Home | History | Annotate | Line # | Download | only in nand
nand.c revision 1.12
      1 /*	$NetBSD: nand.c,v 1.12 2011/06/28 07:16:11 ahoka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010 Department of Software Engineering,
      5  *		      University of Szeged, Hungary
      6  * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by the Department of Software Engineering, University of Szeged, Hungary
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.12 2011/06/28 07:16:11 ahoka Exp $");
     38 
     39 #include "locators.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 #include <sys/device.h>
     44 #include <sys/kmem.h>
     45 #include <sys/sysctl.h>
     46 #include <sys/atomic.h>
     47 
     48 #include <dev/flash/flash.h>
     49 #include <dev/nand/nand.h>
     50 #include <dev/nand/onfi.h>
     51 #include <dev/nand/hamming.h>
     52 #include <dev/nand/nand_bbt.h>
     53 #include <dev/nand/nand_crc.h>
     54 
     55 #include "opt_nand.h"
     56 
     57 int nand_match(device_t, cfdata_t, void *);
     58 void nand_attach(device_t, device_t, void *);
     59 int nand_detach(device_t, int);
     60 bool nand_shutdown(device_t, int);
     61 
     62 int nand_print(void *, const char *);
     63 
     64 static int nand_search(device_t, cfdata_t, const int *, void *);
     65 static void nand_address_row(device_t, size_t);
     66 static void nand_address_column(device_t, size_t, size_t);
     67 static int nand_fill_chip_structure(device_t, struct nand_chip *);
     68 static int nand_scan_media(device_t, struct nand_chip *);
     69 static bool nand_check_wp(device_t);
     70 
     71 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
     72     nand_match, nand_attach, nand_detach, NULL);
     73 
     74 #ifdef NAND_DEBUG
     75 int	nanddebug = NAND_DEBUG;
     76 #endif
     77 
     78 int nand_cachesync_timeout = 1;
     79 int nand_cachesync_nodenum;
     80 
     81 #ifdef NAND_VERBOSE
     82 const struct nand_manufacturer nand_mfrs[] = {
     83 	{ NAND_MFR_AMD,		"AMD" },
     84 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
     85 	{ NAND_MFR_RENESAS,	"Renesas" },
     86 	{ NAND_MFR_STMICRO,	"ST Micro" },
     87 	{ NAND_MFR_MICRON,	"Micron" },
     88 	{ NAND_MFR_NATIONAL,	"National" },
     89 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
     90 	{ NAND_MFR_HYNIX,	"Hynix" },
     91 	{ NAND_MFR_SAMSUNG,	"Samsung" },
     92 	{ NAND_MFR_UNKNOWN,	"Unknown" }
     93 };
     94 
     95 static const char *
     96 nand_midtoname(int id)
     97 {
     98 	int i;
     99 
    100 	for (i = 0; nand_mfrs[i].id != 0; i++) {
    101 		if (nand_mfrs[i].id == id)
    102 			return nand_mfrs[i].name;
    103 	}
    104 
    105 	KASSERT(nand_mfrs[i].id == 0);
    106 
    107 	return nand_mfrs[i].name;
    108 }
    109 #endif
    110 
    111 /* ARGSUSED */
    112 int
    113 nand_match(device_t parent, cfdata_t match, void *aux)
    114 {
    115 	/* pseudo device, always attaches */
    116 	return 1;
    117 }
    118 
    119 void
    120 nand_attach(device_t parent, device_t self, void *aux)
    121 {
    122 	struct nand_softc *sc = device_private(self);
    123 	struct nand_attach_args *naa = aux;
    124 	struct nand_chip *chip = &sc->sc_chip;
    125 
    126 	sc->sc_dev = self;
    127 	sc->controller_dev = parent;
    128 	sc->nand_if = naa->naa_nand_if;
    129 
    130 	aprint_naive("\n");
    131 
    132 	if (nand_check_wp(self)) {
    133 		aprint_error("NAND chip is write protected!\n");
    134 		return;
    135 	}
    136 
    137 	if (nand_scan_media(self, chip)) {
    138 		return;
    139 	}
    140 
    141 	/* allocate cache */
    142 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
    143 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
    144 
    145 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
    146 
    147 	if (nand_sync_thread_start(self)) {
    148 		goto error;
    149 	}
    150 
    151 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
    152 		aprint_error_dev(sc->sc_dev,
    153 		    "couldn't establish power handler\n");
    154 
    155 #ifdef NAND_BBT
    156 	nand_bbt_init(self);
    157 	nand_bbt_scan(self);
    158 #endif
    159 
    160 	/*
    161 	 * Attach all our devices
    162 	 */
    163 	config_search_ia(nand_search, self, NULL, NULL);
    164 
    165 	return;
    166 error:
    167 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    168 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    169 	mutex_destroy(&sc->sc_device_lock);
    170 }
    171 
    172 static int
    173 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
    174 {
    175 	struct nand_softc *sc = device_private(parent);
    176 	struct nand_chip *chip = &sc->sc_chip;
    177 	struct flash_interface *flash_if;
    178 	struct flash_attach_args faa;
    179 
    180 	flash_if = kmem_alloc(sizeof(*flash_if), KM_SLEEP);
    181 
    182 	flash_if->type = FLASH_TYPE_NAND;
    183 
    184 	flash_if->read = nand_flash_read;
    185 	flash_if->write = nand_flash_write;
    186 	flash_if->erase = nand_flash_erase;
    187 	flash_if->block_isbad = nand_flash_isbad;
    188 	flash_if->block_markbad = nand_flash_markbad;
    189 
    190 	flash_if->submit = nand_io_submit;
    191 
    192 	flash_if->erasesize = chip->nc_block_size;
    193 	flash_if->page_size = chip->nc_page_size;
    194 	flash_if->writesize = chip->nc_page_size;
    195 
    196 	flash_if->partition.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
    197 
    198 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
    199 		flash_if->size = chip->nc_size -
    200 		    flash_if->partition.part_offset;
    201 		flash_if->partition.part_size = flash_if->size;
    202 	} else {
    203 		flash_if->size = cf->cf_loc[FLASHBUSCF_SIZE];
    204 		flash_if->partition.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
    205 	}
    206 
    207 	if (cf->cf_loc[FLASHBUSCF_READONLY])
    208 		flash_if->partition.part_flags = FLASH_PART_READONLY;
    209 	else
    210 		flash_if->partition.part_flags = 0;
    211 
    212 	faa.flash_if = flash_if;
    213 
    214 	if (config_match(parent, cf, &faa)) {
    215 		if (config_attach(parent, cf, &faa, nand_print) != NULL) {
    216 			return 0;
    217 		} else {
    218 			return 1;
    219 		}
    220 	} else {
    221 		kmem_free(flash_if, sizeof(*flash_if));
    222 	}
    223 
    224 	return 1;
    225 }
    226 
    227 int
    228 nand_detach(device_t self, int flags)
    229 {
    230 	struct nand_softc *sc = device_private(self);
    231 	struct nand_chip *chip = &sc->sc_chip;
    232 	int error = 0;
    233 
    234 	error = config_detach_children(self, flags);
    235 	if (error) {
    236 		return error;
    237 	}
    238 
    239 	nand_sync_thread_stop(self);
    240 #ifdef NAND_BBT
    241 	nand_bbt_detach(self);
    242 #endif
    243 	/* free oob cache */
    244 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    245 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    246 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
    247 
    248 	mutex_destroy(&sc->sc_device_lock);
    249 
    250 	pmf_device_deregister(sc->sc_dev);
    251 
    252 	return error;
    253 }
    254 
    255 int
    256 nand_print(void *aux, const char *pnp)
    257 {
    258 	if (pnp != NULL)
    259 		aprint_normal("nand at %s\n", pnp);
    260 
    261 	return UNCONF;
    262 }
    263 
    264 /* ask for a nand driver to attach to the controller */
    265 device_t
    266 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
    267 {
    268 	struct nand_attach_args arg;
    269 
    270 	KASSERT(nand_if != NULL);
    271 
    272 	/* fill the defaults if we have null pointers */
    273 	if (nand_if->program_page == NULL) {
    274 		nand_if->program_page = &nand_default_program_page;
    275 	}
    276 
    277 	if (nand_if->read_page == NULL) {
    278 		nand_if->read_page = &nand_default_read_page;
    279 	}
    280 
    281 	arg.naa_nand_if = nand_if;
    282 	return config_found_ia(parent, "nandbus", &arg, nand_print);
    283 }
    284 
    285 /* default everything to reasonable values, to ease future api changes */
    286 void
    287 nand_init_interface(struct nand_interface *interface)
    288 {
    289 	interface->select = &nand_default_select;
    290 	interface->command = NULL;
    291 	interface->address = NULL;
    292 	interface->read_buf_1 = NULL;
    293 	interface->read_buf_2 = NULL;
    294 	interface->read_1 = NULL;
    295 	interface->read_2 = NULL;
    296 	interface->write_buf_1 = NULL;
    297 	interface->write_buf_2 = NULL;
    298 	interface->write_1 = NULL;
    299 	interface->write_2 = NULL;
    300 	interface->busy = NULL;
    301 
    302 	/*-
    303 	 * most drivers dont want to change this, but some implement
    304 	 * read/program in one step
    305 	 */
    306 	interface->program_page = &nand_default_program_page;
    307 	interface->read_page = &nand_default_read_page;
    308 
    309 	/* default to soft ecc, that should work everywhere */
    310 	interface->ecc_compute = &nand_default_ecc_compute;
    311 	interface->ecc_correct = &nand_default_ecc_correct;
    312 	interface->ecc_prepare = NULL;
    313 	interface->ecc.necc_code_size = 3;
    314 	interface->ecc.necc_block_size = 256;
    315 	interface->ecc.necc_type = NAND_ECC_TYPE_SW;
    316 }
    317 
    318 #if 0
    319 /* handle quirks here */
    320 static void
    321 nand_quirks(device_t self, struct nand_chip *chip)
    322 {
    323 	/* this is an example only! */
    324 	switch (chip->nc_manf_id) {
    325 	case NAND_MFR_SAMSUNG:
    326 		if (chip->nc_dev_id == 0x00) {
    327 			/* do something only samsung chips need */
    328 			/* or */
    329 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
    330 		}
    331 	}
    332 
    333 	return;
    334 }
    335 #endif
    336 
    337 static int
    338 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
    339 {
    340 	switch (chip->nc_manf_id) {
    341 	case NAND_MFR_MICRON:
    342 		return nand_read_parameters_micron(self, chip);
    343 	default:
    344 		return 1;
    345 	}
    346 
    347 	return 0;
    348 }
    349 
    350 /**
    351  * scan media to determine the chip's properties
    352  * this function resets the device
    353  */
    354 static int
    355 nand_scan_media(device_t self, struct nand_chip *chip)
    356 {
    357 	struct nand_softc *sc = device_private(self);
    358 	struct nand_ecc *ecc;
    359 	uint8_t onfi_signature[4];
    360 
    361 	nand_select(self, true);
    362 	nand_command(self, ONFI_RESET);
    363 	nand_select(self, false);
    364 
    365 	/* check if the device implements the ONFI standard */
    366 	nand_select(self, true);
    367 	nand_command(self, ONFI_READ_ID);
    368 	nand_address(self, 0x20);
    369 	nand_read_1(self, &onfi_signature[0]);
    370 	nand_read_1(self, &onfi_signature[1]);
    371 	nand_read_1(self, &onfi_signature[2]);
    372 	nand_read_1(self, &onfi_signature[3]);
    373 	nand_select(self, false);
    374 
    375 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
    376 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
    377 		chip->nc_isonfi = false;
    378 
    379 		aprint_normal(": Legacy NAND Flash\n");
    380 
    381 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    382 
    383 		if (nand_fill_chip_structure_legacy(self, chip)) {
    384 			aprint_error_dev(self,
    385 			    "can't read device parameters for legacy chip\n");
    386 			return 1;
    387 		}
    388 	} else {
    389 		chip->nc_isonfi = true;
    390 
    391 		aprint_normal(": ONFI NAND Flash\n");
    392 
    393 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    394 
    395 		if (nand_fill_chip_structure(self, chip)) {
    396 			aprint_error_dev(self,
    397 			    "can't read device parameters\n");
    398 			return 1;
    399 		}
    400 	}
    401 
    402 #ifdef NAND_VERBOSE
    403 	aprint_normal_dev(self,
    404 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
    405 	    chip->nc_manf_id,
    406 	    nand_midtoname(chip->nc_manf_id),
    407 	    chip->nc_dev_id);
    408 #endif
    409 
    410 	aprint_normal_dev(self,
    411 	    "page size: %zu bytes, spare size: %zu bytes, "
    412 	    "block size: %zu bytes\n",
    413 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
    414 
    415 	aprint_normal_dev(self,
    416 	    "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
    417 	    ", total storage size: %zu MB\n",
    418 	    chip->nc_lun_blocks, chip->nc_num_luns,
    419 	    chip->nc_size / 1024 / 1024);
    420 
    421 #ifdef NAND_VERBOSE
    422 	aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
    423 	    PRIu8 "\n",
    424 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
    425 #endif
    426 
    427 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
    428 
    429 	/*
    430 	 * calculate the place of ecc data in oob
    431 	 * we try to be compatible with Linux here
    432 	 */
    433 	switch (chip->nc_spare_size) {
    434 	case 8:
    435 		ecc->necc_offset = 0;
    436 		break;
    437 	case 16:
    438 		ecc->necc_offset = 0;
    439 		break;
    440 	case 64:
    441 		ecc->necc_offset = 40;
    442 		break;
    443 	case 128:
    444 		ecc->necc_offset = 80;
    445 		break;
    446 	default:
    447 		panic("OOB size is unexpected");
    448 	}
    449 
    450 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
    451 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
    452 
    453 	/* check if we fit in oob */
    454 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
    455 		panic("NAND ECC bits dont fit in OOB");
    456 	}
    457 
    458 	/* TODO: mark free oob area available for file systems */
    459 
    460 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
    461 
    462 	/*
    463 	 * calculate badblock marker offset in oob
    464 	 * we try to be compatible with linux here
    465 	 */
    466 	if (chip->nc_page_size > 512)
    467 		chip->nc_badmarker_offs = 0;
    468 	else
    469 		chip->nc_badmarker_offs = 5;
    470 
    471 	/* Calculate page shift and mask */
    472 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
    473 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
    474 	/* same for block */
    475 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
    476 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
    477 
    478 	/* look for quirks here if needed in future */
    479 	/* nand_quirks(self, chip); */
    480 
    481 	return 0;
    482 }
    483 
    484 void
    485 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
    486 {
    487 	nand_select(self, true);
    488 	nand_command(self, ONFI_READ_ID);
    489 	nand_address(self, 0x00);
    490 
    491 	nand_read_1(self, manf);
    492 	nand_read_1(self, dev);
    493 
    494 	nand_select(self, false);
    495 }
    496 
    497 int
    498 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
    499 {
    500 	uint8_t *bufp;
    501 	uint16_t crc;
    502 	int i;//, tries = 0;
    503 
    504 	KASSERT(sizeof(*params) == 256);
    505 
    506 //read_params:
    507 //	tries++;
    508 
    509 	nand_select(self, true);
    510 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
    511 	nand_address(self, 0x00);
    512 
    513 	nand_busy(self);
    514 
    515 	/* TODO check the signature if it contains at least 2 letters */
    516 
    517 	bufp = (uint8_t *)params;
    518 	/* XXX why i am not using read_buf? */
    519 	for (i = 0; i < 256; i++) {
    520 		nand_read_1(self, &bufp[i]);
    521 	}
    522 	nand_select(self, false);
    523 
    524 	/* validate the parameter page with the crc */
    525 	crc = nand_crc16(bufp, 254);
    526 
    527 	if (crc != params->param_integrity_crc) {
    528 		aprint_error_dev(self, "parameter page crc check failed\n");
    529 		/* TODO: we should read the next parameter page copy */
    530 		return 1;
    531 	}
    532 
    533 	return 0;
    534 }
    535 
    536 static int
    537 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
    538 {
    539 	struct onfi_parameter_page params;
    540 	uint8_t	vendor[13], model[21];
    541 	int i;
    542 
    543 	if (nand_read_parameter_page(self, &params)) {
    544 		return 1;
    545 	}
    546 
    547 	/* strip manufacturer and model string */
    548 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
    549 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
    550 		vendor[i] = 0;
    551 	strlcpy(model, params.param_model, sizeof(model));
    552 	for (i = 19; i > 0 && model[i] == ' '; i--)
    553 		model[i] = 0;
    554 
    555 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
    556 
    557 	/* XXX TODO multiple LUNs */
    558 	if (params.param_numluns != 1) {
    559 		aprint_error_dev(self,
    560 		    "more than one LUNs are not supported yet!\n");
    561 
    562 		return 1;
    563 	}
    564 
    565 	chip->nc_size = params.param_pagesize * params.param_blocksize *
    566 	    params.param_lunsize * params.param_numluns;
    567 
    568 	chip->nc_page_size = params.param_pagesize;
    569 	chip->nc_block_pages = params.param_blocksize;
    570 	chip->nc_block_size = params.param_blocksize * params.param_pagesize;
    571 	chip->nc_spare_size = params.param_sparesize;
    572 	chip->nc_lun_blocks = params.param_lunsize;
    573 	chip->nc_num_luns = params.param_numluns;
    574 
    575 	/* the lower 4 bits contain the row address cycles */
    576 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
    577 	/* the upper 4 bits contain the column address cycles */
    578 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
    579 
    580 	if (params.param_features & ONFI_FEATURE_16BIT)
    581 		chip->nc_flags |= NC_BUSWIDTH_16;
    582 
    583 	if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
    584 		chip->nc_flags |= NC_EXTENDED_PARAM;
    585 
    586 	return 0;
    587 }
    588 
    589 /* ARGSUSED */
    590 bool
    591 nand_shutdown(device_t self, int howto)
    592 {
    593 	return true;
    594 }
    595 
    596 static void
    597 nand_address_column(device_t self, size_t row, size_t column)
    598 {
    599 	struct nand_softc *sc = device_private(self);
    600 	struct nand_chip *chip = &sc->sc_chip;
    601 	uint8_t i;
    602 
    603 	DPRINTF(("addressing row: 0x%jx column: %zu\n",
    604 		(uintmax_t )row, column));
    605 
    606 	/* XXX TODO */
    607 	row >>= chip->nc_page_shift;
    608 
    609 	/* Write the column (subpage) address */
    610 	if (chip->nc_flags & NC_BUSWIDTH_16)
    611 		column >>= 1;
    612 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
    613 		nand_address(self, column & 0xff);
    614 
    615 	/* Write the row (page) address */
    616 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    617 		nand_address(self, row & 0xff);
    618 }
    619 
    620 static void
    621 nand_address_row(device_t self, size_t row)
    622 {
    623 	struct nand_softc *sc = device_private(self);
    624 	struct nand_chip *chip = &sc->sc_chip;
    625 	int i;
    626 
    627 	/* XXX TODO */
    628 	row >>= chip->nc_page_shift;
    629 
    630 	/* Write the row (page) address */
    631 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    632 		nand_address(self, row & 0xff);
    633 }
    634 
    635 static inline uint8_t
    636 nand_get_status(device_t self)
    637 {
    638 	uint8_t status;
    639 
    640 	nand_command(self, ONFI_READ_STATUS);
    641 	nand_busy(self);
    642 	nand_read_1(self, &status);
    643 
    644 	return status;
    645 }
    646 
    647 static bool
    648 nand_check_wp(device_t self)
    649 {
    650 	if (nand_get_status(self) & 0x80)
    651 		return false;
    652 	else
    653 		return true;
    654 }
    655 
    656 static void
    657 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
    658 {
    659 	nand_command(self, ONFI_READ);
    660 	nand_address_column(self, row, column);
    661 	nand_command(self, ONFI_READ_START);
    662 
    663 	nand_busy(self);
    664 }
    665 
    666 /* read a page with ecc correction, default implementation */
    667 int
    668 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
    669 {
    670 	struct nand_softc *sc = device_private(self);
    671 	struct nand_chip *chip = &sc->sc_chip;
    672 	size_t b, bs, e, cs;
    673 	uint8_t *ecc;
    674 	int result;
    675 
    676 	nand_prepare_read(self, offset, 0);
    677 
    678 	bs = chip->nc_ecc->necc_block_size;
    679 	cs = chip->nc_ecc->necc_code_size;
    680 
    681 	/* decide if we access by 8 or 16 bits */
    682 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    683 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    684 			nand_ecc_prepare(self, NAND_ECC_READ);
    685 			nand_read_buf_2(self, data + b, bs);
    686 			nand_ecc_compute(self, data + b,
    687 			    chip->nc_ecc_cache + e);
    688 		}
    689 	} else {
    690 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    691 			nand_ecc_prepare(self, NAND_ECC_READ);
    692 			nand_read_buf_1(self, data + b, bs);
    693 			nand_ecc_compute(self, data + b,
    694 			    chip->nc_ecc_cache + e);
    695 		}
    696 	}
    697 
    698 	/* for debugging new drivers */
    699 #if 0
    700 	nand_dump_data("page", data, chip->nc_page_size);
    701 #endif
    702 
    703 	nand_read_oob(self, offset, chip->nc_oob_cache);
    704 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    705 
    706 	/* useful for debugging new ecc drivers */
    707 #if 0
    708 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    709 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    710 		printf("0x");
    711 		for (b = 0; b < cs; b++) {
    712 			printf("%.2hhx", ecc[e+b]);
    713 		}
    714 		printf(" 0x");
    715 		for (b = 0; b < cs; b++) {
    716 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
    717 		}
    718 		printf("\n");
    719 	}
    720 	printf("--------------\n");
    721 #endif
    722 
    723 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    724 		result = nand_ecc_correct(self, data + b, ecc + e,
    725 		    chip->nc_ecc_cache + e);
    726 
    727 		switch (result) {
    728 		case NAND_ECC_OK:
    729 			break;
    730 		case NAND_ECC_CORRECTED:
    731 			aprint_error_dev(self,
    732 			    "data corrected with ECC at page offset 0x%jx "
    733 			    "block %zu\n", (uintmax_t)offset, b);
    734 			break;
    735 		case NAND_ECC_TWOBIT:
    736 			aprint_error_dev(self,
    737 			    "uncorrectable ECC error at page offset 0x%jx "
    738 			    "block %zu\n", (uintmax_t)offset, b);
    739 			return EIO;
    740 			break;
    741 		case NAND_ECC_INVALID:
    742 			aprint_error_dev(self,
    743 			    "invalid ECC in oob at page offset 0x%jx "
    744 			    "block %zu\n", (uintmax_t)offset, b);
    745 			return EIO;
    746 			break;
    747 		default:
    748 			panic("invalid ECC correction errno");
    749 		}
    750 	}
    751 
    752 	return 0;
    753 }
    754 
    755 int
    756 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
    757 {
    758 	struct nand_softc *sc = device_private(self);
    759 	struct nand_chip *chip = &sc->sc_chip;
    760 	size_t bs, cs, e, b;
    761 	uint8_t status;
    762 	uint8_t *ecc;
    763 
    764 	nand_command(self, ONFI_PAGE_PROGRAM);
    765 	nand_address_column(self, page, 0);
    766 
    767 	nand_busy(self);
    768 
    769 	bs = chip->nc_ecc->necc_block_size;
    770 	cs = chip->nc_ecc->necc_code_size;
    771 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    772 
    773 	/* XXX code duplication */
    774 	/* decide if we access by 8 or 16 bits */
    775 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    776 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    777 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    778 			nand_write_buf_2(self, data + b, bs);
    779 			nand_ecc_compute(self, data + b, ecc + e);
    780 		}
    781 		/* write oob with ecc correction code */
    782 		nand_write_buf_2(self, chip->nc_oob_cache,
    783 		    chip->nc_spare_size);
    784 	} else {
    785 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    786 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    787 			nand_write_buf_1(self, data + b, bs);
    788 			nand_ecc_compute(self, data + b, ecc + e);
    789 		}
    790 		/* write oob with ecc correction code */
    791 		nand_write_buf_1(self, chip->nc_oob_cache,
    792 		    chip->nc_spare_size);
    793 	}
    794 
    795 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    796 
    797 	nand_busy(self);
    798 
    799 	/* for debugging ecc */
    800 #if 0
    801 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    802 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    803 		printf("0x");
    804 		for (b = 0; b < cs; b++) {
    805 			printf("%.2hhx", ecc[e+b]);
    806 		}
    807 		printf("\n");
    808 	}
    809 	printf("--------------\n");
    810 #endif
    811 
    812 	status = nand_get_status(self);
    813 	KASSERT(status & ONFI_STATUS_RDY);
    814 	if (status & ONFI_STATUS_FAIL) {
    815 		aprint_error_dev(self, "page program failed!\n");
    816 		return EIO;
    817 	}
    818 
    819 	return 0;
    820 }
    821 
    822 /* read the OOB of a page */
    823 int
    824 nand_read_oob(device_t self, size_t page, uint8_t *oob)
    825 {
    826 	struct nand_softc *sc = device_private(self);
    827 	struct nand_chip *chip = &sc->sc_chip;
    828 
    829 	nand_prepare_read(self, page, chip->nc_page_size);
    830 
    831 	if (chip->nc_flags & NC_BUSWIDTH_16)
    832 		nand_read_buf_2(self, oob, chip->nc_spare_size);
    833 	else
    834 		nand_read_buf_1(self, oob, chip->nc_spare_size);
    835 
    836 	/* for debugging drivers */
    837 #if 0
    838 	nand_dump_data("oob", oob, chip->nc_spare_size);
    839 #endif
    840 
    841 	return 0;
    842 }
    843 
    844 static int
    845 nand_write_oob(device_t self, size_t offset, const void *oob)
    846 {
    847 	struct nand_softc *sc = device_private(self);
    848 	struct nand_chip *chip = &sc->sc_chip;
    849 	uint8_t status;
    850 
    851 	nand_command(self, ONFI_PAGE_PROGRAM);
    852 	nand_address_column(self, offset, chip->nc_page_size);
    853 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    854 
    855 	nand_busy(self);
    856 
    857 	if (chip->nc_flags & NC_BUSWIDTH_16)
    858 		nand_write_buf_2(self, oob, chip->nc_spare_size);
    859 	else
    860 		nand_write_buf_1(self, oob, chip->nc_spare_size);
    861 
    862 	status = nand_get_status(self);
    863 	KASSERT(status & ONFI_STATUS_RDY);
    864 	if (status & ONFI_STATUS_FAIL)
    865 		return EIO;
    866 	else
    867 		return 0;
    868 }
    869 
    870 void
    871 nand_markbad(device_t self, size_t offset)
    872 {
    873 	struct nand_softc *sc = device_private(self);
    874 	struct nand_chip *chip = &sc->sc_chip;
    875 	flash_off_t blockoffset, marker;
    876 #ifdef NAND_BBT
    877 	flash_off_t block;
    878 
    879 	block = offset / chip->nc_block_size;
    880 
    881 	nand_bbt_block_markbad(self, block);
    882 #endif
    883 	blockoffset = offset & chip->nc_block_mask;
    884 	marker = chip->nc_badmarker_offs & ~0x01;
    885 
    886 	/* check if it is already marked bad */
    887 	if (nand_isbad(self, blockoffset))
    888 		return;
    889 
    890 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
    891 
    892 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
    893 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
    894 
    895 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
    896 }
    897 
    898 bool
    899 nand_isfactorybad(device_t self, flash_off_t offset)
    900 {
    901 	struct nand_softc *sc = device_private(self);
    902 	struct nand_chip *chip = &sc->sc_chip;
    903 	flash_off_t block, first_page, last_page, page;
    904 	int i;
    905 
    906 	/* Check for factory bad blocks first
    907 	 * Factory bad blocks are marked in the first or last
    908 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
    909 	 */
    910 	block = offset / chip->nc_block_size;
    911 	first_page = block * chip->nc_block_size;
    912 	last_page = (block + 1) * chip->nc_block_size
    913 	    - chip->nc_page_size;
    914 
    915 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
    916 		/* address OOB */
    917 		nand_prepare_read(self, page, chip->nc_page_size);
    918 
    919 		if (chip->nc_flags & NC_BUSWIDTH_16) {
    920 			uint16_t word;
    921 			nand_read_2(self, &word);
    922 			if (word == 0x0000)
    923 				return true;
    924 		} else {
    925 			uint8_t byte;
    926 			nand_read_1(self, &byte);
    927 			if (byte == 0x00)
    928 				return true;
    929 		}
    930 	}
    931 
    932 	return false;
    933 }
    934 
    935 bool
    936 nand_iswornoutbad(device_t self, flash_off_t offset)
    937 {
    938 	struct nand_softc *sc = device_private(self);
    939 	struct nand_chip *chip = &sc->sc_chip;
    940 	flash_off_t block;
    941 
    942 	/* we inspect the first page of the block */
    943 	block = offset & chip->nc_block_mask;
    944 
    945 	/* Linux/u-boot compatible badblock handling */
    946 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    947 		uint16_t word, mark;
    948 
    949 		nand_prepare_read(self, block,
    950 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
    951 
    952 		nand_read_2(self, &word);
    953 		mark = htole16(word);
    954 		if (chip->nc_badmarker_offs & 0x01)
    955 			mark >>= 8;
    956 		if ((mark & 0xff) != 0xff)
    957 			return true;
    958 	} else {
    959 		uint8_t byte;
    960 
    961 		nand_prepare_read(self, block,
    962 		    chip->nc_page_size + chip->nc_badmarker_offs);
    963 
    964 		nand_read_1(self, &byte);
    965 		if (byte != 0xff)
    966 			return true;
    967 	}
    968 
    969 	return false;
    970 }
    971 
    972 bool
    973 nand_isbad(device_t self, flash_off_t offset)
    974 {
    975 #ifdef NAND_BBT
    976 	struct nand_softc *sc = device_private(self);
    977 	struct nand_chip *chip = &sc->sc_chip;
    978 	flash_off_t block;
    979 
    980 	block = offset / chip->nc_block_size;
    981 
    982 	return nand_bbt_block_isbad(self, block);
    983 #else
    984 	/* ONFI host requirement */
    985 	if (nand_isfactorybad(self, offset))
    986 		return true;
    987 
    988 	/* Look for Linux/U-Boot compatible bad marker */
    989 	if (nand_iswornoutbad(self, offset))
    990 		return true;
    991 
    992 	return false;
    993 #endif
    994 }
    995 
    996 int
    997 nand_erase_block(device_t self, size_t offset)
    998 {
    999 	uint8_t status;
   1000 
   1001 	/* xxx calculate first page of block for address? */
   1002 
   1003 	nand_command(self, ONFI_BLOCK_ERASE);
   1004 	nand_address_row(self, offset);
   1005 	nand_command(self, ONFI_BLOCK_ERASE_START);
   1006 
   1007 	nand_busy(self);
   1008 
   1009 	status = nand_get_status(self);
   1010 	KASSERT(status & ONFI_STATUS_RDY);
   1011 	if (status & ONFI_STATUS_FAIL) {
   1012 		aprint_error_dev(self, "block erase failed!\n");
   1013 		nand_markbad(self, offset);
   1014 		return EIO;
   1015 	} else {
   1016 		return 0;
   1017 	}
   1018 }
   1019 
   1020 /* default functions for driver development */
   1021 
   1022 /* default ECC using hamming code of 256 byte chunks */
   1023 int
   1024 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
   1025 {
   1026 	hamming_compute_256(data, code);
   1027 
   1028 	return 0;
   1029 }
   1030 
   1031 int
   1032 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
   1033 	const uint8_t *compcode)
   1034 {
   1035 	return hamming_correct_256(data, origcode, compcode);
   1036 }
   1037 
   1038 void
   1039 nand_default_select(device_t self, bool enable)
   1040 {
   1041 	/* do nothing */
   1042 	return;
   1043 }
   1044 
   1045 /* implementation of the block device API */
   1046 
   1047 /*
   1048  * handle (page) unaligned write to nand
   1049  */
   1050 static int
   1051 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
   1052     size_t *retlen, const uint8_t *buf)
   1053 {
   1054 	struct nand_softc *sc = device_private(self);
   1055 	struct nand_chip *chip = &sc->sc_chip;
   1056 	flash_off_t first, last, firstoff;
   1057 	const uint8_t *bufp;
   1058 	flash_off_t addr;
   1059 	size_t left, count;
   1060 	int error = 0, i;
   1061 
   1062 	first = offset & chip->nc_page_mask;
   1063 	firstoff = offset & ~chip->nc_page_mask;
   1064 	/* XXX check if this should be len - 1 */
   1065 	last = (offset + len) & chip->nc_page_mask;
   1066 	count = last - first + 1;
   1067 
   1068 	addr = first;
   1069 	*retlen = 0;
   1070 
   1071 	mutex_enter(&sc->sc_device_lock);
   1072 	if (count == 1) {
   1073 		if (nand_isbad(self, addr)) {
   1074 			aprint_error_dev(self,
   1075 			    "nand_flash_write_unaligned: "
   1076 			    "bad block encountered\n");
   1077 			error = EIO;
   1078 			goto out;
   1079 		}
   1080 
   1081 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1082 		if (error) {
   1083 			goto out;
   1084 		}
   1085 
   1086 		memcpy(chip->nc_page_cache + firstoff, buf, len);
   1087 
   1088 		error = nand_program_page(self, addr, chip->nc_page_cache);
   1089 		if (error) {
   1090 			goto out;
   1091 		}
   1092 
   1093 		*retlen = len;
   1094 		goto out;
   1095 	}
   1096 
   1097 	bufp = buf;
   1098 	left = len;
   1099 
   1100 	for (i = 0; i < count && left != 0; i++) {
   1101 		if (nand_isbad(self, addr)) {
   1102 			aprint_error_dev(self,
   1103 			    "nand_flash_write_unaligned: "
   1104 			    "bad block encountered\n");
   1105 			error = EIO;
   1106 			goto out;
   1107 		}
   1108 
   1109 		if (i == 0) {
   1110 			error = nand_read_page(self,
   1111 			    addr, chip->nc_page_cache);
   1112 			if (error) {
   1113 				goto out;
   1114 			}
   1115 
   1116 			memcpy(chip->nc_page_cache + firstoff,
   1117 			    bufp, chip->nc_page_size - firstoff);
   1118 
   1119 			printf("program page: %s: %d\n", __FILE__, __LINE__);
   1120 			error = nand_program_page(self,
   1121 			    addr, chip->nc_page_cache);
   1122 			if (error) {
   1123 				goto out;
   1124 			}
   1125 
   1126 			bufp += chip->nc_page_size - firstoff;
   1127 			left -= chip->nc_page_size - firstoff;
   1128 			*retlen += chip->nc_page_size - firstoff;
   1129 
   1130 		} else if (i == count - 1) {
   1131 			error = nand_read_page(self,
   1132 			    addr, chip->nc_page_cache);
   1133 			if (error) {
   1134 				goto out;
   1135 			}
   1136 
   1137 			memcpy(chip->nc_page_cache, bufp, left);
   1138 
   1139 			error = nand_program_page(self,
   1140 			    addr, chip->nc_page_cache);
   1141 			if (error) {
   1142 				goto out;
   1143 			}
   1144 
   1145 			*retlen += left;
   1146 			KASSERT(left < chip->nc_page_size);
   1147 
   1148 		} else {
   1149 			/* XXX debug */
   1150 			if (left > chip->nc_page_size) {
   1151 				printf("left: %zu, i: %d, count: %zu\n",
   1152 				    (size_t )left, i, count);
   1153 			}
   1154 			KASSERT(left > chip->nc_page_size);
   1155 
   1156 			error = nand_program_page(self, addr, bufp);
   1157 			if (error) {
   1158 				goto out;
   1159 			}
   1160 
   1161 			bufp += chip->nc_page_size;
   1162 			left -= chip->nc_page_size;
   1163 			*retlen += chip->nc_page_size;
   1164 		}
   1165 
   1166 		addr += chip->nc_page_size;
   1167 	}
   1168 
   1169 	KASSERT(*retlen == len);
   1170 out:
   1171 	mutex_exit(&sc->sc_device_lock);
   1172 
   1173 	return error;
   1174 }
   1175 
   1176 int
   1177 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1178     const uint8_t *buf)
   1179 {
   1180 	struct nand_softc *sc = device_private(self);
   1181 	struct nand_chip *chip = &sc->sc_chip;
   1182 	const uint8_t *bufp;
   1183 	size_t pages, page;
   1184 	daddr_t addr;
   1185 	int error = 0;
   1186 
   1187 	if ((offset + len) > chip->nc_size) {
   1188 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
   1189 			" is over device size (0x%jx)\n",
   1190 			(uintmax_t)offset, (uintmax_t)len,
   1191 			(uintmax_t)chip->nc_size));
   1192 		return EINVAL;
   1193 	}
   1194 
   1195 	if (len % chip->nc_page_size != 0 ||
   1196 	    offset % chip->nc_page_size != 0) {
   1197 		return nand_flash_write_unaligned(self,
   1198 		    offset, len, retlen, buf);
   1199 	}
   1200 
   1201 	pages = len / chip->nc_page_size;
   1202 	KASSERT(pages != 0);
   1203 	*retlen = 0;
   1204 
   1205 	addr = offset;
   1206 	bufp = buf;
   1207 
   1208 	mutex_enter(&sc->sc_device_lock);
   1209 	for (page = 0; page < pages; page++) {
   1210 		/* do we need this check here? */
   1211 		if (nand_isbad(self, addr)) {
   1212 			aprint_error_dev(self,
   1213 			    "nand_flash_write: bad block encountered\n");
   1214 
   1215 			error = EIO;
   1216 			goto out;
   1217 		}
   1218 
   1219 		error = nand_program_page(self, addr, bufp);
   1220 		if (error) {
   1221 			goto out;
   1222 		}
   1223 
   1224 		addr += chip->nc_page_size;
   1225 		bufp += chip->nc_page_size;
   1226 		*retlen += chip->nc_page_size;
   1227 	}
   1228 out:
   1229 	mutex_exit(&sc->sc_device_lock);
   1230 	DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
   1231 
   1232 	return error;
   1233 }
   1234 
   1235 /*
   1236  * handle (page) unaligned read from nand
   1237  */
   1238 static int
   1239 nand_flash_read_unaligned(device_t self, size_t offset,
   1240     size_t len, size_t *retlen, uint8_t *buf)
   1241 {
   1242 	struct nand_softc *sc = device_private(self);
   1243 	struct nand_chip *chip = &sc->sc_chip;
   1244 	daddr_t first, last, count, firstoff;
   1245 	uint8_t *bufp;
   1246 	daddr_t addr;
   1247 	size_t left;
   1248 	int error = 0, i;
   1249 
   1250 	first = offset & chip->nc_page_mask;
   1251 	firstoff = offset & ~chip->nc_page_mask;
   1252 	last = (offset + len) & chip->nc_page_mask;
   1253 	count = (last - first) / chip->nc_page_size + 1;
   1254 
   1255 	addr = first;
   1256 	bufp = buf;
   1257 	left = len;
   1258 	*retlen = 0;
   1259 
   1260 	mutex_enter(&sc->sc_device_lock);
   1261 	if (count == 1) {
   1262 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1263 		if (error) {
   1264 			goto out;
   1265 		}
   1266 
   1267 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
   1268 
   1269 		*retlen = len;
   1270 		goto out;
   1271 	}
   1272 
   1273 	for (i = 0; i < count && left != 0; i++) {
   1274 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1275 		if (error) {
   1276 			goto out;
   1277 		}
   1278 
   1279 		if (i == 0) {
   1280 			memcpy(bufp, chip->nc_page_cache + firstoff,
   1281 			    chip->nc_page_size - firstoff);
   1282 
   1283 			bufp += chip->nc_page_size - firstoff;
   1284 			left -= chip->nc_page_size - firstoff;
   1285 			*retlen += chip->nc_page_size - firstoff;
   1286 
   1287 		} else if (i == count - 1) {
   1288 			memcpy(bufp, chip->nc_page_cache, left);
   1289 			*retlen += left;
   1290 			KASSERT(left < chip->nc_page_size);
   1291 
   1292 		} else {
   1293 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
   1294 
   1295 			bufp += chip->nc_page_size;
   1296 			left -= chip->nc_page_size;
   1297 			*retlen += chip->nc_page_size;
   1298 		}
   1299 
   1300 		addr += chip->nc_page_size;
   1301 	}
   1302 	KASSERT(*retlen == len);
   1303 out:
   1304 	mutex_exit(&sc->sc_device_lock);
   1305 
   1306 	return error;
   1307 }
   1308 
   1309 int
   1310 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1311     uint8_t *buf)
   1312 {
   1313 	struct nand_softc *sc = device_private(self);
   1314 	struct nand_chip *chip = &sc->sc_chip;
   1315 	uint8_t *bufp;
   1316 	size_t addr;
   1317 	size_t i, pages;
   1318 	int error = 0;
   1319 
   1320 	*retlen = 0;
   1321 
   1322 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
   1323 		(uintmax_t)offset, len));
   1324 
   1325 	if (__predict_false((offset + len) > chip->nc_size)) {
   1326 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
   1327 			" is over device size (%ju)\n", (uintmax_t)offset,
   1328 			len, (uintmax_t)chip->nc_size));
   1329 		return EINVAL;
   1330 	}
   1331 
   1332 	/* Handle unaligned access, shouldnt be needed when using the
   1333 	 * block device, as strategy handles it, so only low level
   1334 	 * accesses will use this path
   1335 	 */
   1336 	/* XXX^2 */
   1337 #if 0
   1338 	if (len < chip->nc_page_size)
   1339 		panic("TODO page size is larger than read size");
   1340 #endif
   1341 
   1342 	if (len % chip->nc_page_size != 0 ||
   1343 	    offset % chip->nc_page_size != 0) {
   1344 		return nand_flash_read_unaligned(self,
   1345 		    offset, len, retlen, buf);
   1346 	}
   1347 
   1348 	bufp = buf;
   1349 	addr = offset;
   1350 	pages = len / chip->nc_page_size;
   1351 
   1352 	mutex_enter(&sc->sc_device_lock);
   1353 	for (i = 0; i < pages; i++) {
   1354 		/* XXX do we need this check here? */
   1355 		if (nand_isbad(self, addr)) {
   1356 			aprint_error_dev(self, "bad block encountered\n");
   1357 			error = EIO;
   1358 			goto out;
   1359 		}
   1360 		error = nand_read_page(self, addr, bufp);
   1361 		if (error)
   1362 			goto out;
   1363 
   1364 		bufp += chip->nc_page_size;
   1365 		addr += chip->nc_page_size;
   1366 		*retlen += chip->nc_page_size;
   1367 	}
   1368 out:
   1369 	mutex_exit(&sc->sc_device_lock);
   1370 
   1371 	return error;
   1372 }
   1373 
   1374 int
   1375 nand_flash_isbad(device_t self, flash_off_t ofs, bool *isbad)
   1376 {
   1377 	struct nand_softc *sc = device_private(self);
   1378 	struct nand_chip *chip = &sc->sc_chip;
   1379 	bool result;
   1380 
   1381 	if (ofs > chip->nc_size) {
   1382 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
   1383 			" device size (0x%jx)\n", (uintmax_t)ofs,
   1384 			(uintmax_t)chip->nc_size));
   1385 		return EINVAL;
   1386 	}
   1387 
   1388 	if (ofs % chip->nc_block_size != 0) {
   1389 		DPRINTF(("offset (0x%jx) is not the multiple of block size "
   1390 			"(%ju)",
   1391 			(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
   1392 		return EINVAL;
   1393 	}
   1394 
   1395 	mutex_enter(&sc->sc_device_lock);
   1396 	result = nand_isbad(self, ofs);
   1397 	mutex_exit(&sc->sc_device_lock);
   1398 
   1399 	*isbad = result;
   1400 
   1401 	return 0;
   1402 }
   1403 
   1404 int
   1405 nand_flash_markbad(device_t self, flash_off_t ofs)
   1406 {
   1407 	struct nand_softc *sc = device_private(self);
   1408 	struct nand_chip *chip = &sc->sc_chip;
   1409 
   1410 	if (ofs > chip->nc_size) {
   1411 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
   1412 			" device size (0x%jx)\n", ofs,
   1413 			(uintmax_t)chip->nc_size));
   1414 		return EINVAL;
   1415 	}
   1416 
   1417 	if (ofs % chip->nc_block_size != 0) {
   1418 		panic("offset (%ju) is not the multiple of block size (%ju)",
   1419 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
   1420 	}
   1421 
   1422 	mutex_enter(&sc->sc_device_lock);
   1423 	nand_markbad(self, ofs);
   1424 	mutex_exit(&sc->sc_device_lock);
   1425 
   1426 	return 0;
   1427 }
   1428 
   1429 int
   1430 nand_flash_erase(device_t self,
   1431     struct flash_erase_instruction *ei)
   1432 {
   1433 	struct nand_softc *sc = device_private(self);
   1434 	struct nand_chip *chip = &sc->sc_chip;
   1435 	flash_off_t addr;
   1436 	int error = 0;
   1437 
   1438 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
   1439 		return EINVAL;
   1440 
   1441 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
   1442 		DPRINTF(("nand_flash_erase: erase address is over the end"
   1443 			" of the device\n"));
   1444 		return EINVAL;
   1445 	}
   1446 
   1447 	if (ei->ei_addr % chip->nc_block_size != 0) {
   1448 		aprint_error_dev(self,
   1449 		    "nand_flash_erase: ei_addr (%ju) is not"
   1450 		    "the multiple of block size (%ju)",
   1451 		    (uintmax_t)ei->ei_addr,
   1452 		    (uintmax_t)chip->nc_block_size);
   1453 		return EINVAL;
   1454 	}
   1455 
   1456 	if (ei->ei_len % chip->nc_block_size != 0) {
   1457 		aprint_error_dev(self,
   1458 		    "nand_flash_erase: ei_len (%ju) is not"
   1459 		    "the multiple of block size (%ju)",
   1460 		    (uintmax_t)ei->ei_addr,
   1461 		    (uintmax_t)chip->nc_block_size);
   1462 		return EINVAL;
   1463 	}
   1464 
   1465 	mutex_enter(&sc->sc_device_lock);
   1466 	addr = ei->ei_addr;
   1467 	while (addr < ei->ei_addr + ei->ei_len) {
   1468 		if (nand_isbad(self, addr)) {
   1469 			aprint_error_dev(self, "bad block encountered\n");
   1470 			ei->ei_state = FLASH_ERASE_FAILED;
   1471 			error = EIO;
   1472 			goto out;
   1473 		}
   1474 
   1475 		error = nand_erase_block(self, addr);
   1476 		if (error) {
   1477 			ei->ei_state = FLASH_ERASE_FAILED;
   1478 			goto out;
   1479 		}
   1480 
   1481 		addr += chip->nc_block_size;
   1482 	}
   1483 	mutex_exit(&sc->sc_device_lock);
   1484 
   1485 	ei->ei_state = FLASH_ERASE_DONE;
   1486 	if (ei->ei_callback != NULL) {
   1487 		ei->ei_callback(ei);
   1488 	}
   1489 
   1490 	return 0;
   1491 out:
   1492 	mutex_exit(&sc->sc_device_lock);
   1493 
   1494 	return error;
   1495 }
   1496 
   1497 static int
   1498 sysctl_nand_verify(SYSCTLFN_ARGS)
   1499 {
   1500 	int error, t;
   1501 	struct sysctlnode node;
   1502 
   1503 	node = *rnode;
   1504 	t = *(int *)rnode->sysctl_data;
   1505 	node.sysctl_data = &t;
   1506 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1507 	if (error || newp == NULL)
   1508 		return error;
   1509 
   1510 	if (node.sysctl_num == nand_cachesync_nodenum) {
   1511 		if (t <= 0 || t > 60)
   1512 			return EINVAL;
   1513 	} else {
   1514 		return EINVAL;
   1515 	}
   1516 
   1517 	*(int *)rnode->sysctl_data = t;
   1518 
   1519 	return 0;
   1520 }
   1521 
   1522 SYSCTL_SETUP(sysctl_nand, "sysctl nand subtree setup")
   1523 {
   1524 	int rc, nand_root_num;
   1525 	const struct sysctlnode *node;
   1526 
   1527 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
   1528 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
   1529 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
   1530 		goto error;
   1531 	}
   1532 
   1533 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1534 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "nand",
   1535 	    SYSCTL_DESCR("NAND driver controls"),
   1536 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
   1537 		goto error;
   1538 	}
   1539 
   1540 	nand_root_num = node->sysctl_num;
   1541 
   1542 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
   1543 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1544 	    CTLTYPE_INT, "cache_sync_timeout",
   1545 	    SYSCTL_DESCR("NAND write cache sync timeout in seconds"),
   1546 	    sysctl_nand_verify, 0, &nand_cachesync_timeout,
   1547 	    0, CTL_HW, nand_root_num, CTL_CREATE,
   1548 	    CTL_EOL)) != 0) {
   1549 		goto error;
   1550 	}
   1551 
   1552 	nand_cachesync_nodenum = node->sysctl_num;
   1553 
   1554 	return;
   1555 
   1556 error:
   1557 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
   1558 }
   1559 
   1560 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
   1561 
   1562 #ifdef _MODULE
   1563 #include "ioconf.c"
   1564 #endif
   1565 
   1566 static int
   1567 nand_modcmd(modcmd_t cmd, void *opaque)
   1568 {
   1569 	switch (cmd) {
   1570 	case MODULE_CMD_INIT:
   1571 #ifdef _MODULE
   1572 		return config_init_component(cfdriver_ioconf_nand,
   1573 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1574 #else
   1575 		return 0;
   1576 #endif
   1577 	case MODULE_CMD_FINI:
   1578 #ifdef _MODULE
   1579 		return config_fini_component(cfdriver_ioconf_nand,
   1580 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1581 #else
   1582 		return 0;
   1583 #endif
   1584 	default:
   1585 		return ENOTTY;
   1586 	}
   1587 }
   1588