Home | History | Annotate | Line # | Download | only in nand
      1  1.2  andvar /*	$NetBSD: hamming.c,v 1.2 2021/12/07 21:37:37 andvar Exp $	*/
      2  1.1   ahoka 
      3  1.1   ahoka /*
      4  1.1   ahoka  * Copyright (c) 2008, Atmel Corporation
      5  1.1   ahoka  *
      6  1.1   ahoka  * All rights reserved.
      7  1.1   ahoka  *
      8  1.1   ahoka  * Redistribution and use in source and binary forms, with or without
      9  1.1   ahoka  * modification, are permitted provided that the following conditions are met:
     10  1.1   ahoka  *
     11  1.1   ahoka  * - Redistributions of source code must retain the above copyright notice,
     12  1.1   ahoka  * this list of conditions and the disclaimer below.
     13  1.1   ahoka  *
     14  1.1   ahoka  * Atmel's name may not be used to endorse or promote products derived from
     15  1.1   ahoka  * this software without specific prior written permission.
     16  1.1   ahoka  *
     17  1.1   ahoka  * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
     18  1.1   ahoka  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     19  1.1   ahoka  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
     20  1.1   ahoka  * DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  1.1   ahoka  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22  1.1   ahoka  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
     23  1.1   ahoka  * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     24  1.1   ahoka  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     25  1.1   ahoka  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
     26  1.1   ahoka  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  1.1   ahoka  */
     28  1.1   ahoka 
     29  1.1   ahoka #include <sys/cdefs.h>
     30  1.2  andvar __KERNEL_RCSID(0, "$NetBSD: hamming.c,v 1.2 2021/12/07 21:37:37 andvar Exp $");
     31  1.1   ahoka 
     32  1.1   ahoka #include <sys/param.h>
     33  1.1   ahoka #include <lib/libkern/libkern.h>
     34  1.1   ahoka #include "hamming.h"
     35  1.1   ahoka 
     36  1.1   ahoka /**
     37  1.1   ahoka  * Calculates the 22-bit hamming code for a 256-bytes block of data.
     38  1.1   ahoka  * \param data  Data buffer to calculate code for.
     39  1.1   ahoka  * \param code  Pointer to a buffer where the code should be stored.
     40  1.1   ahoka  */
     41  1.1   ahoka void
     42  1.1   ahoka hamming_compute_256(const uint8_t *data, uint8_t *code)
     43  1.1   ahoka {
     44  1.1   ahoka 	unsigned int i;
     45  1.1   ahoka 	uint8_t column_sum = 0;
     46  1.1   ahoka 	uint8_t even_line_code = 0;
     47  1.1   ahoka 	uint8_t odd_line_code = 0;
     48  1.1   ahoka 	uint8_t even_column_code = 0;
     49  1.1   ahoka 	uint8_t odd_column_code = 0;
     50  1.1   ahoka 
     51  1.1   ahoka 	/*-
     52  1.1   ahoka 	 * Xor all bytes together to get the column sum;
     53  1.1   ahoka 	 * At the same time, calculate the even and odd line codes
     54  1.1   ahoka 	 */
     55  1.1   ahoka 	for (i = 0; i < 256; i++) {
     56  1.1   ahoka 		column_sum ^= data[i];
     57  1.1   ahoka 
     58  1.1   ahoka 		/*-
     59  1.1   ahoka 		 * If the xor sum of the byte is 0, then this byte has no
     60  1.1   ahoka 		 * incidence on the computed code; so check if the sum is 1.
     61  1.1   ahoka 		 */
     62  1.1   ahoka 		if ((popcount(data[i]) & 1) == 1) {
     63  1.1   ahoka 			/*-
     64  1.1   ahoka 			 * Parity groups are formed by forcing a particular
     65  1.1   ahoka 			 * index bit to 0 (even) or 1 (odd).
     66  1.1   ahoka 			 * Example on one byte:
     67  1.1   ahoka 			 *
     68  1.1   ahoka 			 * bits (dec)  7   6   5   4   3   2   1   0
     69  1.1   ahoka 			 *      (bin) 111 110 101 100 011 010 001 000
     70  1.1   ahoka 			 *                            '---'---'---'----------.
     71  1.1   ahoka 			 *                                                   |
     72  1.1   ahoka 			 * groups P4' ooooooooooooooo eeeeeeeeeeeeeee P4     |
     73  1.1   ahoka 			 *        P2' ooooooo eeeeeee ooooooo eeeeeee P2     |
     74  1.1   ahoka 			 *        P1' ooo eee ooo eee ooo eee ooo eee P1     |
     75  1.1   ahoka 			 *                                                   |
     76  1.1   ahoka 			 * We can see that:                                  |
     77  1.1   ahoka 			 *  - P4  -> bit 2 of index is 0 --------------------'
     78  1.1   ahoka 			 *  - P4' -> bit 2 of index is 1.
     79  1.1   ahoka 			 *  - P2  -> bit 1 of index if 0.
     80  1.1   ahoka 			 *  - etc...
     81  1.1   ahoka 			 * We deduce that a bit position has an impact on all
     82  1.1   ahoka 			 * even Px if the log2(x)nth bit of its index is 0
     83  1.1   ahoka 			 *     ex: log2(4) = 2,
     84  1.1   ahoka 			 * bit2 of the index must be 0 (-> 0 1 2 3)
     85  1.1   ahoka 			 * and on all odd Px' if the log2(x)nth bit
     86  1.1   ahoka 			 * of its index is 1
     87  1.1   ahoka 			 *     ex: log2(2) = 1,
     88  1.1   ahoka 			 * bit1 of the index must be 1 (-> 0 1 4 5)
     89  1.1   ahoka 			 *
     90  1.1   ahoka 			 * As such, we calculate all the possible Px and Px'
     91  1.1   ahoka 			 * values at the same time in two variables,
     92  1.1   ahoka 			 * even_line_code and odd_line_code, such as
     93  1.1   ahoka 			 *     even_line_code bits: P128  P64  P32
     94  1.1   ahoka 			 *                        P16  P8  P4  P2  P1
     95  1.1   ahoka 			 *     odd_line_code  bits: P128' P64' P32' P16'
     96  1.1   ahoka 			 *                        P8' P4' P2' P1'
     97  1.1   ahoka 			 */
     98  1.1   ahoka 			even_line_code ^= (255 - i);
     99  1.1   ahoka 			odd_line_code ^= i;
    100  1.1   ahoka 		}
    101  1.1   ahoka 	}
    102  1.1   ahoka 
    103  1.1   ahoka 	/*-
    104  1.1   ahoka 	 * At this point, we have the line parities, and the column sum.
    105  1.2  andvar 	 * First, We must calculate the parity group values on the column sum.
    106  1.1   ahoka 	 */
    107  1.1   ahoka 	for (i = 0; i < 8; i++) {
    108  1.1   ahoka 		if (column_sum & 1) {
    109  1.1   ahoka 			even_column_code ^= (7 - i);
    110  1.1   ahoka 			odd_column_code ^= i;
    111  1.1   ahoka 		}
    112  1.1   ahoka 		column_sum >>= 1;
    113  1.1   ahoka 	}
    114  1.1   ahoka 
    115  1.1   ahoka 	/*-
    116  1.1   ahoka 	 * Now, we must interleave the parity values,
    117  1.1   ahoka 	 * to obtain the following layout:
    118  1.1   ahoka 	 * Code[0] = Line1
    119  1.1   ahoka 	 * Code[1] = Line2
    120  1.1   ahoka 	 * Code[2] = Column
    121  1.1   ahoka 	 * Line = Px' Px P(x-1)- P(x-1) ...
    122  1.1   ahoka 	 * Column = P4' P4 P2' P2 P1' P1 PadBit PadBit
    123  1.1   ahoka 	 */
    124  1.1   ahoka 	code[0] = 0;
    125  1.1   ahoka 	code[1] = 0;
    126  1.1   ahoka 	code[2] = 0;
    127  1.1   ahoka 
    128  1.1   ahoka 	for (i = 0; i < 4; i++) {
    129  1.1   ahoka 		code[0] <<= 2;
    130  1.1   ahoka 		code[1] <<= 2;
    131  1.1   ahoka 		code[2] <<= 2;
    132  1.1   ahoka 
    133  1.1   ahoka 		/* Line 1 */
    134  1.1   ahoka 		if ((odd_line_code & 0x80) != 0) {
    135  1.1   ahoka 
    136  1.1   ahoka 			code[0] |= 2;
    137  1.1   ahoka 		}
    138  1.1   ahoka 		if ((even_line_code & 0x80) != 0) {
    139  1.1   ahoka 
    140  1.1   ahoka 			code[0] |= 1;
    141  1.1   ahoka 		}
    142  1.1   ahoka 
    143  1.1   ahoka 		/* Line 2 */
    144  1.1   ahoka 		if ((odd_line_code & 0x08) != 0) {
    145  1.1   ahoka 
    146  1.1   ahoka 			code[1] |= 2;
    147  1.1   ahoka 		}
    148  1.1   ahoka 		if ((even_line_code & 0x08) != 0) {
    149  1.1   ahoka 
    150  1.1   ahoka 			code[1] |= 1;
    151  1.1   ahoka 		}
    152  1.1   ahoka 
    153  1.1   ahoka 		/* Column */
    154  1.1   ahoka 		if ((odd_column_code & 0x04) != 0) {
    155  1.1   ahoka 
    156  1.1   ahoka 			code[2] |= 2;
    157  1.1   ahoka 		}
    158  1.1   ahoka 		if ((even_column_code & 0x04) != 0) {
    159  1.1   ahoka 
    160  1.1   ahoka 			code[2] |= 1;
    161  1.1   ahoka 		}
    162  1.1   ahoka 
    163  1.1   ahoka 		odd_line_code <<= 1;
    164  1.1   ahoka 		even_line_code <<= 1;
    165  1.1   ahoka 		odd_column_code <<= 1;
    166  1.1   ahoka 		even_column_code <<= 1;
    167  1.1   ahoka 	}
    168  1.1   ahoka 
    169  1.1   ahoka 	/* Invert codes (linux compatibility) */
    170  1.1   ahoka 	code[0] = ~code[0];
    171  1.1   ahoka 	code[1] = ~code[1];
    172  1.1   ahoka 	code[2] = ~code[2];
    173  1.1   ahoka }
    174  1.1   ahoka 
    175  1.1   ahoka /**
    176  1.1   ahoka  * Verifies and corrects a 256-bytes block of data using the given 22-bits
    177  1.1   ahoka  * hamming code.
    178  1.1   ahoka  * Returns 0 if there is no error, otherwise returns a HAMMING_ERROR code.
    179  1.1   ahoka  * param data  Data buffer to check.
    180  1.1   ahoka  * \param original_code  Hamming code to use for verifying the data.
    181  1.1   ahoka  */
    182  1.1   ahoka uint8_t
    183  1.1   ahoka hamming_correct_256(uint8_t *data, const uint8_t *original_code,
    184  1.1   ahoka     const uint8_t *computed_code)
    185  1.1   ahoka {
    186  1.1   ahoka 	/* Calculate new code */
    187  1.1   ahoka 	/* we allocate 4 bytes so we can use popcount32 in one step */
    188  1.1   ahoka 	uint8_t correction_code[4];
    189  1.1   ahoka 
    190  1.1   ahoka 	/* this byte should remain zero all the time */
    191  1.1   ahoka 	correction_code[3] = 0;
    192  1.1   ahoka 
    193  1.1   ahoka 	/* Xor both codes together */
    194  1.1   ahoka 	correction_code[0] = computed_code[0] ^ original_code[0];
    195  1.1   ahoka 	correction_code[1] = computed_code[1] ^ original_code[1];
    196  1.1   ahoka 	correction_code[2] = computed_code[2] ^ original_code[2];
    197  1.1   ahoka 
    198  1.1   ahoka 	/* If all bytes are 0, there is no error */
    199  1.1   ahoka 	if (*(uint32_t *)correction_code == 0) {
    200  1.1   ahoka 		return 0;
    201  1.1   ahoka 	}
    202  1.1   ahoka 	/* If there is a single bit error, there are 11 bits set to 1 */
    203  1.1   ahoka 	if (popcount32(*(uint32_t *)correction_code) == 11) {
    204  1.1   ahoka 		/* Get byte and bit indexes */
    205  1.1   ahoka 		uint8_t byte = correction_code[0] & 0x80;
    206  1.1   ahoka 		byte |= (correction_code[0] << 1) & 0x40;
    207  1.1   ahoka 		byte |= (correction_code[0] << 2) & 0x20;
    208  1.1   ahoka 		byte |= (correction_code[0] << 3) & 0x10;
    209  1.1   ahoka 
    210  1.1   ahoka 		byte |= (correction_code[1] >> 4) & 0x08;
    211  1.1   ahoka 		byte |= (correction_code[1] >> 3) & 0x04;
    212  1.1   ahoka 		byte |= (correction_code[1] >> 2) & 0x02;
    213  1.1   ahoka 		byte |= (correction_code[1] >> 1) & 0x01;
    214  1.1   ahoka 
    215  1.1   ahoka 		uint8_t bit = (correction_code[2] >> 5) & 0x04;
    216  1.1   ahoka 		bit |= (correction_code[2] >> 4) & 0x02;
    217  1.1   ahoka 		bit |= (correction_code[2] >> 3) & 0x01;
    218  1.1   ahoka 
    219  1.1   ahoka 		/* Correct bit */
    220  1.1   ahoka 		data[byte] ^= (1 << bit);
    221  1.1   ahoka 
    222  1.1   ahoka 		return HAMMING_ERROR_SINGLEBIT;
    223  1.1   ahoka 	}
    224  1.1   ahoka 	/* Check if ECC has been corrupted */
    225  1.1   ahoka 	if (popcount32(*(uint32_t *)correction_code) == 1) {
    226  1.1   ahoka 		return HAMMING_ERROR_ECC;
    227  1.1   ahoka 	} else {
    228  1.1   ahoka 		/* Otherwise, this is a multi-bit error */
    229  1.1   ahoka 		return HAMMING_ERROR_MULTIPLEBITS;
    230  1.1   ahoka 	}
    231  1.1   ahoka }
    232  1.1   ahoka 
    233