Home | History | Annotate | Line # | Download | only in nand
nand.c revision 1.16
      1 /*	$NetBSD: nand.c,v 1.16 2011/08/28 20:49:30 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010 Department of Software Engineering,
      5  *		      University of Szeged, Hungary
      6  * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by the Department of Software Engineering, University of Szeged, Hungary
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.16 2011/08/28 20:49:30 martin Exp $");
     38 
     39 #include "locators.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 #include <sys/device.h>
     44 #include <sys/kmem.h>
     45 #include <sys/atomic.h>
     46 
     47 #include <dev/flash/flash.h>
     48 #include <dev/flash/flash_io.h>
     49 #include <dev/nand/nand.h>
     50 #include <dev/nand/onfi.h>
     51 #include <dev/nand/hamming.h>
     52 #include <dev/nand/nand_bbt.h>
     53 #include <dev/nand/nand_crc.h>
     54 
     55 #include "opt_nand.h"
     56 
     57 int nand_match(device_t, cfdata_t, void *);
     58 void nand_attach(device_t, device_t, void *);
     59 int nand_detach(device_t, int);
     60 bool nand_shutdown(device_t, int);
     61 
     62 int nand_print(void *, const char *);
     63 
     64 static int nand_search(device_t, cfdata_t, const int *, void *);
     65 static void nand_address_row(device_t, size_t);
     66 static void nand_address_column(device_t, size_t, size_t);
     67 static int nand_fill_chip_structure(device_t, struct nand_chip *);
     68 static int nand_scan_media(device_t, struct nand_chip *);
     69 static bool nand_check_wp(device_t);
     70 
     71 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
     72     nand_match, nand_attach, nand_detach, NULL);
     73 
     74 #ifdef NAND_DEBUG
     75 int	nanddebug = NAND_DEBUG;
     76 #endif
     77 
     78 struct flash_interface nand_flash_if = {
     79 	.type = FLASH_TYPE_NAND,
     80 
     81 	.read = nand_flash_read,
     82 	.write = nand_flash_write,
     83 	.erase = nand_flash_erase,
     84 	.block_isbad = nand_flash_isbad,
     85 	.block_markbad = nand_flash_markbad,
     86 
     87 	.submit = nand_flash_submit
     88 };
     89 
     90 #ifdef NAND_VERBOSE
     91 const struct nand_manufacturer nand_mfrs[] = {
     92 	{ NAND_MFR_AMD,		"AMD" },
     93 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
     94 	{ NAND_MFR_RENESAS,	"Renesas" },
     95 	{ NAND_MFR_STMICRO,	"ST Micro" },
     96 	{ NAND_MFR_MICRON,	"Micron" },
     97 	{ NAND_MFR_NATIONAL,	"National" },
     98 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
     99 	{ NAND_MFR_HYNIX,	"Hynix" },
    100 	{ NAND_MFR_SAMSUNG,	"Samsung" },
    101 	{ NAND_MFR_UNKNOWN,	"Unknown" }
    102 };
    103 
    104 static const char *
    105 nand_midtoname(int id)
    106 {
    107 	int i;
    108 
    109 	for (i = 0; nand_mfrs[i].id != 0; i++) {
    110 		if (nand_mfrs[i].id == id)
    111 			return nand_mfrs[i].name;
    112 	}
    113 
    114 	KASSERT(nand_mfrs[i].id == 0);
    115 
    116 	return nand_mfrs[i].name;
    117 }
    118 #endif
    119 
    120 /* ARGSUSED */
    121 int
    122 nand_match(device_t parent, cfdata_t match, void *aux)
    123 {
    124 	/* pseudo device, always attaches */
    125 	return 1;
    126 }
    127 
    128 void
    129 nand_attach(device_t parent, device_t self, void *aux)
    130 {
    131 	struct nand_softc *sc = device_private(self);
    132 	struct nand_attach_args *naa = aux;
    133 	struct nand_chip *chip = &sc->sc_chip;
    134 
    135 	sc->sc_dev = self;
    136 	sc->controller_dev = parent;
    137 	sc->nand_if = naa->naa_nand_if;
    138 
    139 	aprint_naive("\n");
    140 
    141 	if (nand_check_wp(self)) {
    142 		aprint_error("NAND chip is write protected!\n");
    143 		return;
    144 	}
    145 
    146 	if (nand_scan_media(self, chip)) {
    147 		return;
    148 	}
    149 
    150 	nand_flash_if.erasesize = chip->nc_block_size;
    151 	nand_flash_if.page_size = chip->nc_page_size;
    152 	nand_flash_if.writesize = chip->nc_page_size;
    153 
    154 	/* allocate cache */
    155 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
    156 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
    157 
    158 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
    159 
    160 	if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
    161 		goto error;
    162 	}
    163 
    164 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
    165 		aprint_error_dev(sc->sc_dev,
    166 		    "couldn't establish power handler\n");
    167 
    168 #ifdef NAND_BBT
    169 	nand_bbt_init(self);
    170 	nand_bbt_scan(self);
    171 #endif
    172 
    173 	/*
    174 	 * Attach all our devices
    175 	 */
    176 	config_search_ia(nand_search, self, NULL, NULL);
    177 
    178 	return;
    179 error:
    180 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    181 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    182 	mutex_destroy(&sc->sc_device_lock);
    183 }
    184 
    185 static int
    186 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
    187 {
    188 	struct nand_softc *sc = device_private(parent);
    189 	struct nand_chip *chip = &sc->sc_chip;
    190 	struct flash_attach_args faa;
    191 
    192 	faa.flash_if = &nand_flash_if;
    193 
    194 	faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
    195 
    196 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
    197 		faa.partinfo.part_size = chip->nc_size -
    198 		    faa.partinfo.part_offset;
    199 	} else {
    200 		faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
    201 	}
    202 
    203 	if (cf->cf_loc[FLASHBUSCF_READONLY])
    204 		faa.partinfo.part_flags = FLASH_PART_READONLY;
    205 	else
    206 		faa.partinfo.part_flags = 0;
    207 
    208 	if (config_match(parent, cf, &faa)) {
    209 		if (config_attach(parent, cf, &faa, nand_print) != NULL) {
    210 			return 0;
    211 		} else {
    212 			return 1;
    213 		}
    214 	}
    215 
    216 	return 1;
    217 }
    218 
    219 int
    220 nand_detach(device_t self, int flags)
    221 {
    222 	struct nand_softc *sc = device_private(self);
    223 	struct nand_chip *chip = &sc->sc_chip;
    224 	int error = 0;
    225 
    226 	error = config_detach_children(self, flags);
    227 	if (error) {
    228 		return error;
    229 	}
    230 
    231 	flash_sync_thread_destroy(&sc->sc_flash_io);
    232 #ifdef NAND_BBT
    233 	nand_bbt_detach(self);
    234 #endif
    235 	/* free oob cache */
    236 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    237 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    238 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
    239 
    240 	mutex_destroy(&sc->sc_device_lock);
    241 
    242 	pmf_device_deregister(sc->sc_dev);
    243 
    244 	return error;
    245 }
    246 
    247 int
    248 nand_print(void *aux, const char *pnp)
    249 {
    250 	if (pnp != NULL)
    251 		aprint_normal("nand at %s\n", pnp);
    252 
    253 	return UNCONF;
    254 }
    255 
    256 /* ask for a nand driver to attach to the controller */
    257 device_t
    258 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
    259 {
    260 	struct nand_attach_args arg;
    261 
    262 	KASSERT(nand_if != NULL);
    263 
    264 	/* fill the defaults if we have null pointers */
    265 	if (nand_if->program_page == NULL) {
    266 		nand_if->program_page = &nand_default_program_page;
    267 	}
    268 
    269 	if (nand_if->read_page == NULL) {
    270 		nand_if->read_page = &nand_default_read_page;
    271 	}
    272 
    273 	arg.naa_nand_if = nand_if;
    274 	return config_found_ia(parent, "nandbus", &arg, nand_print);
    275 }
    276 
    277 /* default everything to reasonable values, to ease future api changes */
    278 void
    279 nand_init_interface(struct nand_interface *interface)
    280 {
    281 	interface->select = &nand_default_select;
    282 	interface->command = NULL;
    283 	interface->address = NULL;
    284 	interface->read_buf_1 = NULL;
    285 	interface->read_buf_2 = NULL;
    286 	interface->read_1 = NULL;
    287 	interface->read_2 = NULL;
    288 	interface->write_buf_1 = NULL;
    289 	interface->write_buf_2 = NULL;
    290 	interface->write_1 = NULL;
    291 	interface->write_2 = NULL;
    292 	interface->busy = NULL;
    293 
    294 	/*-
    295 	 * most drivers dont want to change this, but some implement
    296 	 * read/program in one step
    297 	 */
    298 	interface->program_page = &nand_default_program_page;
    299 	interface->read_page = &nand_default_read_page;
    300 
    301 	/* default to soft ecc, that should work everywhere */
    302 	interface->ecc_compute = &nand_default_ecc_compute;
    303 	interface->ecc_correct = &nand_default_ecc_correct;
    304 	interface->ecc_prepare = NULL;
    305 	interface->ecc.necc_code_size = 3;
    306 	interface->ecc.necc_block_size = 256;
    307 	interface->ecc.necc_type = NAND_ECC_TYPE_SW;
    308 }
    309 
    310 #if 0
    311 /* handle quirks here */
    312 static void
    313 nand_quirks(device_t self, struct nand_chip *chip)
    314 {
    315 	/* this is an example only! */
    316 	switch (chip->nc_manf_id) {
    317 	case NAND_MFR_SAMSUNG:
    318 		if (chip->nc_dev_id == 0x00) {
    319 			/* do something only samsung chips need */
    320 			/* or */
    321 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
    322 		}
    323 	}
    324 
    325 	return;
    326 }
    327 #endif
    328 
    329 static int
    330 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
    331 {
    332 	switch (chip->nc_manf_id) {
    333 	case NAND_MFR_MICRON:
    334 		return nand_read_parameters_micron(self, chip);
    335 	default:
    336 		return 1;
    337 	}
    338 
    339 	return 0;
    340 }
    341 
    342 /**
    343  * scan media to determine the chip's properties
    344  * this function resets the device
    345  */
    346 static int
    347 nand_scan_media(device_t self, struct nand_chip *chip)
    348 {
    349 	struct nand_softc *sc = device_private(self);
    350 	struct nand_ecc *ecc;
    351 	uint8_t onfi_signature[4];
    352 
    353 	nand_select(self, true);
    354 	nand_command(self, ONFI_RESET);
    355 	nand_select(self, false);
    356 
    357 	/* check if the device implements the ONFI standard */
    358 	nand_select(self, true);
    359 	nand_command(self, ONFI_READ_ID);
    360 	nand_address(self, 0x20);
    361 	nand_read_1(self, &onfi_signature[0]);
    362 	nand_read_1(self, &onfi_signature[1]);
    363 	nand_read_1(self, &onfi_signature[2]);
    364 	nand_read_1(self, &onfi_signature[3]);
    365 	nand_select(self, false);
    366 
    367 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
    368 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
    369 		chip->nc_isonfi = false;
    370 
    371 		aprint_normal(": Legacy NAND Flash\n");
    372 
    373 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    374 
    375 		if (nand_fill_chip_structure_legacy(self, chip)) {
    376 			aprint_error_dev(self,
    377 			    "can't read device parameters for legacy chip\n");
    378 			return 1;
    379 		}
    380 	} else {
    381 		chip->nc_isonfi = true;
    382 
    383 		aprint_normal(": ONFI NAND Flash\n");
    384 
    385 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    386 
    387 		if (nand_fill_chip_structure(self, chip)) {
    388 			aprint_error_dev(self,
    389 			    "can't read device parameters\n");
    390 			return 1;
    391 		}
    392 	}
    393 
    394 #ifdef NAND_VERBOSE
    395 	aprint_normal_dev(self,
    396 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
    397 	    chip->nc_manf_id,
    398 	    nand_midtoname(chip->nc_manf_id),
    399 	    chip->nc_dev_id);
    400 #endif
    401 
    402 	aprint_normal_dev(self,
    403 	    "page size: %zu bytes, spare size: %zu bytes, "
    404 	    "block size: %zu bytes\n",
    405 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
    406 
    407 	aprint_normal_dev(self,
    408 	    "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
    409 	    ", total storage size: %zu MB\n",
    410 	    chip->nc_lun_blocks, chip->nc_num_luns,
    411 	    chip->nc_size / 1024 / 1024);
    412 
    413 #ifdef NAND_VERBOSE
    414 	aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
    415 	    PRIu8 "\n",
    416 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
    417 #endif
    418 
    419 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
    420 
    421 	/*
    422 	 * calculate the place of ecc data in oob
    423 	 * we try to be compatible with Linux here
    424 	 */
    425 	switch (chip->nc_spare_size) {
    426 	case 8:
    427 		ecc->necc_offset = 0;
    428 		break;
    429 	case 16:
    430 		ecc->necc_offset = 0;
    431 		break;
    432 	case 64:
    433 		ecc->necc_offset = 40;
    434 		break;
    435 	case 128:
    436 		ecc->necc_offset = 80;
    437 		break;
    438 	default:
    439 		panic("OOB size is unexpected");
    440 	}
    441 
    442 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
    443 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
    444 
    445 	/* check if we fit in oob */
    446 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
    447 		panic("NAND ECC bits dont fit in OOB");
    448 	}
    449 
    450 	/* TODO: mark free oob area available for file systems */
    451 
    452 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
    453 
    454 	/*
    455 	 * calculate badblock marker offset in oob
    456 	 * we try to be compatible with linux here
    457 	 */
    458 	if (chip->nc_page_size > 512)
    459 		chip->nc_badmarker_offs = 0;
    460 	else
    461 		chip->nc_badmarker_offs = 5;
    462 
    463 	/* Calculate page shift and mask */
    464 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
    465 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
    466 	/* same for block */
    467 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
    468 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
    469 
    470 	/* look for quirks here if needed in future */
    471 	/* nand_quirks(self, chip); */
    472 
    473 	return 0;
    474 }
    475 
    476 void
    477 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
    478 {
    479 	nand_select(self, true);
    480 	nand_command(self, ONFI_READ_ID);
    481 	nand_address(self, 0x00);
    482 
    483 	nand_read_1(self, manf);
    484 	nand_read_1(self, dev);
    485 
    486 	nand_select(self, false);
    487 }
    488 
    489 int
    490 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
    491 {
    492 	uint8_t *bufp;
    493 	uint16_t crc;
    494 	int i;//, tries = 0;
    495 
    496 	KASSERT(sizeof(*params) == 256);
    497 
    498 //read_params:
    499 //	tries++;
    500 
    501 	nand_select(self, true);
    502 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
    503 	nand_address(self, 0x00);
    504 
    505 	nand_busy(self);
    506 
    507 	/* TODO check the signature if it contains at least 2 letters */
    508 
    509 	bufp = (uint8_t *)params;
    510 	/* XXX why i am not using read_buf? */
    511 	for (i = 0; i < 256; i++) {
    512 		nand_read_1(self, &bufp[i]);
    513 	}
    514 	nand_select(self, false);
    515 
    516 	/* validate the parameter page with the crc */
    517 	crc = nand_crc16(bufp, 254);
    518 
    519 	if (crc != params->param_integrity_crc) {
    520 		aprint_error_dev(self, "parameter page crc check failed\n");
    521 		/* TODO: we should read the next parameter page copy */
    522 		return 1;
    523 	}
    524 
    525 	return 0;
    526 }
    527 
    528 static int
    529 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
    530 {
    531 	struct onfi_parameter_page params;
    532 	uint8_t	vendor[13], model[21];
    533 	int i;
    534 
    535 	if (nand_read_parameter_page(self, &params)) {
    536 		return 1;
    537 	}
    538 
    539 	/* strip manufacturer and model string */
    540 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
    541 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
    542 		vendor[i] = 0;
    543 	strlcpy(model, params.param_model, sizeof(model));
    544 	for (i = 19; i > 0 && model[i] == ' '; i--)
    545 		model[i] = 0;
    546 
    547 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
    548 
    549 	/* XXX TODO multiple LUNs */
    550 	if (params.param_numluns != 1) {
    551 		aprint_error_dev(self,
    552 		    "more than one LUNs are not supported yet!\n");
    553 
    554 		return 1;
    555 	}
    556 
    557 	chip->nc_size = params.param_pagesize * params.param_blocksize *
    558 	    params.param_lunsize * params.param_numluns;
    559 
    560 	chip->nc_page_size = params.param_pagesize;
    561 	chip->nc_block_pages = params.param_blocksize;
    562 	chip->nc_block_size = params.param_blocksize * params.param_pagesize;
    563 	chip->nc_spare_size = params.param_sparesize;
    564 	chip->nc_lun_blocks = params.param_lunsize;
    565 	chip->nc_num_luns = params.param_numluns;
    566 
    567 	/* the lower 4 bits contain the row address cycles */
    568 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
    569 	/* the upper 4 bits contain the column address cycles */
    570 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
    571 
    572 	if (params.param_features & ONFI_FEATURE_16BIT)
    573 		chip->nc_flags |= NC_BUSWIDTH_16;
    574 
    575 	if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
    576 		chip->nc_flags |= NC_EXTENDED_PARAM;
    577 
    578 	return 0;
    579 }
    580 
    581 /* ARGSUSED */
    582 bool
    583 nand_shutdown(device_t self, int howto)
    584 {
    585 	return true;
    586 }
    587 
    588 static void
    589 nand_address_column(device_t self, size_t row, size_t column)
    590 {
    591 	struct nand_softc *sc = device_private(self);
    592 	struct nand_chip *chip = &sc->sc_chip;
    593 	uint8_t i;
    594 
    595 	DPRINTF(("addressing row: 0x%jx column: %zu\n",
    596 		(uintmax_t )row, column));
    597 
    598 	/* XXX TODO */
    599 	row >>= chip->nc_page_shift;
    600 
    601 	/* Write the column (subpage) address */
    602 	if (chip->nc_flags & NC_BUSWIDTH_16)
    603 		column >>= 1;
    604 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
    605 		nand_address(self, column & 0xff);
    606 
    607 	/* Write the row (page) address */
    608 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    609 		nand_address(self, row & 0xff);
    610 }
    611 
    612 static void
    613 nand_address_row(device_t self, size_t row)
    614 {
    615 	struct nand_softc *sc = device_private(self);
    616 	struct nand_chip *chip = &sc->sc_chip;
    617 	int i;
    618 
    619 	/* XXX TODO */
    620 	row >>= chip->nc_page_shift;
    621 
    622 	/* Write the row (page) address */
    623 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    624 		nand_address(self, row & 0xff);
    625 }
    626 
    627 static inline uint8_t
    628 nand_get_status(device_t self)
    629 {
    630 	uint8_t status;
    631 
    632 	nand_command(self, ONFI_READ_STATUS);
    633 	nand_busy(self);
    634 	nand_read_1(self, &status);
    635 
    636 	return status;
    637 }
    638 
    639 static bool
    640 nand_check_wp(device_t self)
    641 {
    642 	if (nand_get_status(self) & 0x80)
    643 		return false;
    644 	else
    645 		return true;
    646 }
    647 
    648 static void
    649 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
    650 {
    651 	nand_command(self, ONFI_READ);
    652 	nand_address_column(self, row, column);
    653 	nand_command(self, ONFI_READ_START);
    654 
    655 	nand_busy(self);
    656 }
    657 
    658 /* read a page with ecc correction, default implementation */
    659 int
    660 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
    661 {
    662 	struct nand_softc *sc = device_private(self);
    663 	struct nand_chip *chip = &sc->sc_chip;
    664 	size_t b, bs, e, cs;
    665 	uint8_t *ecc;
    666 	int result;
    667 
    668 	nand_prepare_read(self, offset, 0);
    669 
    670 	bs = chip->nc_ecc->necc_block_size;
    671 	cs = chip->nc_ecc->necc_code_size;
    672 
    673 	/* decide if we access by 8 or 16 bits */
    674 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    675 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    676 			nand_ecc_prepare(self, NAND_ECC_READ);
    677 			nand_read_buf_2(self, data + b, bs);
    678 			nand_ecc_compute(self, data + b,
    679 			    chip->nc_ecc_cache + e);
    680 		}
    681 	} else {
    682 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    683 			nand_ecc_prepare(self, NAND_ECC_READ);
    684 			nand_read_buf_1(self, data + b, bs);
    685 			nand_ecc_compute(self, data + b,
    686 			    chip->nc_ecc_cache + e);
    687 		}
    688 	}
    689 
    690 	/* for debugging new drivers */
    691 #if 0
    692 	nand_dump_data("page", data, chip->nc_page_size);
    693 #endif
    694 
    695 	nand_read_oob(self, offset, chip->nc_oob_cache);
    696 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    697 
    698 	/* useful for debugging new ecc drivers */
    699 #if 0
    700 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    701 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    702 		printf("0x");
    703 		for (b = 0; b < cs; b++) {
    704 			printf("%.2hhx", ecc[e+b]);
    705 		}
    706 		printf(" 0x");
    707 		for (b = 0; b < cs; b++) {
    708 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
    709 		}
    710 		printf("\n");
    711 	}
    712 	printf("--------------\n");
    713 #endif
    714 
    715 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    716 		result = nand_ecc_correct(self, data + b, ecc + e,
    717 		    chip->nc_ecc_cache + e);
    718 
    719 		switch (result) {
    720 		case NAND_ECC_OK:
    721 			break;
    722 		case NAND_ECC_CORRECTED:
    723 			aprint_error_dev(self,
    724 			    "data corrected with ECC at page offset 0x%jx "
    725 			    "block %zu\n", (uintmax_t)offset, b);
    726 			break;
    727 		case NAND_ECC_TWOBIT:
    728 			aprint_error_dev(self,
    729 			    "uncorrectable ECC error at page offset 0x%jx "
    730 			    "block %zu\n", (uintmax_t)offset, b);
    731 			return EIO;
    732 			break;
    733 		case NAND_ECC_INVALID:
    734 			aprint_error_dev(self,
    735 			    "invalid ECC in oob at page offset 0x%jx "
    736 			    "block %zu\n", (uintmax_t)offset, b);
    737 			return EIO;
    738 			break;
    739 		default:
    740 			panic("invalid ECC correction errno");
    741 		}
    742 	}
    743 
    744 	return 0;
    745 }
    746 
    747 int
    748 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
    749 {
    750 	struct nand_softc *sc = device_private(self);
    751 	struct nand_chip *chip = &sc->sc_chip;
    752 	size_t bs, cs, e, b;
    753 	uint8_t status;
    754 	uint8_t *ecc;
    755 
    756 	nand_command(self, ONFI_PAGE_PROGRAM);
    757 	nand_address_column(self, page, 0);
    758 
    759 	nand_busy(self);
    760 
    761 	bs = chip->nc_ecc->necc_block_size;
    762 	cs = chip->nc_ecc->necc_code_size;
    763 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    764 
    765 	/* XXX code duplication */
    766 	/* decide if we access by 8 or 16 bits */
    767 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    768 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    769 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    770 			nand_write_buf_2(self, data + b, bs);
    771 			nand_ecc_compute(self, data + b, ecc + e);
    772 		}
    773 		/* write oob with ecc correction code */
    774 		nand_write_buf_2(self, chip->nc_oob_cache,
    775 		    chip->nc_spare_size);
    776 	} else {
    777 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    778 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    779 			nand_write_buf_1(self, data + b, bs);
    780 			nand_ecc_compute(self, data + b, ecc + e);
    781 		}
    782 		/* write oob with ecc correction code */
    783 		nand_write_buf_1(self, chip->nc_oob_cache,
    784 		    chip->nc_spare_size);
    785 	}
    786 
    787 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    788 
    789 	nand_busy(self);
    790 
    791 	/* for debugging ecc */
    792 #if 0
    793 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    794 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    795 		printf("0x");
    796 		for (b = 0; b < cs; b++) {
    797 			printf("%.2hhx", ecc[e+b]);
    798 		}
    799 		printf("\n");
    800 	}
    801 	printf("--------------\n");
    802 #endif
    803 
    804 	status = nand_get_status(self);
    805 	KASSERT(status & ONFI_STATUS_RDY);
    806 	if (status & ONFI_STATUS_FAIL) {
    807 		aprint_error_dev(self, "page program failed!\n");
    808 		return EIO;
    809 	}
    810 
    811 	return 0;
    812 }
    813 
    814 /* read the OOB of a page */
    815 int
    816 nand_read_oob(device_t self, size_t page, uint8_t *oob)
    817 {
    818 	struct nand_softc *sc = device_private(self);
    819 	struct nand_chip *chip = &sc->sc_chip;
    820 
    821 	nand_prepare_read(self, page, chip->nc_page_size);
    822 
    823 	if (chip->nc_flags & NC_BUSWIDTH_16)
    824 		nand_read_buf_2(self, oob, chip->nc_spare_size);
    825 	else
    826 		nand_read_buf_1(self, oob, chip->nc_spare_size);
    827 
    828 	/* for debugging drivers */
    829 #if 0
    830 	nand_dump_data("oob", oob, chip->nc_spare_size);
    831 #endif
    832 
    833 	return 0;
    834 }
    835 
    836 static int
    837 nand_write_oob(device_t self, size_t offset, const void *oob)
    838 {
    839 	struct nand_softc *sc = device_private(self);
    840 	struct nand_chip *chip = &sc->sc_chip;
    841 	uint8_t status;
    842 
    843 	nand_command(self, ONFI_PAGE_PROGRAM);
    844 	nand_address_column(self, offset, chip->nc_page_size);
    845 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    846 
    847 	nand_busy(self);
    848 
    849 	if (chip->nc_flags & NC_BUSWIDTH_16)
    850 		nand_write_buf_2(self, oob, chip->nc_spare_size);
    851 	else
    852 		nand_write_buf_1(self, oob, chip->nc_spare_size);
    853 
    854 	status = nand_get_status(self);
    855 	KASSERT(status & ONFI_STATUS_RDY);
    856 	if (status & ONFI_STATUS_FAIL)
    857 		return EIO;
    858 	else
    859 		return 0;
    860 }
    861 
    862 void
    863 nand_markbad(device_t self, size_t offset)
    864 {
    865 	struct nand_softc *sc = device_private(self);
    866 	struct nand_chip *chip = &sc->sc_chip;
    867 	flash_off_t blockoffset, marker;
    868 #ifdef NAND_BBT
    869 	flash_off_t block;
    870 
    871 	block = offset / chip->nc_block_size;
    872 
    873 	nand_bbt_block_markbad(self, block);
    874 #endif
    875 	blockoffset = offset & chip->nc_block_mask;
    876 	marker = chip->nc_badmarker_offs & ~0x01;
    877 
    878 	/* check if it is already marked bad */
    879 	if (nand_isbad(self, blockoffset))
    880 		return;
    881 
    882 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
    883 
    884 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
    885 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
    886 
    887 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
    888 }
    889 
    890 bool
    891 nand_isfactorybad(device_t self, flash_off_t offset)
    892 {
    893 	struct nand_softc *sc = device_private(self);
    894 	struct nand_chip *chip = &sc->sc_chip;
    895 	flash_off_t block, first_page, last_page, page;
    896 	int i;
    897 
    898 	/* Check for factory bad blocks first
    899 	 * Factory bad blocks are marked in the first or last
    900 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
    901 	 */
    902 	block = offset / chip->nc_block_size;
    903 	first_page = block * chip->nc_block_size;
    904 	last_page = (block + 1) * chip->nc_block_size
    905 	    - chip->nc_page_size;
    906 
    907 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
    908 		/* address OOB */
    909 		nand_prepare_read(self, page, chip->nc_page_size);
    910 
    911 		if (chip->nc_flags & NC_BUSWIDTH_16) {
    912 			uint16_t word;
    913 			nand_read_2(self, &word);
    914 			if (word == 0x0000)
    915 				return true;
    916 		} else {
    917 			uint8_t byte;
    918 			nand_read_1(self, &byte);
    919 			if (byte == 0x00)
    920 				return true;
    921 		}
    922 	}
    923 
    924 	return false;
    925 }
    926 
    927 bool
    928 nand_iswornoutbad(device_t self, flash_off_t offset)
    929 {
    930 	struct nand_softc *sc = device_private(self);
    931 	struct nand_chip *chip = &sc->sc_chip;
    932 	flash_off_t block;
    933 
    934 	/* we inspect the first page of the block */
    935 	block = offset & chip->nc_block_mask;
    936 
    937 	/* Linux/u-boot compatible badblock handling */
    938 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    939 		uint16_t word, mark;
    940 
    941 		nand_prepare_read(self, block,
    942 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
    943 
    944 		nand_read_2(self, &word);
    945 		mark = htole16(word);
    946 		if (chip->nc_badmarker_offs & 0x01)
    947 			mark >>= 8;
    948 		if ((mark & 0xff) != 0xff)
    949 			return true;
    950 	} else {
    951 		uint8_t byte;
    952 
    953 		nand_prepare_read(self, block,
    954 		    chip->nc_page_size + chip->nc_badmarker_offs);
    955 
    956 		nand_read_1(self, &byte);
    957 		if (byte != 0xff)
    958 			return true;
    959 	}
    960 
    961 	return false;
    962 }
    963 
    964 bool
    965 nand_isbad(device_t self, flash_off_t offset)
    966 {
    967 #ifdef NAND_BBT
    968 	struct nand_softc *sc = device_private(self);
    969 	struct nand_chip *chip = &sc->sc_chip;
    970 	flash_off_t block;
    971 
    972 	block = offset / chip->nc_block_size;
    973 
    974 	return nand_bbt_block_isbad(self, block);
    975 #else
    976 	/* ONFI host requirement */
    977 	if (nand_isfactorybad(self, offset))
    978 		return true;
    979 
    980 	/* Look for Linux/U-Boot compatible bad marker */
    981 	if (nand_iswornoutbad(self, offset))
    982 		return true;
    983 
    984 	return false;
    985 #endif
    986 }
    987 
    988 int
    989 nand_erase_block(device_t self, size_t offset)
    990 {
    991 	uint8_t status;
    992 
    993 	/* xxx calculate first page of block for address? */
    994 
    995 	nand_command(self, ONFI_BLOCK_ERASE);
    996 	nand_address_row(self, offset);
    997 	nand_command(self, ONFI_BLOCK_ERASE_START);
    998 
    999 	nand_busy(self);
   1000 
   1001 	status = nand_get_status(self);
   1002 	KASSERT(status & ONFI_STATUS_RDY);
   1003 	if (status & ONFI_STATUS_FAIL) {
   1004 		aprint_error_dev(self, "block erase failed!\n");
   1005 		nand_markbad(self, offset);
   1006 		return EIO;
   1007 	} else {
   1008 		return 0;
   1009 	}
   1010 }
   1011 
   1012 /* default functions for driver development */
   1013 
   1014 /* default ECC using hamming code of 256 byte chunks */
   1015 int
   1016 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
   1017 {
   1018 	hamming_compute_256(data, code);
   1019 
   1020 	return 0;
   1021 }
   1022 
   1023 int
   1024 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
   1025 	const uint8_t *compcode)
   1026 {
   1027 	return hamming_correct_256(data, origcode, compcode);
   1028 }
   1029 
   1030 void
   1031 nand_default_select(device_t self, bool enable)
   1032 {
   1033 	/* do nothing */
   1034 	return;
   1035 }
   1036 
   1037 /* implementation of the block device API */
   1038 
   1039 int
   1040 nand_flash_submit(device_t self, struct buf * const bp)
   1041 {
   1042 	struct nand_softc *sc = device_private(self);
   1043 
   1044 	return flash_io_submit(&sc->sc_flash_io, bp);
   1045 }
   1046 
   1047 /*
   1048  * handle (page) unaligned write to nand
   1049  */
   1050 static int
   1051 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
   1052     size_t *retlen, const uint8_t *buf)
   1053 {
   1054 	struct nand_softc *sc = device_private(self);
   1055 	struct nand_chip *chip = &sc->sc_chip;
   1056 	flash_off_t first, last, firstoff;
   1057 	const uint8_t *bufp;
   1058 	flash_off_t addr;
   1059 	size_t left, count;
   1060 	int error = 0, i;
   1061 
   1062 	first = offset & chip->nc_page_mask;
   1063 	firstoff = offset & ~chip->nc_page_mask;
   1064 	/* XXX check if this should be len - 1 */
   1065 	last = (offset + len) & chip->nc_page_mask;
   1066 	count = last - first + 1;
   1067 
   1068 	addr = first;
   1069 	*retlen = 0;
   1070 
   1071 	mutex_enter(&sc->sc_device_lock);
   1072 	if (count == 1) {
   1073 		if (nand_isbad(self, addr)) {
   1074 			aprint_error_dev(self,
   1075 			    "nand_flash_write_unaligned: "
   1076 			    "bad block encountered\n");
   1077 			error = EIO;
   1078 			goto out;
   1079 		}
   1080 
   1081 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1082 		if (error) {
   1083 			goto out;
   1084 		}
   1085 
   1086 		memcpy(chip->nc_page_cache + firstoff, buf, len);
   1087 
   1088 		error = nand_program_page(self, addr, chip->nc_page_cache);
   1089 		if (error) {
   1090 			goto out;
   1091 		}
   1092 
   1093 		*retlen = len;
   1094 		goto out;
   1095 	}
   1096 
   1097 	bufp = buf;
   1098 	left = len;
   1099 
   1100 	for (i = 0; i < count && left != 0; i++) {
   1101 		if (nand_isbad(self, addr)) {
   1102 			aprint_error_dev(self,
   1103 			    "nand_flash_write_unaligned: "
   1104 			    "bad block encountered\n");
   1105 			error = EIO;
   1106 			goto out;
   1107 		}
   1108 
   1109 		if (i == 0) {
   1110 			error = nand_read_page(self,
   1111 			    addr, chip->nc_page_cache);
   1112 			if (error) {
   1113 				goto out;
   1114 			}
   1115 
   1116 			memcpy(chip->nc_page_cache + firstoff,
   1117 			    bufp, chip->nc_page_size - firstoff);
   1118 
   1119 			printf("program page: %s: %d\n", __FILE__, __LINE__);
   1120 			error = nand_program_page(self,
   1121 			    addr, chip->nc_page_cache);
   1122 			if (error) {
   1123 				goto out;
   1124 			}
   1125 
   1126 			bufp += chip->nc_page_size - firstoff;
   1127 			left -= chip->nc_page_size - firstoff;
   1128 			*retlen += chip->nc_page_size - firstoff;
   1129 
   1130 		} else if (i == count - 1) {
   1131 			error = nand_read_page(self,
   1132 			    addr, chip->nc_page_cache);
   1133 			if (error) {
   1134 				goto out;
   1135 			}
   1136 
   1137 			memcpy(chip->nc_page_cache, bufp, left);
   1138 
   1139 			error = nand_program_page(self,
   1140 			    addr, chip->nc_page_cache);
   1141 			if (error) {
   1142 				goto out;
   1143 			}
   1144 
   1145 			*retlen += left;
   1146 			KASSERT(left < chip->nc_page_size);
   1147 
   1148 		} else {
   1149 			/* XXX debug */
   1150 			if (left > chip->nc_page_size) {
   1151 				printf("left: %zu, i: %d, count: %zu\n",
   1152 				    (size_t )left, i, count);
   1153 			}
   1154 			KASSERT(left > chip->nc_page_size);
   1155 
   1156 			error = nand_program_page(self, addr, bufp);
   1157 			if (error) {
   1158 				goto out;
   1159 			}
   1160 
   1161 			bufp += chip->nc_page_size;
   1162 			left -= chip->nc_page_size;
   1163 			*retlen += chip->nc_page_size;
   1164 		}
   1165 
   1166 		addr += chip->nc_page_size;
   1167 	}
   1168 
   1169 	KASSERT(*retlen == len);
   1170 out:
   1171 	mutex_exit(&sc->sc_device_lock);
   1172 
   1173 	return error;
   1174 }
   1175 
   1176 int
   1177 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1178     const uint8_t *buf)
   1179 {
   1180 	struct nand_softc *sc = device_private(self);
   1181 	struct nand_chip *chip = &sc->sc_chip;
   1182 	const uint8_t *bufp;
   1183 	size_t pages, page;
   1184 	daddr_t addr;
   1185 	int error = 0;
   1186 
   1187 	if ((offset + len) > chip->nc_size) {
   1188 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
   1189 			" is over device size (0x%jx)\n",
   1190 			(uintmax_t)offset, (uintmax_t)len,
   1191 			(uintmax_t)chip->nc_size));
   1192 		return EINVAL;
   1193 	}
   1194 
   1195 	if (len % chip->nc_page_size != 0 ||
   1196 	    offset % chip->nc_page_size != 0) {
   1197 		return nand_flash_write_unaligned(self,
   1198 		    offset, len, retlen, buf);
   1199 	}
   1200 
   1201 	pages = len / chip->nc_page_size;
   1202 	KASSERT(pages != 0);
   1203 	*retlen = 0;
   1204 
   1205 	addr = offset;
   1206 	bufp = buf;
   1207 
   1208 	mutex_enter(&sc->sc_device_lock);
   1209 	for (page = 0; page < pages; page++) {
   1210 		/* do we need this check here? */
   1211 		if (nand_isbad(self, addr)) {
   1212 			aprint_error_dev(self,
   1213 			    "nand_flash_write: bad block encountered\n");
   1214 
   1215 			error = EIO;
   1216 			goto out;
   1217 		}
   1218 
   1219 		error = nand_program_page(self, addr, bufp);
   1220 		if (error) {
   1221 			goto out;
   1222 		}
   1223 
   1224 		addr += chip->nc_page_size;
   1225 		bufp += chip->nc_page_size;
   1226 		*retlen += chip->nc_page_size;
   1227 	}
   1228 out:
   1229 	mutex_exit(&sc->sc_device_lock);
   1230 	DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
   1231 
   1232 	return error;
   1233 }
   1234 
   1235 /*
   1236  * handle (page) unaligned read from nand
   1237  */
   1238 static int
   1239 nand_flash_read_unaligned(device_t self, size_t offset,
   1240     size_t len, size_t *retlen, uint8_t *buf)
   1241 {
   1242 	struct nand_softc *sc = device_private(self);
   1243 	struct nand_chip *chip = &sc->sc_chip;
   1244 	daddr_t first, last, count, firstoff;
   1245 	uint8_t *bufp;
   1246 	daddr_t addr;
   1247 	size_t left;
   1248 	int error = 0, i;
   1249 
   1250 	first = offset & chip->nc_page_mask;
   1251 	firstoff = offset & ~chip->nc_page_mask;
   1252 	last = (offset + len) & chip->nc_page_mask;
   1253 	count = (last - first) / chip->nc_page_size + 1;
   1254 
   1255 	addr = first;
   1256 	bufp = buf;
   1257 	left = len;
   1258 	*retlen = 0;
   1259 
   1260 	mutex_enter(&sc->sc_device_lock);
   1261 	if (count == 1) {
   1262 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1263 		if (error) {
   1264 			goto out;
   1265 		}
   1266 
   1267 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
   1268 
   1269 		*retlen = len;
   1270 		goto out;
   1271 	}
   1272 
   1273 	for (i = 0; i < count && left != 0; i++) {
   1274 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1275 		if (error) {
   1276 			goto out;
   1277 		}
   1278 
   1279 		if (i == 0) {
   1280 			memcpy(bufp, chip->nc_page_cache + firstoff,
   1281 			    chip->nc_page_size - firstoff);
   1282 
   1283 			bufp += chip->nc_page_size - firstoff;
   1284 			left -= chip->nc_page_size - firstoff;
   1285 			*retlen += chip->nc_page_size - firstoff;
   1286 
   1287 		} else if (i == count - 1) {
   1288 			memcpy(bufp, chip->nc_page_cache, left);
   1289 			*retlen += left;
   1290 			KASSERT(left < chip->nc_page_size);
   1291 
   1292 		} else {
   1293 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
   1294 
   1295 			bufp += chip->nc_page_size;
   1296 			left -= chip->nc_page_size;
   1297 			*retlen += chip->nc_page_size;
   1298 		}
   1299 
   1300 		addr += chip->nc_page_size;
   1301 	}
   1302 	KASSERT(*retlen == len);
   1303 out:
   1304 	mutex_exit(&sc->sc_device_lock);
   1305 
   1306 	return error;
   1307 }
   1308 
   1309 int
   1310 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1311     uint8_t *buf)
   1312 {
   1313 	struct nand_softc *sc = device_private(self);
   1314 	struct nand_chip *chip = &sc->sc_chip;
   1315 	uint8_t *bufp;
   1316 	size_t addr;
   1317 	size_t i, pages;
   1318 	int error = 0;
   1319 
   1320 	*retlen = 0;
   1321 
   1322 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
   1323 		(uintmax_t)offset, len));
   1324 
   1325 	if (__predict_false((offset + len) > chip->nc_size)) {
   1326 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
   1327 			" is over device size (%ju)\n", (uintmax_t)offset,
   1328 			len, (uintmax_t)chip->nc_size));
   1329 		return EINVAL;
   1330 	}
   1331 
   1332 	/* Handle unaligned access, shouldnt be needed when using the
   1333 	 * block device, as strategy handles it, so only low level
   1334 	 * accesses will use this path
   1335 	 */
   1336 	/* XXX^2 */
   1337 #if 0
   1338 	if (len < chip->nc_page_size)
   1339 		panic("TODO page size is larger than read size");
   1340 #endif
   1341 
   1342 	if (len % chip->nc_page_size != 0 ||
   1343 	    offset % chip->nc_page_size != 0) {
   1344 		return nand_flash_read_unaligned(self,
   1345 		    offset, len, retlen, buf);
   1346 	}
   1347 
   1348 	bufp = buf;
   1349 	addr = offset;
   1350 	pages = len / chip->nc_page_size;
   1351 
   1352 	mutex_enter(&sc->sc_device_lock);
   1353 	for (i = 0; i < pages; i++) {
   1354 		/* XXX do we need this check here? */
   1355 		if (nand_isbad(self, addr)) {
   1356 			aprint_error_dev(self, "bad block encountered\n");
   1357 			error = EIO;
   1358 			goto out;
   1359 		}
   1360 		error = nand_read_page(self, addr, bufp);
   1361 		if (error)
   1362 			goto out;
   1363 
   1364 		bufp += chip->nc_page_size;
   1365 		addr += chip->nc_page_size;
   1366 		*retlen += chip->nc_page_size;
   1367 	}
   1368 out:
   1369 	mutex_exit(&sc->sc_device_lock);
   1370 
   1371 	return error;
   1372 }
   1373 
   1374 int
   1375 nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
   1376 {
   1377 	struct nand_softc *sc = device_private(self);
   1378 	struct nand_chip *chip = &sc->sc_chip;
   1379 	bool result;
   1380 
   1381 	if (ofs > chip->nc_size) {
   1382 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
   1383 			" device size (0x%jx)\n", (uintmax_t)ofs,
   1384 			(uintmax_t)chip->nc_size));
   1385 		return EINVAL;
   1386 	}
   1387 
   1388 	if (ofs % chip->nc_block_size != 0) {
   1389 		DPRINTF(("offset (0x%jx) is not a multiple of block size "
   1390 			"(%ju)",
   1391 			(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
   1392 		return EINVAL;
   1393 	}
   1394 
   1395 	mutex_enter(&sc->sc_device_lock);
   1396 	result = nand_isbad(self, ofs);
   1397 	mutex_exit(&sc->sc_device_lock);
   1398 
   1399 	*is_bad = result;
   1400 
   1401 	return 0;
   1402 }
   1403 
   1404 int
   1405 nand_flash_markbad(device_t self, flash_off_t ofs)
   1406 {
   1407 	struct nand_softc *sc = device_private(self);
   1408 	struct nand_chip *chip = &sc->sc_chip;
   1409 
   1410 	if (ofs > chip->nc_size) {
   1411 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
   1412 			" device size (0x%jx)\n", ofs,
   1413 			(uintmax_t)chip->nc_size));
   1414 		return EINVAL;
   1415 	}
   1416 
   1417 	if (ofs % chip->nc_block_size != 0) {
   1418 		panic("offset (%ju) is not a multiple of block size (%ju)",
   1419 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
   1420 	}
   1421 
   1422 	mutex_enter(&sc->sc_device_lock);
   1423 	nand_markbad(self, ofs);
   1424 	mutex_exit(&sc->sc_device_lock);
   1425 
   1426 	return 0;
   1427 }
   1428 
   1429 int
   1430 nand_flash_erase(device_t self,
   1431     struct flash_erase_instruction *ei)
   1432 {
   1433 	struct nand_softc *sc = device_private(self);
   1434 	struct nand_chip *chip = &sc->sc_chip;
   1435 	flash_off_t addr;
   1436 	int error = 0;
   1437 
   1438 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
   1439 		return EINVAL;
   1440 
   1441 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
   1442 		DPRINTF(("nand_flash_erase: erase address is over the end"
   1443 			" of the device\n"));
   1444 		return EINVAL;
   1445 	}
   1446 
   1447 	if (ei->ei_addr % chip->nc_block_size != 0) {
   1448 		aprint_error_dev(self,
   1449 		    "nand_flash_erase: ei_addr (%ju) is not"
   1450 		    " a multiple of block size (%ju)",
   1451 		    (uintmax_t)ei->ei_addr,
   1452 		    (uintmax_t)chip->nc_block_size);
   1453 		return EINVAL;
   1454 	}
   1455 
   1456 	if (ei->ei_len % chip->nc_block_size != 0) {
   1457 		aprint_error_dev(self,
   1458 		    "nand_flash_erase: ei_len (%ju) is not"
   1459 		    " a multiple of block size (%ju)",
   1460 		    (uintmax_t)ei->ei_len,
   1461 		    (uintmax_t)chip->nc_block_size);
   1462 		return EINVAL;
   1463 	}
   1464 
   1465 	mutex_enter(&sc->sc_device_lock);
   1466 	addr = ei->ei_addr;
   1467 	while (addr < ei->ei_addr + ei->ei_len) {
   1468 		if (nand_isbad(self, addr)) {
   1469 			aprint_error_dev(self, "bad block encountered\n");
   1470 			ei->ei_state = FLASH_ERASE_FAILED;
   1471 			error = EIO;
   1472 			goto out;
   1473 		}
   1474 
   1475 		error = nand_erase_block(self, addr);
   1476 		if (error) {
   1477 			ei->ei_state = FLASH_ERASE_FAILED;
   1478 			goto out;
   1479 		}
   1480 
   1481 		addr += chip->nc_block_size;
   1482 	}
   1483 	mutex_exit(&sc->sc_device_lock);
   1484 
   1485 	ei->ei_state = FLASH_ERASE_DONE;
   1486 	if (ei->ei_callback != NULL) {
   1487 		ei->ei_callback(ei);
   1488 	}
   1489 
   1490 	return 0;
   1491 out:
   1492 	mutex_exit(&sc->sc_device_lock);
   1493 
   1494 	return error;
   1495 }
   1496 
   1497 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
   1498 
   1499 #ifdef _MODULE
   1500 #include "ioconf.c"
   1501 #endif
   1502 
   1503 static int
   1504 nand_modcmd(modcmd_t cmd, void *opaque)
   1505 {
   1506 	switch (cmd) {
   1507 	case MODULE_CMD_INIT:
   1508 #ifdef _MODULE
   1509 		return config_init_component(cfdriver_ioconf_nand,
   1510 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1511 #else
   1512 		return 0;
   1513 #endif
   1514 	case MODULE_CMD_FINI:
   1515 #ifdef _MODULE
   1516 		return config_fini_component(cfdriver_ioconf_nand,
   1517 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1518 #else
   1519 		return 0;
   1520 #endif
   1521 	default:
   1522 		return ENOTTY;
   1523 	}
   1524 }
   1525