMP_ADDR[1], INVALID_ADDR;
1848 /*
1849 * If status has been received, it is safe to skip
1850 * the check to see if another FIFO is active because
1851 * LAST_SEG_DONE has been observed. However, we check
1852 * the FIFO anyway since it costs us only one extra
1853 * instruction to leverage common code to perform the
1854 * SCB completion.
1855 */
1856 dec SCB_FIFO_USE_COUNT;
1857 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
1858 mvi DFFSXFRCTL, CLRCHN ret;
1859 END_CRITICAL;
1860
1861 /*
1862 * Must wait until CDB xfer is over before issuing the
1863 * clear channel.
1864 */
1865 pkt_handle_cdb:
1866 call setjmp;
1867 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
1868 or LONGJMP_ADDR[1], INVALID_ADDR;
1869 mvi DFFSXFRCTL, CLRCHN ret;
1870
1871 /*
1872 * Watch over the status transfer. Our host sense buffer is
1873 * large enough to take the maximum allowed status packet.
1874 * None-the-less, we must still catch and report overruns to
1875 * the host. Additionally, properly catch unexpected non-packet
1876 * phases that are typically caused by CRC errors in status packet
1877 * transmission.
1878 */
1879 pkt_handle_status:
1880 call setjmp;
1881 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
1882 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq;
1883 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
1884 pkt_status_IU_done:
1885 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1886 or DFCNTRL, FIFOFLUSH;
1887 }
1888 test DFSTATUS, FIFOEMP jz return;
1889 BEGIN_CRITICAL;
1890 or LONGJMP_ADDR[1], INVALID_ADDR;
1891 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE;
1892 or SCB_CONTROL, STATUS_RCVD;
1893 jmp pkt_complete_scb_if_fifos_idle;
1894 END_CRITICAL;
1895 pkt_status_check_overrun:
1896 /*
1897 * Status PKT overruns are uncerimoniously recovered with a
1898 * bus reset. If we've overrun, let the host know so that
1899 * recovery can be performed.
1900 *
1901 * LAST_SEG_DONE has been observed. If either CTXTDONE or
1902 * a NONPACKREQ phase change have occurred and the FIFO is
1903 * empty, there is no overrun.
1904 */
1905 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun;
1906 test SEQINTSRC, CTXTDONE jz . + 2;
1907 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done;
1908 test SCSIPHASE, ~DATA_PHASE_MASK jz return;
1909 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq;
1910 pkt_status_report_overrun:
1911 SET_SEQINTCODE(STATUS_OVERRUN)
1912 /* SEQUENCER RESTARTED */
1913 pkt_status_check_nonpackreq:
1914 /*
1915 * CTXTDONE may be held off if a NONPACKREQ is associated with
1916 * the current context. If a NONPACKREQ is observed, decide
1917 * if it is for the current context. If it is for the current
1918 * context, we must defer NONPACKREQ processing until all data
1919 * has transferred to the host.
1920 */
1921 test SCSIPHASE, ~DATA_PHASE_MASK jz return;
1922 test SCSISIGO, ATNO jnz . + 2;
1923 test SSTAT2, NONPACKREQ jz return;
1924 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done;
1925 test DFSTATUS, FIFOEMP jz return;
1926 /*
1927 * The unexpected nonpkt phase handler assumes that any
1928 * data channel use will have a FIFO reference count. It
1929 * turns out that the status handler doesn't need a refernce
1930 * count since the status received flag, and thus completion
1931 * processing, cannot be set until the handler is finished.
1932 * We increment the count here to make the nonpkt handler
1933 * happy.
1934 */
1935 inc SCB_FIFO_USE_COUNT;
1936 /* FALLTHROUGH */
1937
1938 /*
1939 * Nonpackreq is a polled status. It can come true in three situations:
1940 * we have received an L_Q, we have sent one or more L_Qs, or there is no
1941 * L_Q context associated with this REQ (REQ occurs immediately after a
1942 * (re)selection). Routines that know that the context responsible for this
1943 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the
1944 * top level idle loop, we exhaust all active contexts prior to determining that
1945 * we simply do not have the full I_T_L_Q for this phase.
1946 */
1947 unexpected_nonpkt_phase_find_ctxt:
1948 /*
1949 * This nonpackreq is most likely associated with one of the tags
1950 * in a FIFO or an outgoing LQ. Only treat it as an I_T only
1951 * nonpackreq if we've cleared out the FIFOs and handled any
1952 * pending SELDO.
1953 */
1954 SET_SRC_MODE M_SCSI;
1955 SET_DST_MODE M_SCSI;
1956 and A, FIFO1FREE|FIFO0FREE, DFFSTAT;
1957 cmp A, FIFO1FREE|FIFO0FREE jne return;
1958 test SSTAT0, SELDO jnz return;
1959 mvi SCBPTR[1], SCB_LIST_NULL;
1960 unexpected_nonpkt_phase:
1961 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1962 jnz unexpected_nonpkt_mode_cleared;
1963 SET_SRC_MODE M_DFF0;
1964 SET_DST_MODE M_DFF0;
1965 or LONGJMP_ADDR[1], INVALID_ADDR;
1966 dec SCB_FIFO_USE_COUNT;
1967 mvi DFFSXFRCTL, CLRCHN;
1968 unexpected_nonpkt_mode_cleared:
1969 mvi CLRSINT2, CLRNONPACKREQ;
1970 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
1971 SET_SEQINTCODE(ENTERING_NONPACK)
1972 jmp ITloop;
1973
1974 illegal_phase:
1975 SET_SEQINTCODE(ILLEGAL_PHASE)
1976 jmp ITloop;
1977
1978 /*
1979 * We have entered an overrun situation. If we have working
1980 * BITBUCKET, flip that on and let the hardware eat any overrun
1981 * data. Otherwise use an overrun buffer in the host to simulate
1982 * BITBUCKET.
1983 */
1984 pkt_handle_overrun_inc_use_count:
1985 inc SCB_FIFO_USE_COUNT;
1986 pkt_handle_overrun:
1987 SET_SEQINTCODE(CFG4OVERRUN)
1988 call freeze_queue;
1989 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
1990 or DFFSXFRCTL, DFFBITBUCKET;
1991 SET_SRC_MODE M_DFF1;
1992 SET_DST_MODE M_DFF1;
1993 } else {
1994 call load_overrun_buf;
1995 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
1996 }
1997 call setjmp;
1998 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
1999 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
2000 call load_overrun_buf;
2001 or DFCNTRL, PRELOADEN;
2002 overrun_load_done:
2003 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
2004 } else {
2005 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
2006 }
2007 test SSTAT2, NONPACKREQ jz return;
2008 pkt_overrun_end:
2009 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
2010 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
2011 dec SCB_FIFO_USE_COUNT;
2012 or LONGJMP_ADDR[1], INVALID_ADDR;
2013 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2014 mvi DFFSXFRCTL, CLRCHN ret;
2015
2016 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
2017 load_overrun_buf:
2018 /*
2019 * Load a dummy segment if preload space is available.
2020 */
2021 mov HADDR[0], SHARED_DATA_ADDR;
2022 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
2023 mov ACCUM_SAVE, A;
2024 clr A;
2025 adc HADDR[2], A, SHARED_DATA_ADDR[2];
2026 adc HADDR[3], A, SHARED_DATA_ADDR[3];
2027 mov A, ACCUM_SAVE;
2028 bmov HADDR[4], ALLZEROS, 4;
2029 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
2030 clr HCNT[0];
2031 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
2032 clr HCNT[2] ret;
2033 }
2034