Home | History | Annotate | Line # | Download | only in nand
nand.c revision 1.17
      1 /*	$NetBSD: nand.c,v 1.17 2012/07/12 03:05:01 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010 Department of Software Engineering,
      5  *		      University of Szeged, Hungary
      6  * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by the Department of Software Engineering, University of Szeged, Hungary
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.17 2012/07/12 03:05:01 matt Exp $");
     38 
     39 #include "locators.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 #include <sys/device.h>
     44 #include <sys/kmem.h>
     45 #include <sys/atomic.h>
     46 
     47 #include <dev/flash/flash.h>
     48 #include <dev/flash/flash_io.h>
     49 #include <dev/nand/nand.h>
     50 #include <dev/nand/onfi.h>
     51 #include <dev/nand/hamming.h>
     52 #include <dev/nand/nand_bbt.h>
     53 #include <dev/nand/nand_crc.h>
     54 
     55 #include "opt_nand.h"
     56 
     57 int nand_match(device_t, cfdata_t, void *);
     58 void nand_attach(device_t, device_t, void *);
     59 int nand_detach(device_t, int);
     60 bool nand_shutdown(device_t, int);
     61 
     62 int nand_print(void *, const char *);
     63 
     64 static int nand_search(device_t, cfdata_t, const int *, void *);
     65 static void nand_address_row(device_t, size_t);
     66 static void nand_address_column(device_t, size_t, size_t);
     67 static int nand_fill_chip_structure(device_t, struct nand_chip *);
     68 static int nand_scan_media(device_t, struct nand_chip *);
     69 static bool nand_check_wp(device_t);
     70 
     71 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
     72     nand_match, nand_attach, nand_detach, NULL);
     73 
     74 #ifdef NAND_DEBUG
     75 int	nanddebug = NAND_DEBUG;
     76 #endif
     77 
     78 struct flash_interface nand_flash_if = {
     79 	.type = FLASH_TYPE_NAND,
     80 
     81 	.read = nand_flash_read,
     82 	.write = nand_flash_write,
     83 	.erase = nand_flash_erase,
     84 	.block_isbad = nand_flash_isbad,
     85 	.block_markbad = nand_flash_markbad,
     86 
     87 	.submit = nand_flash_submit
     88 };
     89 
     90 #ifdef NAND_VERBOSE
     91 const struct nand_manufacturer nand_mfrs[] = {
     92 	{ NAND_MFR_AMD,		"AMD" },
     93 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
     94 	{ NAND_MFR_RENESAS,	"Renesas" },
     95 	{ NAND_MFR_STMICRO,	"ST Micro" },
     96 	{ NAND_MFR_MICRON,	"Micron" },
     97 	{ NAND_MFR_NATIONAL,	"National" },
     98 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
     99 	{ NAND_MFR_HYNIX,	"Hynix" },
    100 	{ NAND_MFR_SAMSUNG,	"Samsung" },
    101 	{ NAND_MFR_UNKNOWN,	"Unknown" }
    102 };
    103 
    104 static const char *
    105 nand_midtoname(int id)
    106 {
    107 	int i;
    108 
    109 	for (i = 0; nand_mfrs[i].id != 0; i++) {
    110 		if (nand_mfrs[i].id == id)
    111 			return nand_mfrs[i].name;
    112 	}
    113 
    114 	KASSERT(nand_mfrs[i].id == 0);
    115 
    116 	return nand_mfrs[i].name;
    117 }
    118 #endif
    119 
    120 /* ARGSUSED */
    121 int
    122 nand_match(device_t parent, cfdata_t match, void *aux)
    123 {
    124 	/* pseudo device, always attaches */
    125 	return 1;
    126 }
    127 
    128 void
    129 nand_attach(device_t parent, device_t self, void *aux)
    130 {
    131 	struct nand_softc *sc = device_private(self);
    132 	struct nand_attach_args *naa = aux;
    133 	struct nand_chip *chip = &sc->sc_chip;
    134 
    135 	sc->sc_dev = self;
    136 	sc->controller_dev = parent;
    137 	sc->nand_if = naa->naa_nand_if;
    138 
    139 	aprint_naive("\n");
    140 
    141 	if (nand_check_wp(self)) {
    142 		aprint_error("NAND chip is write protected!\n");
    143 		return;
    144 	}
    145 
    146 	if (nand_scan_media(self, chip)) {
    147 		return;
    148 	}
    149 
    150 	nand_flash_if.erasesize = chip->nc_block_size;
    151 	nand_flash_if.page_size = chip->nc_page_size;
    152 	nand_flash_if.writesize = chip->nc_page_size;
    153 
    154 	/* allocate cache */
    155 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
    156 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
    157 
    158 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
    159 
    160 	if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
    161 		goto error;
    162 	}
    163 
    164 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
    165 		aprint_error_dev(sc->sc_dev,
    166 		    "couldn't establish power handler\n");
    167 
    168 #ifdef NAND_BBT
    169 	nand_bbt_init(self);
    170 	nand_bbt_scan(self);
    171 #endif
    172 
    173 	/*
    174 	 * Attach all our devices
    175 	 */
    176 	config_search_ia(nand_search, self, NULL, NULL);
    177 
    178 	return;
    179 error:
    180 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    181 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    182 	mutex_destroy(&sc->sc_device_lock);
    183 }
    184 
    185 static int
    186 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
    187 {
    188 	struct nand_softc *sc = device_private(parent);
    189 	struct nand_chip *chip = &sc->sc_chip;
    190 	struct flash_attach_args faa;
    191 
    192 	faa.flash_if = &nand_flash_if;
    193 
    194 	faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
    195 
    196 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
    197 		faa.partinfo.part_size = chip->nc_size -
    198 		    faa.partinfo.part_offset;
    199 	} else {
    200 		faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
    201 	}
    202 
    203 	if (cf->cf_loc[FLASHBUSCF_READONLY])
    204 		faa.partinfo.part_flags = FLASH_PART_READONLY;
    205 	else
    206 		faa.partinfo.part_flags = 0;
    207 
    208 	if (config_match(parent, cf, &faa)) {
    209 		if (config_attach(parent, cf, &faa, nand_print) != NULL) {
    210 			return 0;
    211 		} else {
    212 			return 1;
    213 		}
    214 	}
    215 
    216 	return 1;
    217 }
    218 
    219 int
    220 nand_detach(device_t self, int flags)
    221 {
    222 	struct nand_softc *sc = device_private(self);
    223 	struct nand_chip *chip = &sc->sc_chip;
    224 	int error = 0;
    225 
    226 	error = config_detach_children(self, flags);
    227 	if (error) {
    228 		return error;
    229 	}
    230 
    231 	flash_sync_thread_destroy(&sc->sc_flash_io);
    232 #ifdef NAND_BBT
    233 	nand_bbt_detach(self);
    234 #endif
    235 	/* free oob cache */
    236 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    237 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    238 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
    239 
    240 	mutex_destroy(&sc->sc_device_lock);
    241 
    242 	pmf_device_deregister(sc->sc_dev);
    243 
    244 	return error;
    245 }
    246 
    247 int
    248 nand_print(void *aux, const char *pnp)
    249 {
    250 	if (pnp != NULL)
    251 		aprint_normal("nand at %s\n", pnp);
    252 
    253 	return UNCONF;
    254 }
    255 
    256 /* ask for a nand driver to attach to the controller */
    257 device_t
    258 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
    259 {
    260 	struct nand_attach_args arg;
    261 
    262 	KASSERT(nand_if != NULL);
    263 
    264 	/* fill the defaults if we have null pointers */
    265 	if (nand_if->program_page == NULL) {
    266 		nand_if->program_page = &nand_default_program_page;
    267 	}
    268 
    269 	if (nand_if->read_page == NULL) {
    270 		nand_if->read_page = &nand_default_read_page;
    271 	}
    272 
    273 	arg.naa_nand_if = nand_if;
    274 	return config_found_ia(parent, "nandbus", &arg, nand_print);
    275 }
    276 
    277 /* default everything to reasonable values, to ease future api changes */
    278 void
    279 nand_init_interface(struct nand_interface *interface)
    280 {
    281 	interface->select = &nand_default_select;
    282 	interface->command = NULL;
    283 	interface->address = NULL;
    284 	interface->read_buf_1 = NULL;
    285 	interface->read_buf_2 = NULL;
    286 	interface->read_1 = NULL;
    287 	interface->read_2 = NULL;
    288 	interface->write_buf_1 = NULL;
    289 	interface->write_buf_2 = NULL;
    290 	interface->write_1 = NULL;
    291 	interface->write_2 = NULL;
    292 	interface->busy = NULL;
    293 
    294 	/*-
    295 	 * most drivers dont want to change this, but some implement
    296 	 * read/program in one step
    297 	 */
    298 	interface->program_page = &nand_default_program_page;
    299 	interface->read_page = &nand_default_read_page;
    300 
    301 	/* default to soft ecc, that should work everywhere */
    302 	interface->ecc_compute = &nand_default_ecc_compute;
    303 	interface->ecc_correct = &nand_default_ecc_correct;
    304 	interface->ecc_prepare = NULL;
    305 	interface->ecc.necc_code_size = 3;
    306 	interface->ecc.necc_block_size = 256;
    307 	interface->ecc.necc_type = NAND_ECC_TYPE_SW;
    308 }
    309 
    310 #if 0
    311 /* handle quirks here */
    312 static void
    313 nand_quirks(device_t self, struct nand_chip *chip)
    314 {
    315 	/* this is an example only! */
    316 	switch (chip->nc_manf_id) {
    317 	case NAND_MFR_SAMSUNG:
    318 		if (chip->nc_dev_id == 0x00) {
    319 			/* do something only samsung chips need */
    320 			/* or */
    321 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
    322 		}
    323 	}
    324 
    325 	return;
    326 }
    327 #endif
    328 
    329 static int
    330 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
    331 {
    332 	switch (chip->nc_manf_id) {
    333 	case NAND_MFR_MICRON:
    334 		return nand_read_parameters_micron(self, chip);
    335 	default:
    336 		return 1;
    337 	}
    338 
    339 	return 0;
    340 }
    341 
    342 /**
    343  * scan media to determine the chip's properties
    344  * this function resets the device
    345  */
    346 static int
    347 nand_scan_media(device_t self, struct nand_chip *chip)
    348 {
    349 	struct nand_softc *sc = device_private(self);
    350 	struct nand_ecc *ecc;
    351 	uint8_t onfi_signature[4];
    352 
    353 	nand_select(self, true);
    354 	nand_command(self, ONFI_RESET);
    355 	nand_select(self, false);
    356 
    357 	/* check if the device implements the ONFI standard */
    358 	nand_select(self, true);
    359 	nand_command(self, ONFI_READ_ID);
    360 	nand_address(self, 0x20);
    361 	nand_read_1(self, &onfi_signature[0]);
    362 	nand_read_1(self, &onfi_signature[1]);
    363 	nand_read_1(self, &onfi_signature[2]);
    364 	nand_read_1(self, &onfi_signature[3]);
    365 	nand_select(self, false);
    366 
    367 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
    368 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
    369 		chip->nc_isonfi = false;
    370 
    371 		aprint_normal(": Legacy NAND Flash\n");
    372 
    373 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    374 
    375 		if (nand_fill_chip_structure_legacy(self, chip)) {
    376 			aprint_error_dev(self,
    377 			    "can't read device parameters for legacy chip\n");
    378 			return 1;
    379 		}
    380 	} else {
    381 		chip->nc_isonfi = true;
    382 
    383 		aprint_normal(": ONFI NAND Flash\n");
    384 
    385 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    386 
    387 		if (nand_fill_chip_structure(self, chip)) {
    388 			aprint_error_dev(self,
    389 			    "can't read device parameters\n");
    390 			return 1;
    391 		}
    392 	}
    393 
    394 #ifdef NAND_VERBOSE
    395 	aprint_normal_dev(self,
    396 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
    397 	    chip->nc_manf_id,
    398 	    nand_midtoname(chip->nc_manf_id),
    399 	    chip->nc_dev_id);
    400 #endif
    401 
    402 	aprint_normal_dev(self,
    403 	    "page size: %zu bytes, spare size: %zu bytes, "
    404 	    "block size: %zu bytes\n",
    405 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
    406 
    407 	aprint_normal_dev(self,
    408 	    "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
    409 	    ", total storage size: %zu MB\n",
    410 	    chip->nc_lun_blocks, chip->nc_num_luns,
    411 	    chip->nc_size / 1024 / 1024);
    412 
    413 #ifdef NAND_VERBOSE
    414 	aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
    415 	    PRIu8 "\n",
    416 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
    417 #endif
    418 
    419 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
    420 
    421 	/*
    422 	 * calculate the place of ecc data in oob
    423 	 * we try to be compatible with Linux here
    424 	 */
    425 	switch (chip->nc_spare_size) {
    426 	case 8:
    427 		ecc->necc_offset = 0;
    428 		break;
    429 	case 16:
    430 		ecc->necc_offset = 0;
    431 		break;
    432 	case 32:
    433 		ecc->necc_offset = 0;
    434 		break;
    435 	case 64:
    436 		ecc->necc_offset = 40;
    437 		break;
    438 	case 128:
    439 		ecc->necc_offset = 80;
    440 		break;
    441 	default:
    442 		panic("OOB size %zu is unexpected", chip->nc_spare_size);
    443 	}
    444 
    445 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
    446 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
    447 
    448 	/* check if we fit in oob */
    449 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
    450 		panic("NAND ECC bits dont fit in OOB");
    451 	}
    452 
    453 	/* TODO: mark free oob area available for file systems */
    454 
    455 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
    456 
    457 	/*
    458 	 * calculate badblock marker offset in oob
    459 	 * we try to be compatible with linux here
    460 	 */
    461 	if (chip->nc_page_size > 512)
    462 		chip->nc_badmarker_offs = 0;
    463 	else
    464 		chip->nc_badmarker_offs = 5;
    465 
    466 	/* Calculate page shift and mask */
    467 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
    468 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
    469 	/* same for block */
    470 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
    471 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
    472 
    473 	/* look for quirks here if needed in future */
    474 	/* nand_quirks(self, chip); */
    475 
    476 	return 0;
    477 }
    478 
    479 void
    480 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
    481 {
    482 	nand_select(self, true);
    483 	nand_command(self, ONFI_READ_ID);
    484 	nand_address(self, 0x00);
    485 
    486 	nand_read_1(self, manf);
    487 	nand_read_1(self, dev);
    488 
    489 	nand_select(self, false);
    490 }
    491 
    492 int
    493 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
    494 {
    495 	uint8_t *bufp;
    496 	uint16_t crc;
    497 	int i;//, tries = 0;
    498 
    499 	KASSERT(sizeof(*params) == 256);
    500 
    501 //read_params:
    502 //	tries++;
    503 
    504 	nand_select(self, true);
    505 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
    506 	nand_address(self, 0x00);
    507 
    508 	nand_busy(self);
    509 
    510 	/* TODO check the signature if it contains at least 2 letters */
    511 
    512 	bufp = (uint8_t *)params;
    513 	/* XXX why i am not using read_buf? */
    514 	for (i = 0; i < 256; i++) {
    515 		nand_read_1(self, &bufp[i]);
    516 	}
    517 	nand_select(self, false);
    518 
    519 	/* validate the parameter page with the crc */
    520 	crc = nand_crc16(bufp, 254);
    521 
    522 	if (crc != params->param_integrity_crc) {
    523 		aprint_error_dev(self, "parameter page crc check failed\n");
    524 		/* TODO: we should read the next parameter page copy */
    525 		return 1;
    526 	}
    527 
    528 	return 0;
    529 }
    530 
    531 static int
    532 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
    533 {
    534 	struct onfi_parameter_page params;
    535 	uint8_t	vendor[13], model[21];
    536 	int i;
    537 
    538 	if (nand_read_parameter_page(self, &params)) {
    539 		return 1;
    540 	}
    541 
    542 	/* strip manufacturer and model string */
    543 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
    544 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
    545 		vendor[i] = 0;
    546 	strlcpy(model, params.param_model, sizeof(model));
    547 	for (i = 19; i > 0 && model[i] == ' '; i--)
    548 		model[i] = 0;
    549 
    550 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
    551 
    552 	/* XXX TODO multiple LUNs */
    553 	if (params.param_numluns != 1) {
    554 		aprint_error_dev(self,
    555 		    "more than one LUNs are not supported yet!\n");
    556 
    557 		return 1;
    558 	}
    559 
    560 	chip->nc_size = params.param_pagesize * params.param_blocksize *
    561 	    params.param_lunsize * params.param_numluns;
    562 
    563 	chip->nc_page_size = params.param_pagesize;
    564 	chip->nc_block_pages = params.param_blocksize;
    565 	chip->nc_block_size = params.param_blocksize * params.param_pagesize;
    566 	chip->nc_spare_size = params.param_sparesize;
    567 	chip->nc_lun_blocks = params.param_lunsize;
    568 	chip->nc_num_luns = params.param_numluns;
    569 
    570 	/* the lower 4 bits contain the row address cycles */
    571 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
    572 	/* the upper 4 bits contain the column address cycles */
    573 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
    574 
    575 	if (params.param_features & ONFI_FEATURE_16BIT)
    576 		chip->nc_flags |= NC_BUSWIDTH_16;
    577 
    578 	if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
    579 		chip->nc_flags |= NC_EXTENDED_PARAM;
    580 
    581 	return 0;
    582 }
    583 
    584 /* ARGSUSED */
    585 bool
    586 nand_shutdown(device_t self, int howto)
    587 {
    588 	return true;
    589 }
    590 
    591 static void
    592 nand_address_column(device_t self, size_t row, size_t column)
    593 {
    594 	struct nand_softc *sc = device_private(self);
    595 	struct nand_chip *chip = &sc->sc_chip;
    596 	uint8_t i;
    597 
    598 	DPRINTF(("addressing row: 0x%jx column: %zu\n",
    599 		(uintmax_t )row, column));
    600 
    601 	/* XXX TODO */
    602 	row >>= chip->nc_page_shift;
    603 
    604 	/* Write the column (subpage) address */
    605 	if (chip->nc_flags & NC_BUSWIDTH_16)
    606 		column >>= 1;
    607 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
    608 		nand_address(self, column & 0xff);
    609 
    610 	/* Write the row (page) address */
    611 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    612 		nand_address(self, row & 0xff);
    613 }
    614 
    615 static void
    616 nand_address_row(device_t self, size_t row)
    617 {
    618 	struct nand_softc *sc = device_private(self);
    619 	struct nand_chip *chip = &sc->sc_chip;
    620 	int i;
    621 
    622 	/* XXX TODO */
    623 	row >>= chip->nc_page_shift;
    624 
    625 	/* Write the row (page) address */
    626 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    627 		nand_address(self, row & 0xff);
    628 }
    629 
    630 static inline uint8_t
    631 nand_get_status(device_t self)
    632 {
    633 	uint8_t status;
    634 
    635 	nand_command(self, ONFI_READ_STATUS);
    636 	nand_busy(self);
    637 	nand_read_1(self, &status);
    638 
    639 	return status;
    640 }
    641 
    642 static bool
    643 nand_check_wp(device_t self)
    644 {
    645 	if (nand_get_status(self) & 0x80)
    646 		return false;
    647 	else
    648 		return true;
    649 }
    650 
    651 static void
    652 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
    653 {
    654 	nand_command(self, ONFI_READ);
    655 	nand_address_column(self, row, column);
    656 	nand_command(self, ONFI_READ_START);
    657 
    658 	nand_busy(self);
    659 }
    660 
    661 /* read a page with ecc correction, default implementation */
    662 int
    663 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
    664 {
    665 	struct nand_softc *sc = device_private(self);
    666 	struct nand_chip *chip = &sc->sc_chip;
    667 	size_t b, bs, e, cs;
    668 	uint8_t *ecc;
    669 	int result;
    670 
    671 	nand_prepare_read(self, offset, 0);
    672 
    673 	bs = chip->nc_ecc->necc_block_size;
    674 	cs = chip->nc_ecc->necc_code_size;
    675 
    676 	/* decide if we access by 8 or 16 bits */
    677 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    678 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    679 			nand_ecc_prepare(self, NAND_ECC_READ);
    680 			nand_read_buf_2(self, data + b, bs);
    681 			nand_ecc_compute(self, data + b,
    682 			    chip->nc_ecc_cache + e);
    683 		}
    684 	} else {
    685 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    686 			nand_ecc_prepare(self, NAND_ECC_READ);
    687 			nand_read_buf_1(self, data + b, bs);
    688 			nand_ecc_compute(self, data + b,
    689 			    chip->nc_ecc_cache + e);
    690 		}
    691 	}
    692 
    693 	/* for debugging new drivers */
    694 #if 0
    695 	nand_dump_data("page", data, chip->nc_page_size);
    696 #endif
    697 
    698 	nand_read_oob(self, offset, chip->nc_oob_cache);
    699 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    700 
    701 	/* useful for debugging new ecc drivers */
    702 #if 0
    703 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    704 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    705 		printf("0x");
    706 		for (b = 0; b < cs; b++) {
    707 			printf("%.2hhx", ecc[e+b]);
    708 		}
    709 		printf(" 0x");
    710 		for (b = 0; b < cs; b++) {
    711 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
    712 		}
    713 		printf("\n");
    714 	}
    715 	printf("--------------\n");
    716 #endif
    717 
    718 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    719 		result = nand_ecc_correct(self, data + b, ecc + e,
    720 		    chip->nc_ecc_cache + e);
    721 
    722 		switch (result) {
    723 		case NAND_ECC_OK:
    724 			break;
    725 		case NAND_ECC_CORRECTED:
    726 			aprint_error_dev(self,
    727 			    "data corrected with ECC at page offset 0x%jx "
    728 			    "block %zu\n", (uintmax_t)offset, b);
    729 			break;
    730 		case NAND_ECC_TWOBIT:
    731 			aprint_error_dev(self,
    732 			    "uncorrectable ECC error at page offset 0x%jx "
    733 			    "block %zu\n", (uintmax_t)offset, b);
    734 			return EIO;
    735 			break;
    736 		case NAND_ECC_INVALID:
    737 			aprint_error_dev(self,
    738 			    "invalid ECC in oob at page offset 0x%jx "
    739 			    "block %zu\n", (uintmax_t)offset, b);
    740 			return EIO;
    741 			break;
    742 		default:
    743 			panic("invalid ECC correction errno");
    744 		}
    745 	}
    746 
    747 	return 0;
    748 }
    749 
    750 int
    751 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
    752 {
    753 	struct nand_softc *sc = device_private(self);
    754 	struct nand_chip *chip = &sc->sc_chip;
    755 	size_t bs, cs, e, b;
    756 	uint8_t status;
    757 	uint8_t *ecc;
    758 
    759 	nand_command(self, ONFI_PAGE_PROGRAM);
    760 	nand_address_column(self, page, 0);
    761 
    762 	nand_busy(self);
    763 
    764 	bs = chip->nc_ecc->necc_block_size;
    765 	cs = chip->nc_ecc->necc_code_size;
    766 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    767 
    768 	/* XXX code duplication */
    769 	/* decide if we access by 8 or 16 bits */
    770 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    771 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    772 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    773 			nand_write_buf_2(self, data + b, bs);
    774 			nand_ecc_compute(self, data + b, ecc + e);
    775 		}
    776 		/* write oob with ecc correction code */
    777 		nand_write_buf_2(self, chip->nc_oob_cache,
    778 		    chip->nc_spare_size);
    779 	} else {
    780 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    781 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    782 			nand_write_buf_1(self, data + b, bs);
    783 			nand_ecc_compute(self, data + b, ecc + e);
    784 		}
    785 		/* write oob with ecc correction code */
    786 		nand_write_buf_1(self, chip->nc_oob_cache,
    787 		    chip->nc_spare_size);
    788 	}
    789 
    790 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    791 
    792 	nand_busy(self);
    793 
    794 	/* for debugging ecc */
    795 #if 0
    796 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    797 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    798 		printf("0x");
    799 		for (b = 0; b < cs; b++) {
    800 			printf("%.2hhx", ecc[e+b]);
    801 		}
    802 		printf("\n");
    803 	}
    804 	printf("--------------\n");
    805 #endif
    806 
    807 	status = nand_get_status(self);
    808 	KASSERT(status & ONFI_STATUS_RDY);
    809 	if (status & ONFI_STATUS_FAIL) {
    810 		aprint_error_dev(self, "page program failed!\n");
    811 		return EIO;
    812 	}
    813 
    814 	return 0;
    815 }
    816 
    817 /* read the OOB of a page */
    818 int
    819 nand_read_oob(device_t self, size_t page, uint8_t *oob)
    820 {
    821 	struct nand_softc *sc = device_private(self);
    822 	struct nand_chip *chip = &sc->sc_chip;
    823 
    824 	nand_prepare_read(self, page, chip->nc_page_size);
    825 
    826 	if (chip->nc_flags & NC_BUSWIDTH_16)
    827 		nand_read_buf_2(self, oob, chip->nc_spare_size);
    828 	else
    829 		nand_read_buf_1(self, oob, chip->nc_spare_size);
    830 
    831 	/* for debugging drivers */
    832 #if 0
    833 	nand_dump_data("oob", oob, chip->nc_spare_size);
    834 #endif
    835 
    836 	return 0;
    837 }
    838 
    839 static int
    840 nand_write_oob(device_t self, size_t offset, const void *oob)
    841 {
    842 	struct nand_softc *sc = device_private(self);
    843 	struct nand_chip *chip = &sc->sc_chip;
    844 	uint8_t status;
    845 
    846 	nand_command(self, ONFI_PAGE_PROGRAM);
    847 	nand_address_column(self, offset, chip->nc_page_size);
    848 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    849 
    850 	nand_busy(self);
    851 
    852 	if (chip->nc_flags & NC_BUSWIDTH_16)
    853 		nand_write_buf_2(self, oob, chip->nc_spare_size);
    854 	else
    855 		nand_write_buf_1(self, oob, chip->nc_spare_size);
    856 
    857 	status = nand_get_status(self);
    858 	KASSERT(status & ONFI_STATUS_RDY);
    859 	if (status & ONFI_STATUS_FAIL)
    860 		return EIO;
    861 	else
    862 		return 0;
    863 }
    864 
    865 void
    866 nand_markbad(device_t self, size_t offset)
    867 {
    868 	struct nand_softc *sc = device_private(self);
    869 	struct nand_chip *chip = &sc->sc_chip;
    870 	flash_off_t blockoffset, marker;
    871 #ifdef NAND_BBT
    872 	flash_off_t block;
    873 
    874 	block = offset / chip->nc_block_size;
    875 
    876 	nand_bbt_block_markbad(self, block);
    877 #endif
    878 	blockoffset = offset & chip->nc_block_mask;
    879 	marker = chip->nc_badmarker_offs & ~0x01;
    880 
    881 	/* check if it is already marked bad */
    882 	if (nand_isbad(self, blockoffset))
    883 		return;
    884 
    885 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
    886 
    887 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
    888 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
    889 
    890 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
    891 }
    892 
    893 bool
    894 nand_isfactorybad(device_t self, flash_off_t offset)
    895 {
    896 	struct nand_softc *sc = device_private(self);
    897 	struct nand_chip *chip = &sc->sc_chip;
    898 	flash_off_t block, first_page, last_page, page;
    899 	int i;
    900 
    901 	/* Check for factory bad blocks first
    902 	 * Factory bad blocks are marked in the first or last
    903 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
    904 	 */
    905 	block = offset / chip->nc_block_size;
    906 	first_page = block * chip->nc_block_size;
    907 	last_page = (block + 1) * chip->nc_block_size
    908 	    - chip->nc_page_size;
    909 
    910 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
    911 		/* address OOB */
    912 		nand_prepare_read(self, page, chip->nc_page_size);
    913 
    914 		if (chip->nc_flags & NC_BUSWIDTH_16) {
    915 			uint16_t word;
    916 			nand_read_2(self, &word);
    917 			if (word == 0x0000)
    918 				return true;
    919 		} else {
    920 			uint8_t byte;
    921 			nand_read_1(self, &byte);
    922 			if (byte == 0x00)
    923 				return true;
    924 		}
    925 	}
    926 
    927 	return false;
    928 }
    929 
    930 bool
    931 nand_iswornoutbad(device_t self, flash_off_t offset)
    932 {
    933 	struct nand_softc *sc = device_private(self);
    934 	struct nand_chip *chip = &sc->sc_chip;
    935 	flash_off_t block;
    936 
    937 	/* we inspect the first page of the block */
    938 	block = offset & chip->nc_block_mask;
    939 
    940 	/* Linux/u-boot compatible badblock handling */
    941 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    942 		uint16_t word, mark;
    943 
    944 		nand_prepare_read(self, block,
    945 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
    946 
    947 		nand_read_2(self, &word);
    948 		mark = htole16(word);
    949 		if (chip->nc_badmarker_offs & 0x01)
    950 			mark >>= 8;
    951 		if ((mark & 0xff) != 0xff)
    952 			return true;
    953 	} else {
    954 		uint8_t byte;
    955 
    956 		nand_prepare_read(self, block,
    957 		    chip->nc_page_size + chip->nc_badmarker_offs);
    958 
    959 		nand_read_1(self, &byte);
    960 		if (byte != 0xff)
    961 			return true;
    962 	}
    963 
    964 	return false;
    965 }
    966 
    967 bool
    968 nand_isbad(device_t self, flash_off_t offset)
    969 {
    970 #ifdef NAND_BBT
    971 	struct nand_softc *sc = device_private(self);
    972 	struct nand_chip *chip = &sc->sc_chip;
    973 	flash_off_t block;
    974 
    975 	block = offset / chip->nc_block_size;
    976 
    977 	return nand_bbt_block_isbad(self, block);
    978 #else
    979 	/* ONFI host requirement */
    980 	if (nand_isfactorybad(self, offset))
    981 		return true;
    982 
    983 	/* Look for Linux/U-Boot compatible bad marker */
    984 	if (nand_iswornoutbad(self, offset))
    985 		return true;
    986 
    987 	return false;
    988 #endif
    989 }
    990 
    991 int
    992 nand_erase_block(device_t self, size_t offset)
    993 {
    994 	uint8_t status;
    995 
    996 	/* xxx calculate first page of block for address? */
    997 
    998 	nand_command(self, ONFI_BLOCK_ERASE);
    999 	nand_address_row(self, offset);
   1000 	nand_command(self, ONFI_BLOCK_ERASE_START);
   1001 
   1002 	nand_busy(self);
   1003 
   1004 	status = nand_get_status(self);
   1005 	KASSERT(status & ONFI_STATUS_RDY);
   1006 	if (status & ONFI_STATUS_FAIL) {
   1007 		aprint_error_dev(self, "block erase failed!\n");
   1008 		nand_markbad(self, offset);
   1009 		return EIO;
   1010 	} else {
   1011 		return 0;
   1012 	}
   1013 }
   1014 
   1015 /* default functions for driver development */
   1016 
   1017 /* default ECC using hamming code of 256 byte chunks */
   1018 int
   1019 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
   1020 {
   1021 	hamming_compute_256(data, code);
   1022 
   1023 	return 0;
   1024 }
   1025 
   1026 int
   1027 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
   1028 	const uint8_t *compcode)
   1029 {
   1030 	return hamming_correct_256(data, origcode, compcode);
   1031 }
   1032 
   1033 void
   1034 nand_default_select(device_t self, bool enable)
   1035 {
   1036 	/* do nothing */
   1037 	return;
   1038 }
   1039 
   1040 /* implementation of the block device API */
   1041 
   1042 int
   1043 nand_flash_submit(device_t self, struct buf * const bp)
   1044 {
   1045 	struct nand_softc *sc = device_private(self);
   1046 
   1047 	return flash_io_submit(&sc->sc_flash_io, bp);
   1048 }
   1049 
   1050 /*
   1051  * handle (page) unaligned write to nand
   1052  */
   1053 static int
   1054 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
   1055     size_t *retlen, const uint8_t *buf)
   1056 {
   1057 	struct nand_softc *sc = device_private(self);
   1058 	struct nand_chip *chip = &sc->sc_chip;
   1059 	flash_off_t first, last, firstoff;
   1060 	const uint8_t *bufp;
   1061 	flash_off_t addr;
   1062 	size_t left, count;
   1063 	int error = 0, i;
   1064 
   1065 	first = offset & chip->nc_page_mask;
   1066 	firstoff = offset & ~chip->nc_page_mask;
   1067 	/* XXX check if this should be len - 1 */
   1068 	last = (offset + len) & chip->nc_page_mask;
   1069 	count = last - first + 1;
   1070 
   1071 	addr = first;
   1072 	*retlen = 0;
   1073 
   1074 	mutex_enter(&sc->sc_device_lock);
   1075 	if (count == 1) {
   1076 		if (nand_isbad(self, addr)) {
   1077 			aprint_error_dev(self,
   1078 			    "nand_flash_write_unaligned: "
   1079 			    "bad block encountered\n");
   1080 			error = EIO;
   1081 			goto out;
   1082 		}
   1083 
   1084 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1085 		if (error) {
   1086 			goto out;
   1087 		}
   1088 
   1089 		memcpy(chip->nc_page_cache + firstoff, buf, len);
   1090 
   1091 		error = nand_program_page(self, addr, chip->nc_page_cache);
   1092 		if (error) {
   1093 			goto out;
   1094 		}
   1095 
   1096 		*retlen = len;
   1097 		goto out;
   1098 	}
   1099 
   1100 	bufp = buf;
   1101 	left = len;
   1102 
   1103 	for (i = 0; i < count && left != 0; i++) {
   1104 		if (nand_isbad(self, addr)) {
   1105 			aprint_error_dev(self,
   1106 			    "nand_flash_write_unaligned: "
   1107 			    "bad block encountered\n");
   1108 			error = EIO;
   1109 			goto out;
   1110 		}
   1111 
   1112 		if (i == 0) {
   1113 			error = nand_read_page(self,
   1114 			    addr, chip->nc_page_cache);
   1115 			if (error) {
   1116 				goto out;
   1117 			}
   1118 
   1119 			memcpy(chip->nc_page_cache + firstoff,
   1120 			    bufp, chip->nc_page_size - firstoff);
   1121 
   1122 			printf("program page: %s: %d\n", __FILE__, __LINE__);
   1123 			error = nand_program_page(self,
   1124 			    addr, chip->nc_page_cache);
   1125 			if (error) {
   1126 				goto out;
   1127 			}
   1128 
   1129 			bufp += chip->nc_page_size - firstoff;
   1130 			left -= chip->nc_page_size - firstoff;
   1131 			*retlen += chip->nc_page_size - firstoff;
   1132 
   1133 		} else if (i == count - 1) {
   1134 			error = nand_read_page(self,
   1135 			    addr, chip->nc_page_cache);
   1136 			if (error) {
   1137 				goto out;
   1138 			}
   1139 
   1140 			memcpy(chip->nc_page_cache, bufp, left);
   1141 
   1142 			error = nand_program_page(self,
   1143 			    addr, chip->nc_page_cache);
   1144 			if (error) {
   1145 				goto out;
   1146 			}
   1147 
   1148 			*retlen += left;
   1149 			KASSERT(left < chip->nc_page_size);
   1150 
   1151 		} else {
   1152 			/* XXX debug */
   1153 			if (left > chip->nc_page_size) {
   1154 				printf("left: %zu, i: %d, count: %zu\n",
   1155 				    (size_t )left, i, count);
   1156 			}
   1157 			KASSERT(left > chip->nc_page_size);
   1158 
   1159 			error = nand_program_page(self, addr, bufp);
   1160 			if (error) {
   1161 				goto out;
   1162 			}
   1163 
   1164 			bufp += chip->nc_page_size;
   1165 			left -= chip->nc_page_size;
   1166 			*retlen += chip->nc_page_size;
   1167 		}
   1168 
   1169 		addr += chip->nc_page_size;
   1170 	}
   1171 
   1172 	KASSERT(*retlen == len);
   1173 out:
   1174 	mutex_exit(&sc->sc_device_lock);
   1175 
   1176 	return error;
   1177 }
   1178 
   1179 int
   1180 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1181     const uint8_t *buf)
   1182 {
   1183 	struct nand_softc *sc = device_private(self);
   1184 	struct nand_chip *chip = &sc->sc_chip;
   1185 	const uint8_t *bufp;
   1186 	size_t pages, page;
   1187 	daddr_t addr;
   1188 	int error = 0;
   1189 
   1190 	if ((offset + len) > chip->nc_size) {
   1191 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
   1192 			" is over device size (0x%jx)\n",
   1193 			(uintmax_t)offset, (uintmax_t)len,
   1194 			(uintmax_t)chip->nc_size));
   1195 		return EINVAL;
   1196 	}
   1197 
   1198 	if (len % chip->nc_page_size != 0 ||
   1199 	    offset % chip->nc_page_size != 0) {
   1200 		return nand_flash_write_unaligned(self,
   1201 		    offset, len, retlen, buf);
   1202 	}
   1203 
   1204 	pages = len / chip->nc_page_size;
   1205 	KASSERT(pages != 0);
   1206 	*retlen = 0;
   1207 
   1208 	addr = offset;
   1209 	bufp = buf;
   1210 
   1211 	mutex_enter(&sc->sc_device_lock);
   1212 	for (page = 0; page < pages; page++) {
   1213 		/* do we need this check here? */
   1214 		if (nand_isbad(self, addr)) {
   1215 			aprint_error_dev(self,
   1216 			    "nand_flash_write: bad block encountered\n");
   1217 
   1218 			error = EIO;
   1219 			goto out;
   1220 		}
   1221 
   1222 		error = nand_program_page(self, addr, bufp);
   1223 		if (error) {
   1224 			goto out;
   1225 		}
   1226 
   1227 		addr += chip->nc_page_size;
   1228 		bufp += chip->nc_page_size;
   1229 		*retlen += chip->nc_page_size;
   1230 	}
   1231 out:
   1232 	mutex_exit(&sc->sc_device_lock);
   1233 	DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
   1234 
   1235 	return error;
   1236 }
   1237 
   1238 /*
   1239  * handle (page) unaligned read from nand
   1240  */
   1241 static int
   1242 nand_flash_read_unaligned(device_t self, size_t offset,
   1243     size_t len, size_t *retlen, uint8_t *buf)
   1244 {
   1245 	struct nand_softc *sc = device_private(self);
   1246 	struct nand_chip *chip = &sc->sc_chip;
   1247 	daddr_t first, last, count, firstoff;
   1248 	uint8_t *bufp;
   1249 	daddr_t addr;
   1250 	size_t left;
   1251 	int error = 0, i;
   1252 
   1253 	first = offset & chip->nc_page_mask;
   1254 	firstoff = offset & ~chip->nc_page_mask;
   1255 	last = (offset + len) & chip->nc_page_mask;
   1256 	count = (last - first) / chip->nc_page_size + 1;
   1257 
   1258 	addr = first;
   1259 	bufp = buf;
   1260 	left = len;
   1261 	*retlen = 0;
   1262 
   1263 	mutex_enter(&sc->sc_device_lock);
   1264 	if (count == 1) {
   1265 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1266 		if (error) {
   1267 			goto out;
   1268 		}
   1269 
   1270 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
   1271 
   1272 		*retlen = len;
   1273 		goto out;
   1274 	}
   1275 
   1276 	for (i = 0; i < count && left != 0; i++) {
   1277 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1278 		if (error) {
   1279 			goto out;
   1280 		}
   1281 
   1282 		if (i == 0) {
   1283 			memcpy(bufp, chip->nc_page_cache + firstoff,
   1284 			    chip->nc_page_size - firstoff);
   1285 
   1286 			bufp += chip->nc_page_size - firstoff;
   1287 			left -= chip->nc_page_size - firstoff;
   1288 			*retlen += chip->nc_page_size - firstoff;
   1289 
   1290 		} else if (i == count - 1) {
   1291 			memcpy(bufp, chip->nc_page_cache, left);
   1292 			*retlen += left;
   1293 			KASSERT(left < chip->nc_page_size);
   1294 
   1295 		} else {
   1296 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
   1297 
   1298 			bufp += chip->nc_page_size;
   1299 			left -= chip->nc_page_size;
   1300 			*retlen += chip->nc_page_size;
   1301 		}
   1302 
   1303 		addr += chip->nc_page_size;
   1304 	}
   1305 	KASSERT(*retlen == len);
   1306 out:
   1307 	mutex_exit(&sc->sc_device_lock);
   1308 
   1309 	return error;
   1310 }
   1311 
   1312 int
   1313 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1314     uint8_t *buf)
   1315 {
   1316 	struct nand_softc *sc = device_private(self);
   1317 	struct nand_chip *chip = &sc->sc_chip;
   1318 	uint8_t *bufp;
   1319 	size_t addr;
   1320 	size_t i, pages;
   1321 	int error = 0;
   1322 
   1323 	*retlen = 0;
   1324 
   1325 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
   1326 		(uintmax_t)offset, len));
   1327 
   1328 	if (__predict_false((offset + len) > chip->nc_size)) {
   1329 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
   1330 			" is over device size (%ju)\n", (uintmax_t)offset,
   1331 			len, (uintmax_t)chip->nc_size));
   1332 		return EINVAL;
   1333 	}
   1334 
   1335 	/* Handle unaligned access, shouldnt be needed when using the
   1336 	 * block device, as strategy handles it, so only low level
   1337 	 * accesses will use this path
   1338 	 */
   1339 	/* XXX^2 */
   1340 #if 0
   1341 	if (len < chip->nc_page_size)
   1342 		panic("TODO page size is larger than read size");
   1343 #endif
   1344 
   1345 	if (len % chip->nc_page_size != 0 ||
   1346 	    offset % chip->nc_page_size != 0) {
   1347 		return nand_flash_read_unaligned(self,
   1348 		    offset, len, retlen, buf);
   1349 	}
   1350 
   1351 	bufp = buf;
   1352 	addr = offset;
   1353 	pages = len / chip->nc_page_size;
   1354 
   1355 	mutex_enter(&sc->sc_device_lock);
   1356 	for (i = 0; i < pages; i++) {
   1357 		/* XXX do we need this check here? */
   1358 		if (nand_isbad(self, addr)) {
   1359 			aprint_error_dev(self, "bad block encountered\n");
   1360 			error = EIO;
   1361 			goto out;
   1362 		}
   1363 		error = nand_read_page(self, addr, bufp);
   1364 		if (error)
   1365 			goto out;
   1366 
   1367 		bufp += chip->nc_page_size;
   1368 		addr += chip->nc_page_size;
   1369 		*retlen += chip->nc_page_size;
   1370 	}
   1371 out:
   1372 	mutex_exit(&sc->sc_device_lock);
   1373 
   1374 	return error;
   1375 }
   1376 
   1377 int
   1378 nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
   1379 {
   1380 	struct nand_softc *sc = device_private(self);
   1381 	struct nand_chip *chip = &sc->sc_chip;
   1382 	bool result;
   1383 
   1384 	if (ofs > chip->nc_size) {
   1385 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
   1386 			" device size (0x%jx)\n", (uintmax_t)ofs,
   1387 			(uintmax_t)chip->nc_size));
   1388 		return EINVAL;
   1389 	}
   1390 
   1391 	if (ofs % chip->nc_block_size != 0) {
   1392 		DPRINTF(("offset (0x%jx) is not a multiple of block size "
   1393 			"(%ju)",
   1394 			(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
   1395 		return EINVAL;
   1396 	}
   1397 
   1398 	mutex_enter(&sc->sc_device_lock);
   1399 	result = nand_isbad(self, ofs);
   1400 	mutex_exit(&sc->sc_device_lock);
   1401 
   1402 	*is_bad = result;
   1403 
   1404 	return 0;
   1405 }
   1406 
   1407 int
   1408 nand_flash_markbad(device_t self, flash_off_t ofs)
   1409 {
   1410 	struct nand_softc *sc = device_private(self);
   1411 	struct nand_chip *chip = &sc->sc_chip;
   1412 
   1413 	if (ofs > chip->nc_size) {
   1414 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
   1415 			" device size (0x%jx)\n", ofs,
   1416 			(uintmax_t)chip->nc_size));
   1417 		return EINVAL;
   1418 	}
   1419 
   1420 	if (ofs % chip->nc_block_size != 0) {
   1421 		panic("offset (%ju) is not a multiple of block size (%ju)",
   1422 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
   1423 	}
   1424 
   1425 	mutex_enter(&sc->sc_device_lock);
   1426 	nand_markbad(self, ofs);
   1427 	mutex_exit(&sc->sc_device_lock);
   1428 
   1429 	return 0;
   1430 }
   1431 
   1432 int
   1433 nand_flash_erase(device_t self,
   1434     struct flash_erase_instruction *ei)
   1435 {
   1436 	struct nand_softc *sc = device_private(self);
   1437 	struct nand_chip *chip = &sc->sc_chip;
   1438 	flash_off_t addr;
   1439 	int error = 0;
   1440 
   1441 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
   1442 		return EINVAL;
   1443 
   1444 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
   1445 		DPRINTF(("nand_flash_erase: erase address is over the end"
   1446 			" of the device\n"));
   1447 		return EINVAL;
   1448 	}
   1449 
   1450 	if (ei->ei_addr % chip->nc_block_size != 0) {
   1451 		aprint_error_dev(self,
   1452 		    "nand_flash_erase: ei_addr (%ju) is not"
   1453 		    " a multiple of block size (%ju)",
   1454 		    (uintmax_t)ei->ei_addr,
   1455 		    (uintmax_t)chip->nc_block_size);
   1456 		return EINVAL;
   1457 	}
   1458 
   1459 	if (ei->ei_len % chip->nc_block_size != 0) {
   1460 		aprint_error_dev(self,
   1461 		    "nand_flash_erase: ei_len (%ju) is not"
   1462 		    " a multiple of block size (%ju)",
   1463 		    (uintmax_t)ei->ei_len,
   1464 		    (uintmax_t)chip->nc_block_size);
   1465 		return EINVAL;
   1466 	}
   1467 
   1468 	mutex_enter(&sc->sc_device_lock);
   1469 	addr = ei->ei_addr;
   1470 	while (addr < ei->ei_addr + ei->ei_len) {
   1471 		if (nand_isbad(self, addr)) {
   1472 			aprint_error_dev(self, "bad block encountered\n");
   1473 			ei->ei_state = FLASH_ERASE_FAILED;
   1474 			error = EIO;
   1475 			goto out;
   1476 		}
   1477 
   1478 		error = nand_erase_block(self, addr);
   1479 		if (error) {
   1480 			ei->ei_state = FLASH_ERASE_FAILED;
   1481 			goto out;
   1482 		}
   1483 
   1484 		addr += chip->nc_block_size;
   1485 	}
   1486 	mutex_exit(&sc->sc_device_lock);
   1487 
   1488 	ei->ei_state = FLASH_ERASE_DONE;
   1489 	if (ei->ei_callback != NULL) {
   1490 		ei->ei_callback(ei);
   1491 	}
   1492 
   1493 	return 0;
   1494 out:
   1495 	mutex_exit(&sc->sc_device_lock);
   1496 
   1497 	return error;
   1498 }
   1499 
   1500 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
   1501 
   1502 #ifdef _MODULE
   1503 #include "ioconf.c"
   1504 #endif
   1505 
   1506 static int
   1507 nand_modcmd(modcmd_t cmd, void *opaque)
   1508 {
   1509 	switch (cmd) {
   1510 	case MODULE_CMD_INIT:
   1511 #ifdef _MODULE
   1512 		return config_init_component(cfdriver_ioconf_nand,
   1513 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1514 #else
   1515 		return 0;
   1516 #endif
   1517 	case MODULE_CMD_FINI:
   1518 #ifdef _MODULE
   1519 		return config_fini_component(cfdriver_ioconf_nand,
   1520 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1521 #else
   1522 		return 0;
   1523 #endif
   1524 	default:
   1525 		return ENOTTY;
   1526 	}
   1527 }
   1528