nand.c revision 1.1 1 /* $NetBSD: nand.c,v 1.1 2011/02/26 18:07:31 ahoka Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Department of Software Engineering,
5 * University of Szeged, Hungary
6 * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by the Department of Software Engineering, University of Szeged, Hungary
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.1 2011/02/26 18:07:31 ahoka Exp $");
38
39 #include "locators.h"
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/device.h>
44 #include <sys/kmem.h>
45 #include <sys/sysctl.h>
46
47 #include <dev/flash/flash.h>
48 #include <dev/nand/nand.h>
49 #include <dev/nand/onfi.h>
50 #include <dev/nand/hamming.h>
51 #include <dev/nand/nand_bbt.h>
52 #include <dev/nand/nand_crc.h>
53
54 #include "opt_nand.h"
55
56 int nand_match(device_t parent, cfdata_t match, void *aux);
57 void nand_attach(device_t parent, device_t self, void *aux);
58 int nand_detach(device_t device, int flags);
59 bool nand_shutdown(device_t self, int howto);
60
61 int nand_print(void *aux, const char *pnp);
62
63 static int nand_search(device_t parent, cfdata_t cf, const int *ldesc,
64 void *aux);
65 static void nand_address_row(device_t self, size_t row);
66 static void nand_address_column(device_t self, size_t row, size_t column);
67 static void nand_readid(device_t self, struct nand_chip *chip);
68 static void nand_read_parameter_page(device_t self, struct nand_chip *chip);
69 static const char *nand_midtoname(int id);
70 static int nand_scan_media(device_t self, struct nand_chip *chip);
71 static bool nand_check_wp(device_t self);
72
73 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
74 nand_match, nand_attach, nand_detach, NULL);
75
76 #ifdef NAND_DEBUG
77 int nanddebug = NAND_DEBUG;
78 #endif
79
80 int nand_cachesync_timeout = 1;
81 int nand_cachesync_nodenum;
82
83 const struct nand_manufacturer nand_mfrs[] = {
84 { NAND_MFR_AMD, "AMD" },
85 { NAND_MFR_FUJITSU, "Fujitsu" },
86 { NAND_MFR_RENESAS, "Renesas" },
87 { NAND_MFR_STMICRO, "ST Micro" },
88 { NAND_MFR_MICRON, "Micron" },
89 { NAND_MFR_NATIONAL, "National" },
90 { NAND_MFR_TOSHIBA, "Toshiba" },
91 { NAND_MFR_HYNIX, "Hynix" },
92 { NAND_MFR_SAMSUNG, "Samsung" },
93 { NAND_MFR_UNKNOWN, "Unknown" }
94 };
95
96 /* ARGSUSED */
97 int
98 nand_match(device_t parent, cfdata_t match, void *aux)
99 {
100 /* pseudo device, always attaches */
101 return 1;
102 }
103
104 void
105 nand_attach(device_t parent, device_t self, void *aux)
106 {
107 struct nand_softc *sc = device_private(self);
108 struct nand_attach_args *naa = aux;
109 struct nand_chip *chip = &sc->sc_chip;
110 // struct flash_interface *flash_if;
111 // int i;
112
113 sc->sc_dev = self;
114 sc->nand_dev = parent;
115 sc->nand_if = naa->naa_nand_if;
116
117 // sc->nand_softc = device_private(parent);
118
119 aprint_naive("\n");
120 // aprint_normal(": NAND flash memory\n");
121
122 if (nand_check_wp(self)) {
123 aprint_error("NAND chip is write protected!\n");
124 return;
125 }
126 if (nand_scan_media(self, chip))
127 return;
128
129 /* allocate cache */
130 chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
131 chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
132
133 mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
134
135 if (nand_sync_thread_start(self)) {
136 goto error;
137 }
138
139 if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
140 aprint_error_dev(sc->sc_dev,
141 "couldn't establish power handler\n");
142
143 #ifdef NAND_BBT
144 nand_bbt_init(self);
145 nand_bbt_scan(self);
146 #endif
147
148 /*
149 * Attach all our devices
150 */
151 config_search_ia(nand_search, self, NULL, NULL);
152
153 return;
154 error:
155 kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
156 kmem_free(chip->nc_page_cache, chip->nc_page_size);
157 mutex_destroy(&sc->sc_device_lock);
158 }
159
160 static int
161 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
162 {
163 struct nand_softc *sc = device_private(parent);
164 struct nand_chip *chip = &sc->sc_chip;
165 struct flash_interface *flash_if;
166 struct flash_attach_args faa;
167
168 flash_if = kmem_alloc(sizeof(*flash_if), KM_SLEEP);
169
170 flash_if->type = FLASH_TYPE_NAND;
171
172 flash_if->read = nand_flash_read;
173 flash_if->write = nand_flash_write;
174 flash_if->erase = nand_flash_erase;
175 flash_if->block_isbad = nand_flash_isbad;
176 flash_if->block_markbad = nand_flash_markbad;
177
178 flash_if->submit = nand_io_submit;
179
180 flash_if->erasesize = chip->nc_block_size;
181 flash_if->page_size = chip->nc_page_size;
182 flash_if->writesize = chip->nc_page_size;
183
184 flash_if->partition.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
185
186 if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
187 flash_if->size = chip->nc_size -
188 flash_if->partition.part_offset;
189 flash_if->partition.part_size = flash_if->size;
190 } else {
191 flash_if->size = cf->cf_loc[FLASHBUSCF_SIZE];
192 flash_if->partition.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
193 }
194
195 if (cf->cf_loc[FLASHBUSCF_READONLY])
196 flash_if->partition.part_flags = FLASH_PART_READONLY;
197 else
198 flash_if->partition.part_flags = 0;
199
200 faa.flash_if = flash_if;
201
202 if (config_match(parent, cf, &faa)) {
203 config_attach(parent, cf, &faa, nand_print);
204 return 0;
205 } else {
206 kmem_free(flash_if, sizeof(*flash_if));
207 }
208
209 return 1;
210 }
211
212 int
213 nand_detach(device_t self, int flags)
214 {
215 struct nand_softc *sc = device_private(self);
216 struct nand_chip *chip = &sc->sc_chip;
217 int ret = 0;
218
219 #ifdef NAND_BBT
220 nand_bbt_detach(self);
221 #endif
222 nand_sync_thread_stop(self);
223
224 /* free oob cache */
225 kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
226 kmem_free(chip->nc_page_cache, chip->nc_page_size);
227 kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
228
229 mutex_destroy(&sc->sc_device_lock);
230
231 pmf_device_deregister(sc->sc_dev);
232
233 return ret;
234 }
235
236 int
237 nand_print(void *aux, const char *pnp)
238 {
239 if (pnp != NULL)
240 aprint_normal("nand at %s\n", pnp);
241
242 return UNCONF;
243 }
244
245 device_t
246 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
247 {
248 struct nand_attach_args arg;
249
250 KASSERT(nand_if != NULL);
251
252 arg.naa_nand_if = nand_if;
253 return config_found_ia(parent, "nandbus", &arg, nand_print);
254 }
255
256 static const char *
257 nand_midtoname(int id)
258 {
259 int i;
260
261 for (i = 0; nand_mfrs[i].id != 0; i++) {
262 if (nand_mfrs[i].id == id)
263 return nand_mfrs[i].name;
264 }
265
266 KASSERT(nand_mfrs[i].id == 0);
267
268 return nand_mfrs[i].name;
269 }
270
271 #if 0
272 /* handle quirks here */
273 static void
274 nand_quirks(device_t self, struct nand_chip *chip)
275 {
276 /* this is an example only! */
277 switch (chip->nc_manf_id) {
278 case NAND_MFR_SAMSUNG:
279 if (chip->nc_dev_id == 0x00) {
280 /* do something only samsung chips need */
281 /* or */
282 /* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
283 }
284 }
285
286 return;
287 }
288 #endif
289
290 /**
291 * scan media to determine the chip's properties
292 * this function resets the device
293 */
294 static int
295 nand_scan_media(device_t self, struct nand_chip *chip)
296 {
297 struct nand_softc *sc = device_private(self);
298 struct nand_ecc *ecc;
299 uint8_t onfi_signature[4];
300
301 nand_select(self, true);
302 nand_command(self, ONFI_RESET);
303 nand_select(self, false);
304
305 nand_select(self, true);
306 nand_command(self, ONFI_READ_ID);
307 nand_address(self, 0x20);
308 nand_read_byte(self, &onfi_signature[0]);
309 nand_read_byte(self, &onfi_signature[1]);
310 nand_read_byte(self, &onfi_signature[2]);
311 nand_read_byte(self, &onfi_signature[3]);
312 nand_select(self, false);
313
314 if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
315 onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
316 aprint_error_dev(self,
317 "device does not support the ONFI specification\n");
318
319 return 1;
320 }
321
322 nand_readid(self, chip);
323
324 aprint_normal(": NAND Flash\n");
325
326 aprint_debug_dev(self,
327 "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
328 chip->nc_manf_id,
329 nand_midtoname(chip->nc_manf_id),
330 chip->nc_dev_id);
331
332 nand_read_parameter_page(self, chip);
333
334 ecc = chip->nc_ecc = &sc->nand_if->ecc;
335
336 /*
337 * calculate the place of ecc data in oob
338 * we try to be compatible with Linux here
339 */
340 switch (chip->nc_spare_size) {
341 case 8:
342 ecc->necc_offset = 0;
343 break;
344 case 16:
345 ecc->necc_offset = 0;
346 break;
347 case 64:
348 ecc->necc_offset = 40;
349 break;
350 case 128:
351 ecc->necc_offset = 80;
352 break;
353 default:
354 panic("OOB size is unexpected");
355 }
356
357 ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
358 ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
359
360 /* check if we fit in oob */
361 if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
362 panic("NAND ECC bits dont fit in OOB");
363 }
364
365 /* TODO: mark free oob area available for file systems */
366
367 chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
368
369 /*
370 * calculate badblock marker offset in oob
371 * we try to be compatible with linux here
372 */
373 if (chip->nc_page_size > 512)
374 chip->nc_badmarker_offs = 0;
375 else
376 chip->nc_badmarker_offs = 5;
377
378 /* Calculate page shift and mask */
379 chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
380 chip->nc_page_mask = ~(chip->nc_page_size - 1);
381 /* same for block */
382 chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
383 chip->nc_block_mask = ~(chip->nc_block_size - 1);
384
385 /* look for quirks here if needed in future */
386 /* nand_quirks(self, chip); */
387
388 return 0;
389 }
390
391 static void
392 nand_readid(device_t self, struct nand_chip *chip)
393 {
394 nand_select(self, true);
395 nand_command(self, ONFI_READ_ID);
396 nand_address(self, 0x00);
397 nand_read_byte(self, &chip->nc_manf_id);
398 nand_read_byte(self, &chip->nc_dev_id);
399 nand_select(self, false);
400 }
401
402 /* read the parameter page. TODO: check CRC! */
403 static void
404 nand_read_parameter_page(device_t self, struct nand_chip *chip)
405 {
406 struct onfi_parameter_page params;
407 uint8_t *bufp;
408 uint8_t vendor[13], model[21];
409 uint16_t crc;
410 int i;
411
412 KASSERT(sizeof(params) == 256);
413
414 nand_select(self, true);
415 nand_command(self, ONFI_READ_PARAMETER_PAGE);
416 nand_address(self, 0x00);
417
418 nand_busy(self);
419
420 bufp = (uint8_t *)¶ms;
421 for (i = 0; i < 256; i++) {
422 nand_read_byte(self, &bufp[i]);
423 }
424 nand_select(self, false);
425
426 /* validate the parameter page with the crc */
427 crc = nand_crc16(bufp, 254);
428
429 if (crc != params.param_integrity_crc) {
430 aprint_error_dev(self, "parameter page crc check failed\n");
431 /* TODO: we should read the next parameter page copy */
432 }
433
434 /* strip manufacturer and model string */
435 strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
436 for (i = 11; i > 0 && vendor[i] == ' '; i--)
437 vendor[i] = 0;
438 strlcpy(model, params.param_model, sizeof(model));
439 for (i = 19; i > 0 && model[i] == ' '; i--)
440 model[i] = 0;
441
442 aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
443
444 aprint_normal_dev(self,
445 "page size: %u bytes, spare size: %u bytes, block size: %u bytes\n",
446 params.param_pagesize, params.param_sparesize,
447 params.param_blocksize * params.param_pagesize);
448
449 aprint_normal_dev(self,
450 "LUN size: %u blocks, LUNs: %u, total storage size: %u MB\n",
451 params.param_lunsize, params.param_numluns,
452 params.param_blocksize * params.param_pagesize *
453 params.param_lunsize * params.param_numluns / 1024 / 1024);
454
455 /* XXX TODO multiple LUNs */
456 if (__predict_false(params.param_numluns != 1))
457 panic("more than one LUNs are not supported yet!\n");
458
459 chip->nc_size = params.param_pagesize * params.param_blocksize *
460 params.param_lunsize * params.param_numluns;
461
462 chip->nc_page_size = params.param_pagesize;
463 chip->nc_block_pages = params.param_blocksize;
464 chip->nc_block_size = params.param_blocksize * params.param_pagesize;
465 chip->nc_spare_size = params.param_sparesize;
466
467 /* the lower 4 bits contain the row address cycles */
468 chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
469 /* the upper 4 bits contain the column address cycles */
470 chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
471
472 #ifdef NAND_VERBOSE
473 aprint_normal_dev(self, "column cycles: %d, row cycles: %d\n",
474 chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
475 #endif
476
477 if (params.param_features & ONFI_FEATURE_16BIT)
478 chip->nc_flags |= NC_BUSWIDTH_16;
479
480 if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
481 chip->nc_flags |= NC_EXTENDED_PARAM;
482 }
483
484 /* ARGSUSED */
485 bool
486 nand_shutdown(device_t self, int howto)
487 {
488 return true;
489 }
490
491 static void
492 nand_address_column(device_t self, size_t row, size_t column)
493 {
494 struct nand_softc *sc = device_private(self);
495 struct nand_chip *chip = &sc->sc_chip;
496 uint8_t i;
497
498 DPRINTF(("addressing row: 0x%jx column: %zu\n",
499 (uintmax_t )row, column));
500
501 /* XXX TODO */
502 row >>= chip->nc_page_shift;
503 // DPRINTF(("row address is: 0x%jx\n", (uintmax_t )row));
504
505 /* Write the column (subpage) address */
506 if (chip->nc_flags & NC_BUSWIDTH_16)
507 column >>= 1;
508 for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
509 nand_address(self, column & 0xff);
510
511 /* Write the row (page) address */
512 for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
513 nand_address(self, row & 0xff);
514 }
515
516 static void
517 nand_address_row(device_t self, size_t row)
518 {
519 struct nand_softc *sc = device_private(self);
520 struct nand_chip *chip = &sc->sc_chip;
521 off_t i;
522
523 // DPRINTF(("addressing row: %zu\n", row));
524
525 /* XXX TODO */
526 row >>= chip->nc_page_shift;
527
528 /* Write the row (page) address */
529 for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
530 nand_address(self, row & 0xff);
531 }
532
533 static inline uint8_t
534 nand_get_status(device_t self)
535 {
536 uint8_t status;
537
538 nand_command(self, ONFI_READ_STATUS);
539 nand_busy(self);
540 nand_read_byte(self, &status);
541
542 return status;
543 }
544
545 static bool
546 nand_check_wp(device_t self)
547 {
548 if (nand_get_status(self) & 0x80)
549 return false;
550 else
551 return true;
552 }
553
554 static void
555 nand_prepare_read(device_t self, flash_addr_t row, flash_addr_t column)
556 {
557 nand_command(self, ONFI_READ);
558 nand_address_column(self, row, column);
559 nand_command(self, ONFI_READ_START);
560
561 nand_busy(self);
562 }
563
564 /* read a page with ecc correction */
565 int
566 nand_read_page(device_t self, size_t offset, uint8_t *data)
567 {
568 struct nand_softc *sc = device_private(self);
569 struct nand_chip *chip = &sc->sc_chip;
570 size_t b, bs, e, cs;
571 uint8_t *ecc;
572 int result;
573
574 DPRINTF(("nand read page\n"));
575
576 nand_prepare_read(self, offset, 0);
577
578 bs = chip->nc_ecc->necc_block_size;
579 cs = chip->nc_ecc->necc_code_size;
580
581 /* decide if we access by 8 or 16 bits */
582 if (chip->nc_flags & NC_BUSWIDTH_16) {
583 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
584 nand_ecc_prepare(self, NAND_ECC_READ);
585 nand_read_buf_word(self, data + b, bs);
586 nand_ecc_compute(self, data + b,
587 chip->nc_ecc_cache + e);
588 }
589 } else {
590 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
591 nand_ecc_prepare(self, NAND_ECC_READ);
592 nand_read_buf_byte(self, data + b, bs);
593 nand_ecc_compute(self, data + b,
594 chip->nc_ecc_cache + e);
595 }
596 }
597
598 // nand_dump_data("page", data, chip->nc_page_size);
599
600 nand_read_oob(self, offset, chip->nc_oob_cache);
601 ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
602
603 /* useful for debugging new ecc drivers */
604 #if 0
605 printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
606 for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
607 printf("0x");
608 for (b = 0; b < cs; b++) {
609 printf("%.2hhx", ecc[e+b]);
610 }
611 printf(" 0x");
612 for (b = 0; b < cs; b++) {
613 printf("%.2hhx", chip->nc_ecc_cache[e+b]);
614 }
615 printf("\n");
616 }
617 printf("--------------\n");
618 #endif
619
620 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
621 result = nand_ecc_correct(self, data + b, ecc + e,
622 chip->nc_ecc_cache + e);
623
624 switch (result) {
625 case NAND_ECC_OK:
626 break;
627 case NAND_ECC_CORRECTED:
628 aprint_error_dev(self,
629 "data corrected with ECC at page offset 0x%jx "
630 "block %zu\n", (uintmax_t)offset, b);
631 break;
632 case NAND_ECC_TWOBIT:
633 aprint_error_dev(self,
634 "uncorrectable ECC error at page offset 0x%jx "
635 "block %zu\n", (uintmax_t)offset, b);
636 return EIO;
637 break;
638 case NAND_ECC_INVALID:
639 aprint_error_dev(self,
640 "invalid ECC in oob at page offset 0x%jx "
641 "block %zu\n", (uintmax_t)offset, b);
642 return EIO;
643 break;
644 default:
645 panic("invalid ECC correction errno");
646 }
647 }
648
649 return 0;
650 }
651
652 static int
653 nand_program_page(device_t self, size_t page, const uint8_t *data)
654 {
655 struct nand_softc *sc = device_private(self);
656 struct nand_chip *chip = &sc->sc_chip;
657 size_t bs, cs, e, b;
658 uint8_t status;
659 uint8_t *ecc;
660
661 nand_command(self, ONFI_PAGE_PROGRAM);
662 nand_address_column(self, page, 0);
663
664 nand_busy(self);
665
666 bs = chip->nc_ecc->necc_block_size;
667 cs = chip->nc_ecc->necc_code_size;
668 ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
669
670 /* XXX code duplication */
671 /* decide if we access by 8 or 16 bits */
672 if (chip->nc_flags & NC_BUSWIDTH_16) {
673 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
674 nand_ecc_prepare(self, NAND_ECC_WRITE);
675 nand_write_buf_word(self, data + b, bs);
676 nand_ecc_compute(self, data + b, ecc + e);
677 }
678 /* write oob with ecc correction code */
679 nand_write_buf_word(self, chip->nc_oob_cache,
680 chip->nc_spare_size);
681 } else {
682 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
683 nand_ecc_prepare(self, NAND_ECC_WRITE);
684 nand_write_buf_byte(self, data + b, bs);
685 nand_ecc_compute(self, data + b, ecc + e);
686 }
687 /* write oob with ecc correction code */
688 nand_write_buf_byte(self, chip->nc_oob_cache,
689 chip->nc_spare_size);
690 }
691
692 nand_command(self, ONFI_PAGE_PROGRAM_START);
693
694 nand_busy(self);
695
696 #if 0
697 printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
698 for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
699 printf("0x");
700 for (b = 0; b < cs; b++) {
701 printf("%.2hhx", ecc[e+b]);
702 }
703 printf("\n");
704 }
705 printf("--------------\n");
706 #endif
707
708 status = nand_get_status(self);
709 KASSERT(status & ONFI_STATUS_RDY);
710 if (status & ONFI_STATUS_FAIL) {
711 aprint_error_dev(self, "page program failed!\n");
712 return EIO;
713 }
714
715 return 0;
716 }
717
718 int
719 nand_read_oob(device_t self, size_t page, void *oob)
720 {
721 struct nand_softc *sc = device_private(self);
722 struct nand_chip *chip = &sc->sc_chip;
723
724 nand_prepare_read(self, page, chip->nc_page_size);
725
726 if (chip->nc_flags & NC_BUSWIDTH_16)
727 nand_read_buf_word(self, oob, chip->nc_spare_size);
728 else
729 nand_read_buf_byte(self, oob, chip->nc_spare_size);
730
731 // nand_dump_data("oob", oob, chip->nc_spare_size);
732
733 return 0;
734 }
735
736 static int
737 nand_write_oob(device_t self, size_t offset, const void *oob)
738 {
739 struct nand_softc *sc = device_private(self);
740 struct nand_chip *chip = &sc->sc_chip;
741 uint8_t status;
742
743 nand_command(self, ONFI_PAGE_PROGRAM);
744 nand_address_column(self, offset, chip->nc_page_size);
745 nand_command(self, ONFI_PAGE_PROGRAM_START);
746
747 nand_busy(self);
748
749 if (chip->nc_flags & NC_BUSWIDTH_16)
750 nand_write_buf_word(self, oob, chip->nc_spare_size);
751 else
752 nand_write_buf_byte(self, oob, chip->nc_spare_size);
753
754 status = nand_get_status(self);
755 KASSERT(status & ONFI_STATUS_RDY);
756 if (status & ONFI_STATUS_FAIL)
757 return EIO;
758 else
759 return 0;
760 }
761
762 void
763 nand_markbad(device_t self, size_t offset)
764 {
765 struct nand_softc *sc = device_private(self);
766 struct nand_chip *chip = &sc->sc_chip;
767 flash_addr_t blockoffset, marker;
768 #ifdef NAND_BBT
769 flash_addr_t block;
770
771 block = offset / chip->nc_block_size;
772
773 nand_bbt_block_markbad(self, block);
774 #endif
775 blockoffset = offset & chip->nc_block_mask;
776 marker = chip->nc_badmarker_offs & ~0x01;
777
778 /* check if it is already marked bad */
779 if (nand_isbad(self, blockoffset))
780 return;
781
782 nand_read_oob(self, blockoffset, chip->nc_oob_cache);
783
784 chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
785 chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
786
787 nand_write_oob(self, blockoffset, chip->nc_oob_cache);
788 }
789
790 bool
791 nand_isfactorybad(device_t self, flash_addr_t offset)
792 {
793 struct nand_softc *sc = device_private(self);
794 struct nand_chip *chip = &sc->sc_chip;
795 flash_addr_t block, first_page, last_page, page;
796 int i;
797
798 /* Check for factory bad blocks first
799 * Factory bad blocks are marked in the first or last
800 * page of the blocks, see: ONFI 2.2, 3.2.2.
801 */
802 block = offset / chip->nc_block_size;
803 first_page = block * chip->nc_block_size;
804 last_page = (block + 1) * chip->nc_block_size
805 - chip->nc_page_size;
806
807 for (i = 0, page = first_page; i < 2; i++, page = last_page) {
808 /* address OOB */
809 nand_prepare_read(self, page, chip->nc_page_size);
810
811 if (chip->nc_flags & NC_BUSWIDTH_16) {
812 uint16_t word;
813 nand_read_word(self, &word);
814 if (word == 0x0000)
815 return true;
816 } else {
817 uint8_t byte;
818 nand_read_byte(self, &byte);
819 if (byte == 0x00)
820 return true;
821 }
822 }
823
824 return false;
825 }
826
827 bool
828 nand_iswornoutbad(device_t self, flash_addr_t offset)
829 {
830 struct nand_softc *sc = device_private(self);
831 struct nand_chip *chip = &sc->sc_chip;
832 flash_addr_t block;
833
834 /* we inspect the first page of the block */
835 block = offset & chip->nc_block_mask;
836
837 /* Linux/u-boot compatible badblock handling */
838 if (chip->nc_flags & NC_BUSWIDTH_16) {
839 uint16_t word, mark;
840
841 nand_prepare_read(self, block,
842 chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
843
844 nand_read_word(self, &word);
845 mark = htole16(word);
846 if (chip->nc_badmarker_offs & 0x01)
847 mark >>= 8;
848 if ((mark & 0xff) != 0xff)
849 return true;
850 } else {
851 uint8_t byte;
852
853 nand_prepare_read(self, block,
854 chip->nc_page_size + chip->nc_badmarker_offs);
855
856 nand_read_byte(self, &byte);
857 if (byte != 0xff)
858 return true;
859 }
860
861 return false;
862 }
863
864 bool
865 nand_isbad(device_t self, flash_addr_t offset)
866 {
867 #ifdef NAND_BBT
868 struct nand_softc *sc = device_private(self);
869 struct nand_chip *chip = &sc->sc_chip;
870 flash_addr_t block;
871
872 block = offset / chip->nc_block_size;
873
874 return nand_bbt_block_isbad(self, block);
875 #else
876 /* ONFI host requirement */
877 if (nand_isfactorybad(self, offset))
878 return true;
879
880 /* Look for Linux/U-Boot compatible bad marker */
881 if (nand_iswornoutbad(self, offset))
882 return true;
883
884 return false;
885 #endif
886 }
887
888 int
889 nand_erase_block(device_t self, size_t offset)
890 {
891 // struct nand_softc *sc = device_private(self);
892 // struct nand_chip *chip = &sc->sc_chip;
893 uint8_t status;
894
895 /* xxx calculate first page of block for address? */
896
897 nand_command(self, ONFI_BLOCK_ERASE);
898 nand_address_row(self, offset);
899 nand_command(self, ONFI_BLOCK_ERASE_START);
900
901 nand_busy(self);
902
903 status = nand_get_status(self);
904 KASSERT(status & ONFI_STATUS_RDY);
905 if (status & ONFI_STATUS_FAIL) {
906 aprint_error_dev(self, "block erase failed!\n");
907 nand_markbad(self, offset);
908 return EIO;
909 } else {
910 return 0;
911 }
912 }
913
914 /* default functions for driver development */
915
916 /* default ECC using hamming code of 256 byte chunks */
917 int
918 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
919 {
920 hamming_compute_256(data, code);
921
922 return 0;
923 }
924
925 int
926 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
927 const uint8_t *compcode)
928 {
929 return hamming_correct_256(data, origcode, compcode);
930 }
931
932 void
933 nand_default_select(device_t self, bool enable)
934 {
935 /* do nothing */
936 return;
937 }
938
939 /* implementation of the block device API */
940
941 /*
942 * handle (page) unaligned write to nand
943 */
944 static int
945 nand_flash_write_unaligned(device_t self, off_t offset, size_t len,
946 size_t *retlen, const uint8_t *buf)
947 {
948 struct nand_softc *sc = device_private(self);
949 struct nand_chip *chip = &sc->sc_chip;
950 flash_addr_t first, last, firstoff;
951 const uint8_t *bufp;
952 flash_addr_t addr;
953 size_t left, count;
954 int error, i;
955
956 /* to debug chfs */
957 // printf("unaligned write to nand\n");
958
959 first = offset & chip->nc_page_mask;
960 firstoff = offset & ~chip->nc_page_mask;
961 /* XXX check if this should be len - 1 */
962 last = (offset + len) & chip->nc_page_mask;
963 count = last - first + 1;
964
965 addr = first;
966 *retlen = 0;
967
968 if (count == 1) {
969 if (nand_isbad(self, addr)) {
970 aprint_error_dev(self,
971 "nand_flash_write_unaligned: "
972 "bad block encountered\n");
973 return EIO;
974 }
975
976 error = nand_read_page(self, addr, chip->nc_page_cache);
977 if (error)
978 return error;
979
980 memcpy(chip->nc_page_cache + firstoff, buf, len);
981
982 error = nand_program_page(self, addr, chip->nc_page_cache);
983 if (error)
984 return error;
985
986 *retlen = len;
987 return 0;
988 }
989
990 bufp = buf;
991 left = len;
992
993 for (i = 0; i < count && left != 0; i++) {
994 if (nand_isbad(self, addr)) {
995 aprint_error_dev(self,
996 "nand_flash_write_unaligned: "
997 "bad block encountered\n");
998 return EIO;
999 }
1000
1001 if (i == 0) {
1002 error = nand_read_page(self,
1003 addr, chip->nc_page_cache);
1004 if (error)
1005 return error;
1006
1007 memcpy(chip->nc_page_cache + firstoff,
1008 bufp, chip->nc_page_size - firstoff);
1009
1010 printf("program page: %s: %d\n", __FILE__, __LINE__);
1011 error = nand_program_page(self,
1012 addr, chip->nc_page_cache);
1013 if (error)
1014 return error;
1015
1016 bufp += chip->nc_page_size - firstoff;
1017 left -= chip->nc_page_size - firstoff;
1018 *retlen += chip->nc_page_size - firstoff;
1019
1020 } else if (i == count - 1) {
1021 error = nand_read_page(self,
1022 addr, chip->nc_page_cache);
1023 if (error)
1024 return error;
1025
1026 memcpy(chip->nc_page_cache, bufp, left);
1027
1028 error = nand_program_page(self,
1029 addr, chip->nc_page_cache);
1030 if (error)
1031 return error;
1032
1033 *retlen += left;
1034 KASSERT(left < chip->nc_page_size);
1035
1036 } else {
1037 /* XXX debug */
1038 if (left > chip->nc_page_size) {
1039 printf("left: %zu, i: %d, count: %zu\n",
1040 (size_t )left, i, count);
1041 }
1042 KASSERT(left > chip->nc_page_size);
1043
1044 error = nand_program_page(self, addr, bufp);
1045 if (error)
1046 return error;
1047
1048 bufp += chip->nc_page_size;
1049 left -= chip->nc_page_size;
1050 *retlen += chip->nc_page_size;
1051 }
1052
1053 addr += chip->nc_page_size;
1054 }
1055
1056 KASSERT(*retlen == len);
1057
1058 return 0;
1059 }
1060
1061 int
1062 nand_flash_write(device_t self, off_t offset, size_t len, size_t *retlen,
1063 const uint8_t *buf)
1064 {
1065 struct nand_softc *sc = device_private(self);
1066 struct nand_chip *chip = &sc->sc_chip;
1067 const uint8_t *bufp;
1068 size_t pages, page;
1069 daddr_t addr;
1070 int error = 0;
1071
1072 if ((offset + len) > chip->nc_size) {
1073 DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
1074 " is over device size (0x%jx)\n",
1075 (uintmax_t)offset, (uintmax_t)len,
1076 (uintmax_t)chip->nc_size));
1077 return EINVAL;
1078 }
1079
1080 if (len % chip->nc_page_size != 0 ||
1081 offset % chip->nc_page_size != 0) {
1082 return nand_flash_write_unaligned(self,
1083 offset, len, retlen, buf);
1084 }
1085
1086 pages = len / chip->nc_page_size;
1087 KASSERT(pages != 0);
1088 *retlen = 0;
1089
1090 addr = offset;
1091 bufp = buf;
1092
1093 mutex_enter(&sc->sc_device_lock);
1094 for (page = 0; page < pages; page++) {
1095 /* do we need this check here? */
1096 if (nand_isbad(self, addr)) {
1097 aprint_error_dev(self,
1098 "nand_flash_write: bad block encountered\n");
1099
1100 error = EIO;
1101 goto out;
1102 }
1103
1104 error = nand_program_page(self, addr, bufp);
1105 if (error)
1106 goto out;
1107
1108 addr += chip->nc_page_size;
1109 bufp += chip->nc_page_size;
1110 *retlen += chip->nc_page_size;
1111 }
1112 out:
1113 mutex_exit(&sc->sc_device_lock);
1114 DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
1115
1116 return error;
1117 }
1118
1119 /*
1120 * handle (page) unaligned read from nand
1121 */
1122 static int
1123 nand_flash_read_unaligned(device_t self, size_t offset,
1124 size_t len, size_t *retlen, uint8_t *buf)
1125 {
1126 struct nand_softc *sc = device_private(self);
1127 struct nand_chip *chip = &sc->sc_chip;
1128 daddr_t first, last, count, firstoff;
1129 uint8_t *bufp;
1130 daddr_t addr;
1131 size_t left;
1132 int error = 0, i;
1133
1134 /* to debug chfs */
1135 // printf("unaligned read from nand\n");
1136
1137 first = offset & chip->nc_page_mask;
1138 firstoff = offset & ~chip->nc_page_mask;
1139 last = (offset + len) & chip->nc_page_mask;
1140 // lastoff = chip->nc_page_size - (offset + len) & ~chip->nc_page_mask;
1141 count = (last - first) / chip->nc_page_size + 1;
1142
1143 addr = first;
1144 bufp = buf;
1145 left = len;
1146 *retlen = 0;
1147
1148 mutex_enter(&sc->sc_device_lock);
1149 if (count == 1) {
1150 error = nand_read_page(self, addr, chip->nc_page_cache);
1151 if (error)
1152 goto out;
1153
1154 memcpy(bufp, chip->nc_page_cache + firstoff, len);
1155
1156 *retlen = len;
1157 goto out;
1158 }
1159
1160 for (i = 0; i < count && left != 0; i++) {
1161 error = nand_read_page(self, addr, chip->nc_page_cache);
1162 if (error)
1163 goto out;
1164
1165 if (i == 0) {
1166 memcpy(bufp, chip->nc_page_cache + firstoff,
1167 chip->nc_page_size - firstoff);
1168
1169 bufp += chip->nc_page_size - firstoff;
1170 left -= chip->nc_page_size - firstoff;
1171 *retlen += chip->nc_page_size - firstoff;
1172
1173 } else if (i == count - 1) {
1174 memcpy(bufp, chip->nc_page_cache, left);
1175 *retlen += left;
1176 KASSERT(left < chip->nc_page_size);
1177
1178 } else {
1179 memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
1180
1181 bufp += chip->nc_page_size;
1182 left -= chip->nc_page_size;
1183 *retlen += chip->nc_page_size;
1184 }
1185
1186 addr += chip->nc_page_size;
1187 }
1188
1189 KASSERT(*retlen == len);
1190
1191 out:
1192 mutex_exit(&sc->sc_device_lock);
1193
1194 return error;
1195 }
1196
1197 int
1198 nand_flash_read(device_t self, off_t offset, size_t len, size_t *retlen,
1199 uint8_t *buf)
1200 {
1201 struct nand_softc *sc = device_private(self);
1202 struct nand_chip *chip = &sc->sc_chip;
1203 uint8_t *bufp;
1204 size_t addr;
1205 size_t i, pages;
1206 int error = 0;
1207
1208 *retlen = 0;
1209
1210 DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
1211 (uintmax_t)offset, len));
1212
1213 if (__predict_false((offset + len) > chip->nc_size)) {
1214 DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
1215 " is over device size (%ju)\n", (uintmax_t)offset,
1216 len, (uintmax_t)chip->nc_size));
1217 return EINVAL;
1218 }
1219
1220 /* Handle unaligned access, shouldnt be needed when using the
1221 * block device, as strategy handles it, so only low level
1222 * accesses will use this path
1223 */
1224 // if (len < chip->nc_page_size)
1225 // panic("TODO page size is larger than read size");
1226
1227 if (len % chip->nc_page_size != 0 ||
1228 offset % chip->nc_page_size != 0) {
1229 return nand_flash_read_unaligned(self,
1230 offset, len, retlen, buf);
1231 }
1232
1233 bufp = buf;
1234 addr = offset;
1235 pages = len / chip->nc_page_size;
1236
1237 mutex_enter(&sc->sc_device_lock);
1238 for (i = 0; i < pages; i++) {
1239 /* do we need this check here? */
1240 if (nand_isbad(self, addr)) {
1241 aprint_error_dev(self, "bad block encountered\n");
1242 error = EIO;
1243 goto out;
1244 }
1245 error = nand_read_page(self, addr, bufp);
1246 if (error)
1247 goto out;
1248
1249 bufp += chip->nc_page_size;
1250 addr += chip->nc_page_size;
1251 *retlen += chip->nc_page_size;
1252 }
1253
1254 out:
1255 mutex_exit(&sc->sc_device_lock);
1256
1257 return error;
1258 }
1259
1260 int
1261 nand_flash_isbad(device_t self, uint64_t ofs)
1262 {
1263 struct nand_softc *sc = device_private(self);
1264 struct nand_chip *chip = &sc->sc_chip;
1265 bool result;
1266 // uint64_t block_num;
1267
1268 if (ofs > chip->nc_size) {
1269 DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
1270 " device size (0x%jx)\n", (uintmax_t)ofs,
1271 (uintmax_t)chip->nc_size));
1272 return EINVAL;
1273 }
1274
1275 if (ofs % chip->nc_block_size != 0) {
1276 panic("offset (0x%jx) is not the multiple of block size (%ju)",
1277 (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1278 }
1279 // block_num = ofs / fl->flash_if.erasesize;
1280
1281 mutex_enter(&sc->sc_device_lock);
1282 result = nand_isbad(self, ofs);
1283 mutex_exit(&sc->sc_device_lock);
1284
1285 if (result)
1286 return 1;
1287 else
1288 return 0;
1289 }
1290
1291 int
1292 nand_flash_markbad(device_t self, uint64_t ofs)
1293 {
1294 struct nand_softc *sc = device_private(self);
1295 struct nand_chip *chip = &sc->sc_chip;
1296
1297 // uint64_t block_num;
1298
1299 if (ofs > chip->nc_size) {
1300 DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
1301 " device size (0x%jx)\n", ofs,
1302 (uintmax_t)chip->nc_size));
1303 return EINVAL;
1304 }
1305
1306 if (ofs % chip->nc_block_size != 0) {
1307 panic("offset (%ju) is not the multiple of block size (%ju)",
1308 (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1309 }
1310
1311 // block_num = ofs / fl->flash_if->erasesize;
1312
1313 mutex_enter(&sc->sc_device_lock);
1314 nand_markbad(self, ofs);
1315 mutex_exit(&sc->sc_device_lock);
1316
1317 return 0;
1318 }
1319
1320 int
1321 nand_flash_erase(device_t self,
1322 struct flash_erase_instruction *ei)
1323 {
1324 struct nand_softc *sc = device_private(self);
1325 struct nand_chip *chip = &sc->sc_chip;
1326 flash_addr_t addr;
1327 int error;
1328 // off_t block_num;
1329
1330 // if (FLASH_CLOSED == sc->sc_flash.status)
1331 // return FLASH_CLOSED;
1332
1333 if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
1334 return EINVAL;
1335
1336 if (ei->ei_addr + ei->ei_len > chip->nc_size) {
1337 DPRINTF(("nand_flash_erase: erase address is over the end"
1338 " of the device\n"));
1339 return EINVAL;
1340 }
1341
1342 if (ei->ei_addr % chip->nc_block_size != 0) {
1343 aprint_error_dev(self,
1344 "nand_flash_erase: ei_addr (%ju) is not"
1345 "the multiple of block size (%ju)",
1346 (uintmax_t)ei->ei_addr,
1347 (uintmax_t)chip->nc_block_size);
1348 return EINVAL;
1349 }
1350
1351 if (ei->ei_len % chip->nc_block_size != 0) {
1352 aprint_error_dev(self,
1353 "nand_flash_erase: ei_len (%ju) is not"
1354 "the multiple of block size (%ju)",
1355 (uintmax_t)ei->ei_addr,
1356 (uintmax_t)chip->nc_block_size);
1357 return EINVAL;
1358 }
1359
1360 mutex_enter(&sc->sc_device_lock);
1361 addr = ei->ei_addr;
1362 while (addr < ei->ei_addr + ei->ei_len) {
1363 if (nand_isbad(self, addr)) {
1364 mutex_exit(&sc->sc_device_lock);
1365 aprint_error_dev(self, "bad block encountered\n");
1366 ei->ei_state = FLASH_ERASE_FAILED;
1367 return EIO;
1368 }
1369
1370 error = nand_erase_block(self, addr);
1371 if (error) {
1372 mutex_exit(&sc->sc_device_lock);
1373 ei->ei_state = FLASH_ERASE_FAILED;
1374 return error;
1375 }
1376
1377 addr += chip->nc_block_size;
1378 }
1379 mutex_exit(&sc->sc_device_lock);
1380
1381 ei->ei_state = FLASH_ERASE_DONE;
1382 if (ei->ei_callback != NULL)
1383 ei->ei_callback(ei);
1384
1385 return 0;
1386 }
1387
1388 static int
1389 sysctl_nand_verify(SYSCTLFN_ARGS)
1390 {
1391 int error, t;
1392 struct sysctlnode node;
1393
1394 node = *rnode;
1395 t = *(int *)rnode->sysctl_data;
1396 node.sysctl_data = &t;
1397 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1398 if (error || newp == NULL)
1399 return error;
1400
1401 if (node.sysctl_num == nand_cachesync_nodenum) {
1402 if (t <= 0 || t > 60)
1403 return EINVAL;
1404 } else {
1405 return EINVAL;
1406 }
1407
1408 *(int *)rnode->sysctl_data = t;
1409
1410 return 0;
1411 }
1412
1413 SYSCTL_SETUP(sysctl_nand, "sysctl nand subtree setup")
1414 {
1415 int rc, nand_root_num;
1416 const struct sysctlnode *node;
1417
1418 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
1419 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
1420 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
1421 goto error;
1422 }
1423
1424 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1425 CTLFLAG_PERMANENT, CTLTYPE_NODE, "nand",
1426 SYSCTL_DESCR("NAND driver controls"),
1427 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1428 goto error;
1429 }
1430
1431 nand_root_num = node->sysctl_num;
1432
1433 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1434 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1435 CTLTYPE_INT, "cache_sync_timeout",
1436 SYSCTL_DESCR("NAND write cache sync timeout in seconds"),
1437 sysctl_nand_verify, 0, &nand_cachesync_timeout,
1438 0, CTL_HW, nand_root_num, CTL_CREATE,
1439 CTL_EOL)) != 0) {
1440 goto error;
1441 }
1442
1443 nand_cachesync_nodenum = node->sysctl_num;
1444
1445 return;
1446
1447 error:
1448 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
1449 }
1450
1451 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
1452
1453 #ifdef _MODULE
1454 #include "ioconf.c"
1455 #endif
1456
1457 static int
1458 nand_modcmd(modcmd_t cmd, void *opaque)
1459 {
1460 switch (cmd) {
1461 case MODULE_CMD_INIT:
1462 #ifdef _MODULE
1463 return config_init_component(cfdriver_ioconf_nand,
1464 cfattach_ioconf_nand, cfdata_ioconf_nand);
1465 #else
1466 return 0;
1467 #endif
1468 case MODULE_CMD_FINI:
1469 #ifdef _MODULE
1470 return config_fini_component(cfdriver_ioconf_nand,
1471 cfattach_ioconf_nand, cfdata_ioconf_nand);
1472 #else
1473 return 0;
1474 #endif
1475 default:
1476 return ENOTTY;
1477 }
1478 }
1479