Home | History | Annotate | Line # | Download | only in nand
nand.c revision 1.1
      1 /*	$NetBSD: nand.c,v 1.1 2011/02/26 18:07:31 ahoka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010 Department of Software Engineering,
      5  *		      University of Szeged, Hungary
      6  * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by the Department of Software Engineering, University of Szeged, Hungary
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.1 2011/02/26 18:07:31 ahoka Exp $");
     38 
     39 #include "locators.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 #include <sys/device.h>
     44 #include <sys/kmem.h>
     45 #include <sys/sysctl.h>
     46 
     47 #include <dev/flash/flash.h>
     48 #include <dev/nand/nand.h>
     49 #include <dev/nand/onfi.h>
     50 #include <dev/nand/hamming.h>
     51 #include <dev/nand/nand_bbt.h>
     52 #include <dev/nand/nand_crc.h>
     53 
     54 #include "opt_nand.h"
     55 
     56 int nand_match(device_t parent, cfdata_t match, void *aux);
     57 void nand_attach(device_t parent, device_t self, void *aux);
     58 int nand_detach(device_t device, int flags);
     59 bool nand_shutdown(device_t self, int howto);
     60 
     61 int nand_print(void *aux, const char *pnp);
     62 
     63 static int nand_search(device_t parent, cfdata_t cf, const int *ldesc,
     64     void *aux);
     65 static void nand_address_row(device_t self, size_t row);
     66 static void nand_address_column(device_t self, size_t row, size_t column);
     67 static void nand_readid(device_t self, struct nand_chip *chip);
     68 static void nand_read_parameter_page(device_t self, struct nand_chip *chip);
     69 static const char *nand_midtoname(int id);
     70 static int nand_scan_media(device_t self, struct nand_chip *chip);
     71 static bool nand_check_wp(device_t self);
     72 
     73 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
     74     nand_match, nand_attach, nand_detach, NULL);
     75 
     76 #ifdef NAND_DEBUG
     77 int	nanddebug = NAND_DEBUG;
     78 #endif
     79 
     80 int nand_cachesync_timeout = 1;
     81 int nand_cachesync_nodenum;
     82 
     83 const struct nand_manufacturer nand_mfrs[] = {
     84 	{ NAND_MFR_AMD,		"AMD" },
     85 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
     86 	{ NAND_MFR_RENESAS,	"Renesas" },
     87 	{ NAND_MFR_STMICRO,	"ST Micro" },
     88 	{ NAND_MFR_MICRON,	"Micron" },
     89 	{ NAND_MFR_NATIONAL,	"National" },
     90 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
     91 	{ NAND_MFR_HYNIX,	"Hynix" },
     92 	{ NAND_MFR_SAMSUNG,	"Samsung" },
     93 	{ NAND_MFR_UNKNOWN,	"Unknown" }
     94 };
     95 
     96 /* ARGSUSED */
     97 int
     98 nand_match(device_t parent, cfdata_t match, void *aux)
     99 {
    100 	/* pseudo device, always attaches */
    101 	return 1;
    102 }
    103 
    104 void
    105 nand_attach(device_t parent, device_t self, void *aux)
    106 {
    107 	struct nand_softc *sc = device_private(self);
    108 	struct nand_attach_args *naa = aux;
    109 	struct nand_chip *chip = &sc->sc_chip;
    110 //	struct flash_interface *flash_if;
    111 //	int i;
    112 
    113 	sc->sc_dev = self;
    114 	sc->nand_dev = parent;
    115 	sc->nand_if = naa->naa_nand_if;
    116 
    117 //	sc->nand_softc = device_private(parent);
    118 
    119 	aprint_naive("\n");
    120 //	aprint_normal(": NAND flash memory\n");
    121 
    122 	if (nand_check_wp(self)) {
    123 		aprint_error("NAND chip is write protected!\n");
    124 		return;
    125 	}
    126 	if (nand_scan_media(self, chip))
    127 		return;
    128 
    129 	/* allocate cache */
    130 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
    131 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
    132 
    133 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
    134 
    135 	if (nand_sync_thread_start(self)) {
    136 		goto error;
    137 	}
    138 
    139 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
    140 		aprint_error_dev(sc->sc_dev,
    141 		    "couldn't establish power handler\n");
    142 
    143 #ifdef NAND_BBT
    144 	nand_bbt_init(self);
    145 	nand_bbt_scan(self);
    146 #endif
    147 
    148 	/*
    149 	 * Attach all our devices
    150 	 */
    151 	config_search_ia(nand_search, self, NULL, NULL);
    152 
    153 	return;
    154 error:
    155 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    156 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    157 	mutex_destroy(&sc->sc_device_lock);
    158 }
    159 
    160 static int
    161 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
    162 {
    163 	struct nand_softc *sc = device_private(parent);
    164 	struct nand_chip *chip = &sc->sc_chip;
    165 	struct flash_interface *flash_if;
    166 	struct flash_attach_args faa;
    167 
    168 	flash_if = kmem_alloc(sizeof(*flash_if), KM_SLEEP);
    169 
    170 	flash_if->type = FLASH_TYPE_NAND;
    171 
    172 	flash_if->read = nand_flash_read;
    173 	flash_if->write = nand_flash_write;
    174 	flash_if->erase = nand_flash_erase;
    175 	flash_if->block_isbad = nand_flash_isbad;
    176 	flash_if->block_markbad = nand_flash_markbad;
    177 
    178 	flash_if->submit = nand_io_submit;
    179 
    180 	flash_if->erasesize = chip->nc_block_size;
    181 	flash_if->page_size = chip->nc_page_size;
    182 	flash_if->writesize = chip->nc_page_size;
    183 
    184 	flash_if->partition.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
    185 
    186 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
    187 		flash_if->size = chip->nc_size -
    188 		    flash_if->partition.part_offset;
    189 		flash_if->partition.part_size = flash_if->size;
    190 	} else {
    191 		flash_if->size = cf->cf_loc[FLASHBUSCF_SIZE];
    192 		flash_if->partition.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
    193 	}
    194 
    195 	if (cf->cf_loc[FLASHBUSCF_READONLY])
    196 		flash_if->partition.part_flags = FLASH_PART_READONLY;
    197 	else
    198 		flash_if->partition.part_flags = 0;
    199 
    200 	faa.flash_if = flash_if;
    201 
    202 	if (config_match(parent, cf, &faa)) {
    203 		config_attach(parent, cf, &faa, nand_print);
    204 		return 0;
    205 	} else {
    206 		kmem_free(flash_if, sizeof(*flash_if));
    207 	}
    208 
    209 	return 1;
    210 }
    211 
    212 int
    213 nand_detach(device_t self, int flags)
    214 {
    215 	struct nand_softc *sc = device_private(self);
    216 	struct nand_chip *chip = &sc->sc_chip;
    217 	int ret = 0;
    218 
    219 #ifdef NAND_BBT
    220 	nand_bbt_detach(self);
    221 #endif
    222 	nand_sync_thread_stop(self);
    223 
    224 	/* free oob cache */
    225 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    226 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    227 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
    228 
    229 	mutex_destroy(&sc->sc_device_lock);
    230 
    231 	pmf_device_deregister(sc->sc_dev);
    232 
    233 	return ret;
    234 }
    235 
    236 int
    237 nand_print(void *aux, const char *pnp)
    238 {
    239 	if (pnp != NULL)
    240 		aprint_normal("nand at %s\n", pnp);
    241 
    242 	return UNCONF;
    243 }
    244 
    245 device_t
    246 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
    247 {
    248 	struct nand_attach_args arg;
    249 
    250 	KASSERT(nand_if != NULL);
    251 
    252 	arg.naa_nand_if = nand_if;
    253 	return config_found_ia(parent, "nandbus", &arg, nand_print);
    254 }
    255 
    256 static const char *
    257 nand_midtoname(int id)
    258 {
    259 	int i;
    260 
    261 	for (i = 0; nand_mfrs[i].id != 0; i++) {
    262 		if (nand_mfrs[i].id == id)
    263 			return nand_mfrs[i].name;
    264 	}
    265 
    266 	KASSERT(nand_mfrs[i].id == 0);
    267 
    268 	return nand_mfrs[i].name;
    269 }
    270 
    271 #if 0
    272 /* handle quirks here */
    273 static void
    274 nand_quirks(device_t self, struct nand_chip *chip)
    275 {
    276 	/* this is an example only! */
    277 	switch (chip->nc_manf_id) {
    278 	case NAND_MFR_SAMSUNG:
    279 		if (chip->nc_dev_id == 0x00) {
    280 			/* do something only samsung chips need */
    281 			/* or */
    282 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
    283 		}
    284 	}
    285 
    286 	return;
    287 }
    288 #endif
    289 
    290 /**
    291  * scan media to determine the chip's properties
    292  * this function resets the device
    293  */
    294 static int
    295 nand_scan_media(device_t self, struct nand_chip *chip)
    296 {
    297 	struct nand_softc *sc = device_private(self);
    298 	struct nand_ecc *ecc;
    299 	uint8_t onfi_signature[4];
    300 
    301 	nand_select(self, true);
    302 	nand_command(self, ONFI_RESET);
    303 	nand_select(self, false);
    304 
    305 	nand_select(self, true);
    306 	nand_command(self, ONFI_READ_ID);
    307 	nand_address(self, 0x20);
    308 	nand_read_byte(self, &onfi_signature[0]);
    309 	nand_read_byte(self, &onfi_signature[1]);
    310 	nand_read_byte(self, &onfi_signature[2]);
    311 	nand_read_byte(self, &onfi_signature[3]);
    312 	nand_select(self, false);
    313 
    314 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
    315 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
    316 		aprint_error_dev(self,
    317 		    "device does not support the ONFI specification\n");
    318 
    319 		return 1;
    320 	}
    321 
    322 	nand_readid(self, chip);
    323 
    324 	aprint_normal(": NAND Flash\n");
    325 
    326 	aprint_debug_dev(self,
    327 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
    328 	    chip->nc_manf_id,
    329 	    nand_midtoname(chip->nc_manf_id),
    330 	    chip->nc_dev_id);
    331 
    332 	nand_read_parameter_page(self, chip);
    333 
    334 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
    335 
    336 	/*
    337 	 * calculate the place of ecc data in oob
    338 	 * we try to be compatible with Linux here
    339 	 */
    340 	switch (chip->nc_spare_size) {
    341 	case 8:
    342 		ecc->necc_offset = 0;
    343 		break;
    344 	case 16:
    345 		ecc->necc_offset = 0;
    346 		break;
    347 	case 64:
    348 		ecc->necc_offset = 40;
    349 		break;
    350 	case 128:
    351 		ecc->necc_offset = 80;
    352 		break;
    353 	default:
    354 		panic("OOB size is unexpected");
    355 	}
    356 
    357 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
    358 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
    359 
    360 	/* check if we fit in oob */
    361 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
    362 		panic("NAND ECC bits dont fit in OOB");
    363 	}
    364 
    365 	/* TODO: mark free oob area available for file systems */
    366 
    367 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
    368 
    369 	/*
    370 	 * calculate badblock marker offset in oob
    371 	 * we try to be compatible with linux here
    372 	 */
    373 	if (chip->nc_page_size > 512)
    374 		chip->nc_badmarker_offs = 0;
    375 	else
    376 		chip->nc_badmarker_offs = 5;
    377 
    378 	/* Calculate page shift and mask */
    379 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
    380 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
    381 	/* same for block */
    382 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
    383 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
    384 
    385 	/* look for quirks here if needed in future */
    386 	/* nand_quirks(self, chip); */
    387 
    388 	return 0;
    389 }
    390 
    391 static void
    392 nand_readid(device_t self, struct nand_chip *chip)
    393 {
    394 	nand_select(self, true);
    395 	nand_command(self, ONFI_READ_ID);
    396 	nand_address(self, 0x00);
    397 	nand_read_byte(self, &chip->nc_manf_id);
    398 	nand_read_byte(self, &chip->nc_dev_id);
    399 	nand_select(self, false);
    400 }
    401 
    402 /* read the parameter page. TODO: check CRC! */
    403 static void
    404 nand_read_parameter_page(device_t self, struct nand_chip *chip)
    405 {
    406 	struct onfi_parameter_page params;
    407 	uint8_t *bufp;
    408 	uint8_t	vendor[13], model[21];
    409 	uint16_t crc;
    410 	int i;
    411 
    412 	KASSERT(sizeof(params) == 256);
    413 
    414 	nand_select(self, true);
    415 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
    416 	nand_address(self, 0x00);
    417 
    418 	nand_busy(self);
    419 
    420 	bufp = (uint8_t *)&params;
    421 	for (i = 0; i < 256; i++) {
    422 		nand_read_byte(self, &bufp[i]);
    423 	}
    424 	nand_select(self, false);
    425 
    426 	/* validate the parameter page with the crc */
    427 	crc = nand_crc16(bufp, 254);
    428 
    429 	if (crc != params.param_integrity_crc) {
    430 		aprint_error_dev(self, "parameter page crc check failed\n");
    431 		/* TODO: we should read the next parameter page copy */
    432 	}
    433 
    434 	/* strip manufacturer and model string */
    435 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
    436 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
    437 		vendor[i] = 0;
    438 	strlcpy(model, params.param_model, sizeof(model));
    439 	for (i = 19; i > 0 && model[i] == ' '; i--)
    440 		model[i] = 0;
    441 
    442 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
    443 
    444 	aprint_normal_dev(self,
    445 	   "page size: %u bytes, spare size: %u bytes, block size: %u bytes\n",
    446 	    params.param_pagesize, params.param_sparesize,
    447 	    params.param_blocksize * params.param_pagesize);
    448 
    449 	aprint_normal_dev(self,
    450 	    "LUN size: %u blocks, LUNs: %u, total storage size: %u MB\n",
    451 	    params.param_lunsize, params.param_numluns,
    452 	    params.param_blocksize * params.param_pagesize *
    453 	    params.param_lunsize * params.param_numluns / 1024 / 1024);
    454 
    455 	/* XXX TODO multiple LUNs */
    456 	if (__predict_false(params.param_numluns != 1))
    457 		panic("more than one LUNs are not supported yet!\n");
    458 
    459 	chip->nc_size = params.param_pagesize * params.param_blocksize *
    460 	    params.param_lunsize * params.param_numluns;
    461 
    462 	chip->nc_page_size = params.param_pagesize;
    463 	chip->nc_block_pages = params.param_blocksize;
    464 	chip->nc_block_size = params.param_blocksize * params.param_pagesize;
    465 	chip->nc_spare_size = params.param_sparesize;
    466 
    467 	/* the lower 4 bits contain the row address cycles */
    468 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
    469 	/* the upper 4 bits contain the column address cycles */
    470 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
    471 
    472 #ifdef NAND_VERBOSE
    473 	aprint_normal_dev(self, "column cycles: %d, row cycles: %d\n",
    474 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
    475 #endif
    476 
    477 	if (params.param_features & ONFI_FEATURE_16BIT)
    478 		chip->nc_flags |= NC_BUSWIDTH_16;
    479 
    480 	if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
    481 		chip->nc_flags |= NC_EXTENDED_PARAM;
    482 }
    483 
    484 /* ARGSUSED */
    485 bool
    486 nand_shutdown(device_t self, int howto)
    487 {
    488 	return true;
    489 }
    490 
    491 static void
    492 nand_address_column(device_t self, size_t row, size_t column)
    493 {
    494 	struct nand_softc *sc = device_private(self);
    495 	struct nand_chip *chip = &sc->sc_chip;
    496 	uint8_t i;
    497 
    498 	DPRINTF(("addressing row: 0x%jx column: %zu\n",
    499 		(uintmax_t )row, column));
    500 
    501 	/* XXX TODO */
    502 	row >>= chip->nc_page_shift;
    503 //	DPRINTF(("row address is: 0x%jx\n", (uintmax_t )row));
    504 
    505 	/* Write the column (subpage) address */
    506 	if (chip->nc_flags & NC_BUSWIDTH_16)
    507 		column >>= 1;
    508 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
    509 		nand_address(self, column & 0xff);
    510 
    511 	/* Write the row (page) address */
    512 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    513 		nand_address(self, row & 0xff);
    514 }
    515 
    516 static void
    517 nand_address_row(device_t self, size_t row)
    518 {
    519 	struct nand_softc *sc = device_private(self);
    520 	struct nand_chip *chip = &sc->sc_chip;
    521 	off_t i;
    522 
    523 //	DPRINTF(("addressing row: %zu\n", row));
    524 
    525 	/* XXX TODO */
    526 	row >>= chip->nc_page_shift;
    527 
    528 	/* Write the row (page) address */
    529 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    530 		nand_address(self, row & 0xff);
    531 }
    532 
    533 static inline uint8_t
    534 nand_get_status(device_t self)
    535 {
    536 	uint8_t status;
    537 
    538 	nand_command(self, ONFI_READ_STATUS);
    539 	nand_busy(self);
    540 	nand_read_byte(self, &status);
    541 
    542 	return status;
    543 }
    544 
    545 static bool
    546 nand_check_wp(device_t self)
    547 {
    548 	if (nand_get_status(self) & 0x80)
    549 		return false;
    550 	else
    551 		return true;
    552 }
    553 
    554 static void
    555 nand_prepare_read(device_t self, flash_addr_t row, flash_addr_t column)
    556 {
    557 	nand_command(self, ONFI_READ);
    558 	nand_address_column(self, row, column);
    559 	nand_command(self, ONFI_READ_START);
    560 
    561 	nand_busy(self);
    562 }
    563 
    564 /* read a page with ecc correction */
    565 int
    566 nand_read_page(device_t self, size_t offset, uint8_t *data)
    567 {
    568 	struct nand_softc *sc = device_private(self);
    569 	struct nand_chip *chip = &sc->sc_chip;
    570 	size_t b, bs, e, cs;
    571 	uint8_t *ecc;
    572 	int result;
    573 
    574 	DPRINTF(("nand read page\n"));
    575 
    576 	nand_prepare_read(self, offset, 0);
    577 
    578 	bs = chip->nc_ecc->necc_block_size;
    579 	cs = chip->nc_ecc->necc_code_size;
    580 
    581 	/* decide if we access by 8 or 16 bits */
    582 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    583 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    584 			nand_ecc_prepare(self, NAND_ECC_READ);
    585 			nand_read_buf_word(self, data + b, bs);
    586 			nand_ecc_compute(self, data + b,
    587 			    chip->nc_ecc_cache + e);
    588 		}
    589 	} else {
    590 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    591 			nand_ecc_prepare(self, NAND_ECC_READ);
    592 			nand_read_buf_byte(self, data + b, bs);
    593 			nand_ecc_compute(self, data + b,
    594 			    chip->nc_ecc_cache + e);
    595 		}
    596 	}
    597 
    598 //	nand_dump_data("page", data, chip->nc_page_size);
    599 
    600 	nand_read_oob(self, offset, chip->nc_oob_cache);
    601 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    602 
    603 	/* useful for debugging new ecc drivers */
    604 #if 0
    605 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    606 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    607 		printf("0x");
    608 		for (b = 0; b < cs; b++) {
    609 			printf("%.2hhx", ecc[e+b]);
    610 		}
    611 		printf(" 0x");
    612 		for (b = 0; b < cs; b++) {
    613 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
    614 		}
    615 		printf("\n");
    616 	}
    617 	printf("--------------\n");
    618 #endif
    619 
    620 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    621 		result = nand_ecc_correct(self, data + b, ecc + e,
    622 		    chip->nc_ecc_cache + e);
    623 
    624 		switch (result) {
    625 		case NAND_ECC_OK:
    626 			break;
    627 		case NAND_ECC_CORRECTED:
    628 			aprint_error_dev(self,
    629 			    "data corrected with ECC at page offset 0x%jx "
    630 			    "block %zu\n", (uintmax_t)offset, b);
    631 			break;
    632 		case NAND_ECC_TWOBIT:
    633 			aprint_error_dev(self,
    634 			    "uncorrectable ECC error at page offset 0x%jx "
    635 			    "block %zu\n", (uintmax_t)offset, b);
    636 			return EIO;
    637 			break;
    638 		case NAND_ECC_INVALID:
    639 			aprint_error_dev(self,
    640 			    "invalid ECC in oob at page offset 0x%jx "
    641 			    "block %zu\n", (uintmax_t)offset, b);
    642 			return EIO;
    643 			break;
    644 		default:
    645 			panic("invalid ECC correction errno");
    646 		}
    647 	}
    648 
    649 	return 0;
    650 }
    651 
    652 static int
    653 nand_program_page(device_t self, size_t page, const uint8_t *data)
    654 {
    655 	struct nand_softc *sc = device_private(self);
    656 	struct nand_chip *chip = &sc->sc_chip;
    657 	size_t bs, cs, e, b;
    658 	uint8_t status;
    659 	uint8_t *ecc;
    660 
    661 	nand_command(self, ONFI_PAGE_PROGRAM);
    662 	nand_address_column(self, page, 0);
    663 
    664 	nand_busy(self);
    665 
    666 	bs = chip->nc_ecc->necc_block_size;
    667 	cs = chip->nc_ecc->necc_code_size;
    668 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    669 
    670 	/* XXX code duplication */
    671 	/* decide if we access by 8 or 16 bits */
    672 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    673 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    674 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    675 			nand_write_buf_word(self, data + b, bs);
    676 			nand_ecc_compute(self, data + b, ecc + e);
    677 		}
    678 		/* write oob with ecc correction code */
    679 		nand_write_buf_word(self, chip->nc_oob_cache,
    680 		    chip->nc_spare_size);
    681 	} else {
    682 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    683 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    684 			nand_write_buf_byte(self, data + b, bs);
    685 			nand_ecc_compute(self, data + b, ecc + e);
    686 		}
    687 		/* write oob with ecc correction code */
    688 		nand_write_buf_byte(self, chip->nc_oob_cache,
    689 		    chip->nc_spare_size);
    690 	}
    691 
    692 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    693 
    694 	nand_busy(self);
    695 
    696 #if 0
    697 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    698 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    699 		printf("0x");
    700 		for (b = 0; b < cs; b++) {
    701 			printf("%.2hhx", ecc[e+b]);
    702 		}
    703 		printf("\n");
    704 	}
    705 	printf("--------------\n");
    706 #endif
    707 
    708 	status = nand_get_status(self);
    709 	KASSERT(status & ONFI_STATUS_RDY);
    710 	if (status & ONFI_STATUS_FAIL) {
    711 		aprint_error_dev(self, "page program failed!\n");
    712 		return EIO;
    713 	}
    714 
    715 	return 0;
    716 }
    717 
    718 int
    719 nand_read_oob(device_t self, size_t page, void *oob)
    720 {
    721 	struct nand_softc *sc = device_private(self);
    722 	struct nand_chip *chip = &sc->sc_chip;
    723 
    724 	nand_prepare_read(self, page, chip->nc_page_size);
    725 
    726 	if (chip->nc_flags & NC_BUSWIDTH_16)
    727 		nand_read_buf_word(self, oob, chip->nc_spare_size);
    728 	else
    729 		nand_read_buf_byte(self, oob, chip->nc_spare_size);
    730 
    731 //	nand_dump_data("oob", oob, chip->nc_spare_size);
    732 
    733 	return 0;
    734 }
    735 
    736 static int
    737 nand_write_oob(device_t self, size_t offset, const void *oob)
    738 {
    739 	struct nand_softc *sc = device_private(self);
    740 	struct nand_chip *chip = &sc->sc_chip;
    741 	uint8_t status;
    742 
    743 	nand_command(self, ONFI_PAGE_PROGRAM);
    744 	nand_address_column(self, offset, chip->nc_page_size);
    745 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    746 
    747 	nand_busy(self);
    748 
    749 	if (chip->nc_flags & NC_BUSWIDTH_16)
    750 		nand_write_buf_word(self, oob, chip->nc_spare_size);
    751 	else
    752 		nand_write_buf_byte(self, oob, chip->nc_spare_size);
    753 
    754 	status = nand_get_status(self);
    755 	KASSERT(status & ONFI_STATUS_RDY);
    756 	if (status & ONFI_STATUS_FAIL)
    757 		return EIO;
    758 	else
    759 		return 0;
    760 }
    761 
    762 void
    763 nand_markbad(device_t self, size_t offset)
    764 {
    765 	struct nand_softc *sc = device_private(self);
    766 	struct nand_chip *chip = &sc->sc_chip;
    767 	flash_addr_t blockoffset, marker;
    768 #ifdef NAND_BBT
    769 	flash_addr_t block;
    770 
    771 	block = offset / chip->nc_block_size;
    772 
    773 	nand_bbt_block_markbad(self, block);
    774 #endif
    775 	blockoffset = offset & chip->nc_block_mask;
    776 	marker = chip->nc_badmarker_offs & ~0x01;
    777 
    778 	/* check if it is already marked bad */
    779 	if (nand_isbad(self, blockoffset))
    780 		return;
    781 
    782 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
    783 
    784 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
    785 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
    786 
    787 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
    788 }
    789 
    790 bool
    791 nand_isfactorybad(device_t self, flash_addr_t offset)
    792 {
    793 	struct nand_softc *sc = device_private(self);
    794 	struct nand_chip *chip = &sc->sc_chip;
    795 	flash_addr_t block, first_page, last_page, page;
    796 	int i;
    797 
    798 	/* Check for factory bad blocks first
    799 	 * Factory bad blocks are marked in the first or last
    800 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
    801 	 */
    802 	block = offset / chip->nc_block_size;
    803 	first_page = block * chip->nc_block_size;
    804 	last_page = (block + 1) * chip->nc_block_size
    805 	    - chip->nc_page_size;
    806 
    807 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
    808 		/* address OOB */
    809 		nand_prepare_read(self, page, chip->nc_page_size);
    810 
    811 		if (chip->nc_flags & NC_BUSWIDTH_16) {
    812 			uint16_t word;
    813 			nand_read_word(self, &word);
    814 			if (word == 0x0000)
    815 				return true;
    816 		} else {
    817 			uint8_t byte;
    818 			nand_read_byte(self, &byte);
    819 			if (byte == 0x00)
    820 				return true;
    821 		}
    822 	}
    823 
    824 	return false;
    825 }
    826 
    827 bool
    828 nand_iswornoutbad(device_t self, flash_addr_t offset)
    829 {
    830 	struct nand_softc *sc = device_private(self);
    831 	struct nand_chip *chip = &sc->sc_chip;
    832 	flash_addr_t block;
    833 
    834 	/* we inspect the first page of the block */
    835 	block = offset & chip->nc_block_mask;
    836 
    837 	/* Linux/u-boot compatible badblock handling */
    838 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    839 		uint16_t word, mark;
    840 
    841 		nand_prepare_read(self, block,
    842 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
    843 
    844 		nand_read_word(self, &word);
    845 		mark = htole16(word);
    846 		if (chip->nc_badmarker_offs & 0x01)
    847 			mark >>= 8;
    848 		if ((mark & 0xff) != 0xff)
    849 			return true;
    850 	} else {
    851 		uint8_t byte;
    852 
    853 		nand_prepare_read(self, block,
    854 		    chip->nc_page_size + chip->nc_badmarker_offs);
    855 
    856 		nand_read_byte(self, &byte);
    857 		if (byte != 0xff)
    858 			return true;
    859 	}
    860 
    861 	return false;
    862 }
    863 
    864 bool
    865 nand_isbad(device_t self, flash_addr_t offset)
    866 {
    867 #ifdef NAND_BBT
    868 	struct nand_softc *sc = device_private(self);
    869 	struct nand_chip *chip = &sc->sc_chip;
    870 	flash_addr_t block;
    871 
    872 	block = offset / chip->nc_block_size;
    873 
    874 	return nand_bbt_block_isbad(self, block);
    875 #else
    876 	/* ONFI host requirement */
    877 	if (nand_isfactorybad(self, offset))
    878 		return true;
    879 
    880 	/* Look for Linux/U-Boot compatible bad marker */
    881 	if (nand_iswornoutbad(self, offset))
    882 		return true;
    883 
    884 	return false;
    885 #endif
    886 }
    887 
    888 int
    889 nand_erase_block(device_t self, size_t offset)
    890 {
    891 //	struct nand_softc *sc = device_private(self);
    892 //	struct nand_chip *chip = &sc->sc_chip;
    893 	uint8_t status;
    894 
    895 	/* xxx calculate first page of block for address? */
    896 
    897 	nand_command(self, ONFI_BLOCK_ERASE);
    898 	nand_address_row(self, offset);
    899 	nand_command(self, ONFI_BLOCK_ERASE_START);
    900 
    901 	nand_busy(self);
    902 
    903 	status = nand_get_status(self);
    904 	KASSERT(status & ONFI_STATUS_RDY);
    905 	if (status & ONFI_STATUS_FAIL) {
    906 		aprint_error_dev(self, "block erase failed!\n");
    907 		nand_markbad(self, offset);
    908 		return EIO;
    909 	} else {
    910 		return 0;
    911 	}
    912 }
    913 
    914 /* default functions for driver development */
    915 
    916 /* default ECC using hamming code of 256 byte chunks */
    917 int
    918 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
    919 {
    920 	hamming_compute_256(data, code);
    921 
    922 	return 0;
    923 }
    924 
    925 int
    926 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
    927 	const uint8_t *compcode)
    928 {
    929 	return hamming_correct_256(data, origcode, compcode);
    930 }
    931 
    932 void
    933 nand_default_select(device_t self, bool enable)
    934 {
    935 	/* do nothing */
    936 	return;
    937 }
    938 
    939 /* implementation of the block device API */
    940 
    941 /*
    942  * handle (page) unaligned write to nand
    943  */
    944 static int
    945 nand_flash_write_unaligned(device_t self, off_t offset, size_t len,
    946     size_t *retlen, const uint8_t *buf)
    947 {
    948 	struct nand_softc *sc = device_private(self);
    949 	struct nand_chip *chip = &sc->sc_chip;
    950 	flash_addr_t first, last, firstoff;
    951 	const uint8_t *bufp;
    952 	flash_addr_t addr;
    953 	size_t left, count;
    954 	int error, i;
    955 
    956 	/* to debug chfs */
    957 //	printf("unaligned write to nand\n");
    958 
    959 	first = offset & chip->nc_page_mask;
    960 	firstoff = offset & ~chip->nc_page_mask;
    961 	/* XXX check if this should be len - 1 */
    962 	last = (offset + len) & chip->nc_page_mask;
    963 	count = last - first + 1;
    964 
    965 	addr = first;
    966 	*retlen = 0;
    967 
    968 	if (count == 1) {
    969 		if (nand_isbad(self, addr)) {
    970 			aprint_error_dev(self,
    971 			    "nand_flash_write_unaligned: "
    972 			    "bad block encountered\n");
    973 			return EIO;
    974 		}
    975 
    976 		error = nand_read_page(self, addr, chip->nc_page_cache);
    977 		if (error)
    978 			return error;
    979 
    980 		memcpy(chip->nc_page_cache + firstoff, buf, len);
    981 
    982 		error = nand_program_page(self, addr, chip->nc_page_cache);
    983 		if (error)
    984 			return error;
    985 
    986 		*retlen = len;
    987 		return 0;
    988 	}
    989 
    990 	bufp = buf;
    991 	left = len;
    992 
    993 	for (i = 0; i < count && left != 0; i++) {
    994 		if (nand_isbad(self, addr)) {
    995 			aprint_error_dev(self,
    996 			    "nand_flash_write_unaligned: "
    997 			    "bad block encountered\n");
    998 			return EIO;
    999 		}
   1000 
   1001 		if (i == 0) {
   1002 			error = nand_read_page(self,
   1003 			    addr, chip->nc_page_cache);
   1004 			if (error)
   1005 				return error;
   1006 
   1007 			memcpy(chip->nc_page_cache + firstoff,
   1008 			    bufp, chip->nc_page_size - firstoff);
   1009 
   1010 			printf("program page: %s: %d\n", __FILE__, __LINE__);
   1011 			error = nand_program_page(self,
   1012 			    addr, chip->nc_page_cache);
   1013 			if (error)
   1014 				return error;
   1015 
   1016 			bufp += chip->nc_page_size - firstoff;
   1017 			left -= chip->nc_page_size - firstoff;
   1018 			*retlen += chip->nc_page_size - firstoff;
   1019 
   1020 		} else if (i == count - 1) {
   1021 			error = nand_read_page(self,
   1022 			    addr, chip->nc_page_cache);
   1023 			if (error)
   1024 				return error;
   1025 
   1026 			memcpy(chip->nc_page_cache, bufp, left);
   1027 
   1028 			error = nand_program_page(self,
   1029 			    addr, chip->nc_page_cache);
   1030 			if (error)
   1031 				return error;
   1032 
   1033 			*retlen += left;
   1034 			KASSERT(left < chip->nc_page_size);
   1035 
   1036 		} else {
   1037 			/* XXX debug */
   1038 			if (left > chip->nc_page_size) {
   1039 				printf("left: %zu, i: %d, count: %zu\n",
   1040 				    (size_t )left, i, count);
   1041 			}
   1042 			KASSERT(left > chip->nc_page_size);
   1043 
   1044 			error = nand_program_page(self, addr, bufp);
   1045 			if (error)
   1046 				return error;
   1047 
   1048 			bufp += chip->nc_page_size;
   1049 			left -= chip->nc_page_size;
   1050 			*retlen += chip->nc_page_size;
   1051 		}
   1052 
   1053 		addr += chip->nc_page_size;
   1054 	}
   1055 
   1056 	KASSERT(*retlen == len);
   1057 
   1058 	return 0;
   1059 }
   1060 
   1061 int
   1062 nand_flash_write(device_t self, off_t offset, size_t len, size_t *retlen,
   1063     const uint8_t *buf)
   1064 {
   1065 	struct nand_softc *sc = device_private(self);
   1066 	struct nand_chip *chip = &sc->sc_chip;
   1067 	const uint8_t *bufp;
   1068 	size_t pages, page;
   1069 	daddr_t addr;
   1070 	int error = 0;
   1071 
   1072 	if ((offset + len) > chip->nc_size) {
   1073 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
   1074 			" is over device size (0x%jx)\n",
   1075 			(uintmax_t)offset, (uintmax_t)len,
   1076 			(uintmax_t)chip->nc_size));
   1077 		return EINVAL;
   1078 	}
   1079 
   1080 	if (len % chip->nc_page_size != 0 ||
   1081 	    offset % chip->nc_page_size != 0) {
   1082 		return nand_flash_write_unaligned(self,
   1083 		    offset, len, retlen, buf);
   1084 	}
   1085 
   1086 	pages = len / chip->nc_page_size;
   1087 	KASSERT(pages != 0);
   1088 	*retlen = 0;
   1089 
   1090 	addr = offset;
   1091 	bufp = buf;
   1092 
   1093 	mutex_enter(&sc->sc_device_lock);
   1094 	for (page = 0; page < pages; page++) {
   1095 		/* do we need this check here? */
   1096 		if (nand_isbad(self, addr)) {
   1097 			aprint_error_dev(self,
   1098 			    "nand_flash_write: bad block encountered\n");
   1099 
   1100 			error = EIO;
   1101 			goto out;
   1102 		}
   1103 
   1104 		error = nand_program_page(self, addr, bufp);
   1105 		if (error)
   1106 			goto out;
   1107 
   1108 		addr += chip->nc_page_size;
   1109 		bufp += chip->nc_page_size;
   1110 		*retlen += chip->nc_page_size;
   1111 	}
   1112 out:
   1113 	mutex_exit(&sc->sc_device_lock);
   1114 	DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
   1115 
   1116 	return error;
   1117 }
   1118 
   1119 /*
   1120  * handle (page) unaligned read from nand
   1121  */
   1122 static int
   1123 nand_flash_read_unaligned(device_t self, size_t offset,
   1124     size_t len, size_t *retlen, uint8_t *buf)
   1125 {
   1126 	struct nand_softc *sc = device_private(self);
   1127 	struct nand_chip *chip = &sc->sc_chip;
   1128 	daddr_t first, last, count, firstoff;
   1129 	uint8_t *bufp;
   1130 	daddr_t addr;
   1131 	size_t left;
   1132 	int error = 0, i;
   1133 
   1134 	/* to debug chfs */
   1135 //	printf("unaligned read from nand\n");
   1136 
   1137 	first = offset & chip->nc_page_mask;
   1138 	firstoff = offset & ~chip->nc_page_mask;
   1139 	last = (offset + len) & chip->nc_page_mask;
   1140 //	lastoff = chip->nc_page_size - (offset + len) & ~chip->nc_page_mask;
   1141 	count = (last - first) / chip->nc_page_size + 1;
   1142 
   1143 	addr = first;
   1144 	bufp = buf;
   1145 	left = len;
   1146 	*retlen = 0;
   1147 
   1148 	mutex_enter(&sc->sc_device_lock);
   1149 	if (count == 1) {
   1150 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1151 		if (error)
   1152 			goto out;
   1153 
   1154 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
   1155 
   1156 		*retlen = len;
   1157 		goto out;
   1158 	}
   1159 
   1160 	for (i = 0; i < count && left != 0; i++) {
   1161 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1162 		if (error)
   1163 			goto out;
   1164 
   1165 		if (i == 0) {
   1166 			memcpy(bufp, chip->nc_page_cache + firstoff,
   1167 			    chip->nc_page_size - firstoff);
   1168 
   1169 			bufp += chip->nc_page_size - firstoff;
   1170 			left -= chip->nc_page_size - firstoff;
   1171 			*retlen += chip->nc_page_size - firstoff;
   1172 
   1173 		} else if (i == count - 1) {
   1174 			memcpy(bufp, chip->nc_page_cache, left);
   1175 			*retlen += left;
   1176 			KASSERT(left < chip->nc_page_size);
   1177 
   1178 		} else {
   1179 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
   1180 
   1181 			bufp += chip->nc_page_size;
   1182 			left -= chip->nc_page_size;
   1183 			*retlen += chip->nc_page_size;
   1184 		}
   1185 
   1186 		addr += chip->nc_page_size;
   1187 	}
   1188 
   1189 	KASSERT(*retlen == len);
   1190 
   1191 out:
   1192 	mutex_exit(&sc->sc_device_lock);
   1193 
   1194 	return error;
   1195 }
   1196 
   1197 int
   1198 nand_flash_read(device_t self, off_t offset, size_t len, size_t *retlen,
   1199     uint8_t *buf)
   1200 {
   1201 	struct nand_softc *sc = device_private(self);
   1202 	struct nand_chip *chip = &sc->sc_chip;
   1203 	uint8_t *bufp;
   1204 	size_t addr;
   1205 	size_t i, pages;
   1206 	int error = 0;
   1207 
   1208 	*retlen = 0;
   1209 
   1210 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
   1211 		(uintmax_t)offset, len));
   1212 
   1213 	if (__predict_false((offset + len) > chip->nc_size)) {
   1214 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
   1215 			" is over device size (%ju)\n", (uintmax_t)offset,
   1216 			len, (uintmax_t)chip->nc_size));
   1217 		return EINVAL;
   1218 	}
   1219 
   1220 	/* Handle unaligned access, shouldnt be needed when using the
   1221 	 * block device, as strategy handles it, so only low level
   1222 	 * accesses will use this path
   1223 	 */
   1224 //	if (len < chip->nc_page_size)
   1225 //		panic("TODO page size is larger than read size");
   1226 
   1227 	if (len % chip->nc_page_size != 0 ||
   1228 	    offset % chip->nc_page_size != 0) {
   1229 		return nand_flash_read_unaligned(self,
   1230 		    offset, len, retlen, buf);
   1231 	}
   1232 
   1233 	bufp = buf;
   1234 	addr = offset;
   1235 	pages = len / chip->nc_page_size;
   1236 
   1237 	mutex_enter(&sc->sc_device_lock);
   1238 	for (i = 0; i < pages; i++) {
   1239 		/* do we need this check here? */
   1240 		if (nand_isbad(self, addr)) {
   1241 			aprint_error_dev(self, "bad block encountered\n");
   1242 			error = EIO;
   1243 			goto out;
   1244 		}
   1245 		error = nand_read_page(self, addr, bufp);
   1246 		if (error)
   1247 			goto out;
   1248 
   1249 		bufp += chip->nc_page_size;
   1250 		addr += chip->nc_page_size;
   1251 		*retlen += chip->nc_page_size;
   1252 	}
   1253 
   1254 out:
   1255 	mutex_exit(&sc->sc_device_lock);
   1256 
   1257 	return error;
   1258 }
   1259 
   1260 int
   1261 nand_flash_isbad(device_t self, uint64_t ofs)
   1262 {
   1263 	struct nand_softc *sc = device_private(self);
   1264 	struct nand_chip *chip = &sc->sc_chip;
   1265 	bool result;
   1266 //	uint64_t block_num;
   1267 
   1268 	if (ofs > chip->nc_size) {
   1269 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
   1270 			" device size (0x%jx)\n", (uintmax_t)ofs,
   1271 			(uintmax_t)chip->nc_size));
   1272 		return EINVAL;
   1273 	}
   1274 
   1275 	if (ofs % chip->nc_block_size != 0) {
   1276 		panic("offset (0x%jx) is not the multiple of block size (%ju)",
   1277 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
   1278 	}
   1279 //	block_num = ofs / fl->flash_if.erasesize;
   1280 
   1281 	mutex_enter(&sc->sc_device_lock);
   1282 	result = nand_isbad(self, ofs);
   1283 	mutex_exit(&sc->sc_device_lock);
   1284 
   1285 	if (result)
   1286 		return 1;
   1287 	else
   1288 		return 0;
   1289 }
   1290 
   1291 int
   1292 nand_flash_markbad(device_t self, uint64_t ofs)
   1293 {
   1294 	struct nand_softc *sc = device_private(self);
   1295 	struct nand_chip *chip = &sc->sc_chip;
   1296 
   1297 //	uint64_t block_num;
   1298 
   1299 	if (ofs > chip->nc_size) {
   1300 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
   1301 			" device size (0x%jx)\n", ofs,
   1302 			(uintmax_t)chip->nc_size));
   1303 		return EINVAL;
   1304 	}
   1305 
   1306 	if (ofs % chip->nc_block_size != 0) {
   1307 		panic("offset (%ju) is not the multiple of block size (%ju)",
   1308 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
   1309 	}
   1310 
   1311 //	block_num = ofs / fl->flash_if->erasesize;
   1312 
   1313 	mutex_enter(&sc->sc_device_lock);
   1314 	nand_markbad(self, ofs);
   1315 	mutex_exit(&sc->sc_device_lock);
   1316 
   1317 	return 0;
   1318 }
   1319 
   1320 int
   1321 nand_flash_erase(device_t self,
   1322     struct flash_erase_instruction *ei)
   1323 {
   1324 	struct nand_softc *sc = device_private(self);
   1325 	struct nand_chip *chip = &sc->sc_chip;
   1326 	flash_addr_t addr;
   1327 	int error;
   1328 //	off_t block_num;
   1329 
   1330 //	if (FLASH_CLOSED == sc->sc_flash.status)
   1331 //		return FLASH_CLOSED;
   1332 
   1333 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
   1334 		return EINVAL;
   1335 
   1336 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
   1337 		DPRINTF(("nand_flash_erase: erase address is over the end"
   1338 			" of the device\n"));
   1339 		return EINVAL;
   1340 	}
   1341 
   1342 	if (ei->ei_addr % chip->nc_block_size != 0) {
   1343 		aprint_error_dev(self,
   1344 		    "nand_flash_erase: ei_addr (%ju) is not"
   1345 		    "the multiple of block size (%ju)",
   1346 		    (uintmax_t)ei->ei_addr,
   1347 		    (uintmax_t)chip->nc_block_size);
   1348 		return EINVAL;
   1349 	}
   1350 
   1351 	if (ei->ei_len % chip->nc_block_size != 0) {
   1352 		aprint_error_dev(self,
   1353 		    "nand_flash_erase: ei_len (%ju) is not"
   1354 		    "the multiple of block size (%ju)",
   1355 		    (uintmax_t)ei->ei_addr,
   1356 		    (uintmax_t)chip->nc_block_size);
   1357 		return EINVAL;
   1358 	}
   1359 
   1360 	mutex_enter(&sc->sc_device_lock);
   1361 	addr = ei->ei_addr;
   1362 	while (addr < ei->ei_addr + ei->ei_len) {
   1363 		if (nand_isbad(self, addr)) {
   1364 			mutex_exit(&sc->sc_device_lock);
   1365 			aprint_error_dev(self, "bad block encountered\n");
   1366 			ei->ei_state = FLASH_ERASE_FAILED;
   1367 			return EIO;
   1368 		}
   1369 
   1370 		error = nand_erase_block(self, addr);
   1371 		if (error) {
   1372 			mutex_exit(&sc->sc_device_lock);
   1373 			ei->ei_state = FLASH_ERASE_FAILED;
   1374 			return error;
   1375 		}
   1376 
   1377 		addr += chip->nc_block_size;
   1378 	}
   1379 	mutex_exit(&sc->sc_device_lock);
   1380 
   1381 	ei->ei_state = FLASH_ERASE_DONE;
   1382 	if (ei->ei_callback != NULL)
   1383 		ei->ei_callback(ei);
   1384 
   1385 	return 0;
   1386 }
   1387 
   1388 static int
   1389 sysctl_nand_verify(SYSCTLFN_ARGS)
   1390 {
   1391 	int error, t;
   1392 	struct sysctlnode node;
   1393 
   1394 	node = *rnode;
   1395 	t = *(int *)rnode->sysctl_data;
   1396 	node.sysctl_data = &t;
   1397 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1398 	if (error || newp == NULL)
   1399 		return error;
   1400 
   1401 	if (node.sysctl_num == nand_cachesync_nodenum) {
   1402 		if (t <= 0 || t > 60)
   1403 			return EINVAL;
   1404 	} else {
   1405 		return EINVAL;
   1406 	}
   1407 
   1408 	*(int *)rnode->sysctl_data = t;
   1409 
   1410 	return 0;
   1411 }
   1412 
   1413 SYSCTL_SETUP(sysctl_nand, "sysctl nand subtree setup")
   1414 {
   1415 	int rc, nand_root_num;
   1416 	const struct sysctlnode *node;
   1417 
   1418 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   1419 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   1420 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   1421 		goto error;
   1422 	}
   1423 
   1424 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1425 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "nand",
   1426 	    SYSCTL_DESCR("NAND driver controls"),
   1427 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   1428 		goto error;
   1429 	}
   1430 
   1431 	nand_root_num = node->sysctl_num;
   1432 
   1433 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1434 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1435 	    CTLTYPE_INT, "cache_sync_timeout",
   1436 	    SYSCTL_DESCR("NAND write cache sync timeout in seconds"),
   1437 	    sysctl_nand_verify, 0, &nand_cachesync_timeout,
   1438 	    0, CTL_HW, nand_root_num, CTL_CREATE,
   1439 	    CTL_EOL)) != 0) {
   1440 		goto error;
   1441 	}
   1442 
   1443 	nand_cachesync_nodenum = node->sysctl_num;
   1444 
   1445 	return;
   1446 
   1447 error:
   1448 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   1449 }
   1450 
   1451 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
   1452 
   1453 #ifdef _MODULE
   1454 #include "ioconf.c"
   1455 #endif
   1456 
   1457 static int
   1458 nand_modcmd(modcmd_t cmd, void *opaque)
   1459 {
   1460 	switch (cmd) {
   1461 	case MODULE_CMD_INIT:
   1462 #ifdef _MODULE
   1463 		return config_init_component(cfdriver_ioconf_nand,
   1464 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1465 #else
   1466 		return 0;
   1467 #endif
   1468 	case MODULE_CMD_FINI:
   1469 #ifdef _MODULE
   1470 		return config_fini_component(cfdriver_ioconf_nand,
   1471 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1472 #else
   1473 		return 0;
   1474 #endif
   1475 	default:
   1476 		return ENOTTY;
   1477 	}
   1478 }
   1479