Home | History | Annotate | Line # | Download | only in nand
nand.c revision 1.18
      1 /*	$NetBSD: nand.c,v 1.18 2012/10/31 18:58:08 riz Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010 Department of Software Engineering,
      5  *		      University of Szeged, Hungary
      6  * Copyright (c) 2010 Adam Hoka <ahoka (at) NetBSD.org>
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by the Department of Software Engineering, University of Szeged, Hungary
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.18 2012/10/31 18:58:08 riz Exp $");
     38 
     39 #include "locators.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 #include <sys/device.h>
     44 #include <sys/kmem.h>
     45 #include <sys/atomic.h>
     46 
     47 #include <dev/flash/flash.h>
     48 #include <dev/flash/flash_io.h>
     49 #include <dev/nand/nand.h>
     50 #include <dev/nand/onfi.h>
     51 #include <dev/nand/hamming.h>
     52 #include <dev/nand/nand_bbt.h>
     53 #include <dev/nand/nand_crc.h>
     54 
     55 #include "opt_nand.h"
     56 
     57 int nand_match(device_t, cfdata_t, void *);
     58 void nand_attach(device_t, device_t, void *);
     59 int nand_detach(device_t, int);
     60 bool nand_shutdown(device_t, int);
     61 
     62 int nand_print(void *, const char *);
     63 
     64 static int nand_search(device_t, cfdata_t, const int *, void *);
     65 static void nand_address_row(device_t, size_t);
     66 static void nand_address_column(device_t, size_t, size_t);
     67 static int nand_fill_chip_structure(device_t, struct nand_chip *);
     68 static int nand_scan_media(device_t, struct nand_chip *);
     69 static bool nand_check_wp(device_t);
     70 
     71 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
     72     nand_match, nand_attach, nand_detach, NULL);
     73 
     74 #ifdef NAND_DEBUG
     75 int	nanddebug = NAND_DEBUG;
     76 #endif
     77 
     78 struct flash_interface nand_flash_if = {
     79 	.type = FLASH_TYPE_NAND,
     80 
     81 	.read = nand_flash_read,
     82 	.write = nand_flash_write,
     83 	.erase = nand_flash_erase,
     84 	.block_isbad = nand_flash_isbad,
     85 	.block_markbad = nand_flash_markbad,
     86 
     87 	.submit = nand_flash_submit
     88 };
     89 
     90 #ifdef NAND_VERBOSE
     91 const struct nand_manufacturer nand_mfrs[] = {
     92 	{ NAND_MFR_AMD,		"AMD" },
     93 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
     94 	{ NAND_MFR_RENESAS,	"Renesas" },
     95 	{ NAND_MFR_STMICRO,	"ST Micro" },
     96 	{ NAND_MFR_MICRON,	"Micron" },
     97 	{ NAND_MFR_NATIONAL,	"National" },
     98 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
     99 	{ NAND_MFR_HYNIX,	"Hynix" },
    100 	{ NAND_MFR_SAMSUNG,	"Samsung" },
    101 	{ NAND_MFR_UNKNOWN,	"Unknown" }
    102 };
    103 
    104 static const char *
    105 nand_midtoname(int id)
    106 {
    107 	int i;
    108 
    109 	for (i = 0; nand_mfrs[i].id != 0; i++) {
    110 		if (nand_mfrs[i].id == id)
    111 			return nand_mfrs[i].name;
    112 	}
    113 
    114 	KASSERT(nand_mfrs[i].id == 0);
    115 
    116 	return nand_mfrs[i].name;
    117 }
    118 #endif
    119 
    120 /* ARGSUSED */
    121 int
    122 nand_match(device_t parent, cfdata_t match, void *aux)
    123 {
    124 	/* pseudo device, always attaches */
    125 	return 1;
    126 }
    127 
    128 void
    129 nand_attach(device_t parent, device_t self, void *aux)
    130 {
    131 	struct nand_softc *sc = device_private(self);
    132 	struct nand_attach_args *naa = aux;
    133 	struct nand_chip *chip = &sc->sc_chip;
    134 
    135 	sc->sc_dev = self;
    136 	sc->controller_dev = parent;
    137 	sc->nand_if = naa->naa_nand_if;
    138 
    139 	aprint_naive("\n");
    140 
    141 	if (nand_check_wp(self)) {
    142 		aprint_error("NAND chip is write protected!\n");
    143 		return;
    144 	}
    145 
    146 	if (nand_scan_media(self, chip)) {
    147 		return;
    148 	}
    149 
    150 	nand_flash_if.erasesize = chip->nc_block_size;
    151 	nand_flash_if.page_size = chip->nc_page_size;
    152 	nand_flash_if.writesize = chip->nc_page_size;
    153 
    154 	/* allocate cache */
    155 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
    156 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
    157 
    158 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
    159 
    160 	if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
    161 		goto error;
    162 	}
    163 
    164 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
    165 		aprint_error_dev(sc->sc_dev,
    166 		    "couldn't establish power handler\n");
    167 
    168 #ifdef NAND_BBT
    169 	nand_bbt_init(self);
    170 	nand_bbt_scan(self);
    171 #endif
    172 
    173 	/*
    174 	 * Attach all our devices
    175 	 */
    176 	config_search_ia(nand_search, self, NULL, NULL);
    177 
    178 	return;
    179 error:
    180 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    181 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    182 	mutex_destroy(&sc->sc_device_lock);
    183 }
    184 
    185 static int
    186 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
    187 {
    188 	struct nand_softc *sc = device_private(parent);
    189 	struct nand_chip *chip = &sc->sc_chip;
    190 	struct flash_attach_args faa;
    191 
    192 	faa.flash_if = &nand_flash_if;
    193 
    194 	faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
    195 
    196 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
    197 		faa.partinfo.part_size = chip->nc_size -
    198 		    faa.partinfo.part_offset;
    199 	} else {
    200 		faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
    201 	}
    202 
    203 	if (cf->cf_loc[FLASHBUSCF_READONLY])
    204 		faa.partinfo.part_flags = FLASH_PART_READONLY;
    205 	else
    206 		faa.partinfo.part_flags = 0;
    207 
    208 	if (config_match(parent, cf, &faa)) {
    209 		if (config_attach(parent, cf, &faa, nand_print) != NULL) {
    210 			return 0;
    211 		} else {
    212 			return 1;
    213 		}
    214 	}
    215 
    216 	return 1;
    217 }
    218 
    219 int
    220 nand_detach(device_t self, int flags)
    221 {
    222 	struct nand_softc *sc = device_private(self);
    223 	struct nand_chip *chip = &sc->sc_chip;
    224 	int error = 0;
    225 
    226 	error = config_detach_children(self, flags);
    227 	if (error) {
    228 		return error;
    229 	}
    230 
    231 	flash_sync_thread_destroy(&sc->sc_flash_io);
    232 #ifdef NAND_BBT
    233 	nand_bbt_detach(self);
    234 #endif
    235 	/* free oob cache */
    236 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
    237 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
    238 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
    239 
    240 	mutex_destroy(&sc->sc_device_lock);
    241 
    242 	pmf_device_deregister(sc->sc_dev);
    243 
    244 	return error;
    245 }
    246 
    247 int
    248 nand_print(void *aux, const char *pnp)
    249 {
    250 	if (pnp != NULL)
    251 		aprint_normal("nand at %s\n", pnp);
    252 
    253 	return UNCONF;
    254 }
    255 
    256 /* ask for a nand driver to attach to the controller */
    257 device_t
    258 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
    259 {
    260 	struct nand_attach_args arg;
    261 
    262 	KASSERT(nand_if != NULL);
    263 
    264 	/* fill the defaults if we have null pointers */
    265 	if (nand_if->program_page == NULL) {
    266 		nand_if->program_page = &nand_default_program_page;
    267 	}
    268 
    269 	if (nand_if->read_page == NULL) {
    270 		nand_if->read_page = &nand_default_read_page;
    271 	}
    272 
    273 	arg.naa_nand_if = nand_if;
    274 	return config_found_ia(parent, "nandbus", &arg, nand_print);
    275 }
    276 
    277 /* default everything to reasonable values, to ease future api changes */
    278 void
    279 nand_init_interface(struct nand_interface *interface)
    280 {
    281 	interface->select = &nand_default_select;
    282 	interface->command = NULL;
    283 	interface->address = NULL;
    284 	interface->read_buf_1 = NULL;
    285 	interface->read_buf_2 = NULL;
    286 	interface->read_1 = NULL;
    287 	interface->read_2 = NULL;
    288 	interface->write_buf_1 = NULL;
    289 	interface->write_buf_2 = NULL;
    290 	interface->write_1 = NULL;
    291 	interface->write_2 = NULL;
    292 	interface->busy = NULL;
    293 
    294 	/*-
    295 	 * most drivers dont want to change this, but some implement
    296 	 * read/program in one step
    297 	 */
    298 	interface->program_page = &nand_default_program_page;
    299 	interface->read_page = &nand_default_read_page;
    300 
    301 	/* default to soft ecc, that should work everywhere */
    302 	interface->ecc_compute = &nand_default_ecc_compute;
    303 	interface->ecc_correct = &nand_default_ecc_correct;
    304 	interface->ecc_prepare = NULL;
    305 	interface->ecc.necc_code_size = 3;
    306 	interface->ecc.necc_block_size = 256;
    307 	interface->ecc.necc_type = NAND_ECC_TYPE_SW;
    308 }
    309 
    310 #if 0
    311 /* handle quirks here */
    312 static void
    313 nand_quirks(device_t self, struct nand_chip *chip)
    314 {
    315 	/* this is an example only! */
    316 	switch (chip->nc_manf_id) {
    317 	case NAND_MFR_SAMSUNG:
    318 		if (chip->nc_dev_id == 0x00) {
    319 			/* do something only samsung chips need */
    320 			/* or */
    321 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
    322 		}
    323 	}
    324 
    325 	return;
    326 }
    327 #endif
    328 
    329 static int
    330 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
    331 {
    332 	switch (chip->nc_manf_id) {
    333 	case NAND_MFR_MICRON:
    334 		return nand_read_parameters_micron(self, chip);
    335 	case NAND_MFR_SAMSUNG:
    336 		return nand_read_parameters_samsung(self, chip);
    337 	default:
    338 		return 1;
    339 	}
    340 
    341 	return 0;
    342 }
    343 
    344 /**
    345  * scan media to determine the chip's properties
    346  * this function resets the device
    347  */
    348 static int
    349 nand_scan_media(device_t self, struct nand_chip *chip)
    350 {
    351 	struct nand_softc *sc = device_private(self);
    352 	struct nand_ecc *ecc;
    353 	uint8_t onfi_signature[4];
    354 
    355 	nand_select(self, true);
    356 	nand_command(self, ONFI_RESET);
    357 	nand_select(self, false);
    358 
    359 	/* check if the device implements the ONFI standard */
    360 	nand_select(self, true);
    361 	nand_command(self, ONFI_READ_ID);
    362 	nand_address(self, 0x20);
    363 	nand_read_1(self, &onfi_signature[0]);
    364 	nand_read_1(self, &onfi_signature[1]);
    365 	nand_read_1(self, &onfi_signature[2]);
    366 	nand_read_1(self, &onfi_signature[3]);
    367 	nand_select(self, false);
    368 
    369 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
    370 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
    371 		chip->nc_isonfi = false;
    372 
    373 		aprint_normal(": Legacy NAND Flash\n");
    374 
    375 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    376 
    377 		if (nand_fill_chip_structure_legacy(self, chip)) {
    378 			aprint_error_dev(self,
    379 			    "can't read device parameters for legacy chip\n");
    380 			return 1;
    381 		}
    382 	} else {
    383 		chip->nc_isonfi = true;
    384 
    385 		aprint_normal(": ONFI NAND Flash\n");
    386 
    387 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
    388 
    389 		if (nand_fill_chip_structure(self, chip)) {
    390 			aprint_error_dev(self,
    391 			    "can't read device parameters\n");
    392 			return 1;
    393 		}
    394 	}
    395 
    396 #ifdef NAND_VERBOSE
    397 	aprint_normal_dev(self,
    398 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
    399 	    chip->nc_manf_id,
    400 	    nand_midtoname(chip->nc_manf_id),
    401 	    chip->nc_dev_id);
    402 #endif
    403 
    404 	aprint_normal_dev(self,
    405 	    "page size: %zu bytes, spare size: %zu bytes, "
    406 	    "block size: %zu bytes\n",
    407 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
    408 
    409 	aprint_normal_dev(self,
    410 	    "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
    411 	    ", total storage size: %zu MB\n",
    412 	    chip->nc_lun_blocks, chip->nc_num_luns,
    413 	    chip->nc_size / 1024 / 1024);
    414 
    415 #ifdef NAND_VERBOSE
    416 	aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
    417 	    PRIu8 "\n",
    418 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
    419 #endif
    420 
    421 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
    422 
    423 	/*
    424 	 * calculate the place of ecc data in oob
    425 	 * we try to be compatible with Linux here
    426 	 */
    427 	switch (chip->nc_spare_size) {
    428 	case 8:
    429 		ecc->necc_offset = 0;
    430 		break;
    431 	case 16:
    432 		ecc->necc_offset = 0;
    433 		break;
    434 	case 32:
    435 		ecc->necc_offset = 0;
    436 		break;
    437 	case 64:
    438 		ecc->necc_offset = 40;
    439 		break;
    440 	case 128:
    441 		ecc->necc_offset = 80;
    442 		break;
    443 	default:
    444 		panic("OOB size %zu is unexpected", chip->nc_spare_size);
    445 	}
    446 
    447 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
    448 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
    449 
    450 	/* check if we fit in oob */
    451 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
    452 		panic("NAND ECC bits dont fit in OOB");
    453 	}
    454 
    455 	/* TODO: mark free oob area available for file systems */
    456 
    457 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
    458 
    459 	/*
    460 	 * calculate badblock marker offset in oob
    461 	 * we try to be compatible with linux here
    462 	 */
    463 	if (chip->nc_page_size > 512)
    464 		chip->nc_badmarker_offs = 0;
    465 	else
    466 		chip->nc_badmarker_offs = 5;
    467 
    468 	/* Calculate page shift and mask */
    469 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
    470 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
    471 	/* same for block */
    472 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
    473 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
    474 
    475 	/* look for quirks here if needed in future */
    476 	/* nand_quirks(self, chip); */
    477 
    478 	return 0;
    479 }
    480 
    481 void
    482 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
    483 {
    484 	nand_select(self, true);
    485 	nand_command(self, ONFI_READ_ID);
    486 	nand_address(self, 0x00);
    487 
    488 	nand_read_1(self, manf);
    489 	nand_read_1(self, dev);
    490 
    491 	nand_select(self, false);
    492 }
    493 
    494 int
    495 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
    496 {
    497 	uint8_t *bufp;
    498 	uint16_t crc;
    499 	int i;//, tries = 0;
    500 
    501 	KASSERT(sizeof(*params) == 256);
    502 
    503 //read_params:
    504 //	tries++;
    505 
    506 	nand_select(self, true);
    507 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
    508 	nand_address(self, 0x00);
    509 
    510 	nand_busy(self);
    511 
    512 	/* TODO check the signature if it contains at least 2 letters */
    513 
    514 	bufp = (uint8_t *)params;
    515 	/* XXX why i am not using read_buf? */
    516 	for (i = 0; i < 256; i++) {
    517 		nand_read_1(self, &bufp[i]);
    518 	}
    519 	nand_select(self, false);
    520 
    521 	/* validate the parameter page with the crc */
    522 	crc = nand_crc16(bufp, 254);
    523 
    524 	if (crc != params->param_integrity_crc) {
    525 		aprint_error_dev(self, "parameter page crc check failed\n");
    526 		/* TODO: we should read the next parameter page copy */
    527 		return 1;
    528 	}
    529 
    530 	return 0;
    531 }
    532 
    533 static int
    534 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
    535 {
    536 	struct onfi_parameter_page params;
    537 	uint8_t	vendor[13], model[21];
    538 	int i;
    539 
    540 	if (nand_read_parameter_page(self, &params)) {
    541 		return 1;
    542 	}
    543 
    544 	/* strip manufacturer and model string */
    545 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
    546 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
    547 		vendor[i] = 0;
    548 	strlcpy(model, params.param_model, sizeof(model));
    549 	for (i = 19; i > 0 && model[i] == ' '; i--)
    550 		model[i] = 0;
    551 
    552 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
    553 
    554 	/* XXX TODO multiple LUNs */
    555 	if (params.param_numluns != 1) {
    556 		aprint_error_dev(self,
    557 		    "more than one LUNs are not supported yet!\n");
    558 
    559 		return 1;
    560 	}
    561 
    562 	chip->nc_size = params.param_pagesize * params.param_blocksize *
    563 	    params.param_lunsize * params.param_numluns;
    564 
    565 	chip->nc_page_size = params.param_pagesize;
    566 	chip->nc_block_pages = params.param_blocksize;
    567 	chip->nc_block_size = params.param_blocksize * params.param_pagesize;
    568 	chip->nc_spare_size = params.param_sparesize;
    569 	chip->nc_lun_blocks = params.param_lunsize;
    570 	chip->nc_num_luns = params.param_numluns;
    571 
    572 	/* the lower 4 bits contain the row address cycles */
    573 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
    574 	/* the upper 4 bits contain the column address cycles */
    575 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
    576 
    577 	if (params.param_features & ONFI_FEATURE_16BIT)
    578 		chip->nc_flags |= NC_BUSWIDTH_16;
    579 
    580 	if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
    581 		chip->nc_flags |= NC_EXTENDED_PARAM;
    582 
    583 	return 0;
    584 }
    585 
    586 /* ARGSUSED */
    587 bool
    588 nand_shutdown(device_t self, int howto)
    589 {
    590 	return true;
    591 }
    592 
    593 static void
    594 nand_address_column(device_t self, size_t row, size_t column)
    595 {
    596 	struct nand_softc *sc = device_private(self);
    597 	struct nand_chip *chip = &sc->sc_chip;
    598 	uint8_t i;
    599 
    600 	DPRINTF(("addressing row: 0x%jx column: %zu\n",
    601 		(uintmax_t )row, column));
    602 
    603 	/* XXX TODO */
    604 	row >>= chip->nc_page_shift;
    605 
    606 	/* Write the column (subpage) address */
    607 	if (chip->nc_flags & NC_BUSWIDTH_16)
    608 		column >>= 1;
    609 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
    610 		nand_address(self, column & 0xff);
    611 
    612 	/* Write the row (page) address */
    613 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    614 		nand_address(self, row & 0xff);
    615 }
    616 
    617 static void
    618 nand_address_row(device_t self, size_t row)
    619 {
    620 	struct nand_softc *sc = device_private(self);
    621 	struct nand_chip *chip = &sc->sc_chip;
    622 	int i;
    623 
    624 	/* XXX TODO */
    625 	row >>= chip->nc_page_shift;
    626 
    627 	/* Write the row (page) address */
    628 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
    629 		nand_address(self, row & 0xff);
    630 }
    631 
    632 static inline uint8_t
    633 nand_get_status(device_t self)
    634 {
    635 	uint8_t status;
    636 
    637 	nand_command(self, ONFI_READ_STATUS);
    638 	nand_busy(self);
    639 	nand_read_1(self, &status);
    640 
    641 	return status;
    642 }
    643 
    644 static bool
    645 nand_check_wp(device_t self)
    646 {
    647 	if (nand_get_status(self) & 0x80)
    648 		return false;
    649 	else
    650 		return true;
    651 }
    652 
    653 static void
    654 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
    655 {
    656 	nand_command(self, ONFI_READ);
    657 	nand_address_column(self, row, column);
    658 	nand_command(self, ONFI_READ_START);
    659 
    660 	nand_busy(self);
    661 }
    662 
    663 /* read a page with ecc correction, default implementation */
    664 int
    665 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
    666 {
    667 	struct nand_softc *sc = device_private(self);
    668 	struct nand_chip *chip = &sc->sc_chip;
    669 	size_t b, bs, e, cs;
    670 	uint8_t *ecc;
    671 	int result;
    672 
    673 	nand_prepare_read(self, offset, 0);
    674 
    675 	bs = chip->nc_ecc->necc_block_size;
    676 	cs = chip->nc_ecc->necc_code_size;
    677 
    678 	/* decide if we access by 8 or 16 bits */
    679 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    680 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    681 			nand_ecc_prepare(self, NAND_ECC_READ);
    682 			nand_read_buf_2(self, data + b, bs);
    683 			nand_ecc_compute(self, data + b,
    684 			    chip->nc_ecc_cache + e);
    685 		}
    686 	} else {
    687 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    688 			nand_ecc_prepare(self, NAND_ECC_READ);
    689 			nand_read_buf_1(self, data + b, bs);
    690 			nand_ecc_compute(self, data + b,
    691 			    chip->nc_ecc_cache + e);
    692 		}
    693 	}
    694 
    695 	/* for debugging new drivers */
    696 #if 0
    697 	nand_dump_data("page", data, chip->nc_page_size);
    698 #endif
    699 
    700 	nand_read_oob(self, offset, chip->nc_oob_cache);
    701 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    702 
    703 	/* useful for debugging new ecc drivers */
    704 #if 0
    705 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    706 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    707 		printf("0x");
    708 		for (b = 0; b < cs; b++) {
    709 			printf("%.2hhx", ecc[e+b]);
    710 		}
    711 		printf(" 0x");
    712 		for (b = 0; b < cs; b++) {
    713 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
    714 		}
    715 		printf("\n");
    716 	}
    717 	printf("--------------\n");
    718 #endif
    719 
    720 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    721 		result = nand_ecc_correct(self, data + b, ecc + e,
    722 		    chip->nc_ecc_cache + e);
    723 
    724 		switch (result) {
    725 		case NAND_ECC_OK:
    726 			break;
    727 		case NAND_ECC_CORRECTED:
    728 			aprint_error_dev(self,
    729 			    "data corrected with ECC at page offset 0x%jx "
    730 			    "block %zu\n", (uintmax_t)offset, b);
    731 			break;
    732 		case NAND_ECC_TWOBIT:
    733 			aprint_error_dev(self,
    734 			    "uncorrectable ECC error at page offset 0x%jx "
    735 			    "block %zu\n", (uintmax_t)offset, b);
    736 			return EIO;
    737 			break;
    738 		case NAND_ECC_INVALID:
    739 			aprint_error_dev(self,
    740 			    "invalid ECC in oob at page offset 0x%jx "
    741 			    "block %zu\n", (uintmax_t)offset, b);
    742 			return EIO;
    743 			break;
    744 		default:
    745 			panic("invalid ECC correction errno");
    746 		}
    747 	}
    748 
    749 	return 0;
    750 }
    751 
    752 int
    753 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
    754 {
    755 	struct nand_softc *sc = device_private(self);
    756 	struct nand_chip *chip = &sc->sc_chip;
    757 	size_t bs, cs, e, b;
    758 	uint8_t status;
    759 	uint8_t *ecc;
    760 
    761 	nand_command(self, ONFI_PAGE_PROGRAM);
    762 	nand_address_column(self, page, 0);
    763 
    764 	nand_busy(self);
    765 
    766 	bs = chip->nc_ecc->necc_block_size;
    767 	cs = chip->nc_ecc->necc_code_size;
    768 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
    769 
    770 	/* XXX code duplication */
    771 	/* decide if we access by 8 or 16 bits */
    772 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    773 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    774 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    775 			nand_write_buf_2(self, data + b, bs);
    776 			nand_ecc_compute(self, data + b, ecc + e);
    777 		}
    778 		/* write oob with ecc correction code */
    779 		nand_write_buf_2(self, chip->nc_oob_cache,
    780 		    chip->nc_spare_size);
    781 	} else {
    782 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
    783 			nand_ecc_prepare(self, NAND_ECC_WRITE);
    784 			nand_write_buf_1(self, data + b, bs);
    785 			nand_ecc_compute(self, data + b, ecc + e);
    786 		}
    787 		/* write oob with ecc correction code */
    788 		nand_write_buf_1(self, chip->nc_oob_cache,
    789 		    chip->nc_spare_size);
    790 	}
    791 
    792 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    793 
    794 	nand_busy(self);
    795 
    796 	/* for debugging ecc */
    797 #if 0
    798 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
    799 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
    800 		printf("0x");
    801 		for (b = 0; b < cs; b++) {
    802 			printf("%.2hhx", ecc[e+b]);
    803 		}
    804 		printf("\n");
    805 	}
    806 	printf("--------------\n");
    807 #endif
    808 
    809 	status = nand_get_status(self);
    810 	KASSERT(status & ONFI_STATUS_RDY);
    811 	if (status & ONFI_STATUS_FAIL) {
    812 		aprint_error_dev(self, "page program failed!\n");
    813 		return EIO;
    814 	}
    815 
    816 	return 0;
    817 }
    818 
    819 /* read the OOB of a page */
    820 int
    821 nand_read_oob(device_t self, size_t page, uint8_t *oob)
    822 {
    823 	struct nand_softc *sc = device_private(self);
    824 	struct nand_chip *chip = &sc->sc_chip;
    825 
    826 	nand_prepare_read(self, page, chip->nc_page_size);
    827 
    828 	if (chip->nc_flags & NC_BUSWIDTH_16)
    829 		nand_read_buf_2(self, oob, chip->nc_spare_size);
    830 	else
    831 		nand_read_buf_1(self, oob, chip->nc_spare_size);
    832 
    833 	/* for debugging drivers */
    834 #if 0
    835 	nand_dump_data("oob", oob, chip->nc_spare_size);
    836 #endif
    837 
    838 	return 0;
    839 }
    840 
    841 static int
    842 nand_write_oob(device_t self, size_t offset, const void *oob)
    843 {
    844 	struct nand_softc *sc = device_private(self);
    845 	struct nand_chip *chip = &sc->sc_chip;
    846 	uint8_t status;
    847 
    848 	nand_command(self, ONFI_PAGE_PROGRAM);
    849 	nand_address_column(self, offset, chip->nc_page_size);
    850 	nand_command(self, ONFI_PAGE_PROGRAM_START);
    851 
    852 	nand_busy(self);
    853 
    854 	if (chip->nc_flags & NC_BUSWIDTH_16)
    855 		nand_write_buf_2(self, oob, chip->nc_spare_size);
    856 	else
    857 		nand_write_buf_1(self, oob, chip->nc_spare_size);
    858 
    859 	status = nand_get_status(self);
    860 	KASSERT(status & ONFI_STATUS_RDY);
    861 	if (status & ONFI_STATUS_FAIL)
    862 		return EIO;
    863 	else
    864 		return 0;
    865 }
    866 
    867 void
    868 nand_markbad(device_t self, size_t offset)
    869 {
    870 	struct nand_softc *sc = device_private(self);
    871 	struct nand_chip *chip = &sc->sc_chip;
    872 	flash_off_t blockoffset, marker;
    873 #ifdef NAND_BBT
    874 	flash_off_t block;
    875 
    876 	block = offset / chip->nc_block_size;
    877 
    878 	nand_bbt_block_markbad(self, block);
    879 #endif
    880 	blockoffset = offset & chip->nc_block_mask;
    881 	marker = chip->nc_badmarker_offs & ~0x01;
    882 
    883 	/* check if it is already marked bad */
    884 	if (nand_isbad(self, blockoffset))
    885 		return;
    886 
    887 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
    888 
    889 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
    890 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
    891 
    892 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
    893 }
    894 
    895 bool
    896 nand_isfactorybad(device_t self, flash_off_t offset)
    897 {
    898 	struct nand_softc *sc = device_private(self);
    899 	struct nand_chip *chip = &sc->sc_chip;
    900 	flash_off_t block, first_page, last_page, page;
    901 	int i;
    902 
    903 	/* Check for factory bad blocks first
    904 	 * Factory bad blocks are marked in the first or last
    905 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
    906 	 */
    907 	block = offset / chip->nc_block_size;
    908 	first_page = block * chip->nc_block_size;
    909 	last_page = (block + 1) * chip->nc_block_size
    910 	    - chip->nc_page_size;
    911 
    912 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
    913 		/* address OOB */
    914 		nand_prepare_read(self, page, chip->nc_page_size);
    915 
    916 		if (chip->nc_flags & NC_BUSWIDTH_16) {
    917 			uint16_t word;
    918 			nand_read_2(self, &word);
    919 			if (word == 0x0000)
    920 				return true;
    921 		} else {
    922 			uint8_t byte;
    923 			nand_read_1(self, &byte);
    924 			if (byte == 0x00)
    925 				return true;
    926 		}
    927 	}
    928 
    929 	return false;
    930 }
    931 
    932 bool
    933 nand_iswornoutbad(device_t self, flash_off_t offset)
    934 {
    935 	struct nand_softc *sc = device_private(self);
    936 	struct nand_chip *chip = &sc->sc_chip;
    937 	flash_off_t block;
    938 
    939 	/* we inspect the first page of the block */
    940 	block = offset & chip->nc_block_mask;
    941 
    942 	/* Linux/u-boot compatible badblock handling */
    943 	if (chip->nc_flags & NC_BUSWIDTH_16) {
    944 		uint16_t word, mark;
    945 
    946 		nand_prepare_read(self, block,
    947 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
    948 
    949 		nand_read_2(self, &word);
    950 		mark = htole16(word);
    951 		if (chip->nc_badmarker_offs & 0x01)
    952 			mark >>= 8;
    953 		if ((mark & 0xff) != 0xff)
    954 			return true;
    955 	} else {
    956 		uint8_t byte;
    957 
    958 		nand_prepare_read(self, block,
    959 		    chip->nc_page_size + chip->nc_badmarker_offs);
    960 
    961 		nand_read_1(self, &byte);
    962 		if (byte != 0xff)
    963 			return true;
    964 	}
    965 
    966 	return false;
    967 }
    968 
    969 bool
    970 nand_isbad(device_t self, flash_off_t offset)
    971 {
    972 #ifdef NAND_BBT
    973 	struct nand_softc *sc = device_private(self);
    974 	struct nand_chip *chip = &sc->sc_chip;
    975 	flash_off_t block;
    976 
    977 	block = offset / chip->nc_block_size;
    978 
    979 	return nand_bbt_block_isbad(self, block);
    980 #else
    981 	/* ONFI host requirement */
    982 	if (nand_isfactorybad(self, offset))
    983 		return true;
    984 
    985 	/* Look for Linux/U-Boot compatible bad marker */
    986 	if (nand_iswornoutbad(self, offset))
    987 		return true;
    988 
    989 	return false;
    990 #endif
    991 }
    992 
    993 int
    994 nand_erase_block(device_t self, size_t offset)
    995 {
    996 	uint8_t status;
    997 
    998 	/* xxx calculate first page of block for address? */
    999 
   1000 	nand_command(self, ONFI_BLOCK_ERASE);
   1001 	nand_address_row(self, offset);
   1002 	nand_command(self, ONFI_BLOCK_ERASE_START);
   1003 
   1004 	nand_busy(self);
   1005 
   1006 	status = nand_get_status(self);
   1007 	KASSERT(status & ONFI_STATUS_RDY);
   1008 	if (status & ONFI_STATUS_FAIL) {
   1009 		aprint_error_dev(self, "block erase failed!\n");
   1010 		nand_markbad(self, offset);
   1011 		return EIO;
   1012 	} else {
   1013 		return 0;
   1014 	}
   1015 }
   1016 
   1017 /* default functions for driver development */
   1018 
   1019 /* default ECC using hamming code of 256 byte chunks */
   1020 int
   1021 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
   1022 {
   1023 	hamming_compute_256(data, code);
   1024 
   1025 	return 0;
   1026 }
   1027 
   1028 int
   1029 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
   1030 	const uint8_t *compcode)
   1031 {
   1032 	return hamming_correct_256(data, origcode, compcode);
   1033 }
   1034 
   1035 void
   1036 nand_default_select(device_t self, bool enable)
   1037 {
   1038 	/* do nothing */
   1039 	return;
   1040 }
   1041 
   1042 /* implementation of the block device API */
   1043 
   1044 int
   1045 nand_flash_submit(device_t self, struct buf * const bp)
   1046 {
   1047 	struct nand_softc *sc = device_private(self);
   1048 
   1049 	return flash_io_submit(&sc->sc_flash_io, bp);
   1050 }
   1051 
   1052 /*
   1053  * handle (page) unaligned write to nand
   1054  */
   1055 static int
   1056 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
   1057     size_t *retlen, const uint8_t *buf)
   1058 {
   1059 	struct nand_softc *sc = device_private(self);
   1060 	struct nand_chip *chip = &sc->sc_chip;
   1061 	flash_off_t first, last, firstoff;
   1062 	const uint8_t *bufp;
   1063 	flash_off_t addr;
   1064 	size_t left, count;
   1065 	int error = 0, i;
   1066 
   1067 	first = offset & chip->nc_page_mask;
   1068 	firstoff = offset & ~chip->nc_page_mask;
   1069 	/* XXX check if this should be len - 1 */
   1070 	last = (offset + len) & chip->nc_page_mask;
   1071 	count = last - first + 1;
   1072 
   1073 	addr = first;
   1074 	*retlen = 0;
   1075 
   1076 	mutex_enter(&sc->sc_device_lock);
   1077 	if (count == 1) {
   1078 		if (nand_isbad(self, addr)) {
   1079 			aprint_error_dev(self,
   1080 			    "nand_flash_write_unaligned: "
   1081 			    "bad block encountered\n");
   1082 			error = EIO;
   1083 			goto out;
   1084 		}
   1085 
   1086 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1087 		if (error) {
   1088 			goto out;
   1089 		}
   1090 
   1091 		memcpy(chip->nc_page_cache + firstoff, buf, len);
   1092 
   1093 		error = nand_program_page(self, addr, chip->nc_page_cache);
   1094 		if (error) {
   1095 			goto out;
   1096 		}
   1097 
   1098 		*retlen = len;
   1099 		goto out;
   1100 	}
   1101 
   1102 	bufp = buf;
   1103 	left = len;
   1104 
   1105 	for (i = 0; i < count && left != 0; i++) {
   1106 		if (nand_isbad(self, addr)) {
   1107 			aprint_error_dev(self,
   1108 			    "nand_flash_write_unaligned: "
   1109 			    "bad block encountered\n");
   1110 			error = EIO;
   1111 			goto out;
   1112 		}
   1113 
   1114 		if (i == 0) {
   1115 			error = nand_read_page(self,
   1116 			    addr, chip->nc_page_cache);
   1117 			if (error) {
   1118 				goto out;
   1119 			}
   1120 
   1121 			memcpy(chip->nc_page_cache + firstoff,
   1122 			    bufp, chip->nc_page_size - firstoff);
   1123 
   1124 			printf("program page: %s: %d\n", __FILE__, __LINE__);
   1125 			error = nand_program_page(self,
   1126 			    addr, chip->nc_page_cache);
   1127 			if (error) {
   1128 				goto out;
   1129 			}
   1130 
   1131 			bufp += chip->nc_page_size - firstoff;
   1132 			left -= chip->nc_page_size - firstoff;
   1133 			*retlen += chip->nc_page_size - firstoff;
   1134 
   1135 		} else if (i == count - 1) {
   1136 			error = nand_read_page(self,
   1137 			    addr, chip->nc_page_cache);
   1138 			if (error) {
   1139 				goto out;
   1140 			}
   1141 
   1142 			memcpy(chip->nc_page_cache, bufp, left);
   1143 
   1144 			error = nand_program_page(self,
   1145 			    addr, chip->nc_page_cache);
   1146 			if (error) {
   1147 				goto out;
   1148 			}
   1149 
   1150 			*retlen += left;
   1151 			KASSERT(left < chip->nc_page_size);
   1152 
   1153 		} else {
   1154 			/* XXX debug */
   1155 			if (left > chip->nc_page_size) {
   1156 				printf("left: %zu, i: %d, count: %zu\n",
   1157 				    (size_t )left, i, count);
   1158 			}
   1159 			KASSERT(left > chip->nc_page_size);
   1160 
   1161 			error = nand_program_page(self, addr, bufp);
   1162 			if (error) {
   1163 				goto out;
   1164 			}
   1165 
   1166 			bufp += chip->nc_page_size;
   1167 			left -= chip->nc_page_size;
   1168 			*retlen += chip->nc_page_size;
   1169 		}
   1170 
   1171 		addr += chip->nc_page_size;
   1172 	}
   1173 
   1174 	KASSERT(*retlen == len);
   1175 out:
   1176 	mutex_exit(&sc->sc_device_lock);
   1177 
   1178 	return error;
   1179 }
   1180 
   1181 int
   1182 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1183     const uint8_t *buf)
   1184 {
   1185 	struct nand_softc *sc = device_private(self);
   1186 	struct nand_chip *chip = &sc->sc_chip;
   1187 	const uint8_t *bufp;
   1188 	size_t pages, page;
   1189 	daddr_t addr;
   1190 	int error = 0;
   1191 
   1192 	if ((offset + len) > chip->nc_size) {
   1193 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
   1194 			" is over device size (0x%jx)\n",
   1195 			(uintmax_t)offset, (uintmax_t)len,
   1196 			(uintmax_t)chip->nc_size));
   1197 		return EINVAL;
   1198 	}
   1199 
   1200 	if (len % chip->nc_page_size != 0 ||
   1201 	    offset % chip->nc_page_size != 0) {
   1202 		return nand_flash_write_unaligned(self,
   1203 		    offset, len, retlen, buf);
   1204 	}
   1205 
   1206 	pages = len / chip->nc_page_size;
   1207 	KASSERT(pages != 0);
   1208 	*retlen = 0;
   1209 
   1210 	addr = offset;
   1211 	bufp = buf;
   1212 
   1213 	mutex_enter(&sc->sc_device_lock);
   1214 	for (page = 0; page < pages; page++) {
   1215 		/* do we need this check here? */
   1216 		if (nand_isbad(self, addr)) {
   1217 			aprint_error_dev(self,
   1218 			    "nand_flash_write: bad block encountered\n");
   1219 
   1220 			error = EIO;
   1221 			goto out;
   1222 		}
   1223 
   1224 		error = nand_program_page(self, addr, bufp);
   1225 		if (error) {
   1226 			goto out;
   1227 		}
   1228 
   1229 		addr += chip->nc_page_size;
   1230 		bufp += chip->nc_page_size;
   1231 		*retlen += chip->nc_page_size;
   1232 	}
   1233 out:
   1234 	mutex_exit(&sc->sc_device_lock);
   1235 	DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
   1236 
   1237 	return error;
   1238 }
   1239 
   1240 /*
   1241  * handle (page) unaligned read from nand
   1242  */
   1243 static int
   1244 nand_flash_read_unaligned(device_t self, size_t offset,
   1245     size_t len, size_t *retlen, uint8_t *buf)
   1246 {
   1247 	struct nand_softc *sc = device_private(self);
   1248 	struct nand_chip *chip = &sc->sc_chip;
   1249 	daddr_t first, last, count, firstoff;
   1250 	uint8_t *bufp;
   1251 	daddr_t addr;
   1252 	size_t left;
   1253 	int error = 0, i;
   1254 
   1255 	first = offset & chip->nc_page_mask;
   1256 	firstoff = offset & ~chip->nc_page_mask;
   1257 	last = (offset + len) & chip->nc_page_mask;
   1258 	count = (last - first) / chip->nc_page_size + 1;
   1259 
   1260 	addr = first;
   1261 	bufp = buf;
   1262 	left = len;
   1263 	*retlen = 0;
   1264 
   1265 	mutex_enter(&sc->sc_device_lock);
   1266 	if (count == 1) {
   1267 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1268 		if (error) {
   1269 			goto out;
   1270 		}
   1271 
   1272 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
   1273 
   1274 		*retlen = len;
   1275 		goto out;
   1276 	}
   1277 
   1278 	for (i = 0; i < count && left != 0; i++) {
   1279 		error = nand_read_page(self, addr, chip->nc_page_cache);
   1280 		if (error) {
   1281 			goto out;
   1282 		}
   1283 
   1284 		if (i == 0) {
   1285 			memcpy(bufp, chip->nc_page_cache + firstoff,
   1286 			    chip->nc_page_size - firstoff);
   1287 
   1288 			bufp += chip->nc_page_size - firstoff;
   1289 			left -= chip->nc_page_size - firstoff;
   1290 			*retlen += chip->nc_page_size - firstoff;
   1291 
   1292 		} else if (i == count - 1) {
   1293 			memcpy(bufp, chip->nc_page_cache, left);
   1294 			*retlen += left;
   1295 			KASSERT(left < chip->nc_page_size);
   1296 
   1297 		} else {
   1298 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
   1299 
   1300 			bufp += chip->nc_page_size;
   1301 			left -= chip->nc_page_size;
   1302 			*retlen += chip->nc_page_size;
   1303 		}
   1304 
   1305 		addr += chip->nc_page_size;
   1306 	}
   1307 	KASSERT(*retlen == len);
   1308 out:
   1309 	mutex_exit(&sc->sc_device_lock);
   1310 
   1311 	return error;
   1312 }
   1313 
   1314 int
   1315 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   1316     uint8_t *buf)
   1317 {
   1318 	struct nand_softc *sc = device_private(self);
   1319 	struct nand_chip *chip = &sc->sc_chip;
   1320 	uint8_t *bufp;
   1321 	size_t addr;
   1322 	size_t i, pages;
   1323 	int error = 0;
   1324 
   1325 	*retlen = 0;
   1326 
   1327 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
   1328 		(uintmax_t)offset, len));
   1329 
   1330 	if (__predict_false((offset + len) > chip->nc_size)) {
   1331 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
   1332 			" is over device size (%ju)\n", (uintmax_t)offset,
   1333 			len, (uintmax_t)chip->nc_size));
   1334 		return EINVAL;
   1335 	}
   1336 
   1337 	/* Handle unaligned access, shouldnt be needed when using the
   1338 	 * block device, as strategy handles it, so only low level
   1339 	 * accesses will use this path
   1340 	 */
   1341 	/* XXX^2 */
   1342 #if 0
   1343 	if (len < chip->nc_page_size)
   1344 		panic("TODO page size is larger than read size");
   1345 #endif
   1346 
   1347 	if (len % chip->nc_page_size != 0 ||
   1348 	    offset % chip->nc_page_size != 0) {
   1349 		return nand_flash_read_unaligned(self,
   1350 		    offset, len, retlen, buf);
   1351 	}
   1352 
   1353 	bufp = buf;
   1354 	addr = offset;
   1355 	pages = len / chip->nc_page_size;
   1356 
   1357 	mutex_enter(&sc->sc_device_lock);
   1358 	for (i = 0; i < pages; i++) {
   1359 		/* XXX do we need this check here? */
   1360 		if (nand_isbad(self, addr)) {
   1361 			aprint_error_dev(self, "bad block encountered\n");
   1362 			error = EIO;
   1363 			goto out;
   1364 		}
   1365 		error = nand_read_page(self, addr, bufp);
   1366 		if (error)
   1367 			goto out;
   1368 
   1369 		bufp += chip->nc_page_size;
   1370 		addr += chip->nc_page_size;
   1371 		*retlen += chip->nc_page_size;
   1372 	}
   1373 out:
   1374 	mutex_exit(&sc->sc_device_lock);
   1375 
   1376 	return error;
   1377 }
   1378 
   1379 int
   1380 nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
   1381 {
   1382 	struct nand_softc *sc = device_private(self);
   1383 	struct nand_chip *chip = &sc->sc_chip;
   1384 	bool result;
   1385 
   1386 	if (ofs > chip->nc_size) {
   1387 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
   1388 			" device size (0x%jx)\n", (uintmax_t)ofs,
   1389 			(uintmax_t)chip->nc_size));
   1390 		return EINVAL;
   1391 	}
   1392 
   1393 	if (ofs % chip->nc_block_size != 0) {
   1394 		DPRINTF(("offset (0x%jx) is not a multiple of block size "
   1395 			"(%ju)",
   1396 			(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
   1397 		return EINVAL;
   1398 	}
   1399 
   1400 	mutex_enter(&sc->sc_device_lock);
   1401 	result = nand_isbad(self, ofs);
   1402 	mutex_exit(&sc->sc_device_lock);
   1403 
   1404 	*is_bad = result;
   1405 
   1406 	return 0;
   1407 }
   1408 
   1409 int
   1410 nand_flash_markbad(device_t self, flash_off_t ofs)
   1411 {
   1412 	struct nand_softc *sc = device_private(self);
   1413 	struct nand_chip *chip = &sc->sc_chip;
   1414 
   1415 	if (ofs > chip->nc_size) {
   1416 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
   1417 			" device size (0x%jx)\n", ofs,
   1418 			(uintmax_t)chip->nc_size));
   1419 		return EINVAL;
   1420 	}
   1421 
   1422 	if (ofs % chip->nc_block_size != 0) {
   1423 		panic("offset (%ju) is not a multiple of block size (%ju)",
   1424 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
   1425 	}
   1426 
   1427 	mutex_enter(&sc->sc_device_lock);
   1428 	nand_markbad(self, ofs);
   1429 	mutex_exit(&sc->sc_device_lock);
   1430 
   1431 	return 0;
   1432 }
   1433 
   1434 int
   1435 nand_flash_erase(device_t self,
   1436     struct flash_erase_instruction *ei)
   1437 {
   1438 	struct nand_softc *sc = device_private(self);
   1439 	struct nand_chip *chip = &sc->sc_chip;
   1440 	flash_off_t addr;
   1441 	int error = 0;
   1442 
   1443 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
   1444 		return EINVAL;
   1445 
   1446 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
   1447 		DPRINTF(("nand_flash_erase: erase address is over the end"
   1448 			" of the device\n"));
   1449 		return EINVAL;
   1450 	}
   1451 
   1452 	if (ei->ei_addr % chip->nc_block_size != 0) {
   1453 		aprint_error_dev(self,
   1454 		    "nand_flash_erase: ei_addr (%ju) is not"
   1455 		    " a multiple of block size (%ju)",
   1456 		    (uintmax_t)ei->ei_addr,
   1457 		    (uintmax_t)chip->nc_block_size);
   1458 		return EINVAL;
   1459 	}
   1460 
   1461 	if (ei->ei_len % chip->nc_block_size != 0) {
   1462 		aprint_error_dev(self,
   1463 		    "nand_flash_erase: ei_len (%ju) is not"
   1464 		    " a multiple of block size (%ju)",
   1465 		    (uintmax_t)ei->ei_len,
   1466 		    (uintmax_t)chip->nc_block_size);
   1467 		return EINVAL;
   1468 	}
   1469 
   1470 	mutex_enter(&sc->sc_device_lock);
   1471 	addr = ei->ei_addr;
   1472 	while (addr < ei->ei_addr + ei->ei_len) {
   1473 		if (nand_isbad(self, addr)) {
   1474 			aprint_error_dev(self, "bad block encountered\n");
   1475 			ei->ei_state = FLASH_ERASE_FAILED;
   1476 			error = EIO;
   1477 			goto out;
   1478 		}
   1479 
   1480 		error = nand_erase_block(self, addr);
   1481 		if (error) {
   1482 			ei->ei_state = FLASH_ERASE_FAILED;
   1483 			goto out;
   1484 		}
   1485 
   1486 		addr += chip->nc_block_size;
   1487 	}
   1488 	mutex_exit(&sc->sc_device_lock);
   1489 
   1490 	ei->ei_state = FLASH_ERASE_DONE;
   1491 	if (ei->ei_callback != NULL) {
   1492 		ei->ei_callback(ei);
   1493 	}
   1494 
   1495 	return 0;
   1496 out:
   1497 	mutex_exit(&sc->sc_device_lock);
   1498 
   1499 	return error;
   1500 }
   1501 
   1502 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
   1503 
   1504 #ifdef _MODULE
   1505 #include "ioconf.c"
   1506 #endif
   1507 
   1508 static int
   1509 nand_modcmd(modcmd_t cmd, void *opaque)
   1510 {
   1511 	switch (cmd) {
   1512 	case MODULE_CMD_INIT:
   1513 #ifdef _MODULE
   1514 		return config_init_component(cfdriver_ioconf_nand,
   1515 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1516 #else
   1517 		return 0;
   1518 #endif
   1519 	case MODULE_CMD_FINI:
   1520 #ifdef _MODULE
   1521 		return config_fini_component(cfdriver_ioconf_nand,
   1522 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
   1523 #else
   1524 		return 0;
   1525 #endif
   1526 	default:
   1527 		return ENOTTY;
   1528 	}
   1529 }
   1530