mm.c revision 1.14 1 /* $NetBSD: mm.c,v 1.14 2011/06/12 03:35:51 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2008, 2010 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Christos Zoulas, Joerg Sonnenberger and Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Special /dev/{mem,kmem,zero,null} memory devices.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: mm.c,v 1.14 2011/06/12 03:35:51 rmind Exp $");
38
39 #include "opt_compat_netbsd.h"
40
41 #include <sys/param.h>
42 #include <sys/conf.h>
43 #include <sys/ioctl.h>
44 #include <sys/mman.h>
45 #include <sys/uio.h>
46 #include <sys/termios.h>
47
48 #include <dev/mm.h>
49
50 #include <uvm/uvm_extern.h>
51
52 static void * dev_zero_page __read_mostly;
53 static kmutex_t dev_mem_lock __cacheline_aligned;
54 static vaddr_t dev_mem_addr __read_mostly;
55
56 static dev_type_read(mm_readwrite);
57 static dev_type_ioctl(mm_ioctl);
58 static dev_type_mmap(mm_mmap);
59 static dev_type_ioctl(mm_ioctl);
60
61 const struct cdevsw mem_cdevsw = {
62 #ifdef __HAVE_MM_MD_OPEN
63 mm_md_open,
64 #else
65 nullopen,
66 #endif
67 nullclose, mm_readwrite, mm_readwrite,
68 mm_ioctl, nostop, notty, nopoll, mm_mmap, nokqfilter,
69 D_MPSAFE
70 };
71
72 #ifdef pmax /* XXX */
73 const struct cdevsw mem_ultrix_cdevsw = {
74 nullopen, nullclose, mm_readwrite, mm_readwrite, mm_ioctl,
75 nostop, notty, nopoll, mm_mmap, nokqfilter, D_MPSAFE
76 };
77 #endif
78
79 /*
80 * mm_init: initialize memory device driver.
81 */
82 void
83 mm_init(void)
84 {
85 vaddr_t pg;
86
87 mutex_init(&dev_mem_lock, MUTEX_DEFAULT, IPL_NONE);
88
89 /* Read-only zero-page. */
90 pg = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
91 KASSERT(pg != 0);
92 #if 0
93 pmap_protect(pmap_kernel(), pg, pg + PAGE_SIZE, VM_PROT_READ);
94 #endif
95 pmap_update(pmap_kernel());
96 dev_zero_page = (void *)pg;
97
98 #ifndef __HAVE_MM_MD_CACHE_ALIASING
99 /* KVA for mappings during I/O. */
100 dev_mem_addr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
101 UVM_KMF_VAONLY|UVM_KMF_WAITVA);
102 KASSERT(dev_mem_addr != 0);
103 #else
104 dev_mem_addr = 0;
105 #endif
106 }
107
108
109 /*
110 * dev_mem_getva: get a special virtual address. If architecture requires,
111 * allocate VA according to PA, which avoids cache-aliasing issues. Use a
112 * constant, general mapping address otherwise.
113 */
114 static inline vaddr_t
115 dev_mem_getva(paddr_t pa)
116 {
117 #ifdef __HAVE_MM_MD_CACHE_ALIASING
118 const vsize_t coloroff = trunc_page(pa) & ptoa(uvmexp.colormask);
119 const vaddr_t kva = uvm_km_alloc(kernel_map, PAGE_SIZE + coloroff,
120 ptoa(uvmexp.ncolors), UVM_KMF_VAONLY | UVM_KMF_WAITVA);
121
122 return kva + coloroff;
123 #else
124 return dev_mem_addr;
125 #endif
126 }
127
128 static inline void
129 dev_mem_relva(paddr_t pa, vaddr_t va)
130 {
131 #ifdef __HAVE_MM_MD_CACHE_ALIASING
132 const vsize_t coloroff = trunc_page(pa) & ptoa(uvmexp.colormask);
133 const vaddr_t origva = va - coloroff;
134
135 uvm_km_free(kernel_map, origva, PAGE_SIZE + coloroff, UVM_KMF_VAONLY);
136 #else
137 KASSERT(dev_mem_addr == va);
138 #endif
139 }
140
141 /*
142 * dev_kmem_readwrite: helper for DEV_MEM (/dev/mem) case of R/W.
143 */
144 static int
145 dev_mem_readwrite(struct uio *uio, struct iovec *iov)
146 {
147 paddr_t paddr;
148 vaddr_t vaddr;
149 vm_prot_t prot;
150 size_t len, offset;
151 bool have_direct;
152 int error;
153
154 /* Check for wrap around. */
155 if ((intptr_t)uio->uio_offset != uio->uio_offset) {
156 return EFAULT;
157 }
158 paddr = uio->uio_offset & ~PAGE_MASK;
159 prot = (uio->uio_rw == UIO_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
160 error = mm_md_physacc(paddr, prot);
161 if (error) {
162 return error;
163 }
164 offset = uio->uio_offset & PAGE_MASK;
165 len = MIN(uio->uio_resid, PAGE_SIZE - offset);
166
167 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
168 /* Is physical address directly mapped? Return VA. */
169 have_direct = mm_md_direct_mapped_phys(paddr, &vaddr);
170 #else
171 have_direct = false;
172 #endif
173 if (!have_direct) {
174 /* Get a special virtual address. */
175 const vaddr_t va = dev_mem_getva(paddr);
176
177 /* Map selected KVA to physical address. */
178 mutex_enter(&dev_mem_lock);
179 pmap_kenter_pa(va, paddr, prot, 0);
180 pmap_update(pmap_kernel());
181
182 /* Perform I/O. */
183 vaddr = va + offset;
184 error = uiomove((void *)vaddr, len, uio);
185
186 /* Unmap, flush before unlock. */
187 pmap_kremove(va, PAGE_SIZE);
188 pmap_update(pmap_kernel());
189 mutex_exit(&dev_mem_lock);
190
191 /* "Release" the virtual address. */
192 dev_mem_relva(paddr, va);
193 } else {
194 /* Direct map, just perform I/O. */
195 vaddr += offset;
196 error = uiomove((void *)vaddr, len, uio);
197 }
198 return error;
199 }
200
201 /*
202 * dev_kmem_readwrite: helper for DEV_KMEM (/dev/kmem) case of R/W.
203 */
204 static int
205 dev_kmem_readwrite(struct uio *uio, struct iovec *iov)
206 {
207 void *addr;
208 size_t len, offset;
209 vm_prot_t prot;
210 int error;
211 bool md_kva;
212
213 /* Check for wrap around. */
214 addr = (void *)(intptr_t)uio->uio_offset;
215 if ((uintptr_t)addr != uio->uio_offset) {
216 return EFAULT;
217 }
218 /*
219 * Handle non-page aligned offset.
220 * Otherwise, we operate in page-by-page basis.
221 */
222 offset = uio->uio_offset & PAGE_MASK;
223 len = MIN(uio->uio_resid, PAGE_SIZE - offset);
224 prot = (uio->uio_rw == UIO_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
225
226 md_kva = false;
227
228 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_IO
229 paddr_t paddr;
230 /* MD case: is this is a directly mapped address? */
231 if (mm_md_direct_mapped_io(addr, &paddr)) {
232 /* If so, validate physical address. */
233 error = mm_md_physacc(paddr, prot);
234 if (error) {
235 return error;
236 }
237 md_kva = true;
238 }
239 #endif
240 if (!md_kva) {
241 bool checked = false;
242
243 #ifdef __HAVE_MM_MD_KERNACC
244 /* MD check for the address. */
245 error = mm_md_kernacc(addr, prot, &checked);
246 if (error) {
247 return error;
248 }
249 #endif
250 /* UVM check for the address (unless MD indicated to not). */
251 if (!checked && !uvm_kernacc(addr, len, prot)) {
252 return EFAULT;
253 }
254 }
255 error = uiomove(addr, len, uio);
256 return error;
257 }
258
259 /*
260 * dev_zero_readwrite: helper for DEV_ZERO (/dev/null) case of R/W.
261 */
262 static inline int
263 dev_zero_readwrite(struct uio *uio, struct iovec *iov)
264 {
265 size_t len;
266
267 /* Nothing to do for the write case. */
268 if (uio->uio_rw == UIO_WRITE) {
269 uio->uio_resid = 0;
270 return 0;
271 }
272 /*
273 * Read in page-by-page basis, caller will continue.
274 * Cut appropriately for a single/last-iteration cases.
275 */
276 len = MIN(iov->iov_len, PAGE_SIZE);
277 return uiomove(dev_zero_page, len, uio);
278 }
279
280 /*
281 * mm_readwrite: general memory R/W function.
282 */
283 static int
284 mm_readwrite(dev_t dev, struct uio *uio, int flags)
285 {
286 struct iovec *iov;
287 int error;
288
289 #ifdef __HAVE_MM_MD_READWRITE
290 /* If defined - there are extra MD cases. */
291 switch (minor(dev)) {
292 case DEV_MEM:
293 case DEV_KMEM:
294 case DEV_NULL:
295 case DEV_ZERO:
296 #if defined(COMPAT_16) && defined(__arm)
297 case _DEV_ZERO_oARM:
298 #endif
299 break;
300 default:
301 return mm_md_readwrite(dev, uio);
302 }
303 #endif
304 error = 0;
305 while (uio->uio_resid > 0 && error == 0) {
306 iov = uio->uio_iov;
307 if (iov->iov_len == 0) {
308 /* Processed; next I/O vector. */
309 uio->uio_iov++;
310 uio->uio_iovcnt--;
311 KASSERT(uio->uio_iovcnt >= 0);
312 continue;
313 }
314 /* Helper functions will process in page-by-page basis. */
315 switch (minor(dev)) {
316 case DEV_MEM:
317 error = dev_mem_readwrite(uio, iov);
318 break;
319 case DEV_KMEM:
320 error = dev_kmem_readwrite(uio, iov);
321 break;
322 case DEV_NULL:
323 if (uio->uio_rw == UIO_WRITE) {
324 uio->uio_resid = 0;
325 }
326 /* Break directly out of the loop. */
327 return 0;
328 #if defined(COMPAT_16) && defined(__arm)
329 case _DEV_ZERO_oARM:
330 #endif
331 case DEV_ZERO:
332 error = dev_zero_readwrite(uio, iov);
333 break;
334 default:
335 error = ENXIO;
336 break;
337 }
338 }
339 return error;
340 }
341
342 /*
343 * mm_mmap: general mmap() handler.
344 */
345 static paddr_t
346 mm_mmap(dev_t dev, off_t off, int acc)
347 {
348 vm_prot_t prot;
349
350 #ifdef __HAVE_MM_MD_MMAP
351 /* If defined - there are extra mmap() MD cases. */
352 switch (minor(dev)) {
353 case DEV_MEM:
354 case DEV_KMEM:
355 case DEV_NULL:
356 #if defined(COMPAT_16) && defined(__arm)
357 case _DEV_ZERO_oARM:
358 #endif
359 case DEV_ZERO:
360 break;
361 default:
362 return mm_md_mmap(dev, off, acc);
363 }
364 #endif
365 /*
366 * /dev/null does not make sense, /dev/kmem is volatile and
367 * /dev/zero is handled in mmap already.
368 */
369 if (minor(dev) != DEV_MEM) {
370 return -1;
371 }
372
373 prot = 0;
374 if (acc & PROT_EXEC)
375 prot |= VM_PROT_EXECUTE;
376 if (acc & PROT_READ)
377 prot |= VM_PROT_READ;
378 if (acc & PROT_WRITE)
379 prot |= VM_PROT_WRITE;
380
381 /* Validate the physical address. */
382 if (mm_md_physacc(off, prot) != 0) {
383 return -1;
384 }
385 return off >> PGSHIFT;
386 }
387
388 static int
389 mm_ioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
390 {
391
392 switch (cmd) {
393 case FIONBIO:
394 /* We never block anyway. */
395 return 0;
396
397 case FIOSETOWN:
398 case FIOGETOWN:
399 case TIOCGPGRP:
400 case TIOCSPGRP:
401 case TIOCGETA:
402 return ENOTTY;
403
404 case FIOASYNC:
405 if ((*(int *)data) == 0) {
406 return 0;
407 }
408 /* FALLTHROUGH */
409 default:
410 return EOPNOTSUPP;
411 }
412 }
413