nand.c revision 1.1 1 1.1 ahoka /* $NetBSD: nand.c,v 1.1 2011/02/26 18:07:31 ahoka Exp $ */
2 1.1 ahoka
3 1.1 ahoka /*-
4 1.1 ahoka * Copyright (c) 2010 Department of Software Engineering,
5 1.1 ahoka * University of Szeged, Hungary
6 1.1 ahoka * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
7 1.1 ahoka * All rights reserved.
8 1.1 ahoka *
9 1.1 ahoka * This code is derived from software contributed to The NetBSD Foundation
10 1.1 ahoka * by the Department of Software Engineering, University of Szeged, Hungary
11 1.1 ahoka *
12 1.1 ahoka * Redistribution and use in source and binary forms, with or without
13 1.1 ahoka * modification, are permitted provided that the following conditions
14 1.1 ahoka * are met:
15 1.1 ahoka * 1. Redistributions of source code must retain the above copyright
16 1.1 ahoka * notice, this list of conditions and the following disclaimer.
17 1.1 ahoka * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 ahoka * notice, this list of conditions and the following disclaimer in the
19 1.1 ahoka * documentation and/or other materials provided with the distribution.
20 1.1 ahoka *
21 1.1 ahoka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 1.1 ahoka * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 1.1 ahoka * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 1.1 ahoka * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 1.1 ahoka * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 1.1 ahoka * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 1.1 ahoka * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 1.1 ahoka * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 1.1 ahoka * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 ahoka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 ahoka * SUCH DAMAGE.
32 1.1 ahoka */
33 1.1 ahoka
34 1.1 ahoka /* Common driver for NAND chips implementing the ONFI 2.2 specification */
35 1.1 ahoka
36 1.1 ahoka #include <sys/cdefs.h>
37 1.1 ahoka __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.1 2011/02/26 18:07:31 ahoka Exp $");
38 1.1 ahoka
39 1.1 ahoka #include "locators.h"
40 1.1 ahoka
41 1.1 ahoka #include <sys/param.h>
42 1.1 ahoka #include <sys/types.h>
43 1.1 ahoka #include <sys/device.h>
44 1.1 ahoka #include <sys/kmem.h>
45 1.1 ahoka #include <sys/sysctl.h>
46 1.1 ahoka
47 1.1 ahoka #include <dev/flash/flash.h>
48 1.1 ahoka #include <dev/nand/nand.h>
49 1.1 ahoka #include <dev/nand/onfi.h>
50 1.1 ahoka #include <dev/nand/hamming.h>
51 1.1 ahoka #include <dev/nand/nand_bbt.h>
52 1.1 ahoka #include <dev/nand/nand_crc.h>
53 1.1 ahoka
54 1.1 ahoka #include "opt_nand.h"
55 1.1 ahoka
56 1.1 ahoka int nand_match(device_t parent, cfdata_t match, void *aux);
57 1.1 ahoka void nand_attach(device_t parent, device_t self, void *aux);
58 1.1 ahoka int nand_detach(device_t device, int flags);
59 1.1 ahoka bool nand_shutdown(device_t self, int howto);
60 1.1 ahoka
61 1.1 ahoka int nand_print(void *aux, const char *pnp);
62 1.1 ahoka
63 1.1 ahoka static int nand_search(device_t parent, cfdata_t cf, const int *ldesc,
64 1.1 ahoka void *aux);
65 1.1 ahoka static void nand_address_row(device_t self, size_t row);
66 1.1 ahoka static void nand_address_column(device_t self, size_t row, size_t column);
67 1.1 ahoka static void nand_readid(device_t self, struct nand_chip *chip);
68 1.1 ahoka static void nand_read_parameter_page(device_t self, struct nand_chip *chip);
69 1.1 ahoka static const char *nand_midtoname(int id);
70 1.1 ahoka static int nand_scan_media(device_t self, struct nand_chip *chip);
71 1.1 ahoka static bool nand_check_wp(device_t self);
72 1.1 ahoka
73 1.1 ahoka CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
74 1.1 ahoka nand_match, nand_attach, nand_detach, NULL);
75 1.1 ahoka
76 1.1 ahoka #ifdef NAND_DEBUG
77 1.1 ahoka int nanddebug = NAND_DEBUG;
78 1.1 ahoka #endif
79 1.1 ahoka
80 1.1 ahoka int nand_cachesync_timeout = 1;
81 1.1 ahoka int nand_cachesync_nodenum;
82 1.1 ahoka
83 1.1 ahoka const struct nand_manufacturer nand_mfrs[] = {
84 1.1 ahoka { NAND_MFR_AMD, "AMD" },
85 1.1 ahoka { NAND_MFR_FUJITSU, "Fujitsu" },
86 1.1 ahoka { NAND_MFR_RENESAS, "Renesas" },
87 1.1 ahoka { NAND_MFR_STMICRO, "ST Micro" },
88 1.1 ahoka { NAND_MFR_MICRON, "Micron" },
89 1.1 ahoka { NAND_MFR_NATIONAL, "National" },
90 1.1 ahoka { NAND_MFR_TOSHIBA, "Toshiba" },
91 1.1 ahoka { NAND_MFR_HYNIX, "Hynix" },
92 1.1 ahoka { NAND_MFR_SAMSUNG, "Samsung" },
93 1.1 ahoka { NAND_MFR_UNKNOWN, "Unknown" }
94 1.1 ahoka };
95 1.1 ahoka
96 1.1 ahoka /* ARGSUSED */
97 1.1 ahoka int
98 1.1 ahoka nand_match(device_t parent, cfdata_t match, void *aux)
99 1.1 ahoka {
100 1.1 ahoka /* pseudo device, always attaches */
101 1.1 ahoka return 1;
102 1.1 ahoka }
103 1.1 ahoka
104 1.1 ahoka void
105 1.1 ahoka nand_attach(device_t parent, device_t self, void *aux)
106 1.1 ahoka {
107 1.1 ahoka struct nand_softc *sc = device_private(self);
108 1.1 ahoka struct nand_attach_args *naa = aux;
109 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
110 1.1 ahoka // struct flash_interface *flash_if;
111 1.1 ahoka // int i;
112 1.1 ahoka
113 1.1 ahoka sc->sc_dev = self;
114 1.1 ahoka sc->nand_dev = parent;
115 1.1 ahoka sc->nand_if = naa->naa_nand_if;
116 1.1 ahoka
117 1.1 ahoka // sc->nand_softc = device_private(parent);
118 1.1 ahoka
119 1.1 ahoka aprint_naive("\n");
120 1.1 ahoka // aprint_normal(": NAND flash memory\n");
121 1.1 ahoka
122 1.1 ahoka if (nand_check_wp(self)) {
123 1.1 ahoka aprint_error("NAND chip is write protected!\n");
124 1.1 ahoka return;
125 1.1 ahoka }
126 1.1 ahoka if (nand_scan_media(self, chip))
127 1.1 ahoka return;
128 1.1 ahoka
129 1.1 ahoka /* allocate cache */
130 1.1 ahoka chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
131 1.1 ahoka chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
132 1.1 ahoka
133 1.1 ahoka mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
134 1.1 ahoka
135 1.1 ahoka if (nand_sync_thread_start(self)) {
136 1.1 ahoka goto error;
137 1.1 ahoka }
138 1.1 ahoka
139 1.1 ahoka if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
140 1.1 ahoka aprint_error_dev(sc->sc_dev,
141 1.1 ahoka "couldn't establish power handler\n");
142 1.1 ahoka
143 1.1 ahoka #ifdef NAND_BBT
144 1.1 ahoka nand_bbt_init(self);
145 1.1 ahoka nand_bbt_scan(self);
146 1.1 ahoka #endif
147 1.1 ahoka
148 1.1 ahoka /*
149 1.1 ahoka * Attach all our devices
150 1.1 ahoka */
151 1.1 ahoka config_search_ia(nand_search, self, NULL, NULL);
152 1.1 ahoka
153 1.1 ahoka return;
154 1.1 ahoka error:
155 1.1 ahoka kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
156 1.1 ahoka kmem_free(chip->nc_page_cache, chip->nc_page_size);
157 1.1 ahoka mutex_destroy(&sc->sc_device_lock);
158 1.1 ahoka }
159 1.1 ahoka
160 1.1 ahoka static int
161 1.1 ahoka nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
162 1.1 ahoka {
163 1.1 ahoka struct nand_softc *sc = device_private(parent);
164 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
165 1.1 ahoka struct flash_interface *flash_if;
166 1.1 ahoka struct flash_attach_args faa;
167 1.1 ahoka
168 1.1 ahoka flash_if = kmem_alloc(sizeof(*flash_if), KM_SLEEP);
169 1.1 ahoka
170 1.1 ahoka flash_if->type = FLASH_TYPE_NAND;
171 1.1 ahoka
172 1.1 ahoka flash_if->read = nand_flash_read;
173 1.1 ahoka flash_if->write = nand_flash_write;
174 1.1 ahoka flash_if->erase = nand_flash_erase;
175 1.1 ahoka flash_if->block_isbad = nand_flash_isbad;
176 1.1 ahoka flash_if->block_markbad = nand_flash_markbad;
177 1.1 ahoka
178 1.1 ahoka flash_if->submit = nand_io_submit;
179 1.1 ahoka
180 1.1 ahoka flash_if->erasesize = chip->nc_block_size;
181 1.1 ahoka flash_if->page_size = chip->nc_page_size;
182 1.1 ahoka flash_if->writesize = chip->nc_page_size;
183 1.1 ahoka
184 1.1 ahoka flash_if->partition.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
185 1.1 ahoka
186 1.1 ahoka if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
187 1.1 ahoka flash_if->size = chip->nc_size -
188 1.1 ahoka flash_if->partition.part_offset;
189 1.1 ahoka flash_if->partition.part_size = flash_if->size;
190 1.1 ahoka } else {
191 1.1 ahoka flash_if->size = cf->cf_loc[FLASHBUSCF_SIZE];
192 1.1 ahoka flash_if->partition.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
193 1.1 ahoka }
194 1.1 ahoka
195 1.1 ahoka if (cf->cf_loc[FLASHBUSCF_READONLY])
196 1.1 ahoka flash_if->partition.part_flags = FLASH_PART_READONLY;
197 1.1 ahoka else
198 1.1 ahoka flash_if->partition.part_flags = 0;
199 1.1 ahoka
200 1.1 ahoka faa.flash_if = flash_if;
201 1.1 ahoka
202 1.1 ahoka if (config_match(parent, cf, &faa)) {
203 1.1 ahoka config_attach(parent, cf, &faa, nand_print);
204 1.1 ahoka return 0;
205 1.1 ahoka } else {
206 1.1 ahoka kmem_free(flash_if, sizeof(*flash_if));
207 1.1 ahoka }
208 1.1 ahoka
209 1.1 ahoka return 1;
210 1.1 ahoka }
211 1.1 ahoka
212 1.1 ahoka int
213 1.1 ahoka nand_detach(device_t self, int flags)
214 1.1 ahoka {
215 1.1 ahoka struct nand_softc *sc = device_private(self);
216 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
217 1.1 ahoka int ret = 0;
218 1.1 ahoka
219 1.1 ahoka #ifdef NAND_BBT
220 1.1 ahoka nand_bbt_detach(self);
221 1.1 ahoka #endif
222 1.1 ahoka nand_sync_thread_stop(self);
223 1.1 ahoka
224 1.1 ahoka /* free oob cache */
225 1.1 ahoka kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
226 1.1 ahoka kmem_free(chip->nc_page_cache, chip->nc_page_size);
227 1.1 ahoka kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
228 1.1 ahoka
229 1.1 ahoka mutex_destroy(&sc->sc_device_lock);
230 1.1 ahoka
231 1.1 ahoka pmf_device_deregister(sc->sc_dev);
232 1.1 ahoka
233 1.1 ahoka return ret;
234 1.1 ahoka }
235 1.1 ahoka
236 1.1 ahoka int
237 1.1 ahoka nand_print(void *aux, const char *pnp)
238 1.1 ahoka {
239 1.1 ahoka if (pnp != NULL)
240 1.1 ahoka aprint_normal("nand at %s\n", pnp);
241 1.1 ahoka
242 1.1 ahoka return UNCONF;
243 1.1 ahoka }
244 1.1 ahoka
245 1.1 ahoka device_t
246 1.1 ahoka nand_attach_mi(struct nand_interface *nand_if, device_t parent)
247 1.1 ahoka {
248 1.1 ahoka struct nand_attach_args arg;
249 1.1 ahoka
250 1.1 ahoka KASSERT(nand_if != NULL);
251 1.1 ahoka
252 1.1 ahoka arg.naa_nand_if = nand_if;
253 1.1 ahoka return config_found_ia(parent, "nandbus", &arg, nand_print);
254 1.1 ahoka }
255 1.1 ahoka
256 1.1 ahoka static const char *
257 1.1 ahoka nand_midtoname(int id)
258 1.1 ahoka {
259 1.1 ahoka int i;
260 1.1 ahoka
261 1.1 ahoka for (i = 0; nand_mfrs[i].id != 0; i++) {
262 1.1 ahoka if (nand_mfrs[i].id == id)
263 1.1 ahoka return nand_mfrs[i].name;
264 1.1 ahoka }
265 1.1 ahoka
266 1.1 ahoka KASSERT(nand_mfrs[i].id == 0);
267 1.1 ahoka
268 1.1 ahoka return nand_mfrs[i].name;
269 1.1 ahoka }
270 1.1 ahoka
271 1.1 ahoka #if 0
272 1.1 ahoka /* handle quirks here */
273 1.1 ahoka static void
274 1.1 ahoka nand_quirks(device_t self, struct nand_chip *chip)
275 1.1 ahoka {
276 1.1 ahoka /* this is an example only! */
277 1.1 ahoka switch (chip->nc_manf_id) {
278 1.1 ahoka case NAND_MFR_SAMSUNG:
279 1.1 ahoka if (chip->nc_dev_id == 0x00) {
280 1.1 ahoka /* do something only samsung chips need */
281 1.1 ahoka /* or */
282 1.1 ahoka /* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
283 1.1 ahoka }
284 1.1 ahoka }
285 1.1 ahoka
286 1.1 ahoka return;
287 1.1 ahoka }
288 1.1 ahoka #endif
289 1.1 ahoka
290 1.1 ahoka /**
291 1.1 ahoka * scan media to determine the chip's properties
292 1.1 ahoka * this function resets the device
293 1.1 ahoka */
294 1.1 ahoka static int
295 1.1 ahoka nand_scan_media(device_t self, struct nand_chip *chip)
296 1.1 ahoka {
297 1.1 ahoka struct nand_softc *sc = device_private(self);
298 1.1 ahoka struct nand_ecc *ecc;
299 1.1 ahoka uint8_t onfi_signature[4];
300 1.1 ahoka
301 1.1 ahoka nand_select(self, true);
302 1.1 ahoka nand_command(self, ONFI_RESET);
303 1.1 ahoka nand_select(self, false);
304 1.1 ahoka
305 1.1 ahoka nand_select(self, true);
306 1.1 ahoka nand_command(self, ONFI_READ_ID);
307 1.1 ahoka nand_address(self, 0x20);
308 1.1 ahoka nand_read_byte(self, &onfi_signature[0]);
309 1.1 ahoka nand_read_byte(self, &onfi_signature[1]);
310 1.1 ahoka nand_read_byte(self, &onfi_signature[2]);
311 1.1 ahoka nand_read_byte(self, &onfi_signature[3]);
312 1.1 ahoka nand_select(self, false);
313 1.1 ahoka
314 1.1 ahoka if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
315 1.1 ahoka onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
316 1.1 ahoka aprint_error_dev(self,
317 1.1 ahoka "device does not support the ONFI specification\n");
318 1.1 ahoka
319 1.1 ahoka return 1;
320 1.1 ahoka }
321 1.1 ahoka
322 1.1 ahoka nand_readid(self, chip);
323 1.1 ahoka
324 1.1 ahoka aprint_normal(": NAND Flash\n");
325 1.1 ahoka
326 1.1 ahoka aprint_debug_dev(self,
327 1.1 ahoka "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
328 1.1 ahoka chip->nc_manf_id,
329 1.1 ahoka nand_midtoname(chip->nc_manf_id),
330 1.1 ahoka chip->nc_dev_id);
331 1.1 ahoka
332 1.1 ahoka nand_read_parameter_page(self, chip);
333 1.1 ahoka
334 1.1 ahoka ecc = chip->nc_ecc = &sc->nand_if->ecc;
335 1.1 ahoka
336 1.1 ahoka /*
337 1.1 ahoka * calculate the place of ecc data in oob
338 1.1 ahoka * we try to be compatible with Linux here
339 1.1 ahoka */
340 1.1 ahoka switch (chip->nc_spare_size) {
341 1.1 ahoka case 8:
342 1.1 ahoka ecc->necc_offset = 0;
343 1.1 ahoka break;
344 1.1 ahoka case 16:
345 1.1 ahoka ecc->necc_offset = 0;
346 1.1 ahoka break;
347 1.1 ahoka case 64:
348 1.1 ahoka ecc->necc_offset = 40;
349 1.1 ahoka break;
350 1.1 ahoka case 128:
351 1.1 ahoka ecc->necc_offset = 80;
352 1.1 ahoka break;
353 1.1 ahoka default:
354 1.1 ahoka panic("OOB size is unexpected");
355 1.1 ahoka }
356 1.1 ahoka
357 1.1 ahoka ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
358 1.1 ahoka ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
359 1.1 ahoka
360 1.1 ahoka /* check if we fit in oob */
361 1.1 ahoka if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
362 1.1 ahoka panic("NAND ECC bits dont fit in OOB");
363 1.1 ahoka }
364 1.1 ahoka
365 1.1 ahoka /* TODO: mark free oob area available for file systems */
366 1.1 ahoka
367 1.1 ahoka chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
368 1.1 ahoka
369 1.1 ahoka /*
370 1.1 ahoka * calculate badblock marker offset in oob
371 1.1 ahoka * we try to be compatible with linux here
372 1.1 ahoka */
373 1.1 ahoka if (chip->nc_page_size > 512)
374 1.1 ahoka chip->nc_badmarker_offs = 0;
375 1.1 ahoka else
376 1.1 ahoka chip->nc_badmarker_offs = 5;
377 1.1 ahoka
378 1.1 ahoka /* Calculate page shift and mask */
379 1.1 ahoka chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
380 1.1 ahoka chip->nc_page_mask = ~(chip->nc_page_size - 1);
381 1.1 ahoka /* same for block */
382 1.1 ahoka chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
383 1.1 ahoka chip->nc_block_mask = ~(chip->nc_block_size - 1);
384 1.1 ahoka
385 1.1 ahoka /* look for quirks here if needed in future */
386 1.1 ahoka /* nand_quirks(self, chip); */
387 1.1 ahoka
388 1.1 ahoka return 0;
389 1.1 ahoka }
390 1.1 ahoka
391 1.1 ahoka static void
392 1.1 ahoka nand_readid(device_t self, struct nand_chip *chip)
393 1.1 ahoka {
394 1.1 ahoka nand_select(self, true);
395 1.1 ahoka nand_command(self, ONFI_READ_ID);
396 1.1 ahoka nand_address(self, 0x00);
397 1.1 ahoka nand_read_byte(self, &chip->nc_manf_id);
398 1.1 ahoka nand_read_byte(self, &chip->nc_dev_id);
399 1.1 ahoka nand_select(self, false);
400 1.1 ahoka }
401 1.1 ahoka
402 1.1 ahoka /* read the parameter page. TODO: check CRC! */
403 1.1 ahoka static void
404 1.1 ahoka nand_read_parameter_page(device_t self, struct nand_chip *chip)
405 1.1 ahoka {
406 1.1 ahoka struct onfi_parameter_page params;
407 1.1 ahoka uint8_t *bufp;
408 1.1 ahoka uint8_t vendor[13], model[21];
409 1.1 ahoka uint16_t crc;
410 1.1 ahoka int i;
411 1.1 ahoka
412 1.1 ahoka KASSERT(sizeof(params) == 256);
413 1.1 ahoka
414 1.1 ahoka nand_select(self, true);
415 1.1 ahoka nand_command(self, ONFI_READ_PARAMETER_PAGE);
416 1.1 ahoka nand_address(self, 0x00);
417 1.1 ahoka
418 1.1 ahoka nand_busy(self);
419 1.1 ahoka
420 1.1 ahoka bufp = (uint8_t *)¶ms;
421 1.1 ahoka for (i = 0; i < 256; i++) {
422 1.1 ahoka nand_read_byte(self, &bufp[i]);
423 1.1 ahoka }
424 1.1 ahoka nand_select(self, false);
425 1.1 ahoka
426 1.1 ahoka /* validate the parameter page with the crc */
427 1.1 ahoka crc = nand_crc16(bufp, 254);
428 1.1 ahoka
429 1.1 ahoka if (crc != params.param_integrity_crc) {
430 1.1 ahoka aprint_error_dev(self, "parameter page crc check failed\n");
431 1.1 ahoka /* TODO: we should read the next parameter page copy */
432 1.1 ahoka }
433 1.1 ahoka
434 1.1 ahoka /* strip manufacturer and model string */
435 1.1 ahoka strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
436 1.1 ahoka for (i = 11; i > 0 && vendor[i] == ' '; i--)
437 1.1 ahoka vendor[i] = 0;
438 1.1 ahoka strlcpy(model, params.param_model, sizeof(model));
439 1.1 ahoka for (i = 19; i > 0 && model[i] == ' '; i--)
440 1.1 ahoka model[i] = 0;
441 1.1 ahoka
442 1.1 ahoka aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
443 1.1 ahoka
444 1.1 ahoka aprint_normal_dev(self,
445 1.1 ahoka "page size: %u bytes, spare size: %u bytes, block size: %u bytes\n",
446 1.1 ahoka params.param_pagesize, params.param_sparesize,
447 1.1 ahoka params.param_blocksize * params.param_pagesize);
448 1.1 ahoka
449 1.1 ahoka aprint_normal_dev(self,
450 1.1 ahoka "LUN size: %u blocks, LUNs: %u, total storage size: %u MB\n",
451 1.1 ahoka params.param_lunsize, params.param_numluns,
452 1.1 ahoka params.param_blocksize * params.param_pagesize *
453 1.1 ahoka params.param_lunsize * params.param_numluns / 1024 / 1024);
454 1.1 ahoka
455 1.1 ahoka /* XXX TODO multiple LUNs */
456 1.1 ahoka if (__predict_false(params.param_numluns != 1))
457 1.1 ahoka panic("more than one LUNs are not supported yet!\n");
458 1.1 ahoka
459 1.1 ahoka chip->nc_size = params.param_pagesize * params.param_blocksize *
460 1.1 ahoka params.param_lunsize * params.param_numluns;
461 1.1 ahoka
462 1.1 ahoka chip->nc_page_size = params.param_pagesize;
463 1.1 ahoka chip->nc_block_pages = params.param_blocksize;
464 1.1 ahoka chip->nc_block_size = params.param_blocksize * params.param_pagesize;
465 1.1 ahoka chip->nc_spare_size = params.param_sparesize;
466 1.1 ahoka
467 1.1 ahoka /* the lower 4 bits contain the row address cycles */
468 1.1 ahoka chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
469 1.1 ahoka /* the upper 4 bits contain the column address cycles */
470 1.1 ahoka chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
471 1.1 ahoka
472 1.1 ahoka #ifdef NAND_VERBOSE
473 1.1 ahoka aprint_normal_dev(self, "column cycles: %d, row cycles: %d\n",
474 1.1 ahoka chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
475 1.1 ahoka #endif
476 1.1 ahoka
477 1.1 ahoka if (params.param_features & ONFI_FEATURE_16BIT)
478 1.1 ahoka chip->nc_flags |= NC_BUSWIDTH_16;
479 1.1 ahoka
480 1.1 ahoka if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
481 1.1 ahoka chip->nc_flags |= NC_EXTENDED_PARAM;
482 1.1 ahoka }
483 1.1 ahoka
484 1.1 ahoka /* ARGSUSED */
485 1.1 ahoka bool
486 1.1 ahoka nand_shutdown(device_t self, int howto)
487 1.1 ahoka {
488 1.1 ahoka return true;
489 1.1 ahoka }
490 1.1 ahoka
491 1.1 ahoka static void
492 1.1 ahoka nand_address_column(device_t self, size_t row, size_t column)
493 1.1 ahoka {
494 1.1 ahoka struct nand_softc *sc = device_private(self);
495 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
496 1.1 ahoka uint8_t i;
497 1.1 ahoka
498 1.1 ahoka DPRINTF(("addressing row: 0x%jx column: %zu\n",
499 1.1 ahoka (uintmax_t )row, column));
500 1.1 ahoka
501 1.1 ahoka /* XXX TODO */
502 1.1 ahoka row >>= chip->nc_page_shift;
503 1.1 ahoka // DPRINTF(("row address is: 0x%jx\n", (uintmax_t )row));
504 1.1 ahoka
505 1.1 ahoka /* Write the column (subpage) address */
506 1.1 ahoka if (chip->nc_flags & NC_BUSWIDTH_16)
507 1.1 ahoka column >>= 1;
508 1.1 ahoka for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
509 1.1 ahoka nand_address(self, column & 0xff);
510 1.1 ahoka
511 1.1 ahoka /* Write the row (page) address */
512 1.1 ahoka for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
513 1.1 ahoka nand_address(self, row & 0xff);
514 1.1 ahoka }
515 1.1 ahoka
516 1.1 ahoka static void
517 1.1 ahoka nand_address_row(device_t self, size_t row)
518 1.1 ahoka {
519 1.1 ahoka struct nand_softc *sc = device_private(self);
520 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
521 1.1 ahoka off_t i;
522 1.1 ahoka
523 1.1 ahoka // DPRINTF(("addressing row: %zu\n", row));
524 1.1 ahoka
525 1.1 ahoka /* XXX TODO */
526 1.1 ahoka row >>= chip->nc_page_shift;
527 1.1 ahoka
528 1.1 ahoka /* Write the row (page) address */
529 1.1 ahoka for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
530 1.1 ahoka nand_address(self, row & 0xff);
531 1.1 ahoka }
532 1.1 ahoka
533 1.1 ahoka static inline uint8_t
534 1.1 ahoka nand_get_status(device_t self)
535 1.1 ahoka {
536 1.1 ahoka uint8_t status;
537 1.1 ahoka
538 1.1 ahoka nand_command(self, ONFI_READ_STATUS);
539 1.1 ahoka nand_busy(self);
540 1.1 ahoka nand_read_byte(self, &status);
541 1.1 ahoka
542 1.1 ahoka return status;
543 1.1 ahoka }
544 1.1 ahoka
545 1.1 ahoka static bool
546 1.1 ahoka nand_check_wp(device_t self)
547 1.1 ahoka {
548 1.1 ahoka if (nand_get_status(self) & 0x80)
549 1.1 ahoka return false;
550 1.1 ahoka else
551 1.1 ahoka return true;
552 1.1 ahoka }
553 1.1 ahoka
554 1.1 ahoka static void
555 1.1 ahoka nand_prepare_read(device_t self, flash_addr_t row, flash_addr_t column)
556 1.1 ahoka {
557 1.1 ahoka nand_command(self, ONFI_READ);
558 1.1 ahoka nand_address_column(self, row, column);
559 1.1 ahoka nand_command(self, ONFI_READ_START);
560 1.1 ahoka
561 1.1 ahoka nand_busy(self);
562 1.1 ahoka }
563 1.1 ahoka
564 1.1 ahoka /* read a page with ecc correction */
565 1.1 ahoka int
566 1.1 ahoka nand_read_page(device_t self, size_t offset, uint8_t *data)
567 1.1 ahoka {
568 1.1 ahoka struct nand_softc *sc = device_private(self);
569 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
570 1.1 ahoka size_t b, bs, e, cs;
571 1.1 ahoka uint8_t *ecc;
572 1.1 ahoka int result;
573 1.1 ahoka
574 1.1 ahoka DPRINTF(("nand read page\n"));
575 1.1 ahoka
576 1.1 ahoka nand_prepare_read(self, offset, 0);
577 1.1 ahoka
578 1.1 ahoka bs = chip->nc_ecc->necc_block_size;
579 1.1 ahoka cs = chip->nc_ecc->necc_code_size;
580 1.1 ahoka
581 1.1 ahoka /* decide if we access by 8 or 16 bits */
582 1.1 ahoka if (chip->nc_flags & NC_BUSWIDTH_16) {
583 1.1 ahoka for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
584 1.1 ahoka nand_ecc_prepare(self, NAND_ECC_READ);
585 1.1 ahoka nand_read_buf_word(self, data + b, bs);
586 1.1 ahoka nand_ecc_compute(self, data + b,
587 1.1 ahoka chip->nc_ecc_cache + e);
588 1.1 ahoka }
589 1.1 ahoka } else {
590 1.1 ahoka for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
591 1.1 ahoka nand_ecc_prepare(self, NAND_ECC_READ);
592 1.1 ahoka nand_read_buf_byte(self, data + b, bs);
593 1.1 ahoka nand_ecc_compute(self, data + b,
594 1.1 ahoka chip->nc_ecc_cache + e);
595 1.1 ahoka }
596 1.1 ahoka }
597 1.1 ahoka
598 1.1 ahoka // nand_dump_data("page", data, chip->nc_page_size);
599 1.1 ahoka
600 1.1 ahoka nand_read_oob(self, offset, chip->nc_oob_cache);
601 1.1 ahoka ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
602 1.1 ahoka
603 1.1 ahoka /* useful for debugging new ecc drivers */
604 1.1 ahoka #if 0
605 1.1 ahoka printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
606 1.1 ahoka for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
607 1.1 ahoka printf("0x");
608 1.1 ahoka for (b = 0; b < cs; b++) {
609 1.1 ahoka printf("%.2hhx", ecc[e+b]);
610 1.1 ahoka }
611 1.1 ahoka printf(" 0x");
612 1.1 ahoka for (b = 0; b < cs; b++) {
613 1.1 ahoka printf("%.2hhx", chip->nc_ecc_cache[e+b]);
614 1.1 ahoka }
615 1.1 ahoka printf("\n");
616 1.1 ahoka }
617 1.1 ahoka printf("--------------\n");
618 1.1 ahoka #endif
619 1.1 ahoka
620 1.1 ahoka for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
621 1.1 ahoka result = nand_ecc_correct(self, data + b, ecc + e,
622 1.1 ahoka chip->nc_ecc_cache + e);
623 1.1 ahoka
624 1.1 ahoka switch (result) {
625 1.1 ahoka case NAND_ECC_OK:
626 1.1 ahoka break;
627 1.1 ahoka case NAND_ECC_CORRECTED:
628 1.1 ahoka aprint_error_dev(self,
629 1.1 ahoka "data corrected with ECC at page offset 0x%jx "
630 1.1 ahoka "block %zu\n", (uintmax_t)offset, b);
631 1.1 ahoka break;
632 1.1 ahoka case NAND_ECC_TWOBIT:
633 1.1 ahoka aprint_error_dev(self,
634 1.1 ahoka "uncorrectable ECC error at page offset 0x%jx "
635 1.1 ahoka "block %zu\n", (uintmax_t)offset, b);
636 1.1 ahoka return EIO;
637 1.1 ahoka break;
638 1.1 ahoka case NAND_ECC_INVALID:
639 1.1 ahoka aprint_error_dev(self,
640 1.1 ahoka "invalid ECC in oob at page offset 0x%jx "
641 1.1 ahoka "block %zu\n", (uintmax_t)offset, b);
642 1.1 ahoka return EIO;
643 1.1 ahoka break;
644 1.1 ahoka default:
645 1.1 ahoka panic("invalid ECC correction errno");
646 1.1 ahoka }
647 1.1 ahoka }
648 1.1 ahoka
649 1.1 ahoka return 0;
650 1.1 ahoka }
651 1.1 ahoka
652 1.1 ahoka static int
653 1.1 ahoka nand_program_page(device_t self, size_t page, const uint8_t *data)
654 1.1 ahoka {
655 1.1 ahoka struct nand_softc *sc = device_private(self);
656 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
657 1.1 ahoka size_t bs, cs, e, b;
658 1.1 ahoka uint8_t status;
659 1.1 ahoka uint8_t *ecc;
660 1.1 ahoka
661 1.1 ahoka nand_command(self, ONFI_PAGE_PROGRAM);
662 1.1 ahoka nand_address_column(self, page, 0);
663 1.1 ahoka
664 1.1 ahoka nand_busy(self);
665 1.1 ahoka
666 1.1 ahoka bs = chip->nc_ecc->necc_block_size;
667 1.1 ahoka cs = chip->nc_ecc->necc_code_size;
668 1.1 ahoka ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
669 1.1 ahoka
670 1.1 ahoka /* XXX code duplication */
671 1.1 ahoka /* decide if we access by 8 or 16 bits */
672 1.1 ahoka if (chip->nc_flags & NC_BUSWIDTH_16) {
673 1.1 ahoka for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
674 1.1 ahoka nand_ecc_prepare(self, NAND_ECC_WRITE);
675 1.1 ahoka nand_write_buf_word(self, data + b, bs);
676 1.1 ahoka nand_ecc_compute(self, data + b, ecc + e);
677 1.1 ahoka }
678 1.1 ahoka /* write oob with ecc correction code */
679 1.1 ahoka nand_write_buf_word(self, chip->nc_oob_cache,
680 1.1 ahoka chip->nc_spare_size);
681 1.1 ahoka } else {
682 1.1 ahoka for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
683 1.1 ahoka nand_ecc_prepare(self, NAND_ECC_WRITE);
684 1.1 ahoka nand_write_buf_byte(self, data + b, bs);
685 1.1 ahoka nand_ecc_compute(self, data + b, ecc + e);
686 1.1 ahoka }
687 1.1 ahoka /* write oob with ecc correction code */
688 1.1 ahoka nand_write_buf_byte(self, chip->nc_oob_cache,
689 1.1 ahoka chip->nc_spare_size);
690 1.1 ahoka }
691 1.1 ahoka
692 1.1 ahoka nand_command(self, ONFI_PAGE_PROGRAM_START);
693 1.1 ahoka
694 1.1 ahoka nand_busy(self);
695 1.1 ahoka
696 1.1 ahoka #if 0
697 1.1 ahoka printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
698 1.1 ahoka for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
699 1.1 ahoka printf("0x");
700 1.1 ahoka for (b = 0; b < cs; b++) {
701 1.1 ahoka printf("%.2hhx", ecc[e+b]);
702 1.1 ahoka }
703 1.1 ahoka printf("\n");
704 1.1 ahoka }
705 1.1 ahoka printf("--------------\n");
706 1.1 ahoka #endif
707 1.1 ahoka
708 1.1 ahoka status = nand_get_status(self);
709 1.1 ahoka KASSERT(status & ONFI_STATUS_RDY);
710 1.1 ahoka if (status & ONFI_STATUS_FAIL) {
711 1.1 ahoka aprint_error_dev(self, "page program failed!\n");
712 1.1 ahoka return EIO;
713 1.1 ahoka }
714 1.1 ahoka
715 1.1 ahoka return 0;
716 1.1 ahoka }
717 1.1 ahoka
718 1.1 ahoka int
719 1.1 ahoka nand_read_oob(device_t self, size_t page, void *oob)
720 1.1 ahoka {
721 1.1 ahoka struct nand_softc *sc = device_private(self);
722 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
723 1.1 ahoka
724 1.1 ahoka nand_prepare_read(self, page, chip->nc_page_size);
725 1.1 ahoka
726 1.1 ahoka if (chip->nc_flags & NC_BUSWIDTH_16)
727 1.1 ahoka nand_read_buf_word(self, oob, chip->nc_spare_size);
728 1.1 ahoka else
729 1.1 ahoka nand_read_buf_byte(self, oob, chip->nc_spare_size);
730 1.1 ahoka
731 1.1 ahoka // nand_dump_data("oob", oob, chip->nc_spare_size);
732 1.1 ahoka
733 1.1 ahoka return 0;
734 1.1 ahoka }
735 1.1 ahoka
736 1.1 ahoka static int
737 1.1 ahoka nand_write_oob(device_t self, size_t offset, const void *oob)
738 1.1 ahoka {
739 1.1 ahoka struct nand_softc *sc = device_private(self);
740 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
741 1.1 ahoka uint8_t status;
742 1.1 ahoka
743 1.1 ahoka nand_command(self, ONFI_PAGE_PROGRAM);
744 1.1 ahoka nand_address_column(self, offset, chip->nc_page_size);
745 1.1 ahoka nand_command(self, ONFI_PAGE_PROGRAM_START);
746 1.1 ahoka
747 1.1 ahoka nand_busy(self);
748 1.1 ahoka
749 1.1 ahoka if (chip->nc_flags & NC_BUSWIDTH_16)
750 1.1 ahoka nand_write_buf_word(self, oob, chip->nc_spare_size);
751 1.1 ahoka else
752 1.1 ahoka nand_write_buf_byte(self, oob, chip->nc_spare_size);
753 1.1 ahoka
754 1.1 ahoka status = nand_get_status(self);
755 1.1 ahoka KASSERT(status & ONFI_STATUS_RDY);
756 1.1 ahoka if (status & ONFI_STATUS_FAIL)
757 1.1 ahoka return EIO;
758 1.1 ahoka else
759 1.1 ahoka return 0;
760 1.1 ahoka }
761 1.1 ahoka
762 1.1 ahoka void
763 1.1 ahoka nand_markbad(device_t self, size_t offset)
764 1.1 ahoka {
765 1.1 ahoka struct nand_softc *sc = device_private(self);
766 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
767 1.1 ahoka flash_addr_t blockoffset, marker;
768 1.1 ahoka #ifdef NAND_BBT
769 1.1 ahoka flash_addr_t block;
770 1.1 ahoka
771 1.1 ahoka block = offset / chip->nc_block_size;
772 1.1 ahoka
773 1.1 ahoka nand_bbt_block_markbad(self, block);
774 1.1 ahoka #endif
775 1.1 ahoka blockoffset = offset & chip->nc_block_mask;
776 1.1 ahoka marker = chip->nc_badmarker_offs & ~0x01;
777 1.1 ahoka
778 1.1 ahoka /* check if it is already marked bad */
779 1.1 ahoka if (nand_isbad(self, blockoffset))
780 1.1 ahoka return;
781 1.1 ahoka
782 1.1 ahoka nand_read_oob(self, blockoffset, chip->nc_oob_cache);
783 1.1 ahoka
784 1.1 ahoka chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
785 1.1 ahoka chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
786 1.1 ahoka
787 1.1 ahoka nand_write_oob(self, blockoffset, chip->nc_oob_cache);
788 1.1 ahoka }
789 1.1 ahoka
790 1.1 ahoka bool
791 1.1 ahoka nand_isfactorybad(device_t self, flash_addr_t offset)
792 1.1 ahoka {
793 1.1 ahoka struct nand_softc *sc = device_private(self);
794 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
795 1.1 ahoka flash_addr_t block, first_page, last_page, page;
796 1.1 ahoka int i;
797 1.1 ahoka
798 1.1 ahoka /* Check for factory bad blocks first
799 1.1 ahoka * Factory bad blocks are marked in the first or last
800 1.1 ahoka * page of the blocks, see: ONFI 2.2, 3.2.2.
801 1.1 ahoka */
802 1.1 ahoka block = offset / chip->nc_block_size;
803 1.1 ahoka first_page = block * chip->nc_block_size;
804 1.1 ahoka last_page = (block + 1) * chip->nc_block_size
805 1.1 ahoka - chip->nc_page_size;
806 1.1 ahoka
807 1.1 ahoka for (i = 0, page = first_page; i < 2; i++, page = last_page) {
808 1.1 ahoka /* address OOB */
809 1.1 ahoka nand_prepare_read(self, page, chip->nc_page_size);
810 1.1 ahoka
811 1.1 ahoka if (chip->nc_flags & NC_BUSWIDTH_16) {
812 1.1 ahoka uint16_t word;
813 1.1 ahoka nand_read_word(self, &word);
814 1.1 ahoka if (word == 0x0000)
815 1.1 ahoka return true;
816 1.1 ahoka } else {
817 1.1 ahoka uint8_t byte;
818 1.1 ahoka nand_read_byte(self, &byte);
819 1.1 ahoka if (byte == 0x00)
820 1.1 ahoka return true;
821 1.1 ahoka }
822 1.1 ahoka }
823 1.1 ahoka
824 1.1 ahoka return false;
825 1.1 ahoka }
826 1.1 ahoka
827 1.1 ahoka bool
828 1.1 ahoka nand_iswornoutbad(device_t self, flash_addr_t offset)
829 1.1 ahoka {
830 1.1 ahoka struct nand_softc *sc = device_private(self);
831 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
832 1.1 ahoka flash_addr_t block;
833 1.1 ahoka
834 1.1 ahoka /* we inspect the first page of the block */
835 1.1 ahoka block = offset & chip->nc_block_mask;
836 1.1 ahoka
837 1.1 ahoka /* Linux/u-boot compatible badblock handling */
838 1.1 ahoka if (chip->nc_flags & NC_BUSWIDTH_16) {
839 1.1 ahoka uint16_t word, mark;
840 1.1 ahoka
841 1.1 ahoka nand_prepare_read(self, block,
842 1.1 ahoka chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
843 1.1 ahoka
844 1.1 ahoka nand_read_word(self, &word);
845 1.1 ahoka mark = htole16(word);
846 1.1 ahoka if (chip->nc_badmarker_offs & 0x01)
847 1.1 ahoka mark >>= 8;
848 1.1 ahoka if ((mark & 0xff) != 0xff)
849 1.1 ahoka return true;
850 1.1 ahoka } else {
851 1.1 ahoka uint8_t byte;
852 1.1 ahoka
853 1.1 ahoka nand_prepare_read(self, block,
854 1.1 ahoka chip->nc_page_size + chip->nc_badmarker_offs);
855 1.1 ahoka
856 1.1 ahoka nand_read_byte(self, &byte);
857 1.1 ahoka if (byte != 0xff)
858 1.1 ahoka return true;
859 1.1 ahoka }
860 1.1 ahoka
861 1.1 ahoka return false;
862 1.1 ahoka }
863 1.1 ahoka
864 1.1 ahoka bool
865 1.1 ahoka nand_isbad(device_t self, flash_addr_t offset)
866 1.1 ahoka {
867 1.1 ahoka #ifdef NAND_BBT
868 1.1 ahoka struct nand_softc *sc = device_private(self);
869 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
870 1.1 ahoka flash_addr_t block;
871 1.1 ahoka
872 1.1 ahoka block = offset / chip->nc_block_size;
873 1.1 ahoka
874 1.1 ahoka return nand_bbt_block_isbad(self, block);
875 1.1 ahoka #else
876 1.1 ahoka /* ONFI host requirement */
877 1.1 ahoka if (nand_isfactorybad(self, offset))
878 1.1 ahoka return true;
879 1.1 ahoka
880 1.1 ahoka /* Look for Linux/U-Boot compatible bad marker */
881 1.1 ahoka if (nand_iswornoutbad(self, offset))
882 1.1 ahoka return true;
883 1.1 ahoka
884 1.1 ahoka return false;
885 1.1 ahoka #endif
886 1.1 ahoka }
887 1.1 ahoka
888 1.1 ahoka int
889 1.1 ahoka nand_erase_block(device_t self, size_t offset)
890 1.1 ahoka {
891 1.1 ahoka // struct nand_softc *sc = device_private(self);
892 1.1 ahoka // struct nand_chip *chip = &sc->sc_chip;
893 1.1 ahoka uint8_t status;
894 1.1 ahoka
895 1.1 ahoka /* xxx calculate first page of block for address? */
896 1.1 ahoka
897 1.1 ahoka nand_command(self, ONFI_BLOCK_ERASE);
898 1.1 ahoka nand_address_row(self, offset);
899 1.1 ahoka nand_command(self, ONFI_BLOCK_ERASE_START);
900 1.1 ahoka
901 1.1 ahoka nand_busy(self);
902 1.1 ahoka
903 1.1 ahoka status = nand_get_status(self);
904 1.1 ahoka KASSERT(status & ONFI_STATUS_RDY);
905 1.1 ahoka if (status & ONFI_STATUS_FAIL) {
906 1.1 ahoka aprint_error_dev(self, "block erase failed!\n");
907 1.1 ahoka nand_markbad(self, offset);
908 1.1 ahoka return EIO;
909 1.1 ahoka } else {
910 1.1 ahoka return 0;
911 1.1 ahoka }
912 1.1 ahoka }
913 1.1 ahoka
914 1.1 ahoka /* default functions for driver development */
915 1.1 ahoka
916 1.1 ahoka /* default ECC using hamming code of 256 byte chunks */
917 1.1 ahoka int
918 1.1 ahoka nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
919 1.1 ahoka {
920 1.1 ahoka hamming_compute_256(data, code);
921 1.1 ahoka
922 1.1 ahoka return 0;
923 1.1 ahoka }
924 1.1 ahoka
925 1.1 ahoka int
926 1.1 ahoka nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
927 1.1 ahoka const uint8_t *compcode)
928 1.1 ahoka {
929 1.1 ahoka return hamming_correct_256(data, origcode, compcode);
930 1.1 ahoka }
931 1.1 ahoka
932 1.1 ahoka void
933 1.1 ahoka nand_default_select(device_t self, bool enable)
934 1.1 ahoka {
935 1.1 ahoka /* do nothing */
936 1.1 ahoka return;
937 1.1 ahoka }
938 1.1 ahoka
939 1.1 ahoka /* implementation of the block device API */
940 1.1 ahoka
941 1.1 ahoka /*
942 1.1 ahoka * handle (page) unaligned write to nand
943 1.1 ahoka */
944 1.1 ahoka static int
945 1.1 ahoka nand_flash_write_unaligned(device_t self, off_t offset, size_t len,
946 1.1 ahoka size_t *retlen, const uint8_t *buf)
947 1.1 ahoka {
948 1.1 ahoka struct nand_softc *sc = device_private(self);
949 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
950 1.1 ahoka flash_addr_t first, last, firstoff;
951 1.1 ahoka const uint8_t *bufp;
952 1.1 ahoka flash_addr_t addr;
953 1.1 ahoka size_t left, count;
954 1.1 ahoka int error, i;
955 1.1 ahoka
956 1.1 ahoka /* to debug chfs */
957 1.1 ahoka // printf("unaligned write to nand\n");
958 1.1 ahoka
959 1.1 ahoka first = offset & chip->nc_page_mask;
960 1.1 ahoka firstoff = offset & ~chip->nc_page_mask;
961 1.1 ahoka /* XXX check if this should be len - 1 */
962 1.1 ahoka last = (offset + len) & chip->nc_page_mask;
963 1.1 ahoka count = last - first + 1;
964 1.1 ahoka
965 1.1 ahoka addr = first;
966 1.1 ahoka *retlen = 0;
967 1.1 ahoka
968 1.1 ahoka if (count == 1) {
969 1.1 ahoka if (nand_isbad(self, addr)) {
970 1.1 ahoka aprint_error_dev(self,
971 1.1 ahoka "nand_flash_write_unaligned: "
972 1.1 ahoka "bad block encountered\n");
973 1.1 ahoka return EIO;
974 1.1 ahoka }
975 1.1 ahoka
976 1.1 ahoka error = nand_read_page(self, addr, chip->nc_page_cache);
977 1.1 ahoka if (error)
978 1.1 ahoka return error;
979 1.1 ahoka
980 1.1 ahoka memcpy(chip->nc_page_cache + firstoff, buf, len);
981 1.1 ahoka
982 1.1 ahoka error = nand_program_page(self, addr, chip->nc_page_cache);
983 1.1 ahoka if (error)
984 1.1 ahoka return error;
985 1.1 ahoka
986 1.1 ahoka *retlen = len;
987 1.1 ahoka return 0;
988 1.1 ahoka }
989 1.1 ahoka
990 1.1 ahoka bufp = buf;
991 1.1 ahoka left = len;
992 1.1 ahoka
993 1.1 ahoka for (i = 0; i < count && left != 0; i++) {
994 1.1 ahoka if (nand_isbad(self, addr)) {
995 1.1 ahoka aprint_error_dev(self,
996 1.1 ahoka "nand_flash_write_unaligned: "
997 1.1 ahoka "bad block encountered\n");
998 1.1 ahoka return EIO;
999 1.1 ahoka }
1000 1.1 ahoka
1001 1.1 ahoka if (i == 0) {
1002 1.1 ahoka error = nand_read_page(self,
1003 1.1 ahoka addr, chip->nc_page_cache);
1004 1.1 ahoka if (error)
1005 1.1 ahoka return error;
1006 1.1 ahoka
1007 1.1 ahoka memcpy(chip->nc_page_cache + firstoff,
1008 1.1 ahoka bufp, chip->nc_page_size - firstoff);
1009 1.1 ahoka
1010 1.1 ahoka printf("program page: %s: %d\n", __FILE__, __LINE__);
1011 1.1 ahoka error = nand_program_page(self,
1012 1.1 ahoka addr, chip->nc_page_cache);
1013 1.1 ahoka if (error)
1014 1.1 ahoka return error;
1015 1.1 ahoka
1016 1.1 ahoka bufp += chip->nc_page_size - firstoff;
1017 1.1 ahoka left -= chip->nc_page_size - firstoff;
1018 1.1 ahoka *retlen += chip->nc_page_size - firstoff;
1019 1.1 ahoka
1020 1.1 ahoka } else if (i == count - 1) {
1021 1.1 ahoka error = nand_read_page(self,
1022 1.1 ahoka addr, chip->nc_page_cache);
1023 1.1 ahoka if (error)
1024 1.1 ahoka return error;
1025 1.1 ahoka
1026 1.1 ahoka memcpy(chip->nc_page_cache, bufp, left);
1027 1.1 ahoka
1028 1.1 ahoka error = nand_program_page(self,
1029 1.1 ahoka addr, chip->nc_page_cache);
1030 1.1 ahoka if (error)
1031 1.1 ahoka return error;
1032 1.1 ahoka
1033 1.1 ahoka *retlen += left;
1034 1.1 ahoka KASSERT(left < chip->nc_page_size);
1035 1.1 ahoka
1036 1.1 ahoka } else {
1037 1.1 ahoka /* XXX debug */
1038 1.1 ahoka if (left > chip->nc_page_size) {
1039 1.1 ahoka printf("left: %zu, i: %d, count: %zu\n",
1040 1.1 ahoka (size_t )left, i, count);
1041 1.1 ahoka }
1042 1.1 ahoka KASSERT(left > chip->nc_page_size);
1043 1.1 ahoka
1044 1.1 ahoka error = nand_program_page(self, addr, bufp);
1045 1.1 ahoka if (error)
1046 1.1 ahoka return error;
1047 1.1 ahoka
1048 1.1 ahoka bufp += chip->nc_page_size;
1049 1.1 ahoka left -= chip->nc_page_size;
1050 1.1 ahoka *retlen += chip->nc_page_size;
1051 1.1 ahoka }
1052 1.1 ahoka
1053 1.1 ahoka addr += chip->nc_page_size;
1054 1.1 ahoka }
1055 1.1 ahoka
1056 1.1 ahoka KASSERT(*retlen == len);
1057 1.1 ahoka
1058 1.1 ahoka return 0;
1059 1.1 ahoka }
1060 1.1 ahoka
1061 1.1 ahoka int
1062 1.1 ahoka nand_flash_write(device_t self, off_t offset, size_t len, size_t *retlen,
1063 1.1 ahoka const uint8_t *buf)
1064 1.1 ahoka {
1065 1.1 ahoka struct nand_softc *sc = device_private(self);
1066 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
1067 1.1 ahoka const uint8_t *bufp;
1068 1.1 ahoka size_t pages, page;
1069 1.1 ahoka daddr_t addr;
1070 1.1 ahoka int error = 0;
1071 1.1 ahoka
1072 1.1 ahoka if ((offset + len) > chip->nc_size) {
1073 1.1 ahoka DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
1074 1.1 ahoka " is over device size (0x%jx)\n",
1075 1.1 ahoka (uintmax_t)offset, (uintmax_t)len,
1076 1.1 ahoka (uintmax_t)chip->nc_size));
1077 1.1 ahoka return EINVAL;
1078 1.1 ahoka }
1079 1.1 ahoka
1080 1.1 ahoka if (len % chip->nc_page_size != 0 ||
1081 1.1 ahoka offset % chip->nc_page_size != 0) {
1082 1.1 ahoka return nand_flash_write_unaligned(self,
1083 1.1 ahoka offset, len, retlen, buf);
1084 1.1 ahoka }
1085 1.1 ahoka
1086 1.1 ahoka pages = len / chip->nc_page_size;
1087 1.1 ahoka KASSERT(pages != 0);
1088 1.1 ahoka *retlen = 0;
1089 1.1 ahoka
1090 1.1 ahoka addr = offset;
1091 1.1 ahoka bufp = buf;
1092 1.1 ahoka
1093 1.1 ahoka mutex_enter(&sc->sc_device_lock);
1094 1.1 ahoka for (page = 0; page < pages; page++) {
1095 1.1 ahoka /* do we need this check here? */
1096 1.1 ahoka if (nand_isbad(self, addr)) {
1097 1.1 ahoka aprint_error_dev(self,
1098 1.1 ahoka "nand_flash_write: bad block encountered\n");
1099 1.1 ahoka
1100 1.1 ahoka error = EIO;
1101 1.1 ahoka goto out;
1102 1.1 ahoka }
1103 1.1 ahoka
1104 1.1 ahoka error = nand_program_page(self, addr, bufp);
1105 1.1 ahoka if (error)
1106 1.1 ahoka goto out;
1107 1.1 ahoka
1108 1.1 ahoka addr += chip->nc_page_size;
1109 1.1 ahoka bufp += chip->nc_page_size;
1110 1.1 ahoka *retlen += chip->nc_page_size;
1111 1.1 ahoka }
1112 1.1 ahoka out:
1113 1.1 ahoka mutex_exit(&sc->sc_device_lock);
1114 1.1 ahoka DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
1115 1.1 ahoka
1116 1.1 ahoka return error;
1117 1.1 ahoka }
1118 1.1 ahoka
1119 1.1 ahoka /*
1120 1.1 ahoka * handle (page) unaligned read from nand
1121 1.1 ahoka */
1122 1.1 ahoka static int
1123 1.1 ahoka nand_flash_read_unaligned(device_t self, size_t offset,
1124 1.1 ahoka size_t len, size_t *retlen, uint8_t *buf)
1125 1.1 ahoka {
1126 1.1 ahoka struct nand_softc *sc = device_private(self);
1127 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
1128 1.1 ahoka daddr_t first, last, count, firstoff;
1129 1.1 ahoka uint8_t *bufp;
1130 1.1 ahoka daddr_t addr;
1131 1.1 ahoka size_t left;
1132 1.1 ahoka int error = 0, i;
1133 1.1 ahoka
1134 1.1 ahoka /* to debug chfs */
1135 1.1 ahoka // printf("unaligned read from nand\n");
1136 1.1 ahoka
1137 1.1 ahoka first = offset & chip->nc_page_mask;
1138 1.1 ahoka firstoff = offset & ~chip->nc_page_mask;
1139 1.1 ahoka last = (offset + len) & chip->nc_page_mask;
1140 1.1 ahoka // lastoff = chip->nc_page_size - (offset + len) & ~chip->nc_page_mask;
1141 1.1 ahoka count = (last - first) / chip->nc_page_size + 1;
1142 1.1 ahoka
1143 1.1 ahoka addr = first;
1144 1.1 ahoka bufp = buf;
1145 1.1 ahoka left = len;
1146 1.1 ahoka *retlen = 0;
1147 1.1 ahoka
1148 1.1 ahoka mutex_enter(&sc->sc_device_lock);
1149 1.1 ahoka if (count == 1) {
1150 1.1 ahoka error = nand_read_page(self, addr, chip->nc_page_cache);
1151 1.1 ahoka if (error)
1152 1.1 ahoka goto out;
1153 1.1 ahoka
1154 1.1 ahoka memcpy(bufp, chip->nc_page_cache + firstoff, len);
1155 1.1 ahoka
1156 1.1 ahoka *retlen = len;
1157 1.1 ahoka goto out;
1158 1.1 ahoka }
1159 1.1 ahoka
1160 1.1 ahoka for (i = 0; i < count && left != 0; i++) {
1161 1.1 ahoka error = nand_read_page(self, addr, chip->nc_page_cache);
1162 1.1 ahoka if (error)
1163 1.1 ahoka goto out;
1164 1.1 ahoka
1165 1.1 ahoka if (i == 0) {
1166 1.1 ahoka memcpy(bufp, chip->nc_page_cache + firstoff,
1167 1.1 ahoka chip->nc_page_size - firstoff);
1168 1.1 ahoka
1169 1.1 ahoka bufp += chip->nc_page_size - firstoff;
1170 1.1 ahoka left -= chip->nc_page_size - firstoff;
1171 1.1 ahoka *retlen += chip->nc_page_size - firstoff;
1172 1.1 ahoka
1173 1.1 ahoka } else if (i == count - 1) {
1174 1.1 ahoka memcpy(bufp, chip->nc_page_cache, left);
1175 1.1 ahoka *retlen += left;
1176 1.1 ahoka KASSERT(left < chip->nc_page_size);
1177 1.1 ahoka
1178 1.1 ahoka } else {
1179 1.1 ahoka memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
1180 1.1 ahoka
1181 1.1 ahoka bufp += chip->nc_page_size;
1182 1.1 ahoka left -= chip->nc_page_size;
1183 1.1 ahoka *retlen += chip->nc_page_size;
1184 1.1 ahoka }
1185 1.1 ahoka
1186 1.1 ahoka addr += chip->nc_page_size;
1187 1.1 ahoka }
1188 1.1 ahoka
1189 1.1 ahoka KASSERT(*retlen == len);
1190 1.1 ahoka
1191 1.1 ahoka out:
1192 1.1 ahoka mutex_exit(&sc->sc_device_lock);
1193 1.1 ahoka
1194 1.1 ahoka return error;
1195 1.1 ahoka }
1196 1.1 ahoka
1197 1.1 ahoka int
1198 1.1 ahoka nand_flash_read(device_t self, off_t offset, size_t len, size_t *retlen,
1199 1.1 ahoka uint8_t *buf)
1200 1.1 ahoka {
1201 1.1 ahoka struct nand_softc *sc = device_private(self);
1202 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
1203 1.1 ahoka uint8_t *bufp;
1204 1.1 ahoka size_t addr;
1205 1.1 ahoka size_t i, pages;
1206 1.1 ahoka int error = 0;
1207 1.1 ahoka
1208 1.1 ahoka *retlen = 0;
1209 1.1 ahoka
1210 1.1 ahoka DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
1211 1.1 ahoka (uintmax_t)offset, len));
1212 1.1 ahoka
1213 1.1 ahoka if (__predict_false((offset + len) > chip->nc_size)) {
1214 1.1 ahoka DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
1215 1.1 ahoka " is over device size (%ju)\n", (uintmax_t)offset,
1216 1.1 ahoka len, (uintmax_t)chip->nc_size));
1217 1.1 ahoka return EINVAL;
1218 1.1 ahoka }
1219 1.1 ahoka
1220 1.1 ahoka /* Handle unaligned access, shouldnt be needed when using the
1221 1.1 ahoka * block device, as strategy handles it, so only low level
1222 1.1 ahoka * accesses will use this path
1223 1.1 ahoka */
1224 1.1 ahoka // if (len < chip->nc_page_size)
1225 1.1 ahoka // panic("TODO page size is larger than read size");
1226 1.1 ahoka
1227 1.1 ahoka if (len % chip->nc_page_size != 0 ||
1228 1.1 ahoka offset % chip->nc_page_size != 0) {
1229 1.1 ahoka return nand_flash_read_unaligned(self,
1230 1.1 ahoka offset, len, retlen, buf);
1231 1.1 ahoka }
1232 1.1 ahoka
1233 1.1 ahoka bufp = buf;
1234 1.1 ahoka addr = offset;
1235 1.1 ahoka pages = len / chip->nc_page_size;
1236 1.1 ahoka
1237 1.1 ahoka mutex_enter(&sc->sc_device_lock);
1238 1.1 ahoka for (i = 0; i < pages; i++) {
1239 1.1 ahoka /* do we need this check here? */
1240 1.1 ahoka if (nand_isbad(self, addr)) {
1241 1.1 ahoka aprint_error_dev(self, "bad block encountered\n");
1242 1.1 ahoka error = EIO;
1243 1.1 ahoka goto out;
1244 1.1 ahoka }
1245 1.1 ahoka error = nand_read_page(self, addr, bufp);
1246 1.1 ahoka if (error)
1247 1.1 ahoka goto out;
1248 1.1 ahoka
1249 1.1 ahoka bufp += chip->nc_page_size;
1250 1.1 ahoka addr += chip->nc_page_size;
1251 1.1 ahoka *retlen += chip->nc_page_size;
1252 1.1 ahoka }
1253 1.1 ahoka
1254 1.1 ahoka out:
1255 1.1 ahoka mutex_exit(&sc->sc_device_lock);
1256 1.1 ahoka
1257 1.1 ahoka return error;
1258 1.1 ahoka }
1259 1.1 ahoka
1260 1.1 ahoka int
1261 1.1 ahoka nand_flash_isbad(device_t self, uint64_t ofs)
1262 1.1 ahoka {
1263 1.1 ahoka struct nand_softc *sc = device_private(self);
1264 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
1265 1.1 ahoka bool result;
1266 1.1 ahoka // uint64_t block_num;
1267 1.1 ahoka
1268 1.1 ahoka if (ofs > chip->nc_size) {
1269 1.1 ahoka DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
1270 1.1 ahoka " device size (0x%jx)\n", (uintmax_t)ofs,
1271 1.1 ahoka (uintmax_t)chip->nc_size));
1272 1.1 ahoka return EINVAL;
1273 1.1 ahoka }
1274 1.1 ahoka
1275 1.1 ahoka if (ofs % chip->nc_block_size != 0) {
1276 1.1 ahoka panic("offset (0x%jx) is not the multiple of block size (%ju)",
1277 1.1 ahoka (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1278 1.1 ahoka }
1279 1.1 ahoka // block_num = ofs / fl->flash_if.erasesize;
1280 1.1 ahoka
1281 1.1 ahoka mutex_enter(&sc->sc_device_lock);
1282 1.1 ahoka result = nand_isbad(self, ofs);
1283 1.1 ahoka mutex_exit(&sc->sc_device_lock);
1284 1.1 ahoka
1285 1.1 ahoka if (result)
1286 1.1 ahoka return 1;
1287 1.1 ahoka else
1288 1.1 ahoka return 0;
1289 1.1 ahoka }
1290 1.1 ahoka
1291 1.1 ahoka int
1292 1.1 ahoka nand_flash_markbad(device_t self, uint64_t ofs)
1293 1.1 ahoka {
1294 1.1 ahoka struct nand_softc *sc = device_private(self);
1295 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
1296 1.1 ahoka
1297 1.1 ahoka // uint64_t block_num;
1298 1.1 ahoka
1299 1.1 ahoka if (ofs > chip->nc_size) {
1300 1.1 ahoka DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
1301 1.1 ahoka " device size (0x%jx)\n", ofs,
1302 1.1 ahoka (uintmax_t)chip->nc_size));
1303 1.1 ahoka return EINVAL;
1304 1.1 ahoka }
1305 1.1 ahoka
1306 1.1 ahoka if (ofs % chip->nc_block_size != 0) {
1307 1.1 ahoka panic("offset (%ju) is not the multiple of block size (%ju)",
1308 1.1 ahoka (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1309 1.1 ahoka }
1310 1.1 ahoka
1311 1.1 ahoka // block_num = ofs / fl->flash_if->erasesize;
1312 1.1 ahoka
1313 1.1 ahoka mutex_enter(&sc->sc_device_lock);
1314 1.1 ahoka nand_markbad(self, ofs);
1315 1.1 ahoka mutex_exit(&sc->sc_device_lock);
1316 1.1 ahoka
1317 1.1 ahoka return 0;
1318 1.1 ahoka }
1319 1.1 ahoka
1320 1.1 ahoka int
1321 1.1 ahoka nand_flash_erase(device_t self,
1322 1.1 ahoka struct flash_erase_instruction *ei)
1323 1.1 ahoka {
1324 1.1 ahoka struct nand_softc *sc = device_private(self);
1325 1.1 ahoka struct nand_chip *chip = &sc->sc_chip;
1326 1.1 ahoka flash_addr_t addr;
1327 1.1 ahoka int error;
1328 1.1 ahoka // off_t block_num;
1329 1.1 ahoka
1330 1.1 ahoka // if (FLASH_CLOSED == sc->sc_flash.status)
1331 1.1 ahoka // return FLASH_CLOSED;
1332 1.1 ahoka
1333 1.1 ahoka if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
1334 1.1 ahoka return EINVAL;
1335 1.1 ahoka
1336 1.1 ahoka if (ei->ei_addr + ei->ei_len > chip->nc_size) {
1337 1.1 ahoka DPRINTF(("nand_flash_erase: erase address is over the end"
1338 1.1 ahoka " of the device\n"));
1339 1.1 ahoka return EINVAL;
1340 1.1 ahoka }
1341 1.1 ahoka
1342 1.1 ahoka if (ei->ei_addr % chip->nc_block_size != 0) {
1343 1.1 ahoka aprint_error_dev(self,
1344 1.1 ahoka "nand_flash_erase: ei_addr (%ju) is not"
1345 1.1 ahoka "the multiple of block size (%ju)",
1346 1.1 ahoka (uintmax_t)ei->ei_addr,
1347 1.1 ahoka (uintmax_t)chip->nc_block_size);
1348 1.1 ahoka return EINVAL;
1349 1.1 ahoka }
1350 1.1 ahoka
1351 1.1 ahoka if (ei->ei_len % chip->nc_block_size != 0) {
1352 1.1 ahoka aprint_error_dev(self,
1353 1.1 ahoka "nand_flash_erase: ei_len (%ju) is not"
1354 1.1 ahoka "the multiple of block size (%ju)",
1355 1.1 ahoka (uintmax_t)ei->ei_addr,
1356 1.1 ahoka (uintmax_t)chip->nc_block_size);
1357 1.1 ahoka return EINVAL;
1358 1.1 ahoka }
1359 1.1 ahoka
1360 1.1 ahoka mutex_enter(&sc->sc_device_lock);
1361 1.1 ahoka addr = ei->ei_addr;
1362 1.1 ahoka while (addr < ei->ei_addr + ei->ei_len) {
1363 1.1 ahoka if (nand_isbad(self, addr)) {
1364 1.1 ahoka mutex_exit(&sc->sc_device_lock);
1365 1.1 ahoka aprint_error_dev(self, "bad block encountered\n");
1366 1.1 ahoka ei->ei_state = FLASH_ERASE_FAILED;
1367 1.1 ahoka return EIO;
1368 1.1 ahoka }
1369 1.1 ahoka
1370 1.1 ahoka error = nand_erase_block(self, addr);
1371 1.1 ahoka if (error) {
1372 1.1 ahoka mutex_exit(&sc->sc_device_lock);
1373 1.1 ahoka ei->ei_state = FLASH_ERASE_FAILED;
1374 1.1 ahoka return error;
1375 1.1 ahoka }
1376 1.1 ahoka
1377 1.1 ahoka addr += chip->nc_block_size;
1378 1.1 ahoka }
1379 1.1 ahoka mutex_exit(&sc->sc_device_lock);
1380 1.1 ahoka
1381 1.1 ahoka ei->ei_state = FLASH_ERASE_DONE;
1382 1.1 ahoka if (ei->ei_callback != NULL)
1383 1.1 ahoka ei->ei_callback(ei);
1384 1.1 ahoka
1385 1.1 ahoka return 0;
1386 1.1 ahoka }
1387 1.1 ahoka
1388 1.1 ahoka static int
1389 1.1 ahoka sysctl_nand_verify(SYSCTLFN_ARGS)
1390 1.1 ahoka {
1391 1.1 ahoka int error, t;
1392 1.1 ahoka struct sysctlnode node;
1393 1.1 ahoka
1394 1.1 ahoka node = *rnode;
1395 1.1 ahoka t = *(int *)rnode->sysctl_data;
1396 1.1 ahoka node.sysctl_data = &t;
1397 1.1 ahoka error = sysctl_lookup(SYSCTLFN_CALL(&node));
1398 1.1 ahoka if (error || newp == NULL)
1399 1.1 ahoka return error;
1400 1.1 ahoka
1401 1.1 ahoka if (node.sysctl_num == nand_cachesync_nodenum) {
1402 1.1 ahoka if (t <= 0 || t > 60)
1403 1.1 ahoka return EINVAL;
1404 1.1 ahoka } else {
1405 1.1 ahoka return EINVAL;
1406 1.1 ahoka }
1407 1.1 ahoka
1408 1.1 ahoka *(int *)rnode->sysctl_data = t;
1409 1.1 ahoka
1410 1.1 ahoka return 0;
1411 1.1 ahoka }
1412 1.1 ahoka
1413 1.1 ahoka SYSCTL_SETUP(sysctl_nand, "sysctl nand subtree setup")
1414 1.1 ahoka {
1415 1.1 ahoka int rc, nand_root_num;
1416 1.1 ahoka const struct sysctlnode *node;
1417 1.1 ahoka
1418 1.1 ahoka if ((rc = sysctl_createv(clog, 0, NULL, NULL,
1419 1.1 ahoka CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
1420 1.1 ahoka NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
1421 1.1 ahoka goto error;
1422 1.1 ahoka }
1423 1.1 ahoka
1424 1.1 ahoka if ((rc = sysctl_createv(clog, 0, NULL, &node,
1425 1.1 ahoka CTLFLAG_PERMANENT, CTLTYPE_NODE, "nand",
1426 1.1 ahoka SYSCTL_DESCR("NAND driver controls"),
1427 1.1 ahoka NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1428 1.1 ahoka goto error;
1429 1.1 ahoka }
1430 1.1 ahoka
1431 1.1 ahoka nand_root_num = node->sysctl_num;
1432 1.1 ahoka
1433 1.1 ahoka if ((rc = sysctl_createv(clog, 0, NULL, &node,
1434 1.1 ahoka CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1435 1.1 ahoka CTLTYPE_INT, "cache_sync_timeout",
1436 1.1 ahoka SYSCTL_DESCR("NAND write cache sync timeout in seconds"),
1437 1.1 ahoka sysctl_nand_verify, 0, &nand_cachesync_timeout,
1438 1.1 ahoka 0, CTL_HW, nand_root_num, CTL_CREATE,
1439 1.1 ahoka CTL_EOL)) != 0) {
1440 1.1 ahoka goto error;
1441 1.1 ahoka }
1442 1.1 ahoka
1443 1.1 ahoka nand_cachesync_nodenum = node->sysctl_num;
1444 1.1 ahoka
1445 1.1 ahoka return;
1446 1.1 ahoka
1447 1.1 ahoka error:
1448 1.1 ahoka aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
1449 1.1 ahoka }
1450 1.1 ahoka
1451 1.1 ahoka MODULE(MODULE_CLASS_DRIVER, nand, "flash");
1452 1.1 ahoka
1453 1.1 ahoka #ifdef _MODULE
1454 1.1 ahoka #include "ioconf.c"
1455 1.1 ahoka #endif
1456 1.1 ahoka
1457 1.1 ahoka static int
1458 1.1 ahoka nand_modcmd(modcmd_t cmd, void *opaque)
1459 1.1 ahoka {
1460 1.1 ahoka switch (cmd) {
1461 1.1 ahoka case MODULE_CMD_INIT:
1462 1.1 ahoka #ifdef _MODULE
1463 1.1 ahoka return config_init_component(cfdriver_ioconf_nand,
1464 1.1 ahoka cfattach_ioconf_nand, cfdata_ioconf_nand);
1465 1.1 ahoka #else
1466 1.1 ahoka return 0;
1467 1.1 ahoka #endif
1468 1.1 ahoka case MODULE_CMD_FINI:
1469 1.1 ahoka #ifdef _MODULE
1470 1.1 ahoka return config_fini_component(cfdriver_ioconf_nand,
1471 1.1 ahoka cfattach_ioconf_nand, cfdata_ioconf_nand);
1472 1.1 ahoka #else
1473 1.1 ahoka return 0;
1474 1.1 ahoka #endif
1475 1.1 ahoka default:
1476 1.1 ahoka return ENOTTY;
1477 1.1 ahoka }
1478 1.1 ahoka }
1479