nand.c revision 1.12 1 /* $NetBSD: nand.c,v 1.12 2011/06/28 07:16:11 ahoka Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Department of Software Engineering,
5 * University of Szeged, Hungary
6 * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by the Department of Software Engineering, University of Szeged, Hungary
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.12 2011/06/28 07:16:11 ahoka Exp $");
38
39 #include "locators.h"
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/device.h>
44 #include <sys/kmem.h>
45 #include <sys/sysctl.h>
46 #include <sys/atomic.h>
47
48 #include <dev/flash/flash.h>
49 #include <dev/nand/nand.h>
50 #include <dev/nand/onfi.h>
51 #include <dev/nand/hamming.h>
52 #include <dev/nand/nand_bbt.h>
53 #include <dev/nand/nand_crc.h>
54
55 #include "opt_nand.h"
56
57 int nand_match(device_t, cfdata_t, void *);
58 void nand_attach(device_t, device_t, void *);
59 int nand_detach(device_t, int);
60 bool nand_shutdown(device_t, int);
61
62 int nand_print(void *, const char *);
63
64 static int nand_search(device_t, cfdata_t, const int *, void *);
65 static void nand_address_row(device_t, size_t);
66 static void nand_address_column(device_t, size_t, size_t);
67 static int nand_fill_chip_structure(device_t, struct nand_chip *);
68 static int nand_scan_media(device_t, struct nand_chip *);
69 static bool nand_check_wp(device_t);
70
71 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
72 nand_match, nand_attach, nand_detach, NULL);
73
74 #ifdef NAND_DEBUG
75 int nanddebug = NAND_DEBUG;
76 #endif
77
78 int nand_cachesync_timeout = 1;
79 int nand_cachesync_nodenum;
80
81 #ifdef NAND_VERBOSE
82 const struct nand_manufacturer nand_mfrs[] = {
83 { NAND_MFR_AMD, "AMD" },
84 { NAND_MFR_FUJITSU, "Fujitsu" },
85 { NAND_MFR_RENESAS, "Renesas" },
86 { NAND_MFR_STMICRO, "ST Micro" },
87 { NAND_MFR_MICRON, "Micron" },
88 { NAND_MFR_NATIONAL, "National" },
89 { NAND_MFR_TOSHIBA, "Toshiba" },
90 { NAND_MFR_HYNIX, "Hynix" },
91 { NAND_MFR_SAMSUNG, "Samsung" },
92 { NAND_MFR_UNKNOWN, "Unknown" }
93 };
94
95 static const char *
96 nand_midtoname(int id)
97 {
98 int i;
99
100 for (i = 0; nand_mfrs[i].id != 0; i++) {
101 if (nand_mfrs[i].id == id)
102 return nand_mfrs[i].name;
103 }
104
105 KASSERT(nand_mfrs[i].id == 0);
106
107 return nand_mfrs[i].name;
108 }
109 #endif
110
111 /* ARGSUSED */
112 int
113 nand_match(device_t parent, cfdata_t match, void *aux)
114 {
115 /* pseudo device, always attaches */
116 return 1;
117 }
118
119 void
120 nand_attach(device_t parent, device_t self, void *aux)
121 {
122 struct nand_softc *sc = device_private(self);
123 struct nand_attach_args *naa = aux;
124 struct nand_chip *chip = &sc->sc_chip;
125
126 sc->sc_dev = self;
127 sc->controller_dev = parent;
128 sc->nand_if = naa->naa_nand_if;
129
130 aprint_naive("\n");
131
132 if (nand_check_wp(self)) {
133 aprint_error("NAND chip is write protected!\n");
134 return;
135 }
136
137 if (nand_scan_media(self, chip)) {
138 return;
139 }
140
141 /* allocate cache */
142 chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
143 chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
144
145 mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
146
147 if (nand_sync_thread_start(self)) {
148 goto error;
149 }
150
151 if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
152 aprint_error_dev(sc->sc_dev,
153 "couldn't establish power handler\n");
154
155 #ifdef NAND_BBT
156 nand_bbt_init(self);
157 nand_bbt_scan(self);
158 #endif
159
160 /*
161 * Attach all our devices
162 */
163 config_search_ia(nand_search, self, NULL, NULL);
164
165 return;
166 error:
167 kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
168 kmem_free(chip->nc_page_cache, chip->nc_page_size);
169 mutex_destroy(&sc->sc_device_lock);
170 }
171
172 static int
173 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
174 {
175 struct nand_softc *sc = device_private(parent);
176 struct nand_chip *chip = &sc->sc_chip;
177 struct flash_interface *flash_if;
178 struct flash_attach_args faa;
179
180 flash_if = kmem_alloc(sizeof(*flash_if), KM_SLEEP);
181
182 flash_if->type = FLASH_TYPE_NAND;
183
184 flash_if->read = nand_flash_read;
185 flash_if->write = nand_flash_write;
186 flash_if->erase = nand_flash_erase;
187 flash_if->block_isbad = nand_flash_isbad;
188 flash_if->block_markbad = nand_flash_markbad;
189
190 flash_if->submit = nand_io_submit;
191
192 flash_if->erasesize = chip->nc_block_size;
193 flash_if->page_size = chip->nc_page_size;
194 flash_if->writesize = chip->nc_page_size;
195
196 flash_if->partition.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
197
198 if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
199 flash_if->size = chip->nc_size -
200 flash_if->partition.part_offset;
201 flash_if->partition.part_size = flash_if->size;
202 } else {
203 flash_if->size = cf->cf_loc[FLASHBUSCF_SIZE];
204 flash_if->partition.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
205 }
206
207 if (cf->cf_loc[FLASHBUSCF_READONLY])
208 flash_if->partition.part_flags = FLASH_PART_READONLY;
209 else
210 flash_if->partition.part_flags = 0;
211
212 faa.flash_if = flash_if;
213
214 if (config_match(parent, cf, &faa)) {
215 if (config_attach(parent, cf, &faa, nand_print) != NULL) {
216 return 0;
217 } else {
218 return 1;
219 }
220 } else {
221 kmem_free(flash_if, sizeof(*flash_if));
222 }
223
224 return 1;
225 }
226
227 int
228 nand_detach(device_t self, int flags)
229 {
230 struct nand_softc *sc = device_private(self);
231 struct nand_chip *chip = &sc->sc_chip;
232 int error = 0;
233
234 error = config_detach_children(self, flags);
235 if (error) {
236 return error;
237 }
238
239 nand_sync_thread_stop(self);
240 #ifdef NAND_BBT
241 nand_bbt_detach(self);
242 #endif
243 /* free oob cache */
244 kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
245 kmem_free(chip->nc_page_cache, chip->nc_page_size);
246 kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
247
248 mutex_destroy(&sc->sc_device_lock);
249
250 pmf_device_deregister(sc->sc_dev);
251
252 return error;
253 }
254
255 int
256 nand_print(void *aux, const char *pnp)
257 {
258 if (pnp != NULL)
259 aprint_normal("nand at %s\n", pnp);
260
261 return UNCONF;
262 }
263
264 /* ask for a nand driver to attach to the controller */
265 device_t
266 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
267 {
268 struct nand_attach_args arg;
269
270 KASSERT(nand_if != NULL);
271
272 /* fill the defaults if we have null pointers */
273 if (nand_if->program_page == NULL) {
274 nand_if->program_page = &nand_default_program_page;
275 }
276
277 if (nand_if->read_page == NULL) {
278 nand_if->read_page = &nand_default_read_page;
279 }
280
281 arg.naa_nand_if = nand_if;
282 return config_found_ia(parent, "nandbus", &arg, nand_print);
283 }
284
285 /* default everything to reasonable values, to ease future api changes */
286 void
287 nand_init_interface(struct nand_interface *interface)
288 {
289 interface->select = &nand_default_select;
290 interface->command = NULL;
291 interface->address = NULL;
292 interface->read_buf_1 = NULL;
293 interface->read_buf_2 = NULL;
294 interface->read_1 = NULL;
295 interface->read_2 = NULL;
296 interface->write_buf_1 = NULL;
297 interface->write_buf_2 = NULL;
298 interface->write_1 = NULL;
299 interface->write_2 = NULL;
300 interface->busy = NULL;
301
302 /*-
303 * most drivers dont want to change this, but some implement
304 * read/program in one step
305 */
306 interface->program_page = &nand_default_program_page;
307 interface->read_page = &nand_default_read_page;
308
309 /* default to soft ecc, that should work everywhere */
310 interface->ecc_compute = &nand_default_ecc_compute;
311 interface->ecc_correct = &nand_default_ecc_correct;
312 interface->ecc_prepare = NULL;
313 interface->ecc.necc_code_size = 3;
314 interface->ecc.necc_block_size = 256;
315 interface->ecc.necc_type = NAND_ECC_TYPE_SW;
316 }
317
318 #if 0
319 /* handle quirks here */
320 static void
321 nand_quirks(device_t self, struct nand_chip *chip)
322 {
323 /* this is an example only! */
324 switch (chip->nc_manf_id) {
325 case NAND_MFR_SAMSUNG:
326 if (chip->nc_dev_id == 0x00) {
327 /* do something only samsung chips need */
328 /* or */
329 /* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
330 }
331 }
332
333 return;
334 }
335 #endif
336
337 static int
338 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
339 {
340 switch (chip->nc_manf_id) {
341 case NAND_MFR_MICRON:
342 return nand_read_parameters_micron(self, chip);
343 default:
344 return 1;
345 }
346
347 return 0;
348 }
349
350 /**
351 * scan media to determine the chip's properties
352 * this function resets the device
353 */
354 static int
355 nand_scan_media(device_t self, struct nand_chip *chip)
356 {
357 struct nand_softc *sc = device_private(self);
358 struct nand_ecc *ecc;
359 uint8_t onfi_signature[4];
360
361 nand_select(self, true);
362 nand_command(self, ONFI_RESET);
363 nand_select(self, false);
364
365 /* check if the device implements the ONFI standard */
366 nand_select(self, true);
367 nand_command(self, ONFI_READ_ID);
368 nand_address(self, 0x20);
369 nand_read_1(self, &onfi_signature[0]);
370 nand_read_1(self, &onfi_signature[1]);
371 nand_read_1(self, &onfi_signature[2]);
372 nand_read_1(self, &onfi_signature[3]);
373 nand_select(self, false);
374
375 if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
376 onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
377 chip->nc_isonfi = false;
378
379 aprint_normal(": Legacy NAND Flash\n");
380
381 nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
382
383 if (nand_fill_chip_structure_legacy(self, chip)) {
384 aprint_error_dev(self,
385 "can't read device parameters for legacy chip\n");
386 return 1;
387 }
388 } else {
389 chip->nc_isonfi = true;
390
391 aprint_normal(": ONFI NAND Flash\n");
392
393 nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
394
395 if (nand_fill_chip_structure(self, chip)) {
396 aprint_error_dev(self,
397 "can't read device parameters\n");
398 return 1;
399 }
400 }
401
402 #ifdef NAND_VERBOSE
403 aprint_normal_dev(self,
404 "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
405 chip->nc_manf_id,
406 nand_midtoname(chip->nc_manf_id),
407 chip->nc_dev_id);
408 #endif
409
410 aprint_normal_dev(self,
411 "page size: %zu bytes, spare size: %zu bytes, "
412 "block size: %zu bytes\n",
413 chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
414
415 aprint_normal_dev(self,
416 "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
417 ", total storage size: %zu MB\n",
418 chip->nc_lun_blocks, chip->nc_num_luns,
419 chip->nc_size / 1024 / 1024);
420
421 #ifdef NAND_VERBOSE
422 aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
423 PRIu8 "\n",
424 chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
425 #endif
426
427 ecc = chip->nc_ecc = &sc->nand_if->ecc;
428
429 /*
430 * calculate the place of ecc data in oob
431 * we try to be compatible with Linux here
432 */
433 switch (chip->nc_spare_size) {
434 case 8:
435 ecc->necc_offset = 0;
436 break;
437 case 16:
438 ecc->necc_offset = 0;
439 break;
440 case 64:
441 ecc->necc_offset = 40;
442 break;
443 case 128:
444 ecc->necc_offset = 80;
445 break;
446 default:
447 panic("OOB size is unexpected");
448 }
449
450 ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
451 ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
452
453 /* check if we fit in oob */
454 if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
455 panic("NAND ECC bits dont fit in OOB");
456 }
457
458 /* TODO: mark free oob area available for file systems */
459
460 chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
461
462 /*
463 * calculate badblock marker offset in oob
464 * we try to be compatible with linux here
465 */
466 if (chip->nc_page_size > 512)
467 chip->nc_badmarker_offs = 0;
468 else
469 chip->nc_badmarker_offs = 5;
470
471 /* Calculate page shift and mask */
472 chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
473 chip->nc_page_mask = ~(chip->nc_page_size - 1);
474 /* same for block */
475 chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
476 chip->nc_block_mask = ~(chip->nc_block_size - 1);
477
478 /* look for quirks here if needed in future */
479 /* nand_quirks(self, chip); */
480
481 return 0;
482 }
483
484 void
485 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
486 {
487 nand_select(self, true);
488 nand_command(self, ONFI_READ_ID);
489 nand_address(self, 0x00);
490
491 nand_read_1(self, manf);
492 nand_read_1(self, dev);
493
494 nand_select(self, false);
495 }
496
497 int
498 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
499 {
500 uint8_t *bufp;
501 uint16_t crc;
502 int i;//, tries = 0;
503
504 KASSERT(sizeof(*params) == 256);
505
506 //read_params:
507 // tries++;
508
509 nand_select(self, true);
510 nand_command(self, ONFI_READ_PARAMETER_PAGE);
511 nand_address(self, 0x00);
512
513 nand_busy(self);
514
515 /* TODO check the signature if it contains at least 2 letters */
516
517 bufp = (uint8_t *)params;
518 /* XXX why i am not using read_buf? */
519 for (i = 0; i < 256; i++) {
520 nand_read_1(self, &bufp[i]);
521 }
522 nand_select(self, false);
523
524 /* validate the parameter page with the crc */
525 crc = nand_crc16(bufp, 254);
526
527 if (crc != params->param_integrity_crc) {
528 aprint_error_dev(self, "parameter page crc check failed\n");
529 /* TODO: we should read the next parameter page copy */
530 return 1;
531 }
532
533 return 0;
534 }
535
536 static int
537 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
538 {
539 struct onfi_parameter_page params;
540 uint8_t vendor[13], model[21];
541 int i;
542
543 if (nand_read_parameter_page(self, ¶ms)) {
544 return 1;
545 }
546
547 /* strip manufacturer and model string */
548 strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
549 for (i = 11; i > 0 && vendor[i] == ' '; i--)
550 vendor[i] = 0;
551 strlcpy(model, params.param_model, sizeof(model));
552 for (i = 19; i > 0 && model[i] == ' '; i--)
553 model[i] = 0;
554
555 aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
556
557 /* XXX TODO multiple LUNs */
558 if (params.param_numluns != 1) {
559 aprint_error_dev(self,
560 "more than one LUNs are not supported yet!\n");
561
562 return 1;
563 }
564
565 chip->nc_size = params.param_pagesize * params.param_blocksize *
566 params.param_lunsize * params.param_numluns;
567
568 chip->nc_page_size = params.param_pagesize;
569 chip->nc_block_pages = params.param_blocksize;
570 chip->nc_block_size = params.param_blocksize * params.param_pagesize;
571 chip->nc_spare_size = params.param_sparesize;
572 chip->nc_lun_blocks = params.param_lunsize;
573 chip->nc_num_luns = params.param_numluns;
574
575 /* the lower 4 bits contain the row address cycles */
576 chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
577 /* the upper 4 bits contain the column address cycles */
578 chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
579
580 if (params.param_features & ONFI_FEATURE_16BIT)
581 chip->nc_flags |= NC_BUSWIDTH_16;
582
583 if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
584 chip->nc_flags |= NC_EXTENDED_PARAM;
585
586 return 0;
587 }
588
589 /* ARGSUSED */
590 bool
591 nand_shutdown(device_t self, int howto)
592 {
593 return true;
594 }
595
596 static void
597 nand_address_column(device_t self, size_t row, size_t column)
598 {
599 struct nand_softc *sc = device_private(self);
600 struct nand_chip *chip = &sc->sc_chip;
601 uint8_t i;
602
603 DPRINTF(("addressing row: 0x%jx column: %zu\n",
604 (uintmax_t )row, column));
605
606 /* XXX TODO */
607 row >>= chip->nc_page_shift;
608
609 /* Write the column (subpage) address */
610 if (chip->nc_flags & NC_BUSWIDTH_16)
611 column >>= 1;
612 for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
613 nand_address(self, column & 0xff);
614
615 /* Write the row (page) address */
616 for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
617 nand_address(self, row & 0xff);
618 }
619
620 static void
621 nand_address_row(device_t self, size_t row)
622 {
623 struct nand_softc *sc = device_private(self);
624 struct nand_chip *chip = &sc->sc_chip;
625 int i;
626
627 /* XXX TODO */
628 row >>= chip->nc_page_shift;
629
630 /* Write the row (page) address */
631 for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
632 nand_address(self, row & 0xff);
633 }
634
635 static inline uint8_t
636 nand_get_status(device_t self)
637 {
638 uint8_t status;
639
640 nand_command(self, ONFI_READ_STATUS);
641 nand_busy(self);
642 nand_read_1(self, &status);
643
644 return status;
645 }
646
647 static bool
648 nand_check_wp(device_t self)
649 {
650 if (nand_get_status(self) & 0x80)
651 return false;
652 else
653 return true;
654 }
655
656 static void
657 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
658 {
659 nand_command(self, ONFI_READ);
660 nand_address_column(self, row, column);
661 nand_command(self, ONFI_READ_START);
662
663 nand_busy(self);
664 }
665
666 /* read a page with ecc correction, default implementation */
667 int
668 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
669 {
670 struct nand_softc *sc = device_private(self);
671 struct nand_chip *chip = &sc->sc_chip;
672 size_t b, bs, e, cs;
673 uint8_t *ecc;
674 int result;
675
676 nand_prepare_read(self, offset, 0);
677
678 bs = chip->nc_ecc->necc_block_size;
679 cs = chip->nc_ecc->necc_code_size;
680
681 /* decide if we access by 8 or 16 bits */
682 if (chip->nc_flags & NC_BUSWIDTH_16) {
683 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
684 nand_ecc_prepare(self, NAND_ECC_READ);
685 nand_read_buf_2(self, data + b, bs);
686 nand_ecc_compute(self, data + b,
687 chip->nc_ecc_cache + e);
688 }
689 } else {
690 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
691 nand_ecc_prepare(self, NAND_ECC_READ);
692 nand_read_buf_1(self, data + b, bs);
693 nand_ecc_compute(self, data + b,
694 chip->nc_ecc_cache + e);
695 }
696 }
697
698 /* for debugging new drivers */
699 #if 0
700 nand_dump_data("page", data, chip->nc_page_size);
701 #endif
702
703 nand_read_oob(self, offset, chip->nc_oob_cache);
704 ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
705
706 /* useful for debugging new ecc drivers */
707 #if 0
708 printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
709 for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
710 printf("0x");
711 for (b = 0; b < cs; b++) {
712 printf("%.2hhx", ecc[e+b]);
713 }
714 printf(" 0x");
715 for (b = 0; b < cs; b++) {
716 printf("%.2hhx", chip->nc_ecc_cache[e+b]);
717 }
718 printf("\n");
719 }
720 printf("--------------\n");
721 #endif
722
723 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
724 result = nand_ecc_correct(self, data + b, ecc + e,
725 chip->nc_ecc_cache + e);
726
727 switch (result) {
728 case NAND_ECC_OK:
729 break;
730 case NAND_ECC_CORRECTED:
731 aprint_error_dev(self,
732 "data corrected with ECC at page offset 0x%jx "
733 "block %zu\n", (uintmax_t)offset, b);
734 break;
735 case NAND_ECC_TWOBIT:
736 aprint_error_dev(self,
737 "uncorrectable ECC error at page offset 0x%jx "
738 "block %zu\n", (uintmax_t)offset, b);
739 return EIO;
740 break;
741 case NAND_ECC_INVALID:
742 aprint_error_dev(self,
743 "invalid ECC in oob at page offset 0x%jx "
744 "block %zu\n", (uintmax_t)offset, b);
745 return EIO;
746 break;
747 default:
748 panic("invalid ECC correction errno");
749 }
750 }
751
752 return 0;
753 }
754
755 int
756 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
757 {
758 struct nand_softc *sc = device_private(self);
759 struct nand_chip *chip = &sc->sc_chip;
760 size_t bs, cs, e, b;
761 uint8_t status;
762 uint8_t *ecc;
763
764 nand_command(self, ONFI_PAGE_PROGRAM);
765 nand_address_column(self, page, 0);
766
767 nand_busy(self);
768
769 bs = chip->nc_ecc->necc_block_size;
770 cs = chip->nc_ecc->necc_code_size;
771 ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
772
773 /* XXX code duplication */
774 /* decide if we access by 8 or 16 bits */
775 if (chip->nc_flags & NC_BUSWIDTH_16) {
776 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
777 nand_ecc_prepare(self, NAND_ECC_WRITE);
778 nand_write_buf_2(self, data + b, bs);
779 nand_ecc_compute(self, data + b, ecc + e);
780 }
781 /* write oob with ecc correction code */
782 nand_write_buf_2(self, chip->nc_oob_cache,
783 chip->nc_spare_size);
784 } else {
785 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
786 nand_ecc_prepare(self, NAND_ECC_WRITE);
787 nand_write_buf_1(self, data + b, bs);
788 nand_ecc_compute(self, data + b, ecc + e);
789 }
790 /* write oob with ecc correction code */
791 nand_write_buf_1(self, chip->nc_oob_cache,
792 chip->nc_spare_size);
793 }
794
795 nand_command(self, ONFI_PAGE_PROGRAM_START);
796
797 nand_busy(self);
798
799 /* for debugging ecc */
800 #if 0
801 printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
802 for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
803 printf("0x");
804 for (b = 0; b < cs; b++) {
805 printf("%.2hhx", ecc[e+b]);
806 }
807 printf("\n");
808 }
809 printf("--------------\n");
810 #endif
811
812 status = nand_get_status(self);
813 KASSERT(status & ONFI_STATUS_RDY);
814 if (status & ONFI_STATUS_FAIL) {
815 aprint_error_dev(self, "page program failed!\n");
816 return EIO;
817 }
818
819 return 0;
820 }
821
822 /* read the OOB of a page */
823 int
824 nand_read_oob(device_t self, size_t page, uint8_t *oob)
825 {
826 struct nand_softc *sc = device_private(self);
827 struct nand_chip *chip = &sc->sc_chip;
828
829 nand_prepare_read(self, page, chip->nc_page_size);
830
831 if (chip->nc_flags & NC_BUSWIDTH_16)
832 nand_read_buf_2(self, oob, chip->nc_spare_size);
833 else
834 nand_read_buf_1(self, oob, chip->nc_spare_size);
835
836 /* for debugging drivers */
837 #if 0
838 nand_dump_data("oob", oob, chip->nc_spare_size);
839 #endif
840
841 return 0;
842 }
843
844 static int
845 nand_write_oob(device_t self, size_t offset, const void *oob)
846 {
847 struct nand_softc *sc = device_private(self);
848 struct nand_chip *chip = &sc->sc_chip;
849 uint8_t status;
850
851 nand_command(self, ONFI_PAGE_PROGRAM);
852 nand_address_column(self, offset, chip->nc_page_size);
853 nand_command(self, ONFI_PAGE_PROGRAM_START);
854
855 nand_busy(self);
856
857 if (chip->nc_flags & NC_BUSWIDTH_16)
858 nand_write_buf_2(self, oob, chip->nc_spare_size);
859 else
860 nand_write_buf_1(self, oob, chip->nc_spare_size);
861
862 status = nand_get_status(self);
863 KASSERT(status & ONFI_STATUS_RDY);
864 if (status & ONFI_STATUS_FAIL)
865 return EIO;
866 else
867 return 0;
868 }
869
870 void
871 nand_markbad(device_t self, size_t offset)
872 {
873 struct nand_softc *sc = device_private(self);
874 struct nand_chip *chip = &sc->sc_chip;
875 flash_off_t blockoffset, marker;
876 #ifdef NAND_BBT
877 flash_off_t block;
878
879 block = offset / chip->nc_block_size;
880
881 nand_bbt_block_markbad(self, block);
882 #endif
883 blockoffset = offset & chip->nc_block_mask;
884 marker = chip->nc_badmarker_offs & ~0x01;
885
886 /* check if it is already marked bad */
887 if (nand_isbad(self, blockoffset))
888 return;
889
890 nand_read_oob(self, blockoffset, chip->nc_oob_cache);
891
892 chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
893 chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
894
895 nand_write_oob(self, blockoffset, chip->nc_oob_cache);
896 }
897
898 bool
899 nand_isfactorybad(device_t self, flash_off_t offset)
900 {
901 struct nand_softc *sc = device_private(self);
902 struct nand_chip *chip = &sc->sc_chip;
903 flash_off_t block, first_page, last_page, page;
904 int i;
905
906 /* Check for factory bad blocks first
907 * Factory bad blocks are marked in the first or last
908 * page of the blocks, see: ONFI 2.2, 3.2.2.
909 */
910 block = offset / chip->nc_block_size;
911 first_page = block * chip->nc_block_size;
912 last_page = (block + 1) * chip->nc_block_size
913 - chip->nc_page_size;
914
915 for (i = 0, page = first_page; i < 2; i++, page = last_page) {
916 /* address OOB */
917 nand_prepare_read(self, page, chip->nc_page_size);
918
919 if (chip->nc_flags & NC_BUSWIDTH_16) {
920 uint16_t word;
921 nand_read_2(self, &word);
922 if (word == 0x0000)
923 return true;
924 } else {
925 uint8_t byte;
926 nand_read_1(self, &byte);
927 if (byte == 0x00)
928 return true;
929 }
930 }
931
932 return false;
933 }
934
935 bool
936 nand_iswornoutbad(device_t self, flash_off_t offset)
937 {
938 struct nand_softc *sc = device_private(self);
939 struct nand_chip *chip = &sc->sc_chip;
940 flash_off_t block;
941
942 /* we inspect the first page of the block */
943 block = offset & chip->nc_block_mask;
944
945 /* Linux/u-boot compatible badblock handling */
946 if (chip->nc_flags & NC_BUSWIDTH_16) {
947 uint16_t word, mark;
948
949 nand_prepare_read(self, block,
950 chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
951
952 nand_read_2(self, &word);
953 mark = htole16(word);
954 if (chip->nc_badmarker_offs & 0x01)
955 mark >>= 8;
956 if ((mark & 0xff) != 0xff)
957 return true;
958 } else {
959 uint8_t byte;
960
961 nand_prepare_read(self, block,
962 chip->nc_page_size + chip->nc_badmarker_offs);
963
964 nand_read_1(self, &byte);
965 if (byte != 0xff)
966 return true;
967 }
968
969 return false;
970 }
971
972 bool
973 nand_isbad(device_t self, flash_off_t offset)
974 {
975 #ifdef NAND_BBT
976 struct nand_softc *sc = device_private(self);
977 struct nand_chip *chip = &sc->sc_chip;
978 flash_off_t block;
979
980 block = offset / chip->nc_block_size;
981
982 return nand_bbt_block_isbad(self, block);
983 #else
984 /* ONFI host requirement */
985 if (nand_isfactorybad(self, offset))
986 return true;
987
988 /* Look for Linux/U-Boot compatible bad marker */
989 if (nand_iswornoutbad(self, offset))
990 return true;
991
992 return false;
993 #endif
994 }
995
996 int
997 nand_erase_block(device_t self, size_t offset)
998 {
999 uint8_t status;
1000
1001 /* xxx calculate first page of block for address? */
1002
1003 nand_command(self, ONFI_BLOCK_ERASE);
1004 nand_address_row(self, offset);
1005 nand_command(self, ONFI_BLOCK_ERASE_START);
1006
1007 nand_busy(self);
1008
1009 status = nand_get_status(self);
1010 KASSERT(status & ONFI_STATUS_RDY);
1011 if (status & ONFI_STATUS_FAIL) {
1012 aprint_error_dev(self, "block erase failed!\n");
1013 nand_markbad(self, offset);
1014 return EIO;
1015 } else {
1016 return 0;
1017 }
1018 }
1019
1020 /* default functions for driver development */
1021
1022 /* default ECC using hamming code of 256 byte chunks */
1023 int
1024 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
1025 {
1026 hamming_compute_256(data, code);
1027
1028 return 0;
1029 }
1030
1031 int
1032 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
1033 const uint8_t *compcode)
1034 {
1035 return hamming_correct_256(data, origcode, compcode);
1036 }
1037
1038 void
1039 nand_default_select(device_t self, bool enable)
1040 {
1041 /* do nothing */
1042 return;
1043 }
1044
1045 /* implementation of the block device API */
1046
1047 /*
1048 * handle (page) unaligned write to nand
1049 */
1050 static int
1051 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
1052 size_t *retlen, const uint8_t *buf)
1053 {
1054 struct nand_softc *sc = device_private(self);
1055 struct nand_chip *chip = &sc->sc_chip;
1056 flash_off_t first, last, firstoff;
1057 const uint8_t *bufp;
1058 flash_off_t addr;
1059 size_t left, count;
1060 int error = 0, i;
1061
1062 first = offset & chip->nc_page_mask;
1063 firstoff = offset & ~chip->nc_page_mask;
1064 /* XXX check if this should be len - 1 */
1065 last = (offset + len) & chip->nc_page_mask;
1066 count = last - first + 1;
1067
1068 addr = first;
1069 *retlen = 0;
1070
1071 mutex_enter(&sc->sc_device_lock);
1072 if (count == 1) {
1073 if (nand_isbad(self, addr)) {
1074 aprint_error_dev(self,
1075 "nand_flash_write_unaligned: "
1076 "bad block encountered\n");
1077 error = EIO;
1078 goto out;
1079 }
1080
1081 error = nand_read_page(self, addr, chip->nc_page_cache);
1082 if (error) {
1083 goto out;
1084 }
1085
1086 memcpy(chip->nc_page_cache + firstoff, buf, len);
1087
1088 error = nand_program_page(self, addr, chip->nc_page_cache);
1089 if (error) {
1090 goto out;
1091 }
1092
1093 *retlen = len;
1094 goto out;
1095 }
1096
1097 bufp = buf;
1098 left = len;
1099
1100 for (i = 0; i < count && left != 0; i++) {
1101 if (nand_isbad(self, addr)) {
1102 aprint_error_dev(self,
1103 "nand_flash_write_unaligned: "
1104 "bad block encountered\n");
1105 error = EIO;
1106 goto out;
1107 }
1108
1109 if (i == 0) {
1110 error = nand_read_page(self,
1111 addr, chip->nc_page_cache);
1112 if (error) {
1113 goto out;
1114 }
1115
1116 memcpy(chip->nc_page_cache + firstoff,
1117 bufp, chip->nc_page_size - firstoff);
1118
1119 printf("program page: %s: %d\n", __FILE__, __LINE__);
1120 error = nand_program_page(self,
1121 addr, chip->nc_page_cache);
1122 if (error) {
1123 goto out;
1124 }
1125
1126 bufp += chip->nc_page_size - firstoff;
1127 left -= chip->nc_page_size - firstoff;
1128 *retlen += chip->nc_page_size - firstoff;
1129
1130 } else if (i == count - 1) {
1131 error = nand_read_page(self,
1132 addr, chip->nc_page_cache);
1133 if (error) {
1134 goto out;
1135 }
1136
1137 memcpy(chip->nc_page_cache, bufp, left);
1138
1139 error = nand_program_page(self,
1140 addr, chip->nc_page_cache);
1141 if (error) {
1142 goto out;
1143 }
1144
1145 *retlen += left;
1146 KASSERT(left < chip->nc_page_size);
1147
1148 } else {
1149 /* XXX debug */
1150 if (left > chip->nc_page_size) {
1151 printf("left: %zu, i: %d, count: %zu\n",
1152 (size_t )left, i, count);
1153 }
1154 KASSERT(left > chip->nc_page_size);
1155
1156 error = nand_program_page(self, addr, bufp);
1157 if (error) {
1158 goto out;
1159 }
1160
1161 bufp += chip->nc_page_size;
1162 left -= chip->nc_page_size;
1163 *retlen += chip->nc_page_size;
1164 }
1165
1166 addr += chip->nc_page_size;
1167 }
1168
1169 KASSERT(*retlen == len);
1170 out:
1171 mutex_exit(&sc->sc_device_lock);
1172
1173 return error;
1174 }
1175
1176 int
1177 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1178 const uint8_t *buf)
1179 {
1180 struct nand_softc *sc = device_private(self);
1181 struct nand_chip *chip = &sc->sc_chip;
1182 const uint8_t *bufp;
1183 size_t pages, page;
1184 daddr_t addr;
1185 int error = 0;
1186
1187 if ((offset + len) > chip->nc_size) {
1188 DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
1189 " is over device size (0x%jx)\n",
1190 (uintmax_t)offset, (uintmax_t)len,
1191 (uintmax_t)chip->nc_size));
1192 return EINVAL;
1193 }
1194
1195 if (len % chip->nc_page_size != 0 ||
1196 offset % chip->nc_page_size != 0) {
1197 return nand_flash_write_unaligned(self,
1198 offset, len, retlen, buf);
1199 }
1200
1201 pages = len / chip->nc_page_size;
1202 KASSERT(pages != 0);
1203 *retlen = 0;
1204
1205 addr = offset;
1206 bufp = buf;
1207
1208 mutex_enter(&sc->sc_device_lock);
1209 for (page = 0; page < pages; page++) {
1210 /* do we need this check here? */
1211 if (nand_isbad(self, addr)) {
1212 aprint_error_dev(self,
1213 "nand_flash_write: bad block encountered\n");
1214
1215 error = EIO;
1216 goto out;
1217 }
1218
1219 error = nand_program_page(self, addr, bufp);
1220 if (error) {
1221 goto out;
1222 }
1223
1224 addr += chip->nc_page_size;
1225 bufp += chip->nc_page_size;
1226 *retlen += chip->nc_page_size;
1227 }
1228 out:
1229 mutex_exit(&sc->sc_device_lock);
1230 DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
1231
1232 return error;
1233 }
1234
1235 /*
1236 * handle (page) unaligned read from nand
1237 */
1238 static int
1239 nand_flash_read_unaligned(device_t self, size_t offset,
1240 size_t len, size_t *retlen, uint8_t *buf)
1241 {
1242 struct nand_softc *sc = device_private(self);
1243 struct nand_chip *chip = &sc->sc_chip;
1244 daddr_t first, last, count, firstoff;
1245 uint8_t *bufp;
1246 daddr_t addr;
1247 size_t left;
1248 int error = 0, i;
1249
1250 first = offset & chip->nc_page_mask;
1251 firstoff = offset & ~chip->nc_page_mask;
1252 last = (offset + len) & chip->nc_page_mask;
1253 count = (last - first) / chip->nc_page_size + 1;
1254
1255 addr = first;
1256 bufp = buf;
1257 left = len;
1258 *retlen = 0;
1259
1260 mutex_enter(&sc->sc_device_lock);
1261 if (count == 1) {
1262 error = nand_read_page(self, addr, chip->nc_page_cache);
1263 if (error) {
1264 goto out;
1265 }
1266
1267 memcpy(bufp, chip->nc_page_cache + firstoff, len);
1268
1269 *retlen = len;
1270 goto out;
1271 }
1272
1273 for (i = 0; i < count && left != 0; i++) {
1274 error = nand_read_page(self, addr, chip->nc_page_cache);
1275 if (error) {
1276 goto out;
1277 }
1278
1279 if (i == 0) {
1280 memcpy(bufp, chip->nc_page_cache + firstoff,
1281 chip->nc_page_size - firstoff);
1282
1283 bufp += chip->nc_page_size - firstoff;
1284 left -= chip->nc_page_size - firstoff;
1285 *retlen += chip->nc_page_size - firstoff;
1286
1287 } else if (i == count - 1) {
1288 memcpy(bufp, chip->nc_page_cache, left);
1289 *retlen += left;
1290 KASSERT(left < chip->nc_page_size);
1291
1292 } else {
1293 memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
1294
1295 bufp += chip->nc_page_size;
1296 left -= chip->nc_page_size;
1297 *retlen += chip->nc_page_size;
1298 }
1299
1300 addr += chip->nc_page_size;
1301 }
1302 KASSERT(*retlen == len);
1303 out:
1304 mutex_exit(&sc->sc_device_lock);
1305
1306 return error;
1307 }
1308
1309 int
1310 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1311 uint8_t *buf)
1312 {
1313 struct nand_softc *sc = device_private(self);
1314 struct nand_chip *chip = &sc->sc_chip;
1315 uint8_t *bufp;
1316 size_t addr;
1317 size_t i, pages;
1318 int error = 0;
1319
1320 *retlen = 0;
1321
1322 DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
1323 (uintmax_t)offset, len));
1324
1325 if (__predict_false((offset + len) > chip->nc_size)) {
1326 DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
1327 " is over device size (%ju)\n", (uintmax_t)offset,
1328 len, (uintmax_t)chip->nc_size));
1329 return EINVAL;
1330 }
1331
1332 /* Handle unaligned access, shouldnt be needed when using the
1333 * block device, as strategy handles it, so only low level
1334 * accesses will use this path
1335 */
1336 /* XXX^2 */
1337 #if 0
1338 if (len < chip->nc_page_size)
1339 panic("TODO page size is larger than read size");
1340 #endif
1341
1342 if (len % chip->nc_page_size != 0 ||
1343 offset % chip->nc_page_size != 0) {
1344 return nand_flash_read_unaligned(self,
1345 offset, len, retlen, buf);
1346 }
1347
1348 bufp = buf;
1349 addr = offset;
1350 pages = len / chip->nc_page_size;
1351
1352 mutex_enter(&sc->sc_device_lock);
1353 for (i = 0; i < pages; i++) {
1354 /* XXX do we need this check here? */
1355 if (nand_isbad(self, addr)) {
1356 aprint_error_dev(self, "bad block encountered\n");
1357 error = EIO;
1358 goto out;
1359 }
1360 error = nand_read_page(self, addr, bufp);
1361 if (error)
1362 goto out;
1363
1364 bufp += chip->nc_page_size;
1365 addr += chip->nc_page_size;
1366 *retlen += chip->nc_page_size;
1367 }
1368 out:
1369 mutex_exit(&sc->sc_device_lock);
1370
1371 return error;
1372 }
1373
1374 int
1375 nand_flash_isbad(device_t self, flash_off_t ofs, bool *isbad)
1376 {
1377 struct nand_softc *sc = device_private(self);
1378 struct nand_chip *chip = &sc->sc_chip;
1379 bool result;
1380
1381 if (ofs > chip->nc_size) {
1382 DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
1383 " device size (0x%jx)\n", (uintmax_t)ofs,
1384 (uintmax_t)chip->nc_size));
1385 return EINVAL;
1386 }
1387
1388 if (ofs % chip->nc_block_size != 0) {
1389 DPRINTF(("offset (0x%jx) is not the multiple of block size "
1390 "(%ju)",
1391 (uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
1392 return EINVAL;
1393 }
1394
1395 mutex_enter(&sc->sc_device_lock);
1396 result = nand_isbad(self, ofs);
1397 mutex_exit(&sc->sc_device_lock);
1398
1399 *isbad = result;
1400
1401 return 0;
1402 }
1403
1404 int
1405 nand_flash_markbad(device_t self, flash_off_t ofs)
1406 {
1407 struct nand_softc *sc = device_private(self);
1408 struct nand_chip *chip = &sc->sc_chip;
1409
1410 if (ofs > chip->nc_size) {
1411 DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
1412 " device size (0x%jx)\n", ofs,
1413 (uintmax_t)chip->nc_size));
1414 return EINVAL;
1415 }
1416
1417 if (ofs % chip->nc_block_size != 0) {
1418 panic("offset (%ju) is not the multiple of block size (%ju)",
1419 (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1420 }
1421
1422 mutex_enter(&sc->sc_device_lock);
1423 nand_markbad(self, ofs);
1424 mutex_exit(&sc->sc_device_lock);
1425
1426 return 0;
1427 }
1428
1429 int
1430 nand_flash_erase(device_t self,
1431 struct flash_erase_instruction *ei)
1432 {
1433 struct nand_softc *sc = device_private(self);
1434 struct nand_chip *chip = &sc->sc_chip;
1435 flash_off_t addr;
1436 int error = 0;
1437
1438 if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
1439 return EINVAL;
1440
1441 if (ei->ei_addr + ei->ei_len > chip->nc_size) {
1442 DPRINTF(("nand_flash_erase: erase address is over the end"
1443 " of the device\n"));
1444 return EINVAL;
1445 }
1446
1447 if (ei->ei_addr % chip->nc_block_size != 0) {
1448 aprint_error_dev(self,
1449 "nand_flash_erase: ei_addr (%ju) is not"
1450 "the multiple of block size (%ju)",
1451 (uintmax_t)ei->ei_addr,
1452 (uintmax_t)chip->nc_block_size);
1453 return EINVAL;
1454 }
1455
1456 if (ei->ei_len % chip->nc_block_size != 0) {
1457 aprint_error_dev(self,
1458 "nand_flash_erase: ei_len (%ju) is not"
1459 "the multiple of block size (%ju)",
1460 (uintmax_t)ei->ei_addr,
1461 (uintmax_t)chip->nc_block_size);
1462 return EINVAL;
1463 }
1464
1465 mutex_enter(&sc->sc_device_lock);
1466 addr = ei->ei_addr;
1467 while (addr < ei->ei_addr + ei->ei_len) {
1468 if (nand_isbad(self, addr)) {
1469 aprint_error_dev(self, "bad block encountered\n");
1470 ei->ei_state = FLASH_ERASE_FAILED;
1471 error = EIO;
1472 goto out;
1473 }
1474
1475 error = nand_erase_block(self, addr);
1476 if (error) {
1477 ei->ei_state = FLASH_ERASE_FAILED;
1478 goto out;
1479 }
1480
1481 addr += chip->nc_block_size;
1482 }
1483 mutex_exit(&sc->sc_device_lock);
1484
1485 ei->ei_state = FLASH_ERASE_DONE;
1486 if (ei->ei_callback != NULL) {
1487 ei->ei_callback(ei);
1488 }
1489
1490 return 0;
1491 out:
1492 mutex_exit(&sc->sc_device_lock);
1493
1494 return error;
1495 }
1496
1497 static int
1498 sysctl_nand_verify(SYSCTLFN_ARGS)
1499 {
1500 int error, t;
1501 struct sysctlnode node;
1502
1503 node = *rnode;
1504 t = *(int *)rnode->sysctl_data;
1505 node.sysctl_data = &t;
1506 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1507 if (error || newp == NULL)
1508 return error;
1509
1510 if (node.sysctl_num == nand_cachesync_nodenum) {
1511 if (t <= 0 || t > 60)
1512 return EINVAL;
1513 } else {
1514 return EINVAL;
1515 }
1516
1517 *(int *)rnode->sysctl_data = t;
1518
1519 return 0;
1520 }
1521
1522 SYSCTL_SETUP(sysctl_nand, "sysctl nand subtree setup")
1523 {
1524 int rc, nand_root_num;
1525 const struct sysctlnode *node;
1526
1527 if ((rc = sysctl_createv(clog, 0, NULL, NULL,
1528 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
1529 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
1530 goto error;
1531 }
1532
1533 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1534 CTLFLAG_PERMANENT, CTLTYPE_NODE, "nand",
1535 SYSCTL_DESCR("NAND driver controls"),
1536 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1537 goto error;
1538 }
1539
1540 nand_root_num = node->sysctl_num;
1541
1542 if ((rc = sysctl_createv(clog, 0, NULL, &node,
1543 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1544 CTLTYPE_INT, "cache_sync_timeout",
1545 SYSCTL_DESCR("NAND write cache sync timeout in seconds"),
1546 sysctl_nand_verify, 0, &nand_cachesync_timeout,
1547 0, CTL_HW, nand_root_num, CTL_CREATE,
1548 CTL_EOL)) != 0) {
1549 goto error;
1550 }
1551
1552 nand_cachesync_nodenum = node->sysctl_num;
1553
1554 return;
1555
1556 error:
1557 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
1558 }
1559
1560 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
1561
1562 #ifdef _MODULE
1563 #include "ioconf.c"
1564 #endif
1565
1566 static int
1567 nand_modcmd(modcmd_t cmd, void *opaque)
1568 {
1569 switch (cmd) {
1570 case MODULE_CMD_INIT:
1571 #ifdef _MODULE
1572 return config_init_component(cfdriver_ioconf_nand,
1573 cfattach_ioconf_nand, cfdata_ioconf_nand);
1574 #else
1575 return 0;
1576 #endif
1577 case MODULE_CMD_FINI:
1578 #ifdef _MODULE
1579 return config_fini_component(cfdriver_ioconf_nand,
1580 cfattach_ioconf_nand, cfdata_ioconf_nand);
1581 #else
1582 return 0;
1583 #endif
1584 default:
1585 return ENOTTY;
1586 }
1587 }
1588